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Abstract. Wind farm underperformance can lead to significant losses in revenues. The efficient detection of
wind turbines operating below their expected power output and immediate corrections help maximize asset value.
The method, presented in this paper, estimates the environmental conditions from turbine states and uses pre-
calculated lookup tables from a numeric wake model to predict the expected power output. Deviations between
the expected and the measured power output ratio between two turbines are an indication of underperformance.
The confidence of detected underperformance is estimated by a detailed analysis of the uncertainties of the
method. Power normalization with reference turbines and averaging several measures performed by devices of
the same type can reduce uncertainties for estimating the expected power. A demonstration of the method’s
ability to detect underperformance in the form of degradation and curtailment is given. An underperformance of
8 % could be detected in a triple-wake condition.

1 Introduction

To increase the confidence in offshore wind energy invest-
ments, investors need reliable wind turbines. The two pillars
of system reliability are operational availability and the abil-
ity to achieve predicted power performance. In the wind in-
dustry, the common standard IEC TS 61400-26-1 (2011) de-
fines different categories of turbine conditions and describes
the calculation of availability. However, within this standard
the “full performance” category requires only a turbine status
signal which confirms power production without any restric-
tions, but there is no verification of the quality of the power
performance.

The key to an economic investment is a function of quan-
tity and quality. Quantity is linked to availability and wind
turbines can provide lots of SCADA (supervisory control
and data acquisition) information which enables the analysis
of time-based (IEC TS 61400-26-1, 2011) and production-
based availability (IEC TS 61400-26-2, 2014).

The quality of the power performance of a single turbine in
specific conditions using a hub height met mast can be tested

in accordance with the international standard IEC 61400-12-
1 (2005). For most turbines in a typical wind farm, verifica-
tion of the performance by comparison with the power curve
is not suitable due to wake effects. Moreover, the installation
and maintenance of a met mast is very expensive particularly
offshore. Quantifying changes in power production based on
wind speed measurements from nacelle anemometry relies
on the quality of the device itself and its transfer function
which should account for the flow distortion behind the ro-
tor. This approach still requires us to find a wake-free sector
and can lead to an increase in uncertainties (Albers et al.,
1999; IEC 61400-12-2, 2013).

The efficient detection of underperformance of wind tur-
bines increases asset value (Albers, 2004a). Incorrect turbine
parameter settings, degradation of the blades, and pitch or
yaw errors all lead to less production than expected. We dif-
ferentiate between degradation and curtailments. A curtailed
turbine has a limited power output below its expected power.
Possible reasons for curtailments are load or sound reduc-
tions or grid requirements. For these incidents, turbine pa-
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rameters are changed on purpose and therefore documented
in the turbine’s SCADA logs. A turbine that is degraded
reaches rated power but does not fulfil its expected power
curve. These kinds of underperformance are more difficult to
detect, especially when operating in the wake of neighboring
wind turbines.

Albers (2004b) has published two methodologies for wind
turbine performance evaluation. His integral model uses
available wind conditions from the energy production of
neighboring wind turbines (WTs), met masts or a combina-
tion of both and transfers the information via flow model-
ing and wake modeling to the investigated wind farm. The
measured yield is corrected for turbine availability and then
compared against the modeled yield in absolute values. Due
to high uncertainties in flow and wake modeling this method
is only proposed as a first general check. To reveal smaller
deviations he proposes a relative wind turbine performance
evaluation model. For this method, the active power values of
direct neighbors are plotted against each other, and by com-
paring two periods, changes can be evaluated. This method
explicitly excludes the sectors where wakes affect one or both
turbines.

An international working group (IEC TC88 WG6, 2005)
tried to come up with a standard for wind farm power per-
formance testing. The proposed method uses one or more
met masts to establish a measured wind farm power curve
matrix. This two-dimensional measured power matrix (wind
direction, wind speed) is compared against a modeled power
matrix taking wake effects into account (Mellinghoff, 2006;
Carvalho and Guedes, 2009). The standard could not be es-
tablished.

Mittelmeier et al. (2013) presented a new method that
uses relations between an observed turbine and all other
turbines in the farm instead of absolute values between
model and measurements. In this way, the uncertainty of
the measurement chain could be reduced. The method uses
pre-calculated power matrices which we call from now on
“lookup tables” (LUTs). Different wake models or even com-
binations of wake model results can be used to provide re-
sults for these LUTs. But the method relies on measurements
from a met mast which is often not available. Furthermore,
with the increasing size of wind farms, the assumptions of
one measurement position being representative of the whole
offshore wind farm is not valid (Dörenkämper, 2015). Fur-
ther investigations are necessary to obtain a reliable and auto-
mated method to detect underperformance at individual tur-
bines in a wind farm.

