
Wind Energ. Sci., 2, 307–316, 2017
https://doi.org/10.5194/wes-2-307-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Joukowsky actuator disc momentum theory

Gijs A. M. van Kuik
Duwind, Delft University of Technology, Kluyverweg 1, 2629HS Delft, the Netherlands

Correspondence to: Gijs A. M. van Kuik (g.a.m.vankuik@tudelft.nl)

Received: 15 December 2016 – Discussion started: 2 January 2017
Revised: 20 March 2017 – Accepted: 10 May 2017 – Published: 15 June 2017

Abstract. Actuator disc theory is the basis for most rotor design methods, albeit with many extensions and
engineering rules added to make it a well-established method. However, the off-design condition of a very low
rotational speed � of the disc is still a topic for scientific discussions. Several authors have presented solutions
of the associated momentum theory for actuator discs with a constant circulation, the so-called Joukowsky discs,
showing the efficiency Cp→∞ for the tip speed ratio λ→ 0. The momentum theory is very sensitive to the
choice of the radius δ of the core of the centreline vortex as the pressure and velocity gradients become infinite
for δ→ 0. Usually the vortex core area is not included in the momentum balance, as it vanishes for δ→ 0.
However, the pressure in the vortex core behaves as a Delta function and so contributes to the balance, thereby
cancelling the singular behaviour. Applying this in the momentum balance results in Cp→ 0 for λ→ 0, instead
of Cp→∞. The Joukowsky actuator disc theory is confirmed by a very good match with numerically obtained
results. At the disc the velocity in the meridian plane is shown to be constant. The Joukowsky calculations give
higher Cp values than corresponding solutions for discs with a Goldstein-based wake circulation published in
literature.

1 Introduction

Although the concept of the actuator disc is more than
100 years old, it is still the basis for rotor design codes using
the blade element momentum theory developed over these
100 years (see van Kuik et al., 2015). In recent years the be-
haviour of actuator disc flows with a low rotational speed
has been studied by several authors, providing several so-
lutions depending on the type of load that is applied (see,
e.g., Sørensen, 2015). Research has focussed on rotors and
discs with a Joukowsky distribution (Joukowsky, 1918), hav-
ing a constant circulation in the wake, or with a Betz dis-
tribution (Betz, 1927), yielding a helicoidal wake structure
moving with a uniform axial velocity. Goldstein (1929) was
the first to find a solution for this wake for lightly loaded
propellers (see Okulov et al., 2015, for an overview). Both
distributions were assumed to represent the circulation dis-
tribution of an ideal rotor. The present paper considers the
Joukowsky distribution and compares the results with solu-
tions of the Betz–Goldstein distribution modified for heav-
ily loaded actuator discs reported in Okulov and Sørensen
(2008), Okulov (2014), and Wood (2015).

For a Joukowsky actuator disc, the swirl of the wake is
induced by a discrete vortex at the wake centre line, lead-
ing to an infinite azimuthal velocity and pressure for the ra-
dius r→ 0. The question of how to model the discrete vor-
tex and how this impacts the momentum balance has been
studied by, e.g., de Vries (1979), Sharpe (2004), Xiros and
Xiros (2007), Wood (2007), Sørensen and van Kuik (2011),
and van Kuik (2016). Apart from the last reference, the re-
ported performance predictions show a remarkable result: in
the limit to zero rotational speed, the efficiency of the disc in-
creases to infinity, which is highly non-physical. Within the
inviscid flow regime, the analysis in Sørensen and van Kuik
(2011) is considered to be exact apart from the choice of the
vortex core at the axis of the wake. The centreline vortex is
assumed to be a Rankine vortex of which the core diameter is
proportional to the wake radius. The analysis of Sørensen and
van Kuik (2011) shows that adding a disturbance parameter
to the momentum balance removes the non-physical result of
infinite efficiency for zero rotational speed, no matter how
small this disturbance is. This is an indication that the mo-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



308 G. A. M. van Kuik: Joukowsky actuator disc theory

mentum balance is very sensitive to small deviations in the
flow parameters.

