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Abstract. Understanding uncertainties in wind resource assessment associated with the use of the output from
numerical weather prediction (NWP) models is important for wind energy applications. A better understanding
of the sources of error reduces risk and lowers costs. Here, an intercomparison of the output from 25 NWP
models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated
using a number of statistical properties relevant to wind energy and verified with observations. On average the
models have small wind speed biases offshore and aloft (< 4 %) and larger biases closer to the surface over
land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable
atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that
using a grid spacing larger than 3 km decreases the accuracy of the models, but we found no evidence that using a
grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy
offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction.

1 Introduction

Numerical weather prediction (NWP) models are increas-
ingly being used in wind energy applications, e.g., wind
power resource mapping and site assessment, for planning
and developing wind farms, power forecasting, electricity
scheduling, maintenance of wind farms, and energy trading
on electricity markets. In site assessment, NWP models are
commonly part of the model chain used to estimate the an-
nual energy production (AEP) and are responsible for a large
part of the uncertainty of this estimate.

The extensive use of NWP models, and the vast customiza-
tion space of each model, means that a strong demand exists
for quantification of (a) the overall model uncertainties and
(b) the sensitivity of the uncertainties to the choice of sub-
components and parameters. Understanding the sensitivities
and uncertainties of the NWP model output can reduce their
associated risks and improve decision making. Model users
aware of the sensitivity of individual model components will
be able to optimize the model setup for specific applications.

In the following, the NWP models will be referred to as
mesoscale models, signifying that they partly resolve atmo-

spheric phenomena in the mesoscale range, defined as the
range of horizontal length scales from about one to several
hundreds of kilometers (Orlanski, 1975).

A common way to assess NWP model uncertainties is to
use an ensemble approach, where a number of parallel model
runs, referred to as ensemble members, are run with slightly
perturbed initial conditions (Warner, 2010). The magnitude
of the perturbations is typically limited by the uncertainty
associated with the particular perturbed variable in the ex-
pectation that the ensemble of solutions will cover the so-
lution space arising from the uncertainties of the input pa-
rameters. Ensemble-based techniques are used for many me-
teorological applications, including precipitation forecasting
(Gebhardt et al., 2011; Bowler et al., 2006) and wind power
production forecasting (Constantinescu et al., 2011). How-
ever, one would not expect that the ensembles of any par-
ticular modeling system fully represent the uncertainties of
another modeling system. This was also demonstrated in
the DEMETER project (Development of a European multi-
model Ensemble for seasonal to inTERannual climate pre-
diction) (Palmer et al., 2004), where a multi-model ensemble
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approach, consisting of a number of different modeling sys-
tems, each split into a number of ensembles, provided a bet-
ter representation of the overall uncertainties than any single
model ensemble.

Mesoscale model uncertainties in wind speed near the
ground are particularly sensitive to some model components,
e.g., the choice of planetary boundary layer (PBL) scheme,
the spin up and simulation time, and the grid spacing. In the
last couple of decades these sensitivities have been studied
in great detail. Vincent and Hahmann (2015), Draxl et al.
(2014), and Hahmann et al. (2015b) studied the sensitivi-
ties of the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008) in offshore and coastal areas in
northern Europe. Vincent and Hahmann (2015) studied the
effect of grid nudging, spin-up time, and simulation time
on near-surface and upper-PBL wind speed variance. They
showed that (1) spatial smoothing is observed when nudging
is used, but the impact is small in the lower part of the at-
mosphere, and (2) longer nudged simulation times (11 days)
only have slightly lower variance than short simulations
(36 h), which makes longer simulations appropriate for cli-
matological wind energy studies. Draxl et al. (2014) studied
the ability of the WRF model to represent the wind speed and
wind shear profiles at a coastal site in Denmark using seven
different PBL schemes. They showed that the Yonsei Univer-
sity (YSU) (Hong et al., 2006) scheme represents the profiles
best for unstable atmospheric stability conditions, while the
Asymmetric Convective Model version 2 (ACM2) (Pleim,
2007b), and the Mellor–Yamada–Janjić (MYJ) (Janjić, 1994)
PBL schemes had more realistic profiles for neutral and sta-
ble conditions respectively. Using the WRF model for wind
resource assessment, Hahmann et al. (2015b) showed that the
choice of PBL scheme and spin-up time has the greatest im-
pact on the simulated mean wind speed for a number of off-
shore sites, while the number of vertical levels and the source
of initial conditions had a smaller impact.

Several studies have investigated the WRF model sensi-
tivities in regions of complex terrain. Carvalho et al. (2012)
studied the sensitivities related to the choice of initializa-
tion frequency, grid nudging, suite of surface layer (SL)
scheme, PBL scheme, and land surface model (LSM). They
observe that using grid nudging and frequent starts (every
second day) gives the best agreement for wind speed, with
several masts located in complex terrain in Portugal. Car-
valho et al. (2012) and García-Díez et al. (2013) found a
seasonal dependency of the optimal suite of SL–PBL–LSM
for simulating PBL winds and temperature. Carvalho et al.
(2014b) investigated the sensitivities related to the SL and
PBL schemes in the WRF model at both land and offshore
sites in and near Portugal. They showed that the Pleim-Xiu
SL scheme (Pleim, 2006) combined with the ACM2 PBL
scheme (Pleim, 2007b) gave the smallest errors for wind
speed and wind energy production estimates across the sites,
while the quasi-normal scale elimination (QNSE) SL and
PBL schemes (Sukoriansky et al., 2005) gave smaller errors

for offshore sites. In a similar study, Gómez-Navarro et al.
(2015) analyzed the sensitivities of the WRF model to the
choice of PBL scheme and grid spacing in complex terrain
in Switzerland. They found that using a modified version of
the YSU PBL scheme, which accounts for effects of unre-
solved topography (Jiménez and Dudhia, 2012), in combina-
tion with the smallest grid spacing (2 km) and analysis nudg-
ing gave the best agreements with measurements during a
number of wind storms. Carvalho et al. (2014a) studied the
sensitivities of simulating the local wind resource with the
WRF model at several masts in Portugal to the choice of data
set used for initial and boundary conditions. They show that
using the ERA-Interim reanalysis data set (Simmons et al.,
2007) gave the smallest errors compared to NCEP (National
Centers for Environmental Prediction) R2 (Kanamitsu et al.,
2002), CFSR (Saha et al., 2010), FNL, and GFS data sets, as
well as the NASA MERRA data set (Rienecker et al., 2011).

Sensitivities to the choice of modeling system have also
been studied for wind energy applications. Horvath et al.
(2012) compared the MM5 (Grell et al., 1994) and WRF
models for a site in west–central Nevada characterized by
complex terrain. Both models were run in a grid nesting setup
from 27 km to 333 m grid spacing, and the near surface wind
was compared to wind observations from several 50 m tall
towers. The study showed that the WRF-derived winds were
in better agreement with mean wind speed observations, but
thermally driven flows were overestimated in both intensity
and frequency. Hahmann et al. (2015a) compared two down-
scaling methodologies: the KAMM-WAsP (Badger et al.,
2014) and WRF Wind Atlas (Hahmann et al., 2015b) meth-
ods, both based on a model chain approach between a NWP
model and a linearized flow microscale model, for a num-
ber of mast sites in South Africa. The study showed that the
WRF-based method gave smaller biases than the KAMM-
based approach, which underestimated the wind speeds.