The purpose of this paper is to present the results of
extending the wind farm performance monitoring method
of Mittelmeier et al. (2013) by using SCADA instead of
met mast data. A new method to obtain representative envi-
ronmental conditions and further optimization potential for
wake models fine-tuned by SCADA data is presented, and an
estimation of the uncertainty of these methods is given.

In Sect. 2 the general approach of the method by Mit-
telmeier et al. (2013) is recalled. A new approach to generate
a virtual met mast from SCADA data is explained in detail
in Sect. 2.1. The wake model optimizations are described in
Sect. 2.2. A closer look at the uncertainties of the method es-
pecially in relation to the establishment of a virtual met mast
is undertaken in Sect. 2.3. In Sects. 3, 4 and 5, results for
a demonstration case are presented, followed by a detailed
discussion and the final conclusions.

2 Methods

To detect underperformance of a wind turbine, we estimate
the expected turbine power ratio π (predicted power ratio)
between the observed turbine and a reference turbine with
a wake model for the actual condition and compare its result
with the actual measured power ratio µ. A deviation between
π and µ higher than a certain threshold indicates underper-
formance.

The performance monitoring model (Fig. 1) is based
on two-dimensional LUTs. The user can choose any wake
model or even a combination of different model results to
provide power output Pπi,j values for different wind speed
bins i and wind direction bins j . The predicted power out-
put Pπ is derived from the LUTs with linear interpolation,
knowing the measured wind speed and wind direction.

It would be possible to use information about the turbu-
lence intensity, pressure, temperature and humidity from ad-
ditional devices to increase the dimensions of the power ma-
trix, and this may add accuracy. As we are focusing on a
monitoring method that uses only SCADA data, we will dis-
cuss and demonstrate one way to extract a useful wind speed
and wind direction for this monitoring method in Sect. 2.1.

Commonly used power measurements are averages over
10 min periods. Due to the fact that there is a high scatter
on power measurements for the same wind speed and wind
direction bin, averaging a number N of 10 min samples is
necessary until the power value converges to a satisfactory
degree. The power matrix and N are derived in a pre-process
as shown in Fig. 1, which gives an overview of the whole
performance monitoring process.

The power of the wind turbine under observation Pob is
divided by the power of a reference wind turbine Pref. This
leads to a normalized power curve with a much lower slope
in a wide range of partial load (See Fig. 2) and therefore de-
creases sensitivity on wind speed measurement uncertainty.
We define

µ=
1
N

N∑
n=1

Pµobn

Pµrefn
and (1)

π =
1
N

N∑
n=1

Pπobn

Pπ refn
, (2)
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Figure 1. Flowchart of the performance monitoring model. Wind
speed and wind direction are derived from SCADA data after an
offset correction of each wind direction signal and outlier filtering.
Wake model calculations and tuning as well as the estimation of
the number N of 10 min samples for averaging are preprocessed.
N , Pπ and Pµ are input values for the uncertainty calculation. An
underperformance indicator η lower than the uncertainties indicates
underperformance.

where Pµob and Pπob are the measured and predicted power
of the observed turbine. Pµref and Pπ ref are the measured and
predicted power of the reference turbine.

The underperformance indicator is defined as

ηob,ref = 100 %
(

1−
π

µ

)
. (3)

In this way, the underperformance interval range of the indi-
cator is between [0,−∞]. Non-operating turbine values have
to be filtered out.

If ηob,ref is larger than the uncertainty (Sect. 2.3), under-
performance has been detected. This correlation is repeated
for each combination of turbines, which leads to n(n−1) re-
sults (n= number of turbines in the farm). This adds further
confidence to the detection because an underperforming tur-
bine will meet the uncertainty criterion several times.

2.1 Determination of environmental conditions

2.1.1 Wind direction

The first step is to derive a wind direction ϑ for each 10 min
interval. For our monitoring model we are using the absolute

wind direction signal from each turbine, which is defined as

ϑ = nacelle position+wind vane position. (4)

The nacelle position is the angle between the rotor axis and
a marking for true north. This marking is calibrated as part
of the commissioning. But often this signal is not maintained
well during operation because it has no effect on turbine per-
formance. We need to apply an offset correction to this signal
before using it. The wind vane position indicates the angle of
the flow to the rotor axis. It directly provides a value for the
yaw error. The turbine controller uses this signal to control
the yaw activity.

Within the pre-process (Fig. 1) of the monitoring model,
we estimate north, marking the offset for one turbine by
checking the location of the maximum wake deficit with re-
spect to true north. Then we compare the average wind di-
rection between corrected turbines and neighboring turbines
to estimate the remaining offset for all turbines. After apply-
ing this offset correction, the wind direction from all wind
vanes is averaged in the complex plane to account for the
wind direction discontinuity at the beginning/end of the value
range, after removing outliers outside ±1.5 IQR (interquar-
tile range).