A failed attempt to reproduce the results of Sørensen and
van Kuik (2011) by the potential flow actuator disc code
described in van Kuik and Lignarolo (2016) initiated a re-
analysis of the vortex core model and its impact on the mo-
mentum theory. In van Kuik (2016) the results of the modi-
fied momentum theory were published, showing a confirma-
tion by the potential flow calculations. Still an interpretation
question regarding the choice of the vortex core model was
left unanswered. The present paper includes the content of
this conference paper extended with an answer to the inter-
pretation question and with several detailed results. In Sect. 2
the equations of motion for Joukowsky actuator disc flows
are given as well as the properties of the disc load, far wake
and vortex core. Herewith, the general mass, momentum and
energy balances are derived in Sect. 3 and combined to allow
performance predictions of Joukowsky actuator discs. Sec-
tion 4 describes the numerical approach and its results, which
are compared with the momentum theory results in Sect. 5.
This section also includes the comparison with the Betz–
Goldstein solutions reported in literature. Section 6 presents
the conclusions.

2 The equations of motion

2.1 The equations for a disc with constant circulation

The flow is governed by the Euler equation:

1
ρ

(f −∇p)= v · ∇v, (1)

in which ρ is the fluid density (kg m−3), f the force density
(N m−3), p the static pressure (N m−2), v the velocity vector
(m s−1) and H = p+ 1

2ρv× v the total pressure (N m−2). A
cylindrical reference system (x,r,ϕ) is applied, with the pos-
itive x coinciding with the downwind wake axis, and with r
and ϕ the radial and azimuthal coordinate (see Fig. 1). For the
special case of a disc flow with constant circulation induced
by a free potential flow vortex 0 at the axis of the wake with
a vortex core having radius δ(x), the azimuthal velocity in
the wake is

vϕ =
0

2πr
for ≥ δ(x)

=
0

2πδ(x)
F
(

r

δ(x)

)
for r < δ(x)

 . (2)

The functions δ(x) and F(r/δ(x)) remain unspecified. Fig-
ure 1 shows (half of) the cross section through the stream
tube in the meridian plane, with the disc and fully developed
wake indicated. The shaded area is the vortex core with an
increasing radius towards the far wake due to the flow de-
celeration. The fully developed far wake is indicated by the
index 1. If there is no index, the variables are taken at the po-
sition of the actuator disc. The index 0 is used for flow vari-
ables in the undisturbed, upstream flow. The disc has radius

R and areaA, whileA1 is the area of the far wake with radius
R1. The analysis starts with δ being non-zero, after which the
limit of δ→ 0 is taken. The only assumption made is that

lim
δ→0

δ1 = 0 while
δ1

δ
> 1. (3)

2.2 The disc load

Only the pressure and the azimuthal velocity will be discon-
tinuous across the infinitely thin disc, so integration of the
axial and azimuthal component of Eq. (1) gives

1
ρ
F =

1
ρ

∫
thickness

f dx = ex
1p

ρ
+ eϕvx1vϕ (4)

= ex1

(
H

ρ
−

1
2
v2
ϕ

)
+ eϕvx1vϕ, (5)

where F denotes a surface load (N m−2), 1 the difference
between the down- and upwind side of the disc and e the unit
vector. As vϕ = 0 at the upwind side of the disc, 1vϕ = vϕ .
In Eq. (5) the Bernoulli equation integrated across the disc
thickness has been used:

1p =1H −
1
2
ρv2

ϕ . (6)

The local power converted by the force field f is f×v, which
has to be equal to the local contribution to the torque, rfϕ ,
times the rotational speed �. The converted power f ×v be-
comes

f · v =�rfϕ = v · ∇H. (7)

Integration of Eq. (7) across the disc combined with the az-
imuthal component of Eq. (4) gives the general expression

1H =
�r

vx
Fϕ = ρ�rvϕ . (8)

This shows that the work done by the force field is expressed
in a change in the total pressure or Bernoulli constant H .
With Eq. (2), for the Joukowsky disc,