Community-driven model intercomparison projects pro-
vide an opportunity to study both model uncertainties and
sensitivities to model components. In the last decade, sev-
eral intercomparison projects have been successfully carried
out based on model output submitted by modelers from the
wind energy community. The Bolund experiment (Bechmann
et al., 2011) was an intercomparison of flow models, from
simple linearized flow models to computational fluid dynam-
ics (CFD) models. The models were compared to measure-
ments around the small island of Bolund in Denmark. The
Comparison of Resource and Energy Yield Assessment Pro-
cedures (CREYAP; Mortensen et al., 2015) was an inter-
comparison of energy yield assessment procedures based on
four case studies. The study revealed a large spread amongst
the different procedures and highlighted the need for fur-
ther studies into the uncertainties associated with the mod-
els themselves. A similar intercomparison of NWP models is
attractive for a number of reasons. First, it offers an oppor-
tunity for model developers, model users, and stake holders
to get a better understanding of the model uncertainties. Sec-
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ondly, a collaborative intercomparison project, which utilizes
model data crowdsourced from the wind energy community,
increases the scalability of the study compared to traditional
sensitivity studies by distributing the workload and compu-
tational cost among participants. Finally, if sufficient meta-
data are collected, they offer a unique insight into the com-
mon practices in mesoscale modeling within the wind energy
community.

In this paper, a blind intercomparison of the output from
25 different NWP simulations is presented for three loca-
tions in northern Europe. The study is based on model output
submitted by the modeling community to an open call for
model data for a benchmarking exercise co-organized by the
European Wind Energy Association (EWEA, now WindEu-
rope) and the European Energy Research Alliance, Joint Pro-
gramme Wind Energy (EERA JP WIND). The three cho-
sen sites represent some of the simplest terrains: offshore,
inland near the coast, and inland in flat terrain, where the
smoothing of the terrain representation is not an issue. The
three sites have quality observations from tall meteorolog-
ical masts with many heights. The main objectives of this
study are (1) to highlight and quantify the uncertainties of the
models and serve as motivation for future analysis of model
uncertainties and (2) to identify model setup decisions that
have an impact on the model performance. The models are
evaluated using simple metrics relevant to wind energy ap-
plications.

The structure of the paper is as follows. In Sect. 2 we
present a detailed description of the methodology used, in-
cluding a description of the three study sites and the models
used by the participants. Section 3 presents the intercompar-
ison results, and finally Sect. 4 contains the summary and
conclusions of the study.

2 Methodology

2.1 Sites and observations

Three sites with quality measurements from tall meteorolog-
ical masts with different terrain characteristics were chosen
for this study: (1) FINO3, an offshore mast in the North Sea,
(2) Høvsøre, a land mast near the Danish west coast, and
(3) Cabauw, a land mast in the Netherlands. The mast loca-
tions are shown in Fig. 1, and the coordinates and character-
istics of each site are provided in Table 1. Long-term mea-
surements are available from each of the masts, but a single
year (2011) was selected as the study period due to its excel-
lent data availability.

FINO3 (Fabre et al., 2014) is a marine platform located
in the North Sea 80 km off the coast of Denmark, with a
meteorological mast reaching 120 m above mean sea level
(a.m.s.l.). We used measurements at 40, 60, and 90 m a.m.s.l.
in this study. The Høvsøre (Peña et al., 2014) mast is located
about 2 km east of the coastline in western Jutland, Denmark.
Apart from the sharp surface roughness change at the coast-
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Figure 1. Map of northern Europe with the three site locations
used in the model intercomparison: (1) FINO3, in the North Sea.
(2) Høvsøre, Denmark. (3) Cabauw, the Netherlands.

line and the presence of a small coastal escarpment, the sur-
rounding terrain is homogeneous and flat. We used measure-
ments at 10, 40, 60, 80, 100 m at this site. The Cabauw mast
(Ulden and Wieringa, 1995) is located 40 km inland near the
small towns of Cabauw and Lopik in the Netherlands. The
surroundings are flat and characterized by fairly homoge-
neous agricultural fields, but with patches of forest and build-
ings. Here we used measurements at 10, 20, 40, 80, 140, and
200 m.

Figure 2 shows availability of wind speed observations for
2011 at the three meteorological masts. At Cabauw, the data
were gap-filled by simple interpolation as the missing values
were few (less than 2 % missing data per month) and the gaps
short. The time series from the two other sites were not gap-
filled.

At FINO3, the wind speed measurements at three of the
heights, 50, 70, 90 m, are a combination of the measure-
ments from three anemometers at three separate booms 120◦

apart. This procedure minimizes the effects of the mast flow
distortion. At the other two heights, 40 and 60 m, only one
anemometer is available, and the wind measurements are
therefore susceptible to flow distortion. Thus, instead of us-
ing the single-anemometer data from 40 and 60 m, the mea-
surements from 50 and 70 m were vertically interpolated in
log height to 40 and 60 m. This assumes that the errors due to
interpolation and extrapolation are much smaller than those
caused by mast flow distortion.

2.2 Submission procedure and models

EWEA issued an open call for data and the submission pro-
cedure consisted of a template spreadsheet and a question-
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Table 1. Site description, including latitude and longitude coordinates, classification of the site, the height of the mast zs, and the location
terrain elevation relative to sea-level zasl and prevailing wind direction.

No. Name Latitude (◦) Longitude (◦) Type zs (m) zasl (m) Prev. wind direction

1 FINO3 55.195 7.158 Offshore 120 0 WSW
2 Høvsøre 56.441 8.151 Coastal 116 2 WSW
3 Cabauw 51.970 4.926 Land 213 −1 SW

Figure 2. Availability of wind speed and direction observations for
(a) FINO3, (b) Høvsøre, and (c) Cabauw given as the fraction of
completeness for each month of the year 2011 for each height.

naire available for download from the EWEA website. The
participants filled the spreadsheet with the time series of the
required variables at each location and height. The ques-
tionnaire contained details about the setup of the modeling
system used. The participants returned the spreadsheet to
EWEA, who passed it on to the authors in an anonymous
version.

The requested model variables were hourly wind speed
and direction, air temperature, and atmospheric stability. The
questionnaire asked about the modeling setup, i.e., the model
code and version, the SL and PBL schemes, the LSM, the
grid nest size(s) and spacing(s), the vertical levels, the land
use data, the length of the simulation, the spin-up time, and
the source of the initial and boundary conditions. The partic-
ipants were also asked to comment on any additional modifi-

cations made to the model, including assimilation, ensemble,
or other methods used.

Table 3 lists the various groups participating in the exer-
cise. It includes representatives from private companies, uni-
versities, research centers, and meteorological institutes. Ta-
ble 4 summarizes the models and the different model setup
options used. The WRF model is by far the most commonly
used model in the study, with 18 out of 25 models (Ta-
ble 4). The Noah LSM was the most common LSM used, and
the ERA-Interim reanalysis was the most common source
of boundary and initial conditions. The PBL scheme used
and the source of land cover data were more varied amongst
the participants. Most models used a maximum simulation
length of less than 100 h, including the spin-up time (most
typically 12 h spin-up and 36 h of total simulation). The sim-
ulation and spin-up length ranged from 1 h spin-up and 7 h
simulation to 24 h spin-up and continuously running for the
full year.

