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Abstract. Traditionally, wind turbine controllers are designed using first principles or linearized or identified
models. The aim of this paper is to show that with an automated, online, and model-free tuning strategy, wind
turbine control performance can be significantly increased. For this purpose, iterative feedback tuning (IFT) is
applied to two different turbine controllers: drivetrain damping and collective pitch control. The results, obtained
by high-fidelity simulations using the NREL SMW wind turbine, indicate significant performance improvements
over baseline controllers, which were designed using classical loop-shaping techniques. It is concluded that
iterative feedback tuning of turbine controllers has the potential to become a valuable tool to improve wind

turbine performance.

1 Introduction

The control system plays a crucial role in the operation of
wind turbines (van Kuik et al., 2016). Without properly tuned
control loops, the turbine does not extract the maximum
amount of energy from the wind and loads might not be mit-
igated optimally. Typically, wind turbine controllers are de-
signed using linearized models obtained from wind turbine
software packages (Bossanyi and Witcher, 2009). The lin-
earized models approximate the nonlinear wind turbine dy-
namics in the vicinity of selected operating points for which
the controller is designed. To obtain a controller that per-
forms satisfactorily across the different operating conditions,
gain-scheduling techniques are often used. When necessary,
the controllers can be fine tuned by connecting them to the
nonlinear wind turbine model using high-fidelity software
packages.

Several factors detriment the controller performance when
implemented on the actual turbine. First, the controller is de-
signed upon the basis of models. This directly implies that
there will be modeling errors and, hence, differences with the
actual turbine. Second, every turbine will be different from
the specifications due to, for instance, manufacturing errors
and imperfections (van der Veen et al., 2013a). Third, due
to environmental differences such as varying soil dynamics

throughout a wind plant, the dynamics of wind turbines vary
per turbine (Lombardi et al., 2013; Abhinav and Saha, 2015).
Finally, due to wear and tear, dynamics will change over
time. All these factors impact the (controller) performance of
wind turbines and should be addressed during commission-
ing and periodically during the lifetime of a wind turbine.

A wind turbine manufacturer has several opportunities to
overcome the aforementioned issues. One of these is by ap-
plying system identification techniques (Hjalmarsson, 2005;
van der Veen et al., 2013a, b; La Cava et al., 2016). With sys-
tem identification, the dynamics of a wind turbine subsystem
are obtained by exciting a wind turbine input and measur-
ing the response thereof, which often yields a more realistic
model. By using the identified models as a basis for the con-
trol design, performance can be increased. The drawback of
this approach is that it might be time consuming to obtain the
dynamics for all operating conditions, after which the con-
troller needs to be redesigned.

In the past decade, research has been conducted on devel-
oping load-reducing controllers that “learn” the optimal con-
troller settings online (van Wingerden et al., 2011; Houtzager
et al., 2013; Navalkar et al., 2014, 2015; Xiao et al., 2016).
These controllers are typically scheduled on basis functions
and thereby mainly target the periodic wind turbine load-
ing. By minimizing a cost function with respect to the con-
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troller parameters, the optimal (linear) combination of the
basis functions can be obtained online. The controllers have
been successfully demonstrated in both simulation studies as
well as experimental wind tunnel testing. However, the main
drawback of the majority of the approaches is that the re-
sulting controller operates in feedforward. This means that
mainly the deterministic loads are targeted, while stochastic
loads remain roughly unaffected.

Another strategy is to tune the controllers offline by us-
ing the previously mentioned models and use this as a start-
ing point for an automated online tuning algorithm (which
can be run during commissioning and periodically over the
turbine lifetime for instance). One such algorithm is given
by iterative feedback tuning (IFT) (Hjalmarsson et al., 1998;
Hjalmarsson, 2002). With IFT, the parameters of a fixed-
structure controller are iteratively optimized by carrying out
two or more experiments on the closed-loop system, with
which estimates of the gradient with respect to the controller
parameters are obtained. Iteratively updating the controller
parameters by using the gradient estimates then minimizes
a user-defined cost function. The key advantage of IFT is
that detailed knowledge of the (wind turbine) system is not
needed, while the main requirement is that the initial closed-
loop system is stable, implying that it can be directly used
for optimization of wind turbine controllers. IFT has been
successfully applied to various application fields, including
mechatronics (Al Mamun et al., 2007; Heertjes et al., 2016),
robotics (Liu et al., 2011), process industry (Lequin, 1997),
and recently wind turbines (Navalkar and van Wingerden,
2015).

In this paper, IFT is used to optimize the performance
of an active drivetrain damper and of reference tracking us-
ing collective pitch control (CPC). The main contribution is
therefore to show the (practical) application of IFT to ex-
isting wind turbines. This paper also contributes in showing
how IFT can be applied to systems that have multiple con-
trollers in the loop. Moreover, it is shown that IFT can be
applied to systems that have a reference input with a static
offset by performing an additional experiment. Finally, the
impact of several practical considerations is shown, includ-
ing the experiment length, signal-to-noise ratio, and conver-
gence speed.

This paper is organized as follows. In the next section, the
details of the IFT algorithm and the closed-loop experiments
that are required to obtain gradient estimates are given. Sub-
sequently, in Sect. 3, short descriptions of the NREL SMW
wind turbine and the high-fidelity simulation environment
are given. An overview of the control system is also provided.
In Sects. 4 and 5, the IFT algorithm is used to optimize the
performance of an active drivetrain damper and the reference
tracking of the rotor speed using CPC. Finally, conclusions
are drawn in Sect. 6.
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2 lterative feedback tuning theory

This section introduces the IFT method. First, the main de-
tails of IFT are given in Sect. 2.1, followed by the analysis
of IFT for systems with a reference input containing an offset
in Sect. 2.3.

2.1 IFT introduction

The basic rationale of IFT (Hjalmarsson et al., 1998; Hjal-
marsson, 2002) is to minimize a cost function, given for in-
stance by the quadratic expression

— ! B 2 2
J(p)—ﬁ;E[(y(k,m—r(k)) +auk, o] )

in an iterative manner. The cost function J(p) in Eq. (1) de-
pends on the (tunable) controller parameters p, the squared
error between the output y(k, p) and the reference input r (k)
(possibly prefiltered with a system reference model), and the
squared input signal of the system u(k, p), where k indicates
the time instance. The cost function is divided by 2 times the
number of data samples N, and involves the expectation E[-]
due to noise. Using a gradient search of the type

_10J
Pi+1 = pi — ViR, 1%(,01'), 2

where i is the iteration number, d.J/9p(p;) the gradient of the
cost function Eq. (1), R; a positive definite matrix (e.g., the
Hessian of Eq. 1), an unconstrained optimization problem is
obtained. Note that the objective function can be non-convex,
and will in such a case converge to a local minimum.