1
ρ
1H =

�0

2π
for r ≥ δ(x)

=
�0

2π
r

δ(x)
F
(

r

δ(x)

)
for r < δ(x)

 . (9)

It follows that outside the core, 1H is constant, by which
Eq. (6) shows that any non-uniformity in the pressure jump
is due to the creation of swirl across the disc. The swirl–
pressure jump does not change H , so does not contribute
to the conversion of power, by which Eq. (6) may be in-
terpreted as 1p =1pconverting-H +1pconserving-H . The sign
conventions are that the rotational speed�> 0 and 0 < 0 so
1H < 0, implying that energy is extracted from the flow.
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Figure 1. Pressure distributions acting in the momentum balance. The arrows give the direction of the pressure fields acting on the flow. The
meaning of a, b, c, d and e is given in Sect. 3.1.

The thrust T is obtained by integration of Eq. (6) on the
disc area. In dimensionless form the thrust coefficient is
CT = T/( 1

2ρU
2
0πR

2), containing both terms on the right-
hand side of Eq. (6), here denoted as1H and1ϕ. For δ→ 0,

CT = CT ,1H +CT ,1ϕ = 2λ
0

2πRU0
+

(
0

2πRU0

)2

ln
(
R

δ

)2

, (10)

where λ is the non-dimensional tip speed ratio λ= �R
Uo

.
In the same way the power coefficient is defined as Cp =

P/( 1
2ρU

3
0πR

2), where P denotes the absorbed power. Eval-
uation of Cp is done in Sect. 3.1.

2.3 The far wake for r ≥ δ1

With the conservation of circulation,

rvϕ = r1vϕ,1, (11)

the Bernoulli Eq. (9) in the wake is written as

1
ρ

(p0−p1)=
1
2

(
v2
x,1−U

2
0 + v

2
ϕ,1

)
−
�0

2π
. (12)

Differentiating with respect to r and combining it with the
radial pressure equilibrium in the far wake,

∂p1

∂r1
=−ρ

v2
ϕ,1

r1
, (13)

it is clear that vx,1 is constant. By this Eq. (12) can be written
as

p1−p0 =−
1
2
ρv2

ϕ,1+p
∗. (14)

At the wake boundary the pressure has to be undisturbed
(p0), so p∗ = 1

2ρv
2
ϕ,R1

and, with Eq. (2),

p1−p0 =−
1
2
ρv2

ϕ,1+
1
2
ρ

(
0

2πR1

)2

. (15)

This shows that the pressure variation in the far wake is
caused only by the swirl. By merging Eq. (15) with Eqs. (9)

and (12), the second term on the right-hand side appears as a
loss in H due to swirl:

1H =
1
2

(
v2
x1
−U2

0

)
−

1
2
ρ

(
0

2πR1

)2

. (16)

This is consistent with the optimization of rotors according
to Glauert’s theory which involves minimization of the swirl
(see, e.g., Sørensen, 2015).

2.4 The vortex core

The momentum theory results are very sensitive to the choice
of δ and δ1 because of the logarithmic singularity resulting
from the integration of the pressure due to the azimuthal ve-
locity: at the disc −ρπ

∫ R
δ
v2
ϕrdr =−ρ

02

4π ln R
δ

, and similarly

in the far wake −ρ 0
2

4π ln R1
δ1

. Previous solutions have dealt
with the singularity in different ways. Sørensen and van Kuik
(2011) have adopted δ

δ1
=

R
R1

, assuming that the vortex core
grows with the stream-tube radius. This removes the singu-
larity as−ρ 0

2

4π ln R
δ
+ρ 0

2

4π ln R1
δ1
= 0, leading to the result that

Cp→∞ for λ→ 0. Van Kuik (2016) assumes δ = δ1 lead-
ing to the power coefficient Cp→ 0 for λ→ 0. However, as
discussed in van Kuik (2016), both core models do not com-
ply with the inviscid flow equations, so the impact of the
vortex core model to the momentum balance merits an ad-
ditional investigation.