For reference, wind time series from the ERA-Interim re-
analysis (Dee et al., 2011) were included in the comparisons
whenever possible. The ERA-Interim reanalysis data set is a
global data set based on extensive assimilation of surface and
upper-air observations. The data are available on a grid spac-
ing of about 80 km in the horizontal with 60 vertical levels,
with values at approximately 10, 34, 69, 118, 187, and 275 m
above the model surface. We used bilinear interpolation to
interpolate to the sites coordinates and linear interpolation in
the vertical. The data set is available in 6 h intervals; thus,
linear interpolation in time was used to obtain hourly sam-
ples.

2.3 Statistical methods

This study is based on direct comparison between the ob-
servations and model output at collocated positions, as well
as intercomparison of the modeled output. The sampling fre-
quency for the study was chosen to be 1 h. For the observa-
tion data this means hourly mean values; for the mesoscale
models the inter-hourly variation is small; thus, instanta-
neous values were used. To ensure temporal consistency be-
tween observations and modeled output, instances of miss-
ing data from the observations were removed from the mod-
eled output. Furthermore, to get consistent vertical profiles,
only instances where all heights for a particular mast with
available data were used. The model output submitted was
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assumed to be quality checked by the submitter, but it was
also checked by the authors for obvious nonphysical or in-
consistent behavior and not used in that case. The number of
models excluded was between two and four at each of the
sites, but no model was excluded from all three sites.

Inter-model mean and inter-model variations

The emphasis of this study is on the wind speed, u, and wind
direction, as they are the most important variables for wind
energy applications. In the following, a subscript “m” signi-
fies the temporal mean of a variable, i.e., um is the temporal
mean wind speed. This is not to be confused with the mean
value of the model ensemble, also referred to as the inter-
model mean, which is denoted with a tilde. For example, the
mean of the model ensemble for the temporal mean wind
speed is denoted as ũm and calculated as

ũm =
1
N

N∑
i

um,i . (1)

Here i is the model index and N is the total number of mod-
els. Likewise, it is useful to define its standard deviation:

σ̃um =

√√√√ 1
N

N∑
i

(
um,i − ũm

)2
, (2)

which is the standard deviation of the inter-model variation
between the temporal model means. Since ũm and σum are
both sensitive to outliers, we used the following procedure:

1. Calculate ũm and σ̃um .

2. Remove models whose mean |um,i − ũm|> 3.5 σ̃um .

3. Recalculate ũm and σ̃um with the new subset of models.

The value of 3.5 σ̃um was chosen somewhat arbitrarily to en-
sure that only extreme outliers were removed. The procedure
included only models with output available at all the heights
to ensure a vertically consistent profile of the mean and its
variation. Typically, only one or two models were removed
by this criteria.

Coefficient of variation

Variations in wind speed often scale with the mean wind
speed. Thus, to allow for intercomparison of wind speed vari-
ation intensity across vertical levels, we define the coefficient
of variation, Cv,u. It is defined as the ratio of the standard
deviation and the mean, σu/um, and is a unit-less measure of
the relative variation at the sampling timescale. At timescales
of seconds it is known as the turbulence intensity, but in this
case, with a sampling frequency of 1 h, it represents the in-
tensity of variations of synoptic- and mesoscale weather phe-
nomena.

Wind speed shear exponent

To diagnose the wind shear in the boundary layer, we use the
wind shear exponent, α, which uses the wind speed u1 and
u2 at two heights z1 and z2, given by the expression

u2 = u1

(
z2

z1

)α
. (3)

In the surface layer, α is strongly influenced by the surface
roughness and the atmospheric stability. By comparing the
modeled to the measured α, it is thus possible to gain insights
into how the model captures these effects.

Error metrics

The RMSE and the normalized RMSE (NRMSE) were used
as error metrics to obtain single-value measures of the error
across heights at a site. The RMSE and NRMSE are defined
as

RMSE=

√√√√1
n

n∑
j=1

(
xMj − x

O
j

)2
(4)

NRMSE=

√√√√√1
n

n∑
j=1

(
xMj − x

O
j

xOj

)2

(5)

for a set of n modeled values xMj and observed values xOj .
The RMSE was used for variables that do not scale with
height in the surface layer, e.g., wind speed shear exponent;
the NRMSE was used for variables that do scale with height,
e.g., wind speed.

2.4 Wind energy application

To investigate the errors associated with the use of each
model in wind energy applications, we performed a simple
wind resource assessment exercise, using both measurements
and modeled time series at FINO3.

A typical approach to resource assessment is to run a
mesoscale model for a number of years, followed by a down-
scaling process where the wind climate statistics obtained
from the mesoscale model are used as input to a microscale
model (Badger et al., 2014; Hahmann et al., 2015a). In sim-
ple terrain, the microscale model usually consists of a flow
model like the one used by the Wind Applications and Anal-
ysis Program (WAsP). WAsP uses a linearized flow model
based on Jackson and Hunt (1975). The procedure in WAsP
consists first of an upscaling, where local effects from vari-
ations in orography, surface roughness, and obstacles are re-
moved from the wind climate statistics. This is referred to
as generalization of the wind climate, which makes it rep-
resentative for a larger area than the site-specific wind cli-
mate. The size of this area depends on the complexity of the
surface roughness and orographic variations in that area. To
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Figure 3. Vertical profiles of mean wind speed (um) at the three sites for the observations (black), the ERA-Interim data set (green), the
mesoscale models MMi (red), and the inter-model mean M̃M (blue line), and its standard deviation ±σ̃ (blue shade).

obtain a site-specific wind climate at a new site in this area,
the generalized wind climate is downscaled by reversing the
generalization process, i.e., by introducing the site-specific
effects of orography, surface roughness, and obstacles of the
new site.

Given the wind climate and the turbine power curve, the
expected power output can be calculated for any site. Since
the participants in this intercomparison were not requested
to submit the model-specific orography and roughness maps
near each site, it is not possible to go through the general-
ization procedure and subsequent downscaling process at the
inland sites. However, for the offshore site FINO3 there are
no effects of orography, and the differences in roughness be-
tween the models can be assumed to be negligible. Therefore,
we can use the raw model output at this site to estimate the
wind resources estimated by each of the models, without the
generalization procedure.

We performed the wind resource exercise at 90 m at
FINO3, assuming first a single Vestas V80 turbine at the site,
and then repeated for the exercise for the wind farm of Horns
Rev, which is an 80-turbine wind farm located near FINO3.
The resource estimations for the wind farm include the sim-
ple wake parametrization present in the WAsP model, which
was used to estimate the power losses.

3 Results

3.1 Mean quantities and distributions

The following subsection is dedicated to the general perfor-
mance of the models and their ability to capture the mean and
the distributions of a number of wind-related quantities. As
previously stated, the goal is to highlight the weaknesses of
the models to encourage further analysis of model sensitivi-
ties.

3.1.1 Annual mean wind speed

Figure 3 shows the vertical profiles of mean wind speed (um)
at the three sites. At FINO3 (Fig. 3a), most mesoscale mod-

els (MMs) underpredict um at all heights. However, the bias
on average is less than 0.27 m s−1 (∼ 2.8 %). This is a small
bias compared to that of the ERA-Interim data, which show
a larger bias than all the mesoscale models. The inter-model
variance σ̃um at FINO3 is 2.7–3.1 % of the inter-model mean,
and decreases with height. That is the lowest combined inter-
model variance of any of the three sites.