2.1.2 Wind speed

Having determined an averaged wind direction, we are now
able to derive the averaged free-flow wind speed. For this
task we use the nacelle anemometry but only from wind tur-
bines that are not affected by upwind turbines. To determine
whether a turbine is affected by an upwind turbine or not,
we use the specification for power curve measurements from
the international standard (IEC 61400-12-1, 2005). Each tur-
bine location is checked against all other turbine locations
according to the averaged wind direction. This is done within
a Cartesian coordinate system where x represents the easting
and y is the northing (See Fig. 3). The wind turbine of inter-
est WTi is located at the position (xy), and the turbine wake
is from the turbine WT0 at location (x0y0). The width of the
disturbed sector in degrees seen by the downwind turbine is
defined according to IEC 61400-12-1 (2005) as

α = 1.3arctan
(

2.5
D

L
+ 0.15

)
+ 10◦. (5)

D is the rotor diameter of the upwind turbine and L the dis-
tance between the two turbines defined by Eq. (6).

dx = |x− x0| ,

dy = |y− y0| ,

L=

√
d2
x + d

2
y . (6)

With β being the angle between the wake-inducing turbine
and the northing and the wind direction ϑ , the turbine wake
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Figure 2. Impact of different key tuning aspects on the wake model results step by step. An increasing atmospheric stability increases the
wake deficit (from red markers to black triangles). Wind direction uncertainty flattens the wake deficit (orange points), and a wind direction
bias shifts the deficit horizontally (green squares). Panel (a) shows the power of the turbine in the wake divided by the power of a turbine in
free-flow conditions as a function of the wind direction. Panel (b) displays the same power ratio as a function of the normalized wind speed
(normalized power curve).

Figure 3. Determination of free-flow turbines for wind speed av-
eraging. The turbine at (x0, y0) produces a wake on the turbine at
(x, y) for the displayed wind direction ϑ . β is the angle between
the orientation of the turbines and true north. α is the angle of the
disturbed sector in accordance with IEC 61400-12-1.

indicator γ can be described as

γ =


|β + 360−ϑ | −

α

2
0< β < 90 and 270< ϑ < 360

|β − 360−ϑ | −
α

2
270< β < 360 and 0≤ ϑ < 90

|β −ϑ | −
α

2
else

. (7)

The wind turbine of interest WTi is categorized as a waked
turbine for γ < 0. The wind speed for the virtual met mast is
therefore the average of the subset of the nacelle anemometer
signals from all wind turbines with γ > 0.

2.2 The wake model

The wake model is a key factor in our performance moni-
toring method. Several benchmark tests have been published

with a large variety of different models (Gaumond et al.,
2012; Réthoré et al., 2013; Steinfeld et al., 2015). Research is
still ongoing to further improve prediction accuracy of such
models.

In Fig. 1 we highlight that the wake model and its tuning is
part of the pre-process. The performance monitoring method
itself is based on linear interpolation from the LUTs only. In
Mittelmeier et al. (2015), three key parameters for the tuning
of the wake model are identified (stability, wind direction un-
certainty and wake drift). Figure 2 gives an example of how
the different key parameters change the wake model results.
The left plot shows the active power of a turbine in a wake
normalized with a free-flow condition at 6.3D distance. The
0◦ on the x axis locates the full-wake situation according to
the simulation. The right plot is a representation of the same
data as a normalized power curve with wind speed on the
x axis normalized with the wind speed when wake effects
fade away due to pitching activities of the upwind turbine.

In the first step, the wake model needs to be set up with the
right atmospheric stability parameters. An increasing stabil-
ity will cause higher wake losses and therefore shift the wake
plot vertically down (from red markers to black triangles).

The next two steps are applied to the wake model results,
which need to be calculated for a directional resolution of
0.5◦ and for each wind speed bin of 1 m s−1. This resolution
was proposed by Gaumond et al. (2014) for their method to
account for measurement uncertainties related to the wind di-
rection, which is the second key parameter in our tuning pro-
cess. In Gaumond et al. (2014), three main sources of uncer-
tainty are mentioned: the yaw misalignment of the reference
turbine, the spatial variability of the wind direction within the
wind farm and the variability of wind direction within the
averaging of a 10 min interval. This causes a higher scatter
in the data and leads to averaging effects that are not mod-
eled in the simulation. In a post-process, each wind direc-
tion is averaged with weighted neighboring results. A Gaus-
sian distribution with a standard deviation σa has been pro-
posed as a weighting function. The effect of this step is vi-
sualized in Fig. 2 (red markers are without and orange points

Wind Energ. Sci., 2, 175–187, 2017 www.wind-energ-sci.net/2/175/2017/



N. Mittelmeier et al.: Monitoring offshore wind farm power performance 179

Table 1. Type B uncertainties of the predicted power Pπ .

k Uncertainty component Sensitivity ck,i,j Uncertainty uk,i,j

1 Wind speed estimation
∣∣∣Pπ i,j−Pπ i−1,j

Vij−Vi−1,j

∣∣∣ 1 standard deviation of the averaged anemometers

2 Wind direction estimation
∣∣∣Pπ i,j−Pπ i−1,j

ϑij−ϑi−1,j

∣∣∣ 1 standard deviation of the averaged wind direction

are with σa weighted averaging). In Mittelmeier et al. (2015),
we could show that for the prevailing conditions at Ormonde
wind farm σa is a function of wind speed, decreasing with
higher wind speeds.