Both analyses used the vortex core boundary as a lower
limit in the integration of momentum and energy on the con-
trol volume used in momentum theory. This implies that the
vortex core is excluded, motivated by its vanishing dimen-
sion in the limit δ,δ1→ 0. Here, it will be included, while
the same limit is taken.

With δ(x) denoting the local core radius, with δ ≤ δ(x)≤
δ1, the Bernoulli Eq. (9) in the vortex core region becomes

1
ρ

(p0−p)=
1
2

(
v2
s −U

2
0 +

(
0

2πδ(x)
F
(

r

δ(x)

))2
)

−
�0

2π
r

δ(x)
F
(

r

δ(x)

)
with

r

δ(x)
≤ 1, (17)
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where vs is the velocity in the meridian plane. As vs , U0
and the last term on the right-hand side remain finite for
δ(x)→ 0, they do not contribute in this limit to the axial mo-
mentum balance drawn on the core volume. Consequently,
this balance reduces to a balance of pressures acting on the
control volume boundaries, integrated as a load in x direc-
tion:

δ∫
0

(p−p0)2πrdr −

δ1∫
0

(p1−p0)2πrdr

+

δ1∫
δ

(p (x,δ(x))−p0)2πδ(x)dδ(x)= 0, (18)

where the path of integration of the third integral is the core
boundary δ(x) with 0≤ x ≤ x1. This integral is evaluated
with Eq. (17), of which the finite terms do not contribute
as the area of the core boundary projected in x direction is
π (δ2

1 − δ
2), which vanishes for δ(x)→ 0. Only the pressure

terms originating from vϕ contribute as these behave like a
Delta function:

lim
δ(x)→0

 δ1∫
δ

(p (x,δ(x))−p0)2πδ(x)dδ(x)


=−ρπ

δ1∫
δ

v2
ϕ2πδ(x)dδ(x)=−ρ

02

4π
ln
δ1

δ
. (19)

The combination of Eqs. (18) and (19) gives

δ∫
0

(p−p0)2πrdr −

δ1∫
0

(p1−p0)2πrdr = ρ
02

4π
ln
δ1

δ
, (20)

irrespective of the choice of core model δ(x), F (r/δ(x)) .
This result will be used in Sect. 3.1, where the momentum

balance for the entire stream tube is studied. Unless specifi-
cally indicated all equations in the forthcoming sections are
derived for the flow region outside of the vortex core.

3 Joukowsky actuator disc momentum
theory with swirl

3.1 The momentum, mass and energy balance

The momentum equation drawn on the stream tube as control
volume (see Fig. 1) is written as

T −

∫
A1

(p1−p0)2πrdr = ρ
∫
A1

vx,1
(
vx,1−U0

)
dA1, (21)

where T is the thrust (N ), being the integrated pressure jump
across the disc. The boundaries of the momentum balance

volume are the stream-tube boundary and those of the cross
sections A0 and A1, far up- and downstream. As discussed in
many references, amongst others in van Kuik and Lignarolo
(2016), the pressure at the stream-tube boundary does not
contribute to the momentum balance and so is not included
in Eq. (21).

Figure 1 shows the pressure distributions appearing on the
left-hand side of Eq. (21), including the thrust:

1. constant pressure jump across the disc giving the jump
in Bernoulli parameter H according to the first term on
the right-hand side of Eq. (6).

2. pressure distribution due to the jump in vϕ for r ≥ δ
according to the second term on the right-hand side of
Eq. (6). This term conserves H .

3. the same pressure distribution in the far wake due to the
vϕ distribution for r ≥ δ1 according to the first term on
the right-hand side of Eq. (15), conserving H .

4. constant pressure to achieve p1−p0 = 0 according to
the second term on the right-hand side of Eq. (15) or
Eq. (16).

5. the contribution by the vortex core cross sections
(Eq. 20).