It is clear that minimizing Eq. (1) boils down to comput-
ing the gradient 0.J/dp(p;) and Hessian R; at every iteration.
Previous studies (e.g., refer to Hjalmarsson et al., 1998; Hjal-
marsson, 2002) have shown that these quantities can be ob-
tained from the closed-loop system by conducting a number
of experiments. To see this, first consider the partial deriva-
tive of the cost function J(p) with respect to the controller
parameter vector p:

aJ 1 & Ay
» V=% ;E [(y(k, p) — r(k))%ac, P)
ou
+huk, p)o— (k. p)} , 3)
0

which involves the signals dy/dp(k, p) and du/dp(k, p).
Thus, in each iteration the following signals are required:

1. the signals r(k), y(k, p;), and u(k, p;);
2. the gradients dy/dp(k, p;) and du/dp(k, p;);

3. unbiased estimates of the products
r(k)dy/dp(k, pi) and u(k, p;)du/dp(k, pi).

(y(k, pi) —
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Figure 1. Block diagram of a closed-loop system.
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The signals of the first requirement can be obtained from run-
ning a closed-loop experiment as in Fig. 1.

Obtaining the signals of the latter two requirements is
slightly more involved. In order to derive the required gra-
dients and unbiased estimates, consider the block scheme of
the closed-loop system in Fig. 1. From the block scheme, it
is readily observed that

yi(k, p) = Puy(k, p) +v1(k), “
ur(k, p) = C(p) (r1(k) — y1(k, p)), &)

where P is the plant, C(p) the fixed-structure parameterized
controller, and v; the measurement noise. Taking the partial
derivatives of the latter signals with respect to the controller
parameters p gives

0 0
ﬂ(k, p) = Pﬂ(k, P). ©6)
0
”1 5o P= —(p)(n(k) — 1k, p))
- C(p)a—(k, p). (N
0

Substitution of Eq. (7) in Eq. (6) yields

ay1

—(k p)=U+PC(p))~ P—(p)(rl(k) yi(k, p))

aC
= S(P)P%(p)(”l(k) —yi(k, p)), ®)

where S(p) = (I + PC(p))~! is the sensitivity function. The
gradient in Eq. (8) can be obtained by injecting ry(k) —
y1(k, p) at the process input us(k, p) according to Fig. 2.
This experiment is the so-called gradient experiment. No-
tice that Fig. 2 includes a scaled injection signal with a fac-
tor F at the process input as well as a factor 1/F at the out-
put, which will become clear in the following paragraphs;
for now assume F' = 1. It should also be noted that the gra-
dient dy/dp(k, p) obtained through Fig. 2 is an estimate
of Eq. (8) because it is contaminated with noise vy(k), i.e.,

-~

ay aC
a_(k’ p) = S(p)P—(p)(ri(k) — yi(k, p))
14 ap
acC
+S(p) 5~ (p)v2. (€))
0

Finally, note that the subscript indicates the experiment num-
ber and should not be confused with the iteration number .
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Figure 2. Block diagram of the closed-loop gradient experiment.

Performing the gradient experiment as in Fig. 2 avoids the
need of an inverse of the controller, which will become clear
in the next section. .

The input gradient signal du/dp(k, p) can be obtained in
a similar way (refer to Hjalmarsson et al., 1998, for a deriva-
tion). It can be derived that

o~

F] aC
a—u(k, p) = S(p)—(p)(ri(k) — yi1(k, p))
o ap

aC
- S(p)C(p)—8 (p)v2, (10)
0

which means that the gradient can be obtained from Fig. 2
by multiplying the process input u»(k, p) with dC/dp (or
by 1/F-9C/dp when the scaling factor F is applied).
Again, this gradient is an estimate because it is contaminated
with v, (k) and is therefore denoted by du /9p(k, pi).

Under some mild assumptions of the noise properties
(zero-mean noise and the noise should be uncorrelated in
each experiment), it can be shown (HJalmarsson 2002)
that (1 (k. p;) —r1(k))dy/dp(k. pi) and uy (k. p;)du/dp(k. p;)
are unbiased estimates.

The matrix R in Eq. (2) is often replaced by an approxima-
tion of the Hessian. When y(k, p) — r(k) is small, the Gauss-
Newton direction

1 dy du "
Rzz[ac p)— (k, p>+x (k p) (k,m} (1D

Ni=

can be a suitable choice (Hjalmarsson, 2002). However, the
approximated Hessian in Eq. (11) will be biased because
of the disturbances. Typically, this will slow down the con-
vergence of the algorithm. In Solari and Gevers (2004), it
is shown that an unbiased estimate of the Hessian can be
obtained on the basis of two additional closed-loop experi-
ments. In this paper, however, it was found that the approxi-
mated Hessian Eq. (11) performed sufficiently well and was
therefore the preferred choice.

2.2 Improving the signal-to-noise ratio

In order to improve the signal-to-noise ratio in the gradient
experiment, it is suggested to scale the injection signal with
a factor F (Hjalmarsson, 2002) as shown in Fig. 2. Con-
sequently, the output 53) /9p(k, p) should be divided by the
same scaling factor. For a discussion on the optimal choice
of F, refer to Hjalmarsson and Gevers (1997).
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In the later sections, the gain F needs to not only be
used to improve the signal-to-noise ratio but also to ap-
propriately scale the input injection signal r1(k) — y1(k, p).
In certain cases, the reference r(k) and/or measured sig-
nals y(k, p) can be orders of magnitude larger (or smaller)
than the process input u(k, p), which means that injection
of r1(k) — y1(k, p) with large amplitude would lead to an un-
desired input. Hence, F can be used to scale this signal to the
desired input level.

2.3 IFT for systems with offset in reference inputs

In the previous subsection, the controller C was subject
to IFT, where it was assumed that r(k) could be set to zero.
In this subsection, the details of iteratively optimizing con-
troller C when operating at a non-zero reference input r (k)
are analyzed. Specifically, the details in this part are tailored
to the case of optimizing the CPC, for instance. In the CPC
loop, the generator speed is held close to the rated genera-
tor speed. Thus, the reference input can be used to gener-
ate a step response. Then, the reference r(k) can be written
as r(k) = r, +rp(k), where r, # 0 is the constant offset (e.g.,
the rated generator speed) and r,, the reference step. Similar
to the previous section, the offset r, will contaminate the gra-
dient signals and therefore a third experiment is required to
remove this contamination.