Looking at the full wind rose for an annual energy produc-
tion (AEP) estimation, the Gaussian averaging has little im-
pact on the result (Gaumond et al., 2014). But the smaller the
wind direction bin size, the larger the prediction error made
by the wake model. Hence, it is crucial for our monitoring
method to increase accuracy for smaller wind direction bin
sizes which will decrease the uncertainty of the method.

The third tuning parameter applies a simple offset on the
wind direction of the LUTs to account for a drift of the wake.
We call this phenomenon from here on “wake drift”. Fleming
et al. (2014) studied the effects of active wake control, and in
his baseline simulation (no yaw error) a small wake drift to
the right can be observed when looking downwind. In the
large eddy simulation (LES) study of Vollmer et al. (2016),
the wake drift increases from neutral to stable conditions also
for 0◦ yaw angle. Gebraad (2014, p. 86) gives an explana-
tion for the observations from the simulations by Fleming
et al. (2014). The flow reacting on the rotation of the rotor
causes the wake to rotate counterclockwise (looking down-
stream). Higher wind speeds from the upper layer are trans-
ported downwards (on the left side) and lower wind speeds
from the lower layer are pushed upward on the right side of
the wake. As a result the velocity deficit at the right part of
the wake increases, so the wake deflects to the right.

Marathe et al. (2016) could show in their field measure-
ment campaign with a dual-Doppler radar the wake drifting
to the right. But in the far wake they registered a movement
to the left. The authors state the hypothesis that this contra-
dicting phenomenon may be caused by atmospheric streaks.
In an offshore field experiment by Beck et al. (2015), further
evidence is provided that wakes are moving out of the center
line.

2.3 Uncertainties and underperformance criteria

It is essential to understand the uncertainties of the method
to judge the confidence in underperformance detection. Any
false alarm can cause unnecessary trouble shooting.

For this evaluation, we follow the “Guide to the ex-
pression of Uncertainties in Measurements” (JCGM, 2008),
which distinguishes between statistical Type A and instru-
mental Type B uncertainties. The important measurands of

Figure 4. Underperformance indicator η with uncertainty margin as
a function of the number of measurement values N . Derived with
the calibrated model at a turbine in triple wake.

the method are the measured power and the predicted power
for each wind turbine under observation and for reference
(Pµob, Pµref, Pπob, Pπ ref). For the measured power Pµ, we
only use Type B because each measurand is obtained from
different environmental conditions and therefore statistical
Type A uncertainties are not applicable. The combined un-
certainty can be derived with Eq. (8):

uc (P )=
K∑
k=1

(c(P )kuk)2, (8)

where ck is the sensitivity factor and uk the uncertainty of
the kth component of the measurement chain of length K .
For the predicted power Pπ , we are using a combined un-
certainty, with statistical Type A uncertainties being the ex-
perimental standard deviation of the mean from the differ-
ence between wake model predictions and measurements and
Type B being uncertainties which allows inferences to be
made from the instrument devices to estimate wind speed
and wind direction. Table 1 shows the uncertainty compo-
nents of the predicted power Pπ and provides the sensitivity
factors. Pπi,j is the power value in the matrix referring to
the wind speed bin i and the wind direction bin j . Vi,j is the
wind speed and ϑi,j the wind direction of the element. In Ta-
ble 2, the corresponding components for the uncertainty of
the measured power Pµ are listed.

Results from the offshore wind accelerator (Clerc et al.,
2016) provide a range of 2.5 to 5 % combined uncertainty
for power curve verification based on a measurement chain
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Table 2. Type B uncertainties of the measured power Pµ (values as suggested by IEC 61400-12-1).

k Uncertainty component Sensitivity ck,i,j Uncertainty uk,i,j

1 Current transformer 1 0.0043P (kW)
2 Voltage transformer 1 0.003P (kW)
3 Power transducer 1 0.003Prated (kW)
4 Power data acquisition 1 0.001Prated (kW)

Figure 5. Layout of wind farm Ormonde. The 30 turbines of 5 MW
class are located in the Irish Sea 10 km west of the Isle of Wal-
ney. For a wind direction of 207◦ the single wake, double wake and
triple wake behind OR26 have been selected as underperformance
demonstration cases.