At Høvsøre (Fig. 3b), the MMs generally have small wind
speed biases above 10 m. The error of the inter-model mean
of the models is smaller than±0.16 m s−1 (∼ 1.9 %), and the
inter-model variance is 3.0–5.2 %, decreasing with height,
which is low compared to the biases at the other site on
land (Fig. 3c). At 10 m, most MMs overpredict the mean
wind speed. The inter-model mean has a positive bias of
0.54 m s−1 (∼ 8.4 %). The largest inter-model variance is
also seen at 10 m (7.8 %). The ERA-Interim also overpre-
dicts the mean wind speed at 10 m, with a larger bias than ũm.
Above 10 m, ERA-Interim has smaller errors, but the shape
of the profile is not well captured. Signs of a “kink” in both
the observed and modeled profiles are present, which could
indicate the transition from the low surface roughness of the
sea to the higher surface roughness inland.

At Cabauw (Fig. 3c), most of the MMs overpredict um.
Only one of the models and the ERA-Interim reanalysis show
a significant underprediction, and in the case of the reanaly-
sis, this underestimation increases with height. The overpre-
diction by the rest of the MMs varies in magnitude, but the
average of the models, excluding the outliers, is in the range
of 4–9 % across the different heights. The largest relative er-
rors are at the lowest levels. The inter-model variance (̃σum )
at Cabauw varies between 3.3 and 8.1 % across the different
heights and is largest at the lowest levels. The decrease in
wind speed bias with height was also observed by Jiménez
et al. (2016), who associated this with excessive turbulent
mixing, which may be caused by a misrepresentation of the
surface roughness length.
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Figure 4. Wind speed distributions at the three sites (FINO3 at 90 m, Høvsøre at 80 m, and Cabauw at 80 m) for the observations (black),
the ERA-Interim data set (green), the mesoscale models MMi (red), and the inter-model mean (blue line) and its standard deviation M̃M± σ̃
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Figure 5. Wind direction distributions at the three sites (FINO3 at 90 m, Høvsøre at 80 m, and Cabauw at 80 m), based on 24 sectors, for the
observations (black), the ERA-Interim data set (green), the mesoscale models MMi (red), and the inter-model mean M̃M (blue line) and its
standard deviation ±σ̃ (blue shade).

3.1.2 Frequency distribution of wind speed

Figure 4 shows that, on average, the MMs capture the wind
speed distributions well compared to the observations. The
only exception is a slight shift towards higher wind speeds
at Cabauw, corresponding to the positive bias in mean wind
speed observed in Fig. 3. The ERA-Interim data set captures
the distribution well at Høvsøre, but it has distributions that
are shifted towards lower wind speeds at FINO3 and Cabauw,
corresponding to the bias in Fig. 3.

3.1.3 Distribution of wind direction

Figure 3 shows that the MMs generally capture the mean
wind speed well. This is also true for the wind direction dis-
tributions, commonly called “wind roses”. The distributions
are split into 15◦ sectors at heights of either 80 or 90 m. Fig-
ure 5 also shows that the models are in good agreement. At
all three sites the MMs capture the distribution better than the
reanalysis data. At all sites, but most markedly at Cabauw,
the ERA-Interim distribution is rotated clockwise relative to
the distribution from the observations and MMs. This rota-
tion might result in a different wind farm layout if its power

is optimized according to the wind roses from MMs or the
ERA-Interim.

3.1.4 Annual wind speed cycle

Figure 6a shows the monthly distribution of the mean wind
speed for the MMs and the measurements. Apart from a few
models outside the 3× quartile range, most models capture
the diurnal cycle well. Interestingly, the figure also reveals
that both the overestimation by the models at Cabauw and
the underestimation at FINO3, seen in Fig. 3, are evenly dis-
tributed throughout the year. At Høvsøre, a mix of under- and
overestimations are observed.

Figure 6b shows the monthly distribution of the mean ab-
solute error (MAE) for wind speed for the MMs. Summer
and spring are generally associated with larger deviations be-
tween the modeled and observed wind speeds. It is well es-
tablished that fall and winter weather in northern Europe is
governed by large-scale planetary and synoptic weather phe-
nomena, which is well captured by mesoscale models. Dur-
ing spring and summer, meso- and thermally induced phe-
nomena (e.g., sea breezes and convection) have a larger im-
pact on the flow, which is more difficult for the models to
correctly capture. The lowest MAE is observed at FINO3 in
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Figure 6. (a) Monthly distributions of mean wind speed for the MMs (box plots) and observations (star) at each location (colors). (b) Monthly
distributions of the models for the mean absolute error (MAE) for wind speed at each location (colors). The boxes represent the second and
third quartiles. The whiskers extend to the smallest (bottom) or largest (top) value that is within 1.5 times the inter-quartile range. Samples
outside this range are shown as outliers.

Figure 7. Distribution of mean absolute error (MAE) for wind
speed at the three sites for five stability classes: unstable (U), near-
unstable (NU), neutral (N), near-stable (NS), and stable (S). See def-
initions in Table 2. The boxes represent the second and third quar-
tiles. The whiskers extend to the smallest (bottom) or largest (top)
value that is within 1.5 times the inter-quartile range. Samples out-
side this range are shown as outliers.

February, October, and November, with most MAE values
near 10 %. The largest MAEs are in November at Cabauw
(values in the range of 30–45 %).

3.1.5 Effect of atmospheric stability

It is generally acknowledged that non-neutral atmospheric
stability conditions pose one of the greatest challenges for
MMs (Fernando and Weil, 2010). To study the performance
of the models in different stability regimes, the stability pa-
rameters supplied for each model (inverse Obukhov length or
bulk Richardson number) were used to group the hourly sam-
ples into five stability classes based on Gryning et al. (2007)
and Mohan and Siddiqui (1998), shown in Table 2. Because
the models represent atmospheric stability in different ways,
the number of samples in each stability group varies for the
different models. However, the number of samples in each
group was never below 150 h (out of 8760 h), and it was more
than 400 in most cases. The MAE for wind speed was calcu-
lated for each of groups and for all models. The results are
shown in Fig. 7.

At all three sites, the smallest deviations between mod-
eled and measured wind speeds are found when the mod-
els perceive the surface layer stability from unstable (U) to
stable (S). The MAE in these cases typically range from 10
to 35 %, with just a few models outside of the 3× quartile
range. The largest deviations are found when the models es-
timated very stable conditions (VS) or very unstable condi-
tions (VU) (typical values in the range 15–45 % MAE). The
site where the largest errors are found is Cabauw, and the
smallest is FINO3. This is in agreement with the results in
Sect. 3.1.
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Table 2. Ranges of inverse Obukhov length (1/L) and bulk Richardson number (Rib) used in the stability classification. The 1/L classes
were used in Gryning et al. (2007) and the Rib classes in Mohan and Siddiqui (1998). In both cases the original very unstable and the stable
classes have been combined into the open-ended stable class. The same is true for the original very unstable and unstable classes, which have
been combined into the open-ended unstable class.