The experiments to obtain unbiased gradient estimates are
as follows (Hjalmarsson, 2002). First, an experiment is car-
ried out where a step change r (k) = r, + r, (k) is applied to
the closed-loop system according to Fig. 1. Recording the
process input u(k, p) and the output y(k, p),

yitk, p) = S(p)(PC(p)(ro + ra(k)) + v1(k)), (12)
ur(k, p) = S(p)C(p)(ro +rn(k) — vi(k)), (13)
gives the first set of signals. Second, an experiment identical
to the first experiment is carried out, except that there is not

a step change in the reference; hence, (k) = rgo. This yields
the second set of signals:

2k, p) = S(p)(PC(p)ro + v2(k)), (14)
uz(k, p) = S(p)C(p)(ro — v2(k)). s)
The third experiment is the experiment where the recorded
signals of the first and second experiments are used to obtain
an estimate of the gradient. The control configuration for the
gradient experiment is shown in Fig. 3, where it is seen that

the reference input equals r,. For this configuration, the gra-
dient estimate signals read (also see Appendix A)

3y 1aC
%(k, p)= f%(p)(S(p)[PF(rl(k) —yi(k, p))

+ PC(p)ro +v3(k)] = ya(k, p)), (16)
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Figure 3. Block diagram of modified closed-loop gradient experi-
ment for reference inputs with offsets.

au 1aC
%(k, p) = F%(p)(S(p)[F(n(k) —yi(k, p))

+ C(p)ro — C(p)v3 (k)| — ua(k, p)), a7

from which it can be seen that both noise and the reference
offset r, perturb the estimate. Fortunately, the offset r, in
the gradient estimates can be removed by using Egs. (14)
and (15) during the gradient experiment (see Fig. 3).

It is noted that the first and second experiments are nearly
identical, but they are both required in order for (yi(k, p;) —
ri(k)dy/dp(k, p;) and uy(k, p;)ou/dp(k, p;) to be unbi-
ased (Hjalmarsson, 2002) under the same assumptions as be-
fore.

2.4 IFT for systems with multiple controllers

The IFT method discussed in the previous part cannot di-
rectly be applied to control systems where multiple (decou-
pled) controllers are working on the same input signal. Con-
sider in this case, for example, the torque controller and the
drivetrain controller. The torque controller regulates the gen-
erator torque in such a way that the rotor speed provides max-
imum power extraction from the wind. At the same time,
a drivetrain damper adds a small torque ripple on the reg-
ulated generator torque in order to reduce drivetrain oscil-
lations (which will be further explained in Sect. 4). Thus,
in such a case the reference signal r(k) in Fig. 2 cannot be
set to zero. Moreover, the torque and damping controllers
might have some interaction such that biased estimates are
obtained. In order to apply IFT to this kind of control sys-
tem, it is shown that a similar procedure as for the case with
reference offsets can be used.

The basic control system analyzed in this section is shown
in Fig. 4. The control system consists of controllers C;
and C(p), where the latter is subject to optimization. Con-
troller C; works on the error between a reference r(k) and
the measured output y(k, p), while C2(p) works on the out-
put y(k, p) filtered by H(s). The role of the high-pass filter
will become clear at a later point. The controller C»(p) is im-
plemented with positive feedback without loss of generality.

The first experiment is identical to the single controller
case as described in the previous paragraphs: the closed-loop
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Figure 4. Block diagram of the closed-loop system, which involves
multiple controllers (representing the scenario of torque control and
drivetrain damping).

system in Fig. 4 is used to obtain the following signals:

yi(k, p) = S(p)(PCiri(k) +vi(k)), (18)
u(k, p) = S(p)(Ciri(k) — Crui (k) + Ca(pYHvi(k)),  (19)
where S = (I + PC| — PC2(,0)H)_1 is the sensitivity func-
tion. The signals in Egs. (18)—(19) determine the cost func-
tion given in Eq. (1).

The gradient signal related to the output y;(k, p) is ob-
tained as follows. First note that

y(k, p) = Pu(k, p) +v(k) (20)

such that the partial derivative thereof is given by
a ou
2 (k. p) = P (k. p). @1
ap ap

Then, note that the process input u(k, p) in Fig. 4,

uk, p) = C1(r(k) — y(k, p)) + C2(p)YHy(k, p), (22)

has partial derivative

u 0 0Cy
3y 0= —cl—yac, o)+ 5k )

+ Cz(p)H (k 0)- (23)
Substituting Eq. (23) in Eq. (21) and manipulating it yields

0 aC
—ay (k. p) = S(p)P =2Hy(k, p). (24)
0 ap

Similarly, the gradient related to the input can be found to
be (see Appendix B)

0 oC
a—”(k, p) = S(0) =2 (p)Hy (k. p). (25)
0 ap

Thus, the signals in Eqs. (24)—(25) can be obtained by inject-
ing the high-pass filtered output Hy(k, p) or simply y'(k, p)
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Figure 5. Block diagram of the gradient experiment for the multiple
controller scenario. The controller C; is fixed and controller C»(p)
is subject to IFT. The signals Hyj(k, p), y2(k, p), and us(k, p) are
obtained from two other experiments and are required to obtain un-
biased gradient estimates.

at the process input u(k, p) in a gradient experiment accord-
ing to Fig. 5. Doing so, one then obtains the following gradi-
ent estimates:

dy 19C>
%(k,p) fT(S(p)[PCI"(k)'f‘FPH)’I(k p)
+u3(0)] — yalk, p)), (26)
1aC
( ,P)= fTQ(S(p)[Clr(k) — Crv3(k) + Ca(p)YHus (k)
+FHy(k, p)] —uz(k,p))- (27

Compare the equations above with Egs. (24)—(25) and it
can be observed that the estimates are biased. Now, by run-
ning an experiment identical to the first experiment, one ac-
quires y2(k, p) and u»(k, p) identical to Eqgs. (18)—(19). Sub-
tracting these, as shown in Fig. 5, cancels the undesired terms
in the gradient signals in Egs. (26)—(27) such that the desired
gradient is obtained, which is only perturbed by noise terms.

The high-pass filter H is incorporated for practical con-
sideration. In the gradient experiment, the signal F'Hy(k, p)
is injected into the system. In the case of drivetrain damp-
ing, this would mean injecting the measured generator
speed y1(k, p) with a scaling factor F. As the generator speed
during operating is larger than zero, this would imply insert-
ing a step change in the demanded generator torque. High-
pass filtering the measured speed causes the injection of a
signal that varies around zero.

2.5 Including cost function weights

This section shortly discusses weighting filters in the cost
function. The cost function in Eq. (1) can be modified
to include time and frequency weights. First, consider the
following so-called zero-weighting mask of the cost func-
tion (Lequin et al., 1999, 2003)

N

1
I0)= 55 2 E|0kp)=r®) +auceoP].  @8)

=Np
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where the index of the summation starts at Ng > 1. The moti-
vation for this mask, often used for step response tuning, is as
follows. Typically, the main objective of step response tuning
is to move the system quickly from one point to another. The
settling time is an important parameter in this context. With-
out zero-weighting mask, the controller is tuned such that the
reference is as closely matched as possible, while in practice
one does not care too much about the trajectory to the new
reference value, as long as the overshoot is not too large. By
zero weighting the transient trajectory in the cost function,
the algorithm tries to achieve a fast settling time.