that includes a met mast and all its devices. The use of lidar
extends the range up to approximately 7 %. In our case, the
wake model will add further uncertainties which would lead
to even higher values and therefore yields an unacceptable
rate for underperformance detection. To lower this impact,
the monitoring method is based on normalized measurements
and normalized predictions. An error at the estimated wind
speed has a much lower impact on the ratio of the power of
two turbines than on their absolute power performance. The
uncertainty for Eq. (1) can be described as

u (µ)= u
(
Pµob

Pµref

)

=
Pµref

Pµob

√√√√(uc (Pµob
)

Pµob

)2

+

(
uc
(
Pµref

)
Pµref

)2

. (9)

The equation is equivalent for u(π ) and is applied to each
10 min sample. With the two uncertainties u(µ) and u(π ) be-
ing independent, the standard propagation of errors for η can
be simplified according to Ku (1966) to the following equa-
tion:

u2 (η)=
(
∂η

∂µ

)2

u2 (µ)+
(
∂η

∂π

)2

u2(π ), (10)

Figure 6. Estimation of the uncertainty of the artificial wind direc-
tion. Histogram of the deviation of 30 individual wind vanes from
the average wind direction for the full data set filtered for wind
speeds > 5 m s−1 with a sector of 30◦ centering on the full-wake
condition. The red curve represents a Gaussian fit with a standard
deviation of 3.6◦.

which leads to an uncertainty in η of

u (η)=
100
µ

√
u2 (π )+

(
π

µ

)2

u2 (µ). (11)

The uncertainty derived by Eq. (11) can be displayed as a
bandwidth around the underperformance indicator η, visual-
ized in Fig. 4. Its magnitude is dependent on the sample size
N . In Fig. 4 we obtain an approximately 7 % uncertainty on
the performance ratio for N > 1000. The confidence level is
1 standard deviation, which is considered to be acceptable
for underperformance detection.

In the next step we need to estimate the required number
of power samples N for averaging (see Eqs. 1 and 2). This
is directly linked with the earliest point in time when under-
performance can be detected. We define this point as having
a lower prediction error (with the optimal turbine operation
model) than the prediction error derived by the model with
the erroneous data taking the uncertainty into account.

3 Results and demonstration

We have chosen the Ormonde wind farm to demonstrate the
new method. The 30 turbines have a rated power of 5 MW
and are owned by Vattenfall. The wind farm is located in the
Irish Sea, 10 km west of the Isle of Walney.
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Figure 7. Wind-farm-averaged wind speed with wake effects normalized, with wind-farm-averaged wind speed without wake effects plotted
versus averaged wind farm wind direction. Black dots show the measurements from SCADA, and the green solid line represents the results
from Fuga with a Gauss averaging for a standard deviation of 4◦. An offset of the wind direction between the model and SCADA can be
observed. At 207◦ the offset is approximately 2.2◦, and it increases up to 5◦ for wind directions (132 and 312◦) with the largest wake effects.
An explanation and correction for this wake drift is proposed in Sect. 2.2.

The farm layout displayed in Fig. 5 is structured in a reg-
ular array, which allows the comparison of several wake sit-
uations. The closest turbine spacing is in the range of 4.1
to 4.3D along the four rows orientated from northwest to
southeast. We select a more frequent wind direction from
south–southwest where multiple columns of four turbines are
aligned with a distance ranging from 6.3 to 6.5D. To sim-
plify the demonstration of underperformance detection, we
focused on single-wake, double-wake and triple-wake con-
ditions behind turbine OR26 for a south–southwesterly wind
direction and a sector of 30◦ around the full-wake situation.
Two years of 10 min SCADA data were used to set up the
performance monitoring model.

3.1 Environmental condition of demonstration wind farm

3.1.1 Wind direction

In our example, we have averaged up to 30 corrected wind di-
rection signals for each 10 min interval. The variation among
the individual signals provides an uncertainty estimate for
this artificial wind direction. In Fig. 6, a histogram of the
full data set of 2 years, with each count being the difference
between a single-vane measurement and the corresponding
mean wind direction for the averaged period, is visualized.
This variation can be nicely described by a Gaussian distri-
bution with a standard deviation of 3.6◦. This value is used
for the uncertainty of the wind direction Table 1 refers to.

Figure 8. Estimation of uncertainty of the artificial wind speed.
Histogram of the wind speed difference between a single anemome-
ter and the average wind speed of all free-flow anemometers. The
displayed Gaussian distribution (red line) has the standard devia-
tion of 0.46 m s−1. A sector of 30◦ centering full-wake alignment
has been selected.