Stability class Class name 1/L interval [m−1] Rib

U Unstable 1/L<−0.005 Rib<−0.011
NU Near-unstable −0.005≤ 1/L<−0.002 −0.011≤Rib<−0.0036
N Neutral −0.002≤ 1/L< 0.002 −0.0036≤Rib< 0.0072
NS Near-stable 0.002≤ 1/L< 0.005 0.0072≤Rib< 0.42
S Stable 0.005≤ 1/L 0.42≤Rib
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Figure 8. Vertical profiles of the coefficient of variation for wind speed Cv,u at the three sites for observations (black), ERA-Interim (green),
the mesoscale models MMi (red), and the mesoscale models mean and inter-model variance M̃M± σ̃ (blue).

3.1.6 Coefficient of variation of wind speed

Figure 8 shows the mean coefficient of variation (Cv,u) for
wind speed at the three sites. At FINO3, the average of the
MMs C̃v,u is similar to the observations, with a bias of less
than 1 % at all three heights. Ignoring one outlier, the inter-
model variance ranges between 3.0 and 3.5 % at the three
heights. The outlier, which shows much lower values, is a
consequence of the low variance for that model compared
to the other models. It was removed by the filtering method
described in Sect. 2.3 when calculating the mean of the mod-
els (C̃v,u) and the inter-model variance (̃σCv,u ). The ERA-
Interim data set also captures the magnitude of Cv,u well.

At Høvsøre, Cv,u decreases with height for both the ob-
servations and most of the MMs. The inter-model mean of
the models (C̃v,u) agrees well with the observations, but un-
derestimates it by about 2 %. The ERA-Interim data set does
not capture this behavior, and instead shows an increase with
height. At the highest levels, however, it reaches the aver-
age of the models and the observed values. The spread of the
MMs (σCv,u ) is slightly higher than at FINO3 (3.6–4.4 %) and
is highest at the lowest levels.

At Cabauw, Cv,u at 10 m is the largest value found across
all sites. Above 10 m a sharp drop-off is found up to 80 m,
where is starts to slowly increase up to 200 m. Most of the
MMs capture this behavior, which is reflected in the mean
of the models (C̃v,u). However, the models underestimate the
magnitude and the drop-off of Cv,u at the lowest levels, with

Table 3. Participants in the study in alphabetical order.

Participant Institution Country

3E Company Belgium
Anemos GmbH Company Germany
ATM-PRO Company Belgium
CENER Research center Spain
CIEMAT Research center Spain
DEWI Company Germany
DTU Wind Energy University Denmark
DX Wind Technologies Company China
EMD International Company Denmark
ISAC-CNR Research center Italy
KNMI Meteorological institute The Netherlands
Met Office Meteorological institute United Kingdom
RES Ltd. Company United Kingdom
Statoil ASA Company Norway
University of Oldenburg University Germany
Vestas Company Denmark
Vortex Company Spain

a bias of up to 12 % at 10 and 20 m. Above 80 m the mod-
els agree with the observations. The ERA-Interim data set is
nearly constant with height, underestimatesCv,u below 40 m,
and overestimates it above. The inter-model variance (̃σCv,u )
of the MMs is largest at the lowest levels, 8.0 % at 10 m, and
gradually decreases to less than 4 % at 200 m.
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Figure 9. Coefficient of variation for wind speed Cv,u for westerly (a, c) and easterly (b, d) winds at FINO3 (a, b) and Høvsøre (c, d) for
the observations (black), the ERA-Interim data set (green), the MMs MMi (red), and the mesoscale models mean and inter-model variance
M̃M± σ̃ (blue).

Effect of upstream conditions on the variation
of wind speed

The coastal site Høvsøre and the offshore site FINO3 is used
to investigate whether there is a dependency of the coefficient
of variation for wind speed (shown in Fig. 8) on upstream
surface conditions. With a nearby coastline aligned north–
south, Høvsøre represents the case with anisotropic surface
roughness conditions: westerly winds come from the sea (on-
shore flow) and easterly winds from land (offshore flow). In
contrast, the offshore site FINO3 has isotropic upstream sur-
face roughness. To study the differences, the coefficients of
variation were binned according to four wind direction sec-
tors, each spanning 90◦: north, east, south, and west. The val-
ues for the east and west sectors were then extracted and an-
alyzed. Figure 9 shows the profiles of Cv,u for the two wind
directions at FINO3 and Høvsøre.

At FINO3, the coefficient of variance is almost constant
with height and slightly lower for easterly winds than for
westerly flow. This is true for both models and observa-
tions. The sample size for easterly winds is smaller, about
half, than for westerly flow. However, both sample sizes are
large (N > 1000); thus, the influence from sample sizes is
expected to be small. The average of the MMs captures the
observed behavior well for both westerly and easterly winds,
and the inter-model variance is similar for the two sectors.
The ERA-Interim agrees better with the observations during
easterly flow at FINO3.

At Høvsøre, the coefficient of variation is larger for west-
erly than for easterly winds. Easterly winds show larger co-
efficients of variation at 10 m than higher up. The reduction
of Cv,u with height up to 40 m for easterly flow is under-
estimated by most of the mesoscale models and completely
missed by the ERA-Interim data set. For westerly winds, the
mean of the models and the observations agree but is under-
estimated by ERA-Interim.

The dependence on height of Cv,u is only present at
Høvsøre for easterly winds and points to the influence of up-
stream surface conditions on the variation. The observed pat-
tern is captured by the MMs, but the models show a more
smoother vertical transition than the observations do. The
ERA-Interim reanalysis does not capture the pattern.

3.1.7 Distribution of wind speed shear exponent

Figure 10 shows the distributions of wind speed shear expo-
nent (α) for each of the three sites calculated between 40 and
80 or 40 and 90 m. Under neutral atmospheric stability con-
ditions and isotropic surface roughness, a sharp distribution
centered around a single value is expected. This means that
for offshore sites such as FINO3, the spread in shear expo-
nent comes primarily from variations in atmospheric stabil-
ity. With this in mind, the distributions show that most MMs
capture the stability well at the site. The ERA-Interim data
set does not capture the strongest shear situations well. This
can be easily explained by the low data frequency (6 h).
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Figure 10. Frequency of occurrence of the shear exponent (α) at the three sites for the observations (black), the ERA-Interim data set (green),
the mesoscale models MMi (red), and the inter-model mean (blue line) and standard deviation M̃M± σ̃ (blue shade).

At Høvsøre and Cabauw, the distributions of α reflect the
combined effect of both the nonhomogenous upstream sur-
face roughness and the variations in atmospheric stability. At
the coastal site, the wind speed profile changes depending on
whether the fetch is from land or from the sea, which is also
reflected in the distribution of α (Hahmann et al., 2015b).
Figure 10 also shows that while the shear distributions are
generally also well captured at Høvsøre and Cabauw, a slight
shift towards lower values is observed at both sites. This
points to an underestimation of the surface roughness, a mis-
representation of the atmospheric stability, or a combination
of the two. Just like at FINO3, the ERA-Interim data set does
not capture the weak and strong shear cases at Høvsøre and
Cabauw.

3.2 Relating performance to model setup

To identify what model setup choices lead to better model
performance, the statistics of each model across all heights
are reduced to just two values at each site: NRMSE for wind
speed (NRMSEu) and RMSE for wind speed shear exponent
(RMSEα). The shear exponent was calculated between pairs
of nearby levels, e.g., at FINO3 two values were calculated,
one between 40 and 70 m, and one between 70 and 90 m. The
RMSEα was then calculated as described in Sect. 4 between
modeled and observed values of the shear exponent across
all height pairs.