When all contributions are expressed in 0 by Eqs. (2) and
(9), integrated, subjected to limδ→ 0, substituted in Eq. (21)
and divided by the disc surface πR2, the result is

�0

2π
−

1
2

(
0

2πR

)2

−

(
0

2πR

)2 [
ln
R

δ
− ln

R1

δ1
− ln

δ1

δ

]
a d b c e

= vx,1
(
vx,1−U0

)(R1

R

)2

, (22)

where the terms on the left-hand side have been named in
accordance with Fig. 1. The term between square brackets
simplifies to ln(R/R1). In other words: only the wake expan-
sion area c>R contributes to this term. The mass balance is

vx

vx,1
=

(
R1

R

)2

, (23)

with the bar above vx indicating that it is the average value.
The energy balance follows from Eq. (16):

�0

2π
−

1
2

(
0

2πR1

)2

=
1
2

(
v2
x,1−U

2
0

)
. (24)

Mixing Eqs. (22) and (23) simplifies the momentum balance,
yielding

�0

2π
−

1
2

(
0

2πR

)2

−

(
0

2πR

)2

ln
R

R1
= vx

(
vx,1−U0

)
. (25)
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Figure 2. Streamlines with 1ψ = 0.11ψwake and isobars with 1p = 0.11H for 1H/( 1
2ρU

2
0 )=−0.8888 and λ= 0.731. Isobars close to

the wake axis are not plotted. Ticks at the axes are at a 1R interval.

Figure 3. Streamlines with 1ψ = 0.11ψwake and isobars with 1p = 0.11H for 1H/( 1
2ρU

2
0 )=−0.8888 and λ= 1.018. Isobars close to

the wake axis are not plotted. Ticks at the axes are at a 1R interval.

The non-dimensional vortex q = −0
2πRUo

is introduced. As
0 < 0 q > 0. Furthermore, from here on vx and vx,1 indi-
cate the dimensionless value vx

U0
and vx,1

U0
. Herewith Eq. (9)

becomes

1
ρ

1H

U2
0
=−λq, (26)

and the momentum balance becomes

2λq + q2

(
1+ ln

(
R

R1

)2
)
= 2vx

(
1− vx,1

)
, (27)

and the energy balance becomes

2λq + q2
(
R

R1

)2

=

(
1− v2

x,1

)
. (28)

An analytical solution of Eqs. (27) and (28) is not found. An
implicit expression of vx,1 in the independent variables λ, q
is obtained by writing Eq. (28) as an expression for vx with
the help of Eq. (23) and substituting this in Eq. (27):(

1− vx,1
)
vx,1q

2

1+ 2λq − v2
x,1

=

(
qλ−

1
2
q2

(
1− ln

(
q2

1+ 2λq − v2
x,1

)))
. (29)

This can be solved numerically for vx,1. The wake expan-
sion follows from Eq. (28) and the velocity at the disc from
Eq. (27). The power coefficient follows by integration of
Eq. (7) on the disc area:

Cp = 2λqvx . (30)

By mixing Eqs. (27) and (28), the velocity at the disc can
be written as

vx =
1
2

(
vx,1+ 1

) 2λq + q2
(

1+ ln
(
R
R1

)2
)

2λq + q2
(
R
R1

)2 . (31)

As (1+ ln (R/R1)2)< (R/R1)2 for R < R1 the ratio is < 1.
Consequently vx < 0.5

(
vx,1+ 1

)
. The ratio in Eq. (31) is the

ratio between the left-hand sides of the momentum balance
Eq. (27) and energy balance Eq. (28) or, in other words,
between the total load exerted on the flow in the stream-
tube control volume and the non-conservative load which is
the load performing work. By this, Eq. (31) is equivalent to
Eq. (6) of van Kuik and Lignarolo (2016) where the distinc-
tion between conservative and non-conservative loads is used
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to explain the results of the momentum theory applied to an
annulus of the stream tube. This analysis, without swirl, is
done again with swirl in Sect. 4.3.