3.1.2 Wind speed

Figure 7 demonstrates the quality of the virtual met mast de-
rived with the methodologies described in Sect. 2.1.1 and
2.1.2. The average wind speed of all nacelle anemometers is
normalized by the averaged nacelle anemometer wind speed
of the wake-free subset. The full data are binned into 2◦

and plotted against the averaged wind direction. The errors
bars indicate the experimental standard deviation of the mean
(JCGM, 2008). We obtain quite a good agreement with the
Fuga model, which was used with σa = 4◦. So far, there is
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Figure 9. Tuning of the wake model results. (a) Power normalized by the power of the free-flow turbine as a function of the wind direction
centered at full wake for 8± 1 m s−1 wind speed. (b) Power normalized by the power of the free-flow turbine as a function of the wind speed
normalized by wind speed at rated power for the waked turbine. Black dots represent the measured and binned SCADA data with error bars
of 1 standard deviation. The red triangles show wake model results with Fuga standard settings (ζ0 = 0, no Gaussian averaging), and the
green diamonds provide the tuned results. (ζ0 = 2.72× 10−7, Gaussian averaging as a function of the wind speed and applying the wind
direction offset to account for the wake drift).

no instruction available on how to determine this standard
deviation, which should take wind direction uncertainty into
account (Gaumond et al., 2014). We have chosen this value
because of quite a nice fit with the SCADA data. The co-
efficient of determination of a linear regression between the
wind speed of the standard model results (red dashed line)
and the SCADA measurements equals R2

= 0.96. The im-
proved model (green solid line) gives an R2

= 0.97.
When considering the demonstration sector of 30◦ around

the full-wake alignment behind wind turbine 26, the free-
flow wind speed can also be described by a Gaussian dis-
tribution (Fig. 8), with a standard deviation of 0.46 m s−1.

This information is important for the investigation of the
uncertainties Table 1 refers to.

3.2 Wake model

For the demonstration of the described method, we used the
Fuga wake model, which uses linearized Reynolds-averaged
Navier–Stokes equations developed by Ott et al. (2011). With
the second version of the software, new features were added
(Ott and Nielsen, 2014) to account for different atmospheric
stabilities and for wind direction uncertainties. The results

for this paper have been produced with Fuga version 2.8.4.1.
We have chosen this wake model for two reasons: firstly,
there is already a confident number of validations with mea-
surements published (Gaumond et al., 2012; Mortensen et al.,
2013; Steinfeld et al., 2015) and secondly, the Gaussian aver-
aging feature described by Gaumond et al. (2014) is already
implemented.

To get a more reliable monitoring method, we need to cal-
ibrate the wake model settings and compare several different
calculation results with measured SCADA data based on the
established virtual met mast. The wake model is supposed
to provide a two-dimensional LUT (wind direction, wind
speed) for each turbine. Further dimensions such as stabil-
ity may improve the accuracy, but research and validation
for these models are still ongoing. Therefore, our calibrated
model has to be representative of the average annual condi-
tions. Two full years of SCADA data are used for this task.

We identify three steps to obtain a better match between
the power modeled by the wake model Fuga and the mea-
surements. Firstly, the standard deviation σa to account for
the wind direction uncertainty is found to decrease with in-
creasing wind speed. Secondly, the dimensionless parameter
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Figure 10. Scatterplot with normalized power as a function of the normalized wind speed for four turbines in one row with two error test
cases. Green dots are the measured power values and represent optimal operation. The 8 % degradation of the power output is shown with
yellow dots. A curtailment at 58 % is shown in red.

to model the effect of atmospheric stability ζ0 = 2.72e−7 is
set to stable conditions, and thirdly, the center of the wake
drifts towards the right side when traveling downwind. Ap-
proximately 2.5◦ in the single wake and an additional 1◦ is
added with every turbine, adding an additional wake to the
flow. This results in a total offset of 4.5◦ for the triple wake
referenced to the artificial wind direction from the virtual met
mast (Sect. 2.1.1). One possible explanation for this behav-
ior is the fact that the upward-moving blade diverts the flow
with higher wind speeds downwards to regions with lower
wind speeds and the downward-moving blade causes the op-
posite. This results in a higher wind speed on the left side
than on the right side of the wake and leads to a drift of the
wake center. A second explanation can be derived from the
Coriolis force, which leads to an increased force to the right
(Northern Hemisphere) on accelerating air particles. We can-
not fully rule out the possibility of an unwanted yaw mis-
alignment as the uncertainties within this process of align-
ing the turbine lie within 3◦ (IEC 61400-12-2, 2013). But a
single-wake drift of 2.5◦ is also within the simulation results
for 0◦ yaw misalignment under stable conditions (Vollmer et
al., 2016), whereas neutral and unstable conditions show no
drift or even a very small drift in the opposite direction.