The cost function can also incorporate frequency
weights Ly and L,

N

1
J(p)= = D E[(Ly(y(k, p)— (k)
2N fa

+ MLyu(k, p))*], (29)

which filter the error y(k, p) —r(k) and input u(k) accord-
ingly. With the frequency weights, one can emphasize or sup-
press frequency bands in the cost function. For example, in
the case of drivetrain damping, the measured output signal
will not only be composed of the drivetrain resonance fre-
quency but also of many other disturbances with various fre-
quency components. Thus, filtering the drivetrain frequen-
cies in the cost function makes sure the controller will focus
on the filtered frequencies.

The cost function Eq. (29) requires filtering of y(k, p) —
r(k) and u(k, p) with L and L,, respectively. Moreover, the
derivative of Eq. (29) with respect to the control parameters

aJ 1 & Ay
%w) =~ ;E[Ly(wc, ) — r(k»%(k, )

ou

+)»Luu(k,p)—(k,,0)] (30)
dp

then involves the filters Ly and L,, as well. Thus, this also re-

quires the gradient signals to be passed through the frequency

filters.

2.6 Stability and convergence

The iterative optimization of the controller parameters p de-
scribed in the previous paragraphs can have robustness is-
sues. This is caused by the fact that, typically, there are no
guarantees that the controller remains stable during the iter-
ation. For that reason a number of articles (Heertjes et al.,
2016; Prochazka et al., 2005; de Bruyne and Kammer, 1999;
Veres and Hjalmarsson, 2002) have appeared on the subject
of including stability constraints for the optimization pro-
cedure. These algorithms are not considered here because
no stability issues are encountered in this study. However,
a safety measure that can be taken is lowering the parameter
update step size y;, but for this a trade-off between stability

Wind Energ. Sci., 2, 153—-173, 2017

Table 1. NREL 5MW wind turbine description (Bossanyi and
Witcher, 2009).

Description Value

Rated power SMW
Number of blades 3

Rotor diameter 126 m
Orientation Upwind
Hub height 90m
Gearbox ratio 97

Rated wind speed 113ms~!
Rated rotor speed 12.1 rpm
Rated generator torque 43.093 kNm
Drivetrain natural frequency  10.49rad 5!

and convergence rate has to be made. A technique to improve
convergence is to adjust the step size y; after each iteration,
based on a norm of the cost function gradient d.J/dp(p0;).

3 Wind turbine and simulation environment

In this study, the NREL SMW reference wind turbine model
is used. The model does not represent an existing wind tur-
bine but is considered to reflect typical commercial wind tur-
bines of similar ratings. The turbine has three blades in an
upwind rotor configuration, a rotor diameter of 126 m, and
it reaches the rated power output of 5SMW at a wind speed
of 12.1ms~!. A summary of the most important parame-
ters is listed in Table 1. The wind turbine is a variable-speed
variable-pitch machine, such that the rotor speed in below-
rated wind is regulated by means of the generator torque, and
in above-rated wind by collectively pitching the blades. The
natural frequency and damping ratio of the drivetrain dynam-
ics, which are important for the drivetrain damper that will be
designed in Sect. 4, are w, = 10.49rad s~ and £ =0.0217,
respectively.

The relevant control scheme for the scope of this study is
given in Fig. 6. The measured generator speed 2gen forms
the input for the controllers. The torque controller provides a
demanded generator torque set point Tyq to regulate the ro-
tor speed in below-rated wind, and drivetrain damping can
be achieved by superimposing Tirq with a small torque rip-
ple Taw, such that the final demanded generator torque is
given by Tgepn. In above-rated conditions, the generator speed
is held constant at Qe = Qrated by means of the collective
blade pitch set point 6 generated by the CPC. The drivetrain
damper and the CPC will be optimized using IFT in Sects. 4
and 5.

The software package GH Bladed 4.20 (Garrad Hassan,
2015; Garrad Hassan & Partners Ltd, 2017a, b), which is a
certified and widely used wind turbine design software pack-
age in the industry, is used to simulate the behavior of the
wind turbine in response to a supplied wind field. To do so,
the structural model of the turbine is modeled by a multi-
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Taw . .
Drivetrain damper*
Tiq
+ O<«———— Torque controller

Tgen
Wind Qgen
0 turbine
CPC* e
\ +
Qrer

Figure 6. Overview of the relevant controller configuration in this
study. The starred controllers will be the subject for IFT.

body approach combined with a modal representation of the
flexible components. The rotor aerodynamics are modeled
by combining blade and momentum theory. Initial (baseline)
controllers will be constructed using classical loop shap-
ing techniques on linear models of the different subsystems,
which are obtained from Bladed using the built in lineariza-
tion tool. The controllers will be subsequently implemented
in the NREL 5MW Bladed wind turbine model and opti-
mized using the IFT algorithm, as Bladed allows for test-
ing of new control algorithms by compiling an external con-
troller designed in MATLAB Simulink (Mathworks, 2013),
for example, to a dynamic-like library (DLL) file (Houtza-
ger, 2013). The DLL file is then used during the calculations
to obtain the closed-loop dynamics of the wind turbine. The
controllers are discretized using the Tustin approximation
and are operated at a sampling time of 0.01 s. Note that some
of the considered subsystem dynamics are active in a lower
frequency range, such that a reduced sampling time would be
sufficient. However, in this work all controllers are designed
to operate at the sampling frequency, as commercial turbines
typically operate at this frequency. The data in the log files
are recorded with a sampling time of 0.05s. The interested
reader is referred to the theory manual of Bladed (Garrad
Hassan & Partners Ltd, 2017b) for details on the calculation
methods.

4 IFT of a drivetrain damper

Wind turbines that have a geared drivetrain are known to
have a lightly damped drivetrain mode. Subjected to turbu-
lent wind, the rotor speed will vary despite the speed regu-
lation by torque control and CPC. The rotor speed variations
cause the drivetrain mode to be excited, which can lead to
oscillations in the drivetrain. In order to prevent this, a driv-

www.wind-energ-sci.net/2/153/2017/

etrain damping controller is typically included in the control
system (e.g., see Fig. 6). This controller adds a small torque
ripple at the drivetrain frequency (Bossanyi, 2000) to the de-
manded generator torque of the torque controller. Doing so
will dramatically reduce the drivetrain oscillations. Several
studies in the past have considered the design of drivetrain
damping control, e.g., refer to Bossanyi (2000); Dixit and
Suryanarayanan (2005); Fleming et al. (2011, 2013); Wright
etal. (2011).