3.2 Limit values of the Joukowsky momentum theory for
λ→ 0, λ→∞ and for maximum Cp

For large values of λ, the wake angular momentum should
go to 0, and the momentum theory should become the
one-dimensional theory yielding the well-known Betz–
Joukowsky maximum value for Cp. According to Eq. (26) q
is inversely proportional to λ for constant 1H or λq. In the
balances Eqs. (27) and (28), the q2 terms vanish for λ→∞,
with which the momentum theory without wake swirl is in-
deed recovered.

For the limit λ→ 0, flow states with λq being constant are
studied. The energy balance Eq. (28) shows that the highest
value for q2(R/R1)2 is obtained for vx,1 = 0:

2λq + q2
(
R

R1

)2

= 1. (32)

With vx,1 = 0, the right-hand side of the momentum balance
is 0 as is clear from Eq. (22), by which it becomes

2λq + q2

(
1− ln

(
R1

R

)2
)
= 0. (33)

Elimination of q2 from Eqs. (32) and (33) gives the wake
expansion for the highest q−lowest λ:

(
R1

R

)2
(

1− ln
(
R1

R

)2
)
=

2λq
2λq − 1

. (34)

As an example, 2λq = 8/9 results in R1
R
= 2.77, q = 0.924

from Eq. (32) and λ= 0.48. Both vx and vx,1 are 0, but the
ratio of vx

vx,1
→ 7.69. This flow state is characterized by a

full blockage by the disc, creating a wake with azimuthal
flow only, so there is no change in axial momentum. The
associated pressure distributions in the wake and at the disc
balance each other. A lower value of λ is not possible for
this value of λq. For λq = 0 with λ= 0, Eq. (34) gives

ln
(
R1
R

)2
= 1; Eq. (32) gives R1

R
= q =

√
e = 1.648 although

vx = vx,1 = 0. In the wake only the azimuthal velocity is
non-zero, reaching qR

R1
= 1 at the far wake boundary r = R1.

The wake expansion is close to the experimental value ≈ 1.6
of the wake expansion behind a solid disc reported in Craze
(1977).
Cp,max(λ) is obtained by optimizing the solutions for fixed

λ varying q.

4 Potential flow calculations

4.1 Flow and pressure field

The computer code described in van Kuik and Lignarolo
(2016) has been adapted to include wakes with swirl. Ax-
ial and radial velocities are calculated by summation of the
induction by each of the several thousand vortex rings which
constitute the wake boundary. The azimuthal velocities are
calculated from Eq. (2). The shape and strength of the vor-
tex rings are adapted in the convergence scheme to satisfy
the two boundary conditions: zero pressure jump across the
wake boundary, and zero cross flow. The first boundary con-
dition 1pwake-boundary = 0 is expressed in |v| and input pa-
rameter 1H : 1( 1

2ρ|v|
2)−1H = 0. In van Kuik and Lig-

narolo (2016), v only had an axial and radial component,
but now the azimuthal component also enters this bound-
ary condition. The strength of the vortex at the axis follows
from Eq. (26) expressed in H and the second input param-
eter λ : q =−1H/(ρU2

0λ). Apart from these changes, the
code and the numerical parameters are unmodified. The re-
sults satisfy the same accuracy requirements as described in
van Kuik and Lignarolo (2016). Figures 2 and 3 show the
streamlines, expressed in the stream-function 9 and isobars
of the disc flow with1H/( 1

2ρU
2
0 )=−0.8888 and λ= 0.731

and 1.018. The isobars in the wake show the pressure gradi-
ent due to the swirl.

4.2 Constant meridian velocity at the disc

As shown in Figs. 2 and 3 the pressure at the upstream side
of the disc is constant, which implies, by the Bernoulli equa-
tion, that the absolute velocity |v| upstream of the disc is
constant. Figure 4 shows the values of the axial, radial and
azimuthal velocity component at the disc as well as the abso-
lute value |v|meridian =

√
vx2+ vr2. Similar distributions of

the axial velocity have been calculated by several others,
e.g. Madsen (1996), Crawford (2006), Madsen et al. (2007),
Mikkelsen et al. (2009) and Madsen et al. (2010). The fact
that |v|meridian is constant has been reported by van Kuik and
Lignarolo (2016) for actuator disc flows without swirl. The
explanation given in van Kuik and Lignarolo (2016) is now
extended to include discs with swirl.