The column of turbines behind turbine OR26 has been
selected for the validation of the wake model settings. The
benchmark is simulations for neutral conditions with none
of the post-processings mentioned in Sect. 2.2 to take wind
direction uncertainty, atmospheric stability and wake drifts
into account. Figure 9 demonstrates the improvement of
model prediction and its capabilities for single-wake, double-

wake and triple-wake situations. The left column visualizes
wake deficit plots where the power has been normalized
with the free-flow turbine, as a function of the wind direc-
tion, centered on the full wake. The data are filtered for a
wind speed of 8± 1 m s−1. The right column is normalized
wake power curves. The power, normalized with free-flow
power, is shown as a function of the wind speed, normal-
ized with wind speed at rated power for the turbine in the
wake. These data are filtered for a wind direction sector of
5◦. The optimized simulation results (green diamonds) fol-
low the SCADA data (black dots) much more closely than
the benchmark case (red triangles). The error bars indicate 1
standard deviation of the measured SCADA data at each bin.
The three fine-tuning steps decreased the power prediction
error in a full wake with ±5◦ sector width from 7 to 1.5 %
(Mittelmeier et al., 2015) for the case presented.

Having now obtained an optimized wake model, the first
two steps of the pre-process (Fig. 1) are accomplished and
the matrices for the “predicted power” can be established. In
the next section, the detection of underperformance will be
demonstrated with two test cases.

3.3 Demonstration case

Two years of SCADA data are contaminated with two differ-
ent error types. The first manipulation simulates a degrada-
tion of 8 % of its power production; to do this, the original
data set that was used to calibrate the model is multiplied by
0.92. According to the findings in Sect. 2.3, a degradation
of 8 % is just high enough to distinguish it from the uncer-
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Figure 11. Underperformance detection for curtailment (b) and
degradation (a) at turbines with different levels of wake influence.
The displayed values represent the underperformance indicator η as
a function of the number of values N . We highlight the first time of
underperformance detection when the green dotted line is outside
of the grey uncertainty bandwidth.

tainties of a turbine in triple wake. The second test case is a
simple power curve curtailment at 58 % rated power.

In Fig. 10 the normalized power as a function of the
normalized wind speed is shown in a scatterplot. The col-
ored points in green represent correct turbine performance
(Poptimal). The yellow dots (Pdegraded) describe the degrada-
tion, and the red dots (Pcurtailed) are the data with the cur-
tailment. Measurements from above rated wind speed are re-
moved to concentrate on the part of the power curve where
underperformance is more difficult to detect.

Below 5 m s−1 we find a strong increase in wind direction
variation among the turbines compared to the artificial wind
direction from the virtual met mast. This variation increases
the uncertainty of the model, and therefore wind speed below
5 m s−1 is filtered.

To further increase the certainty of the result, we calcu-
late the underperformance indicator for each turbine with
all other possible combinations of reference turbine. For the
whole wind farm of 30 turbines, this leads to 870 combina-
tions. For simplification in this demonstration, we are only
focussing on the four turbines in the row behind turbine
OR26.

Figure 12. Uncertainties for the underperformance indicator u(η)
as a function of N values for free-flow, single-wake, double-wake
and triple-wake situations. Uncertainties for free-flow conditions
(green) are much lower than the uncertainties for the waked tur-
bines.

First, we need to estimate the required number of power
samples N for averaging. This can be visualized in Fig. 11.
The graphs present the accumulated level of underperfor-
mance η as a function of the number of samples (N values).
The data with the error appear as a solid line with a grey un-
certainty margin. The dashed green line represents the data
with the turbine in optimal operation. The lowest quantityN ,
where the “optimal” (green dashed) line confirms a lower η
than the border of the grey area, is the point where we high-
light underperformance with sufficient certainty. Figure 11
demonstrates the two test cases with a turbine under curtail-
ment at different wake situations and the corresponding situ-
ation for a degraded turbine. A wake model bias is corrected
in such a way that the results for the optimal turbine predic-
tion with the full 2 years of data equals zero.

In Table 3 we have listed the N values which it is neces-
sary to measure in each case until underperformance can be
detected with sufficient certainty. They can be translated into
hours by N/6 as we are using 10 min averages.

Figure 12 is a graphical representation of the development
of uncertainty with an increasing number of averaging data.
The free flow has a comparatively low uncertainty in com-
parison with the three wake situations. All four graphs have
higher uncertainty in the beginning, which quickly decreases
with increasing N . At approximately N = 150 the uncer-
tainty of all three wake states has dropped at least once be-
low 8 %. With 150<N < 500, u(η) is still very unstable and
stretches between 8 and 10 %.

A clear additional drop, even below 7 %, can be seen from
500<N < 1000. BeyondN > 1000, u(η) stabilizes towards
a more and more horizontal line. In Table 4 the corresponding
uncertainty for the estimated first time of detection is listed.