In this section, the IFT algorithm (see. Sect. 2) is applied
to the optimization of the drivetrain damper parameters. In
the next paragraph, the controller parameterization is given,
as well as the classical design approach. Then, a parame-
ter study is carried out to visualize the cost function. Sub-
sequently, the controller is iteratively optimized for realistic
loading scenarios as well as for different algorithm settings.
Finally, the results of this case study are discussed.

4.1 Baseline damping controller design

Typically, the drivetrain controller is chosen to be a bandpass
filter of the form (Bossanyi, 2000; Bossanyi and Witcher,
2009)

2Kwis

Caa(s) = o
dtd(s) s2+2{a)s+w2

(D)
where K is the bandpass gain, w is the drivetrain fre-
quency, and ¢ influences the damping. With a (linearized)
model of the drivetrain dynamics Gqyq, this bandpass fil-
ter can be tuned to damp the drivetrain oscillations. To this
end, a linearized model of the drivetrain dynamics is ob-
tained from Bladed using the built-in linearization tool. With
this model, the drivetrain damper is designed using classi-
cal loop-shaping techniques (Skogestad and Postlethwaite,
2006). The resulting Bode diagrams of the drivetrain dy-
namics, the open loop (controller times drivetrain dynam-
ics), and the closed loop are shown in Fig. 7. From the open-
loop dynamics shown in the Bode diagram, it is recognized
that the bandpass gain K can theoretically be increased in-
finitely (i.e., because the phase plot never crosses —180°);
however, in practice the controller bandwidth is limited by
actuator and communication constraints and higher-order un-
modeled dynamics. Hence, during the iterative optimization,
the controller cannot become unstable (for positive values of
the controller parameters). The bandpass filter that is used
in Fig. 7has K =2500, ¢ = 0.3, and w = wq = 10.49 rad g1
and is considered as the baseline controller. This filter has
been experimentally verified to yield satisfactory perfor-
mance.

4.2 Parameter study for drivetrain damping

Before the IFT algorithm was implemented, first a parame-
ter study using the linearized drivetrain dynamics was car-
ried out. In order to gain understanding of the optimization
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Figure 7. Bode diagrams of the drivetrain dynamics, the open-loop (controller times drivetrain dynamics), and the closed-loop system.

problem, the closed-loop system, including the drivetrain dy-
namics G4y and the bandpass filter Cqyq, is simulated for a
range of parameters (K, w, ). A disturbance signal at the
drivetrain frequency is injected at the output. The cost func-
tion is taken as Eq. (1), i.e., both the output and the input are
weighted. The cost function for combinations of K and w is
shown in Fig. 8. The results indicate that the cost function
has a large area where it is almost optimal and which be-
comes wider for increasing ¢. This means that for this prob-
lem many combinations of K and w exist that give almost
identical results. Moreover, this also indicates that the param-
eters are likely to quickly converge to almost minimum cost
values, but they will slowly converge to the optimum value.
It also shows that the baseline damping filter with ¢ = 0.3
could be improved (at least for the simulation case) by de-
creasing the damping ¢ of the filter. Finally, the cost function
plot shows that the phase of the controlled system can be ad-
justed by increasing or decreasing the frequency w and at the
same time increasing or decreasing the bandpass gain K to
maintain practically the same compensation performance.

4.3 IFT of drivetrain damping

The input of the drivetrain damping controller Eq. (31) is
taken to be the measured generator speed. The generator
speed signal consists of many frequency components arising
from the interaction between the wind turbine system and
the wind. For drivetrain damping, one is only interested in
the frequencies close to the drivetrain frequency. Hence, the
controller scheme is taken to be identical to Fig. 4, where C|
is the torque controller and C; is the drivetrain damper. The
input to the system is u = Tgen and the output is y = Qgen.
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The measured generator speed signal Qg is passed through
the high-pass filter

52

H(s) = , 32
R ) (32)

where w3 = 0.63rads~! is the cut-off frequency and ¢y =
0.7 determines the damping of the filter. In order to make
sure that the cost function is dominated by the drivetrain ex-
citations, the output component of the cost function Eq. (1)
is filtered. The weighting filter

WS

L,(s)= ———7—"-—"—,
»() 242005 + ?

(33)

with w, = 10.49rads~! at the drivetrain frequency and ¢, =
0.1, is effectively an inverted notch filter passing through the
frequencies close to the drivetrain frequency and attenuating
other frequencies. The input component of the cost function
is also filtered, as one in this case is only interested in the
high-frequency part of the generator torque set point Tigen.
Therefore, the input component is also filtered with the high-
pass filter Eq. (32). The cost function then becomes

1 N
Jaa(p) = 55 > E[(LyHgen(k, p))?
k=1

+ A H Tgen(k. p)?], (34)

which thus consists of the measured response of the gener-
ator speed 2gen filtered by Egs. (32) and (33) and the de-
manded generator torque Tgey filtered by Eq. (32). These fil-
ters are also included in the gradient experiment configura-
tion in Fig. 5 just before the controller derivatives.
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Figure 8. Close-up of the optimal parameter combinations for the drivetrain excitation problem with { = 0.1 (left) and ¢ = 0.3 (right). The
results are thresholded and normalized for clarity. The results show large areas where the cost function is almost optimal. The minimum
values of the cost function for each case are indicated by the white 4+ marker.

The experiments of IFT for the iterative drivetrain con-
troller optimization are according to Sect. 2.4 as follows:

First experiment (7': 0-20s) In the first experiment, the
closed-loop system is operated for 20s (i.e., N =2000
samples), with C; and C» identical to Fig. 4. The out-
put Qgey is filtered by Egs. (32) and (33), and the in-
put Tgey is filtered by Eq. (32).

Second experiment (7': 20—40s) The second experiment is
identical to the first experiment.

Third experiment (7': 40-60s) In the third experiment, the
filtered output H2ge, from the first experiment is added
to the torque set point Tgen and the recorded signals
from the second experiment are subtracted as shown
in Fig. 5.

After the third experiment at 7 = 63 s, the controller pa-
rameters p are updated according to Eq. (33), and before the
next iteration is started, 7 s is used to let the transients disap-
pear that are caused by the controller parameter update. Thus,
a full iteration takes 70s. In the results, the IFT algorithm is
also adjusted to collect N = 1000 and N = 3000 samples (10
and 30, respectively) per experiment. In these cases the ex-
periment lengths are adjusted accordingly and the iterations
therefore take 40 and 100 s in total, respectively. In all cases,
the first iteration starts at 7 = 30 s after the start of the simu-
lation, such that all initial transients have disappeared.