Figure 11 shows NRMSEu and RMSEα for all MMs at
all three sites. It shows, similar to Sect. 3.1, that the models
generally have smaller mean wind speed and mean shear ex-
ponent errors at the offshore site FINO3. However, as previ-
ously shown, errors are larger near the surface, and the three
levels used at FINO3 are at 40 m and above, unlike Høvsøre
and Cabauw where levels below 40 m are included.

The models were then grouped according to specific model
components. Given the range of setup choices that influ-
ence the model performance, large groups were needed to
obtain useful statistics. With this in mind, three setup op-
tions were chosen for analysis: PBL scheme, grid spacing,
and simulation lead time; statistics of NRMSEu and RMSEα

Figure 11. RMSE for wind speed shear exponent (RMSEα) versus
normalized RMSE for wind speed (NRMSEu) at the three sites.

were also computed for each group. The choice of group-
ings was based mainly on two criteria: (1) it was possible
to form groups with at least six members in each group and
(2) each of the options was highlighted in the literature as
being important for model performance (Hahmann et al.,
2015b; Gómez-Navarro et al., 2015; Carvalho et al., 2012;
Draxl et al., 2014). Several other setup options were con-
sidered: MM, LSM, land cover, spin-up time, and data set
used for initial and boundary conditions, but either it was not
possible to group them in a meaningful way, or they were
deemed of too little importance based on previous studies.
Models missing information about particular setup options,
or missing output at some heights, were excluded from this
analysis.

3.2.1 PBL scheme

The PBL scheme in a MM ensures an accurate representation
of thermodynamic and kinematic structures of the lower tro-
posphere (Cohen et al., 2015). Two important characteristics
of the PBL schemes are their order of closure and whether
mixing happens through a local or a nonlocal process. Equa-
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Table 4. Setup description of the 25 model setups ranked by horizontal grid spacing of the finest grid. The columns are the model name and
version (model), the PBL scheme (PBL), the land surface model (LSM), whether nesting was used (Nest.), the horizontal grid spacing (1),
the land cover source, simulation and spin-up time (Sim. time), and initial and boundary condition data (B.C.).

No. Model PBL LSM Nest. 1 (km) Land cover Sim. time (h) B.C.

1 WRF V3.6.1a Custom – yes 1 CORINEb 48–24 Era-Ic

2 MAESTRO V15.01 – – no 1 CORINE – Era-I
3 WRF V3.6.1 MYJd Noahe yes 2 USGSf 78–6 Era-I
4 WRF V3.3.1 MYJ – yes 2 GlobCoverg 11 064–24 Era-I
5 WRF V3.5.1 YSUh Noah yes 2 CORINE 30–6 Era-I
6 WRF V3.5.1 YSU Noah yes 2 – 264–24 Era-I
7 HARMONIE V37h1.1i SURFEXj ISBAk yes 2.5 ECOCLIMAPl 7–1 Era-I
8 WRF V3.6 ACM2m Noah yes 3 USGS-MODIS 84–12 FNLn

9 WRF V3.4 MYJ Noah no 3 USGS 28–4 Era-I
10 WRF V3.6.1 YSU Noah yes 3 CORINE 672–96 CFSRo

11 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36–6 CFSR
12 WRF V3.6.1 MYNNp Noah yes 3 USGS 816–72 Era-I
13 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36–12 MERRAq

14 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36–12 Era-I
15 WRF V3.1 MYJ Noah yes 3 MODISr 54–6 FNL
16 WRF V3.6.1 YSU Noah yes 3 CORINE 336–96 CFSR
17 WRF V3.5.1 MYJ Noah yes 4 IGBP-MODISs 264–24 Era-I
18 UM V8.4t Locku JULESv yes 4 IGBP-MODIS 36–6 Era-I
19 WRF V3.5.1 YSU Noah yes 5 USGS 2424–24 Era-I
20 SKIRON V6.9w MYNN OSUx no 5 USGS 51–3 GFSy

21 WRF V3.5.1 YSU Noah yes 5 USGS 2424–24 Era-I
22 WRF V3.5.1 YSU Noah yes 6 IGBP-MODIS 264–24 Era-I
23 HIRLAM V6.4.2z CBRaa ISBA no 11 USGS 9–3 IFSab

24 RAMS V6.0ac MYNN LEAFad no 12 CORINE 36–12 IFS
25 MM5 V3ae YSU – no 20 CORINE 744–24 MERRA

a Skamarock et al. (2008). b Bossard et al. (2000). c Dee et al. (2011). d Janjić (2002). e Niu et al. (2011). f Garbarino et al. (2002). g Arino et al. (2008). h Hong
et al. (2006). i Seity et al. (2011). j Masson et al. (2013) (Supplement). k Noilhan and Mahfouf (1996). l Champeaux et al. (2005). m Pleim (2007a). n NCEP final
analysis. o Saha et al. (2010). p Nakanishi and Niino (2006). q Rienecker et al. (2011). r Friedl et al. (2010). s Loveland and Belward (1997). t Lean et al. (2008).
u Lock et al. (2000). v Cox et al. (1999). w Kallos et al. (1997). x Pan and Mahrt (1987). y Global Forecast System. z Kallberg (1989). aa Cuxart et al. (2000).
ab Integrated Forecasting System. ac Pielke et al. (1992). ad Walko and Tremback (2005). ae Grell et al. (1994).

tions describing turbulent motion of order n contain terms of
order n+ 1. The order of closure describes the highest order
of equations included; higher orders are parametrized. In lo-
cal schemes, variables are only affected by adjacent cells,
while nonlocal schemes relate changes to gradients in the
whole PBL column (Cohen et al., 2015).

To study the influence of the PBL schemes used, the
MMs were split into three groups: YSU, MYJ, and Other.
The statistics of NRMSEu and RMSEα for these groups are
shown in Table 5. The YSU group consists of six models
that used the YSU PBL scheme (Hong et al., 2006), which
is a first-order nonlocal scheme. The models in this group
span a range of grid spacings and lead times, but mod-
els with larger-than-average grid spacing and longer-than-
average lead times dominate the group. The MYJ group con-
tains six models that used the MYJ PBL scheme (Janjić,
1994), which is a 1.5 order local scheme. Most of the models
use a short lead-time limit and a grid spacing that is close to
the average for the MMs in this study. The last group, labeled
Other, contains nine models that use a mix of different PBL

schemes (see Table 4), with different orders of closure and a
mix of local and nonlocal formulations. These models have a
wide representation of different grid spacings and lead times.

At FINO3, the group consisting of models not using either
the YSU or MYJ PBL schemes generally has smaller wind
speed errors; even though the group also contains the model
with the largest NRMSEu. The models using the MYJ PBL
scheme have smaller wind shear exponent errors, and also on
average smaller wind speed errors than YSU. However, the
median model in the YSU and MYJ groups has similar wind
speed errors.

At Høvsøre, the three groups have very similar mean
wind speed error statistics, with YSU showing only slightly
smaller errors. However, for wind shear exponent, the models
in the YSU group have the smallest errors, both on average
and for the median model. Draxl et al. (2014) studied sim-
ilar error statistics at Høvsøre for the WRF model run with
a number of different PBL schemes during October 2009.
They, unlike this study, found that MYJ gave slightly smaller
errors than YSU. However, Draxl et al. (2014) used a version
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Table 5. Statistics of NRMSE for wind speed (NRMSEu) and
RMSE for wind speed shear exponent (RMSEα) associated with
the groups of PBL schemes across all heights at each site. There are
six models in the YSU group, six in the MYJ group, and nine in the
Other group. The smallest value for each metric is in bold.