The power curve scatterplot of all four wake conditions
with the number of quantities necessary for detection are vi-
sualized in Fig. 13.
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Figure 13. Scatterplot of each turbine’s normalized power curve. The quantity N = 754 equals the estimated sample size for the first
detection of degradation at a turbine in a triple-wake situation.

Table 3. N values to the first detection of underperformance with a
certainty of 1 standard deviation. Values in brackets indicateN with
wind speeds above the curtailment.

Wake situation Ndegradation (–) Ncurtailment (–)

Free flow 1 51 (8)
Single wake 577 149 (28)
Double wake 502 501 (106)
Triple wake 754 655 (164)

Table 4. Uncertainty U at quantity N of the first detection of un-
derperformance with a certainty of 1 standard deviation.

Wake situation Udegradation (%) Ucurtailment (%)

Free flow 1.8 3.6
Single wake 6.9 7.9
Double wake 7.8 7.8
Triple wake 7.8 7.3

4 Discussion

The model was able to detect the selected demonstration er-
ror cases after a certain averaging time. With the proposed
sources of uncertainty and the described method to obtain a
combined level, a very clear increase in uncertainty can be
seen from free-flow to wake condition cases. The reason for
this behavior lies in the normalization procedure. The largest
source of uncertainty is usually the wind speed measurement,
followed by the wind direction measurement (Type B uncer-

tainties). Looking at the sensitivity factor for both readings,
which is based on the slope of the quotient between neigh-
boring normalized LUTs cells, it approximately equals zero
for the free-flow case. Therefore, only Type A uncertainties
are left, which quickly decrease with an increasing number
of measured values N .

In our example, the curtailment took less than 170 values
to be detected (see Table 3). This, of course, is highly de-
pendent on the wind distribution. The wind has to be high
enough to force the turbine into underperformance. At rated
wind, detection is much faster than at wind varying around
the power limitation. The right column in Table 3 shows the
total values N and in brackets the values considering only
wind speeds high enough to force the turbine into curtail-
ment. The N values in Table 3 increase with each additional
wake added to the flow. Furthermore, the figures show that
curtailments (values in brackets) can be detected earlier than
degradation.

The tuning of the wake model is an essential part of the
method. The key tuning parameters have been estimated by
trying to obtain the best fit with the SCADA data. This is a
clear weak point of the method, and further investigations are
necessary to find ways to predict the right settings without
measured data. Without such tuning, each of these parame-
ters will contribute as an additional source of uncertainty and
therefore reduce the accuracy. A further improvement could
be to extend the dimensions of the LUTs with atmospheric
stability. Dörenkämper et al. (2012) was able to show that
the influence on the development of wind turbine wakes is
measurable. A link between SCADA data and atmospheric
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stability would be needed. An investigation is planned for
future work.

The sensitivity of the underperformance indicator η states
the measured power correlation in the denominator of
Eq. (3). In this way the interval range increases from [0,
−100] to [0, −∞]. Division with 0 is prevented by filtering
non-operating conditions. The increased interval leads to a
higher sensitivity and therefore further reduces the N values
for the first underperformance detection.

Using wind speed and wind direction measurements de-
rived from a large number of devices can lead to acceptable
levels of uncertainties although each single device for itself
has comparably high uncertainties as described in more detail
in the power verification standard using nacelle anemometry
(IEC 61400-12-2, 2013). The stated uncertainties for wind
speed and wind direction may be sufficient for the relative
comparison to detect underperformance between turbines,
but they do not meet the requirements for an absolute per-
formance validation according to IEC 61400-12-1 (2005) or
IEC 61400-12-2 (2013). One could perform power curve ver-
ification tests in accordance with the mentioned standards at
turbines where they are applicable, and those turbines that are
reference turbines in the monitoring method would increase
the confidence in underperformance detection. At least for
the concurrent period.

5 Conclusion

A method for offshore wind farm power performance mon-
itoring with SCADA data and advanced wake models was
introduced. Wind speed and wind direction were extracted
from all devices in the wind farm to obtain a global mea-
surement for the whole wind farm. In this way, the level of
uncertainty could be lowered compared to a single-nacelle
measurement. Furthermore, the uncertainties in performance
level prediction could be reduced by normalization and
cross-reference correlations. A suitable wake model was cho-
sen, calibrated with SCADA data and used in a demonstra-
tion case. A procedure to determine the optimal number N
of 10 min samples to detect underperformance with sufficient
certainty has been presented. Here, the method was capable
of detecting a degradation of 8 % in a triple-wake situation
with the confidence of 1 standard deviation. The described
method can be used after a wake model calibration with ap-
proximately 2 years of wind farm SCADA data. This can en-
able real-time monitoring from then on for the rest of the
operational lifetime.
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