The generator torque set point Tgg provided by the IFT
algorithm is limited to 1.8 kNm. Moreover, the generator
torque set point is also limited in the rate of change, i.e., a
maximum rate of 20 kNms~! is allowed.

4.4 Results

The results for IFT of the drivetrain damper are subdivided
into four parts, each covering a different aspect of the IFT
results.
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4.41 General analysis of results

In the first part, the results for a number of general settings
of IFT are analyzed. The wind field considered here has
a mean wind speed of 14ms~! and a turbulence intensity
of 10 %. The number of data points considered is N = 2000,
corresponding to 20 s of simulated time (recall that the con-
trollers run at a sampling time of 0.01s) and the parameter
update step size of Eq. (2) is set to y = 0.3. The adjustable
signal-to-noise ratio parameter F is set to 2000, which was
experimentally found to provide a good trade-off between the
signal-to-noise ratio and the amplitude of the injected signal.

First, the convergence of the cost function and controller
parameters for different optimization cases are considered. In
total four cases are considered:

1. The baseline was considered. In the baseline case the
controller parameters are held constant and are given
for reference.

2. ppase Was considered. In the second case, the initial pa-
rameters popase are equal to the baseline parameters
(i.e., K =2500, w = 10.49rad s! and ¢ =0.3), from
which IFT procedure is started. The input weighting is
chosentobe A =5 x 107",

3. Pbase,n Was considered. The third case is identical to the
second case except that the input weighting is smaller,
ie,A=2x10"".

4. psubopt Was considered. In the final case, the initial pa-
rameters 0o, subopt are chosen to be far from the baseline
case: K = 1000, w = 6.28 rad s~!, and ¢ =0.4. The in-
put weighting is identical to the second case.

The results of the comparison are shown in Fig. 9. From
the three plots related to the cost, it is observed that the
baseline controller is already rather close to optimal con-
troller performance. The controller with suboptimal initial
controller parameters converges towards the other controller
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Figure 9. Comparison of three drivetrain torsional damping controllers, two of which are subject to IFT. The baseline controller parameters
are kept constant and the result is shown as reference. The other three cases involve IFT, where the torsional damper is optimized starting
from different initial conditions. Results shown are obtained with y = 0.3, F' = 2000, and turbulent wind with mean speed 14 m s~ land 10%

turbulence intensity.

cases in roughly 10 iterations.! It is observed that the opti-
mization of the controller parameters converges in a way that
it varies around the steady-state result. The variance of the
trajectory is correlated to the turbulence intensity used.

The main performance improvement is observed in the
generator torque effort. It can be observed that the band-
pass gain K and bandpass damping ¢ of the baseline con-
troller should, respectively, be increased and decreased in or-
der to improve the performance. The bandpass frequency w
remains close to the drivetrain resonance frequency wy dur-
ing the optimization. The influence of the lower input weight-

ITo support the statement of convergence, an extended optimiza-
tion is performed and results are included in Appendix C, Fig. C1.
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ing A in the case of ppase, is clearly seen in the bandpass
trajectory.

With the controller parameters obtained in the last iteration
of the second case, a comparison is made with the baseline
case in a normal design load case according to IEC (2005).
The frequency spectra of the demanded generator torque Tgen
and the resulting generator speed 2¢e, are shown in Fig. 10.
From the spectrum plot of Qge, it can be observed that
the IFT-optimized controller yields a higher damping around
the drivetrain frequency wq. The optimized parameteriza-
tion also slightly increases the frequency contents around the
drivetrain mode. The demanded generator torque 7Tge, dis-
plays a similar result. There is slightly more energy concen-
trated at and around the drivetrain frequency, while at low
and high frequencies the energy is reduced.
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Figure 10. Comparison of the baseline and IFT-optimized drivetrain controller performance.

4.4.2 Impact of F on results

In this paragraph, the influence of the scaling factor F' on
the IFT performance is investigated. The IFT algorithm is
carried out on the drivetrain damper using different values
of F. The initial parameters are identical to the baseline and
the step size is chosen to be y = 0.3 and the input weight
to be A =5 x 10~7. The number of data samples collected is
again set to N = 2000, corresponding to experiment lengths
of 20 s. The turbulent wind field is identical to that in the pre-
vious paragraphs. The results for three cases where F is var-
ied between F = 1000 and F = 2000 are shown in Fig. 11.

The first thing that can be observed from the cost function
plot is that the cost function slightly reduces with an increase
in the scaling factor F. The effect of F on the optimization is
more recognized in the convergence trajectories of the band-
pass gain K and the bandpass damping coefficient ¢. Clearly,
by increasing the scaling factor F, the convergence rate in-
creases. This is also what one could expect from reasoning
because the excitation of the system increases with F, as can
also be seen from the lower plot in Fig. 11. The choice of F
seems to be independent, at least for the considered values, of
the final values to which the controller parameters converge.
Thus, when applying IFT, the scaling factor should be care-
fully chosen such that the choice for F in that sense becomes
a trade-off between the convergence rate and maximum al-
lowed magnitude of the injected signal.
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4.4.3 Varying experiment length N

In the previous results, the length of the experiments in each
iteration was N = 2000 (20 s). Here, the iterative optimiza-
tion results are compared for experiment lengths of 10, 20,
and 30s. The step size and input weight are set to y = 0.3
and L =5 x 10_7, and the scaling factor is set to F = 2000.
The results are shown in Fig. 12.

It is observed that the experiment length has a clear in-
fluence on the variance of the obtained results, both for the
cost function plots as well as the controller parameters. The
results also indicate that for the drivetrain damping case the
experiment lengths do not dramatically change the optimiza-
tion outcomes. It seems that for the N = 1000 case the load
reduction performance is slightly better than in the other
cases. Similarly, the N = 3000 case seems to result in the
lowest generator torque effort to reduce the drivetrain oscil-
lations. Moreover, for this case the parameters remain rather
close to the original baseline parameters. It can be argued
that the N = 2000 case provides the best trade-off between
the variance, performance, and convergence time.

4.4.4 Varying wind conditions

In the final part of this case study, IFT is also applied to a
wind speed of 10ms~! at below-rated operating conditions.
Although the need for an active drivetrain damper in below-
rated varying wind conditions is strongly turbine dependent,
this case study will show the ability of the algorithm to op-
timize controllers while turbine power control is active. For
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Figure 11. Comparison of three different signal-to-noise ratio scaling factors F. Results are shown for y = 0.3, A =5 x 10~7, and turbulent

wind with mean speed 14 ms~! and 10 % turbulence intensity.

comparison, the 14 ms~! wind case is also shown. The step
size and input weight are once more set to y = 0.3 and A =
5x 1077, and the scaling factor is chosen to be F' = 3000 for
the 10ms~! wind and F = 2000 for the 14 ms~! wind. The
experiment length is kept at N = 2000 samples. The results
are displayed in Fig. 13.