FINO3

Metric PBL Mean Median SD Min Max

YSU 0.047 0.029 0.028 0.018 0.091
NRMSEu MYJ 0.032 0.029 0.011 0.020 0.055

Other 0.028 0.014 0.045 0.001 0.154

YSU 0.029 0.019 0.034 0.004 0.116
RMSEα MYJ 0.010 0.010 0.007 0.004 0.025

Other 0.057 0.019 0.120 0.003 0.396

Høvsøre

Metric PBL Mean Median SD Min Max

YSU 0.061 0.058 0.037 0.024 0.144
NRMSEu MYJ 0.063 0.064 0.013 0.045 0.090

Other 0.062 0.059 0.026 0.027 0.100

YSU 0.035 0.018 0.029 0.005 0.087
RMSEα MYJ 0.049 0.044 0.011 0.030 0.061

Other 0.086 0.051 0.100 0.027 0.365

Cabauw

Metric PBL Mean Median SD Min Max

YSU 0.058 0.049 0.033 0.021 0.127
NRMSEu MYJ 0.066 0.053 0.037 0.038 0.146

Other 0.124 0.086 0.106 0.007 0.389

YSU 0.025 0.022 0.007 0.018 0.036
RMSEα MYJ 0.045 0.023 0.036 0.020 0.117

Other 0.064 0.075 0.036 0.015 0.113

of the YSU scheme with a bug that was corrected in WRF
version 3.4.1 (Hahmann et al., 2015b).

At Cabauw, the YSU group has smaller errors than the
other groups for both wind speed and wind shear exponent,
but the errors for the median model in the YSU and MYJ
groups are quite similar. The single most accurate model is
found in the Other group, but that group as a whole has larger
errors.

3.2.2 Grid spacing

A mesoscale model should be able to explicitly resolve
smaller and smaller phenomena as the grid spacing is de-
creased. Skamarock (2004) illustrated that the effective res-
olution of the WRF model is approximately 7 times the grid
spacing used. However, mesoscale models, as the name sug-
gests, have been developed to simulate the mesoscale, and
they are often not capable of simulating weather at scales
that lie between the micro- and mesoscales, i.e., between ap-
proximately 100 and 2000 m. To study the importance of the
grid spacing, the models were ranked by grid spacing, simi-
lar to Table 4. The models were then split into three groups:

Table 6. Statistics of NRMSE for wind speed (NRMSEu) and
RMSE for wind speed shear exponent (RMSEα) associated with the
group model grid spacing across all heights at each site. There are
seven models in the fine group, eight in the moderate group, and six
in the coarse group. The smallest value for each metric is in bold.

FINO3

Metric Grid spacing Mean Median SD Min Max

Fine 0.024 0.020 0.015 0.001 0.055
NRMSEu Moderate 0.037 0.027 0.025 0.007 0.080

Coarse 0.044 0.025 0.046 0.002 0.154

Fine 0.013 0.013 0.008 0.005 0.025
RMSEα Moderate 0.015 0.011 0.008 0.004 0.028

Coarse 0.067 0.019 0.121 0.003 0.396

Høvsøre

Metric Grid spacing Mean Median SD Min Max

Fine 0.057 0.057 0.026 0.024 0.093
NRMSEu Moderate 0.054 0.057 0.012 0.027 0.064

Coarse 0.075 0.068 0.034 0.028 0.144

Fine 0.040 0.040 0.021 0.015 0.076
RMSEα Moderate 0.047 0.048 0.010 0.030 0.060

Coarse 0.088 0.055 0.109 0.005 0.365

Cabauw

Metric Grid spacing Mean Median SD Min Max

Fine 0.086 0.064 0.056 0.007 0.178
NRMSEu Moderate 0.048 0.046 0.015 0.021 0.078

Coarse 0.146 0.107 0.115 0.049 0.389

Fine 0.052 0.030 0.036 0.016 0.117
RMSEα Moderate 0.031 0.021 0.017 0.020 0.066

Coarse 0.063 0.060 0.041 0.015 0.113

fine, moderate, and coarse. The fine group consists of seven
models that all have a grid spacing below 3 km. The moder-
ate group consists of eight models at exactly 3 km, and the
coarse group consists of six models above 3 km. The fine
group contains models that are well distributed in terms of
PBL schemes and simulation lead time. The moderate mod-
els also have a good representation of different PBL schemes
and lead-time limits, but the MYJ PBL scheme and short lead
times are most common. The coarse group contains no mod-
els using the MYJ PBL scheme, and half of the models use a
short lead time.

Table 6 shows the statistics for NRMSEu and RMSEα .
At FINO3, the fine group has the smallest wind speed er-
rors. For the wind shear exponent, the smallest error is found
in the coarse group, but on average the fine and moderate
groups have smaller errors. At Høvsøre, the fine and moder-
ate groups have similar errors for both wind speed and shear
exponent. However, the model with the smallest shear ex-
ponent error is found in the coarse group. At Cabauw, the
moderate group shows the smallest errors for both metrics,
followed by the fine group. However, just as for Høvsøre, the
model with the smallest RMSEα is found in the coarse group.
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Table 7. Statistics of NRMSE for wind speed (NRMSEu) and
RMSE for wind speed shear exponent (RMSEα) associated with
each group of simulation lead time across all heights at each site.
There are nine models in the short group, eight in the medium
group, and seven in the long group. The smallest value for each
metric is in bold.

FINO3

Metric Sim. length Mean Median SD Min Max

Short 0.032 0.020 0.044 0.001 0.154
NRMSEu Medium 0.028 0.025 0.014 0.007 0.055

Long 0.051 0.031 0.028 0.025 0.091

Short 0.052 0.010 0.122 0.003 0.396
RMSEα Medium 0.016 0.016 0.006 0.003 0.025

Long 0.029 0.022 0.036 0.004 0.116

Høvsøre

Metric Sim. length Mean Median SD Min Max

Short 0.058 0.059 0.023 0.024 0.100
NRMSEu Medium 0.070 0.068 0.016 0.044 0.093

Long 0.062 0.057 0.039 0.027 0.144

Short 0.081 0.044 0.102 0.018 0.365
RMSEα Medium 0.044 0.056 0.023 0.009 0.076

Long 0.046 0.048 0.025 0.005 0.087

Cabauw

Metric Sim. length Mean Median SD Min Max

Short 0.088 0.058 0.108 0.007 0.389
NRMSEu Medium 0.103 0.097 0.058 0.043 0.178

Long 0.068 0.064 0.035 0.021 0.127

Short 0.046 0.021 0.038 0.015 0.113
RMSEα Medium 0.058 0.054 0.038 0.018 0.117

Long 0.031 0.025 0.012 0.020 0.052

3.2.3 Simulation time

As the solution in mesoscale models is integrated forward in
time, the uncertainties associated with the errors in the initial
conditions increase (Yoden, 2007). This can cause the model
solution to drift away from the true solution. Furthermore,
amplification errors can reduce the variance, which reduces
the accuracy of the model in a statistical sense. To study the
influence of the simulation time on the model performance,
the models were ranked and split into three groups: short,
medium, and long. The short group consists of nine models
with a lead time below 48 h. Four models in the group use
the MYJ scheme, and one uses the YSU scheme. The short
group has a good representation of models with different grid
spacings. The medium group includes eight models with a
lead time between 48 and 335 h. The group has a good rep-
resentation of different PBL schemes and grid spacing. The
long group consists of seven models with a lead-time limit
above 335 h. Five of the models use the YSU PBL scheme,
and most of the models use a larger-than-average grid spac-
ing.