The radial component of Eq. (1) just upstream of the disc
is

ρvs
∂vr

∂s
=−

∂p

∂r
, (35)

with s being the coordinate along the streamline and r the
radial coordinate. The pressure does not depend on r when
it is shown that the radial velocity reaches a maximum at
the disc when following a streamline. Along any streamline
passing the disc, vr increases when the position of obser-
vation s0 travels from far upstream to the disc sdisc, due to
the decreasing distance to the vorticity γ in the wake bound-
ary, so ∂vr/∂s > 0. Following the streamline in the wake, so
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Figure 5. Strength of the vortex sheet as a function of the distance s from the leading edge measured along the sheet, for 1H/( 1
2ρU

2
0 )=

−0.8888 and λ= 1.018..

with s0 > sdisc, two regions can be distinguished: the vortic-
ity between sdisc and s0 induces a negative vr and so con-
tributes to ∂vr/∂s < 0, while the induction by the vorticity at
s > s0 is approximately constant as the wake downstream of
s0 remains semi-infinite, with γ depending only slightly on s
for s > s0. The result is that ∂vr/∂s = 0 at the disc position,
so from Eq. (35) the pressure upstream of the disc is con-
stant and, from the Bernoulli, equation |v|meridian is constant;
QED.

Figure 5 shows the calculated strength of the vortex sheet
for the load case of Fig. 3, confirming the reasoning. With |γ |
having a maximum at its leading edge, the non-uniformity of
γ contributes to a negative induction of vr at streamline po-
sitions s0 > sdisc. It should be noted that the distribution in
Fig. 5 does not show the irregular behaviour at the leading
edge as shown in Fig. 9 of van Kuik and Lignarolo (2016).
The explanation is that the distance between the first vor-
tex rings in this previous paper is smaller than the radius of
the vortex ring core, leading to this irregularity. Calculations
with a smaller core size, not yet reported, have removed this
irregularity, thereby not having any observable impact on the
flow pattern and integrated numerical results. In the present
calculation the distance between rings is always larger than
the radius of the core of the vortex ring.

Now that the pressure at the upstream side of the disc is
known to be constant, the radial derivative of Eq. (6) becomes

∂p−

∂r
=−ρ

v2
ϕ

r
, (36)

with p− being the pressure at the downstream side of the
disc. This is the radial equilibrium expression Eq. (13) for
the flow in the wake. Apparently the radial distribution of p
is only linked to vϕ , not to the other velocity components.

4.3 Momentum balance per annulus

In van Kuik and Lignarolo (2016), the non-uniformity of
the axial velocity at the disc is explained by applying the
momentum theory to annuli instead of the entire stream
tube. An annulus is defined as the volume of flow between
the stream-tube values 9n and 9n−1. With 1< n≤ 10 and
9n−9n−1 = 0.19stream tube, Figs. 2 and 3 shows 10 annuli
as the volume between the plotted streamlines passing the
disc. For the flow case shown in Fig. 3, the momentum bal-
ance per annulus is evaluated as follows.

The balance for the entire stream tube is defined by
Eq. (21). In this equation it is implicitly assumed that the
pressure acting at the stream-tube boundary does not con-
tribute, as discussed in many publications, amongst which

www.wind-energ-sci.net/2/307/2017/ Wind Energ. Sci., 2, 307–316, 2017



314 G. A. M. van Kuik: Joukowsky actuator disc theory

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 0.2 0.4 0.6 0.8 1

 Momentum balance 

 Calculated

 Distribution

Figure 6. vx at the disc for the load case 1H/( 1
2ρU

2
0 )=−0.8888 and λ= 1.018: the calculated distribution, the calculated average per

annulus and the result from the momentum balance per annulus. The two annuli lines coincide except in the outboard annulus.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

JMT max Cp

JMT ΔH/(½ρU²) = ‐ 0.94

                                ‐ 0.8888

                                ‐ 0.6

                                ‐ 0.2

calc. ΔH/(½ρU²)    ‐ 0.8888

                                 ‐ 0.94

Cp

λ

Figure 7. The Joukowsky momentum theory results compared with potential flow calculations.

are van Kuik and Lignarolo (2016). This is confirmed by the
calculations: the force in x direction resulting from the pres-
sure integrated along the wake boundary for −25< x/R <
25 is 0.2 % of the non-conservative disc load 1HπR2.