It is observed in the plots that the convergence trajectories
for both wind speeds are very similar. The 14 ms™! turbulent
wind case excites the drivetrain mode more than the 10 ms~!
wind case as is suggested by the increased cost, which thus
also requires a higher input energy. The cost function plots
show a number of iterations with a clearly higher input cost.
This is caused by sudden wind speed changes to which the
torque controller responds. Although the input in the cost
function is high-pass filtered, these sudden changes remain
partly in the input signal. On such occasions, the controller
parameters also display relatively large changes. This could
be overcome by increasing the cut-off frequency of the high-
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pass filter that is used to filter the input signal in the cost func-
tion or by increasing the experiment length such that these
effects are averaged (i.e., the experiment length acts as low-
pass filter on the results).

5 IFT of CPC

This section presents the results of the IFT algorithm applied
to step tuning of the CPC. In the next paragraph, first the
controller structure is given, including the details of the IFT
method thereof. In the subsequent section the optimization
results for several cases are discussed.

5.1 CPC design and IFT implementation

The CPC of a wind turbine generally consists of a propor-
tional integral (PI) controller cascaded with some filters that
prevent undesired contributions in the pitch signal. The full
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Figure 12. Comparison of IFT performance for different number N of collected data samples. Results shown are obtained with y = 0.3, A =
5x 1077, F = 2000, and turbulent wind with mean speed 14 ms~! and 10 % turbulence intensity.

controller of the CPC loop is given by

K; 242 3pW3pS +a?
Ccpc: (Kp + *l) ;-Z 3P

X
s 52+ 28, 3pw3ps + w3p

Notch at 3P frequency
s24+ 2¢; qwas + a)ﬁ a)ﬁp

, 35
$2 428, qwds +w§ (35

2
s2 422, Lpwrps + @fp

Notch at dtr frequency Low—pass filter

where the filter coefficients are listed in Table 2. The CPC
thus includes a notch filter that prevents it from working
on the 3P (3 times per revolution) frequency present in the
generator speed signal, similarly a notch filter that prevents
the controller from reacting to the drivetrain frequency com-
ponent and a low-pass filter that removes all frequencies
above 1.6 Hz are included. The controller takes the measured
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generator speed Qe as input signal and outputs a demanded
collective pitch signal 6; see Fig. 6.

The IFT algorithm is applied so as to optimize the step re-
sponse tracking of the controller in Eq. (35). Since CPC is
aimed at disturbance rejection rather than reference tracking,
this might seem like an odd optimization objective. However,
for this single-input single-output case they both target the
same sensitivity. Therefore, the frequency-dependent perfor-
mance is dependent on the excitation signal. Since the power
spectrum of a step could be considered as a weighted ver-
sion of a wind spectrum, with a higher emphasis on the low-
frequency components, meaningful results can be obtained
using this approach. This can be further improved by using
a reference signal with a power spectrum similar to that of a
wind signal. The advantage of the approach followed is that
the reference signal is user defined and the wind is uncon-
trollable. The step change is imposed in the rated genera-
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Figure 13. Comparison of IFT performance for turbulent wind with mean wind speeds 10 and 14 ms™ 1, both with 10 % turbulence intensity.

Results shown are obtained with y =0.3 and A =5 x 10-7.

tor speed signal, i.e., Qref = Qrated — Qstep. A nNEgative step
change Qep is applied to prevent the turbine from going
into overspeed. The generator speed signal has a constant
offset r, = Qraeq and therefore the experiments according
to Sect. 2.3 and Figs. 1 and 3 are used:

First experiment (7': 20-40s) In the first experiment, the
step change Qref = Qrated — step in the reference input
is applied for 20s. The generator speed response Q2gen
and the high-pass-filtered process input 6 are recorded.

Second experiment (7': 0-20s) In the second experiment,
the closed-loop system is operated with Qref = Qrated-
The output Qgen and process input ¢ are recorded and
used in the next experiment.

Third experiment (7': 65-85s) In the third experiment, the
gradients are obtained by operating the closed-loop
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system with Qper = Qraed, injecting the error sig-
nal F(Qqef — Qgen) from the second experiment at the
process input 6, using the recorded signals of the first
experiment at the process input of the system accord-
ing to Sect. 2.3, and filtering with controller derivatives
(including the high-pass filter for the input gradient).

The time between the second and third experiments is re-
quired to make sure all oscillations due to the step change
have disappeared. At T = 86, the controller parameters are
updated. Then, after 34 s during which the transients due to
the gradient experiment and the controller update have dis-
appeared, at T = 120 s, the next iteration is started. The first
iteration starts at 7 = 30 s. During the optimization, the max-
imum pitch rate 6 is limited to £8° s~!. Notice that the order
of the first and second experiments have been reversed during
the optimization in comparison to Sect. 2.3.
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Figure 15. Comparison of the generator speed step response during the first and ninth iterations, and for different input weighting factors A.
Results shown are obtained for a wind speed of 14 m s~ with 4 % turbulence intensity.

The cost function is chosen as

1 N
Jcpc(p) = ﬁ z E[(Qgen(kv 0)— S.Zref(k))z
k=1

+ALgO(k, p)*]. (36)

where the input weighting factor A and the step size y in the
parameter update rule Eq. (2) are both considered for differ-
ent values. Note that the input signal in the cost function is
high-pass filtered by Ly, which is identical to Eq. (32). The
high-pass filter Ly is required because the optimization pro-
cedure should focus on the dynamic pitch response rather
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than on the static pitch offset required to maintain the rated
generator speed.

5.2 Results of IFT for CPC

The first result is obtained by optimizing the CPC for a tur-
bulent wind field with a mean wind speed of 14ms~! and
turbulence intensity of 4 %. The step change for this re-
sult is chosen to be Qgtep = 30 rpm. Moreover, the adjustable
signal-to-noise ratio gain F is set to 0.02. The initial PI con-
troller values are K, =4 x 1073 and Ki=1x 1073. The re-
sults for three cases with varying input weighting A and step
size y are shown in Fig. 14.
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Figure 16. Comparison of responses during the first and ninth iterations. Results shown are obtained for a wind speed of 14 m s~ ! with 4 %
turbulence intensity. The measured generator speed and reference input are shown in the upper plot, and the lower plot displays the pitch

response.

Table 2. Filter parameters of the different controller components.