um [ms ] Pm
[
W

m2

]
Pm, pc

[
W

m2

]
Pm,wf

[
W

m2

]
15

10

5

0

5

E
rr

or
 (

%
)

Figure 12. Distribution of errors from the model’s output at 90 m
at FINO3 for the following errors: (1) the mean wind speed um
(blue), (2) the power density Pm (green), (3) the power density with
an implied power curve Pm,pc (red), and (4) the averaged power
density of a wind farm, including the same implied power curve as
(3) and the wake effects (purple). Outliers are not shown; the most
extreme ones are −25 % for um, −60 % for Pm, −37 % for Pm,wf,
and −35 % for Pm,pc

Table 7 shows the errors statistics for the three simulation-
time groups. At FINO3, the median model from the short
group has the lowest NRMSEu and RMSEα , but because one
model has large errors, the lowest mean errors are found in
the medium group. The medium group has smaller errors
across all metrics compared to the long group.

At Høvsøre, the short and long groups have similar error
statistics for wind speed, and both measures are lower than
those for the medium group. For RMSEα the median model
from the short group has the smallest error, while on average
the errors are smallest in the medium group.

At Cabauw, the smallest errors for both wind speed and
shear exponent are on average found in the long group, while
the median model with the smallest errors is in the short
group. It is worth noting that five of the seven models in
the long group use the YSU PBL scheme, and in Sect. 3.2.1
the models using the YSU PBL scheme were shown to have
smaller errors at Cabauw; thus, it cannot be ruled out that the
small errors in the long group at Cabauw are related to the
overrepresentation of the YSU scheme and not the simula-
tion length.

3.3 Wind energy application

As described in Sect. 2.4, the output from the mesoscale
models was applied to a simple wind energy exercise. The
90 m wind resource of a Horns Rev wind farm was estimated
using the output from the various MMs at FINO3. Figure 12
shows the errors for four metrics: (1) error in mean wind
speed um, (2) error in mean power density Pm, (3) error in
mean power density using a single power curve Pm,pc, and
(4) error in the mean power density of a wind farm of 80
turbines Pm,wf, including wake effects.
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Figure 12 shows that the majority of the models have less
than ±5 % error in mean wind speed. The errors are mostly
underestimations, and in a few cases severe underestimation
of more than 10 % (outside the scale of the figure). For the
mean power density, the spread of the models is, as expected,
much larger due to the third-power dependence on the wind
speed. However, when the power density is calculated us-
ing a turbine power curve, where the highest wind speeds
(> 14 m s−1) are less important, the inter-model variance is
comparable to that for mean wind speed. For the wind farm
case, where the power density depends on the wind direction
distribution, because of the wake losses, the variance is com-
parable in size to that of the mean wind speed and Pm,pc, and
most models have errors smaller than ±2 %. The improve-
ment seen for Pm,wf is caused by the underestimation of the
wake effects by most models, leading to a relative increase
in mean power density, offsetting the underprediction from
the modeled wind speed distribution. However, the relative
effect of over- or underpredicting the wake effects may just
as well enhance the total power density errors, given slightly
different wind direction distributions.

4 Summary and conclusions

The mesoscale models in this study are able to reproduce the
observed mean wind speed profiles and the distributions of
wind speed well. At FINO3 and above 10 m at Høvsøre, the
average of the models has a bias of 3 % or less. The largest
mean wind speed biases (7–9 %) are found at the lowest lev-
els at Høvsøre and Cabauw. Similarly, the MMs were able
to reproduce the relative variations of wind speed well in
most cases (Fig. 8), but they underestimated the relative vari-
ations at the lowest levels at Cabauw. A simple analysis of
the impact of upstream surface roughness conditions on the
relative wind speed variations suggested that the models may
be misrepresenting the surface characteristics (Fig. 9), which
could be a misrepresentation of either the land use classifi-
cation, the conversion of land use classes into surface rough-
ness lengths, or the PBL scheme. This problem highlights the
need for (1) further analysis of the representativeness of the
surface characteristics in mesoscale models and (2) down-
scaling of the mesoscale results using a coupled microscale
model to capture subgrid-scale influence from variations in
orography and surface roughness. The modeled distributions
of the wind direction showed only minor differences com-
pared to the observed ones.

For future benchmarking exercises, our study shows that
the focus should be on the model representation of surface
characteristics, such as orography and land use, and their as-
sociated surface roughness. An attempt was made here to
include these details, but because only a subset of the par-
ticipants supplied this information, it was not feasible. Fur-
ther studies could also benefit from including more land
masts with low to moderate complexity, where capturing the

surface characteristics is important, but still manageable by
mesoscale models.

The impact of choosing specific model subcomponents
was studied in some detail. To allow this, the output from the
models was reduced to two metrics at each site, one related
to the wind speed bias (NRMSE for wind speed) and one re-
lated to the shape of the wind speed profile (RMSE for wind
speed shear exponent). The models were then separated into
large groups according to their model setup for three setup
choices: PBL scheme, grid spacing, and simulation lead time.
At FINO3, the grouping revealed that the models using the
MYJ PBL scheme had smaller wind speed and shear expo-
nent errors than those that use the YSU scheme. At Høvsøre
and Cabauw, the opposite was true. However, the differences
between the two groups were not significant and the median
model from the two groups had similar errors. Grouping the
models according to grid spacing showed that the models
with 3 km grid spacing or smaller had lower errors than the
group with the largest grid spacings. For these sites, no con-
clusive evidence was found that reducing the grid spacing be-
low 3 km results in smaller errors. For simulation lead time,
the median model from the group with short lead times had
the smallest errors at all sites, with the exception of the shear
exponent error at Høvsøre. However, no significant differ-
ence between the mean of the groups was found, which sug-
gests that the PBL scheme and grid spacing may be of greater
importance for the performance at these sites. Future studies
should include many more runs to provide more robust statis-
tics, which can provide a basis for best-practice guidelines
for wind energy applications using NWP models.

Last, we used the observed and modeled time series for
a classical wind energy application, the estimation of power
production at a hypothetical wind farm at FINO3. The power
production, including wake losses, was estimated for both a
single turbine and for a wind farm, using a standard power
curve. The exercise showed that while a large spread exists
between the modeled power density, it is reduced when the
power is calculated using a power curve. It also showed the
importance of accurately estimating the wind direction dis-
tribution since a small deviation in the distributions might
induce large changes in the power production because of its
sensitivity to the wind farm layout.

Data availability. The output data from the mesoscale models
have been submitted to the European Wind Energy Association
(EAWE) for the mesoscale benchmarking study under an agree-
ment that ensures that individual participants are anonymous in the
reported results, and that the model output was not publicly shared.
The measurements from the meteorological masts FINO3, Høvsøre,
and Cabauw are provided by the data owners under an agreement of
not sharing the data with any third party.
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