However, when applying Eq. (21) per annulus, the pressure
acting at the boundaries of the annulus has to be added,
so the second term in Eq. (21) is expanded to become∮
S

(p−p0)2πrdr , where S is the contour in the meridian
plane of the annulus control volume:

Tannulus−

∮
Sannulus

(p−p0)2πrdr

= ρ

∫
A1,annulus

vx,1
(
vx,1−U0

)
dA1. (37)

The pressure integral is calculated with x/R =±25R as up-
and downstream limits. The momentum balance Eq. (37)
yields the wake velocity vx,1,annulus which, combined with
the mass conservation
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=

(
A1

A

)
annulus

, (38)

results in vx,annulus at the disc. Figure 6 shows the distribu-
tion of vx resulting from the flow field calculation, the associ-
ated average value per annulus, and the value resulting from
Eqs. (37) and (38). Apart from the outer annulus, the cal-
culated average per annulus coincides with the momentum
balance average values. This confirms results as published
by Sørensen and Mikkelsen (2001) and van Kuik and Lig-
narolo (2016), both for disc flows without swirl: the annuli
cannot be assumed to be independent, as the pressure field
contributes to the axial momentum exchange leading to the
non-uniform distribution of vx .

5 Comparison of calculated and
momentum-theory-predicted performance

Figure 7 shows the comparison of the Joukowsky momentum
theory and the potential flow results. The correspondence be-
tween both is excellent. A comparison with the Cp,max− λ

curve for discs having a modified Betz–Goldstein distribu-
tion of the circulation is shown in Fig. 8. As shown by
Okulov and Sørensen (2008) and Okulov (2014) the orig-
inal Betz–Goldstein solution for a rotor with a finite num-
ber of blades resulted in Cp,max = 1, as the pitch of the he-
licoidal wake was based on the undisturbed velocity. With
the pitch based on the velocity in the rotor plane, Okulov
(2014) showed that Cp,max reaches the well-known Betz–
Joukowsky maximum 16/27 for high λ. TheCp,max−λ curve
of this corrected solution expanded to a rotor with an infinite
number of blades is shown in Fig. 3 of Okulov (2014). An

alternative solution is published in Wood (2015), where the
Goldstein formulation is adapted to allow for non-zero torque
when λ→ 0. A comparison of the Joukowsky maximum
Cp curve and corresponding Betz–Goldstein–Okulov/Wood
curves is given in Fig. 8. The Joukowsky distribution gives
higher Cp,max than the Betz–Goldstein-based distributions,
with the difference vanishing for higher λ. This is confirmed
by Okulov and Sørensen (2010), where rotors with a finite
number of blades having a Joukowsky and Betz–Goldstein-
based distribution have been compared.

6 Conclusions

An actuator disc momentum theory including wake swirl has
been developed resulting in the physically plausible result
that Cp→ 0 in the limit λ→ 0. For high λ the theory repro-
duces the results of the classical momentum theory without
swirl.

The novelty in the momentum theory is the removal from
the momentum balance of the singular behaviour of the pres-
sure near the wake centreline vortex, giving rise to non-
physical results in several previously published methods.
This removal is done by including the vortex core in the mo-
mentum balance.

The momentum theory results are very accurately con-
firmed by potential flow field calculations.

At the actuator disc the velocity in the meridian plane is
constant.

The Joukowsky momentum theory results are higher than
the equivalent results for rotors with an infinite number of
blades optimized for Betz–Goldstein solutions.
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