Description Symbol Value
Low-pass filter

Low-pass filter frequency  wpp 10.05rad s~
Low-pass filter damping {p,LP 0.7
Notch filter at 3P frequency

Notch filter frequency w3p 3.77rads ™!
Notch filter damping zero ¢, 31p 0.0015
Notch filter damping pole  ¢p 3Lp 0.15
Notch filter at drivetrain frequency

Notch filter frequency wq 10.49rad s~
Notch filter damping zero ¢, g 0.002
Notch filter damping pole  ¢p 4 0.2

The trajectory of the cost function values and the con-
troller parameters are shown in Fig. 14. Note that the perfor-
mance objective in this work is expressed by the cost func-
tion J(p), and minimization of this function is considered as
improved performance. Another method for controller per-
formance comparison is the use of Pareto curves (Odgaard
et al., 2015a, b), but this technique will not be considered.

It can be observed that the initial controller parameters
were suboptimal and they converge in a few iterations to a
much better performance. The results also show that the con-

Wind Energ. Sci., 2, 153—-173, 2017

vergence of the parameters behave differently. The propor-
tional gain K}, converges to its final value after four itera-
tions. Conversely, the integral controller gain K; slowly in-
creases to larger values. The difference in trajectory can be
explained due to the fact that in the step response the propor-
tional gain is more dominant. In order to make the integral
controller parameter more dominant, one could increase the
experiment length N.

The effect of the gains y and A on the convergence trajec-
tories are apparent in Fig. 14. It is observed that the conver-
gence of the proportional gain K, for the cases where A =
5x 107 is faster due to the higher step size y. The effect
of increasing the weight X in the cost function is also clear
from Fig. 14: the parameters converge to smaller values,
which is expected.

In Fig. 15, three different step responses are shown. The
blue graph displays the response of the initial controller to
the step change. As can be observed, this response is sloppy
and after nine iterations has improved to a decent response.
The increased weight on the input cost yields a step response
where less pitch duty is required with only a very limited
loss of tracking performance. In Fig. 16, the generator speed
response and the collective pitch angle for a full iteration dur-
ing the first and ninth iterations are displayed.

The final results involve a comparison between IFT
of CPC for two different wind speeds: 14 and 18 ms™!
with 4 % turbulence intensity. It is generally known that the
control authority of CPC increases when the blades are fur-
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Figure 17. Reference step tuning of CPC using IFT of CPC at a wind speed of 14 m s~ ! with 4 % turbulence intensity.
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Figure 18. Comparison of the CPC step responses for 14 and 18 ms~! with 4 % turbulence intensity during the seventh iteration.

ther pitched from the wind, which means that less pitch effort
is required to keep the rotor speed close to rated. The IFT tun-
ing results also display this behavior. In Fig. 17 it can be seen
that the proportional gain for 18 ms~! is roughly two-thirds
of the value compared to the 14 ms™! case. Conversely, the
integrator gain K; is somewhat higher for the 18 ms~! wind
speed. The cost function converges to a comparable result.
The step responses shown for the seventh iteration are also
rather similar.

6 Conclusions

In this paper, IFT controllers for wind turbines have been de-
veloped. The typical controller configurations used for wind
turbine control require three closed-loop experiments to be
carried out. With the data that are collected during these ex-
periments, it has been shown that IFT can be successfully ap-
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plied. The results indicate that starting the optimization from
a baseline controller with decent performance can already
improve the performance within a few iterations. It has also
been shown that IFT can be applied to both disturbance rejec-
tion and reference tracking control for wind turbines. This is
demonstrated by means of optimizing the drivetrain damping
controller and the CPC. The methodology could similarly be
applied to improve fore—aft and/or side—side tower damping
performance. Finally, it is argued that IFT could be a valuable
tool with which the performance of wind turbine controllers
can be improved without the need of system identification.

Data availability. Simulation data and code used in this paper are
available under doi:10.5281/zenodo.345978, (van Solingen et al.,
2017).
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Appendix A: Derivation of input gradient for Sect. 2.3

Before the derivation of the input gradient is given, first recall
that the control system in Sect. 2.3 is according to Fig. 1, and
therefore the sensitivity function S(p) and complementary
sensitivity function 7'(p) are given by

S(p) =+ PC(p))~", (A1)
T(p) = (I + PC(p)) ' PC(p). (A2)

Then, note that in Fig. 1 the input u(k, p) is determined by
u(k, p) = S(P)C(p)ro — S(P)C(p)v(k), (A3)

where r (k) has been replaced by r,. The gradient of Eq. (A3)
with respect to p is derived as

0 Y aC
a—”(k, p)= (—C(p) + S(p)—(p)) o
o ap ap
05 0C
- (B—C(m + S(p)—(p)) v(k). (Ad)
0 ap

The derivative of the sensitivity function S(p) equals

N a0C aC
So=—U+ PC(p) 2P—(p)=—S*P—(p).  (A5)
o ap ap

Substituting for the latter sensitivity derivative in Eq. (A4)
yields

du aC
%(k’ p)= S(P)%(P)(”o =T (p)ro
+ T(p)v(k) — v(k)). (A6)

Realizing that (T (p)—1I)v(k) = —S(p)v(k) and that T'(p)r,+
S(p)v(k) = y(k, p) gives the input gradient

0 a0C
—8“ (k. p) = S(p)=(p)(ro — y(k. p)). (A7)
o ap
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Appendix B: Derivation of input gradient for Sect. 2.4

The derivation of the input gradient in Sect. 2.4 is similar to
the derivation in Appendix A. Here, the sensitivity S(p) and
complementary sensitivity 7' (p) are as follows

S(p) =(I + PCy — PCa(p)YH) ™", (B1)
T(p)=(I+ PCy — PCa(p)YH)"' PC). (B2)

In Fig. 4, the input u(k, p) equals
u(k, p) = S(p)C1r(k) + S(p)Ca(p)YHv(k) — S(p)Crv(k),  (B3)

such that the gradient can be derived to be

u a5 0S5 aC
Lk p) = ==Crrk) + (—Cz(p)H +S(p)==H
op op ap ap

—ﬁcl) o k), (B4)
ap

where

39S aC

2 I+ PCy— PCy(pYH) 2PHE2. (B5)
ap ap

With the derivative of the sensitivity function, the input gra-
dient becomes

9 aC
a—u(k, p) = S(P)_ZH(S(P)PCU"(]‘) + (S(0)PC2(pYH
0 ap
—S(p)PCy + I)v(k)). (Bo)

Realizing  that (S(p)PCz(,o)H —S(p)PC1 + I)v(k) =
S(p)v(k) yields the final result

0 aC
—8u (k, p) = S(p) == H(T(p)r(k) + S(p)v(k))
o ap

C aC
= S(0) 5" 2Hy(k, p) = S(p) ==y'(k, p).  (BT)
o ap
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Appendix C: Extended optimization simulation to

show convergence
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Figure C1. Comparison of IFT performance for different simulation lengths. The simulation settings used are a wind speed of 14 ms™
turbulence intensity of 10 %, step size y = 0.3, input weighting factor A =5 x 107, and scaling factor F' = 2000.
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