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Abstract. Emerging stochastic analysis methods are of potentially great benefit for wind turbine power output
and loads analysis. Instead of requiring multiple (e.g. 10 min) deterministic simulations, a stochastic approach
can enable a quick assessment of a turbine’s long-term performance (e.g. 20-year fatigue and extreme loads)
from a single stochastic simulation. However, even though the wind inflow is often described as a stochastic
process, the common spectral formulation requires a large number of random variables to be considered. This
is a major issue for stochastic methods, which suffer from the “curse of dimensionality” leading to a steep
performance drop with an increasing number of random variables contained in the governing equations. In this
paper a novel engineering wind model is developed which reduces the number of random variables by 4–5 orders
of magnitude compared to typical models while retaining proper spatial correlation of wind speed sample points
across a wind turbine rotor. The new model can then be used as input to direct stochastic simulations models
under development. A comparison of the new method to results from the commercial code TurbSim and a custom
implementation of the standard spectral model shows that for a 3-D wind field, the most important properties
(cross-correlation, covariance, auto- and cross-spectrum) are conserved adequately by the proposed reduced-
order method.

1 Introduction

Engineering design tasks frequently face uncertain or ran-
dom model parameters (e.g. imprecise component geome-
tries), system properties (e.g. tolerances on manufacturing
quality), and/or boundary conditions (e.g. varying wind con-
ditions). In a deterministic modelling framework, the analy-
sis of such uncertain systems produces one specific solution
for each realization of the random quantity. A “realization”
(also referred to as one “sample”) is one specific observa-
tion of the random quantity, for example a specific solution
for one specific geometry or one specific set of inflow con-
ditions. In a numerical experiment, a realization is usually
obtained from one specific random seed. However, through
this process the stochastic dimension of the problem at hand
is either ignored entirely, by analyzing the most likely case
only (the purely deterministic approach), or it requires mul-
tiple parallel solutions to asses the statistics of the results a

posteriori, for example via extreme value, sensitivity analy-
sis, or Monte Carlo simulation. Often the first two options are
insufficient, and the latter is computationally too expensive.
To solve this dilemma the focus of recent research has lately
moved towards stochastic analyses and uncertainty quantifi-
cation (Sudret, 2007; Najm, 2009; Le Maître and Knio, 2010;
Sullivan, 2015). Rather than generating one specific solution
for each realization of a random input or model quantity,
a stochastic analysis can help assess uncertainties quicker
and even include uncertain quantities directly into the system
analysis. A stochastic analysis may not only provide one spe-
cific solution but may also solve the problem for the whole
ensemble of all possible realizations at once; see Fig. 1. Thus,
it becomes possible to transform the problem from multiple
deterministic realizations with random seeds to a stochastic
formulation of the governing equations that directly handles
the stochastic variables in the system. The stochastic solu-
tion then directly describes the statistics (e.g. the probability
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Figure 1. Comparison of the solution processes in a pure deterministic (A), a deterministic–statistic (B), and a stochastic framework (C).

distributions) of the outputs, based on the properties given
for the input variables in the forcing terms of the governing
system equations.

In wind turbine engineering, the driving force is the tur-
bulent atmospheric wind which is commonly described as
a stochastic field derived from turbulent wind models de-
veloped around stochastic 10 min mean wind speed distri-
butions. This naturally invites the use of stochastic methods
to asses extreme and fatigue loads, annual power production,
power fluctuations, etc., in a stochastic sense and thus ex-
ploit the advantages of stochastic methods. However, wind
turbine design and analysis are usually carried out in a deter-
ministic fashion or at best as a Monte Carlo-like set of several
subsequent deterministic solutions (path A and B in Fig. 1,
respectively). The wind turbine design standard IEC 61400-
1, Ed. 3 (2005) is indicative of this deterministic framework.
It bases the turbine load analysis on multiple deterministic
simulations, carried out at many different mean wind speeds,
for about 20 different load cases, each simulated for 10 min
and repeated several times with different realizations of the
turbulent inflow, each generated from a different numerical
random seed. For a land-based turbine this quickly amounts
to evaluating several hundred 10 min samples. For offshore
turbines, where various wind conditions (wind speed and di-
rection) additionally have to be combined with various sea
states (combinations of wave height and direction), this num-
ber increases to several thousand 10 min evaluations. How-
ever, even with a large number of deterministic simulations,
extrapolation to extreme loads is a delicate exercise and re-
sults can vary greatly (Moriarty, 2008; Burton et al., 2011).
For a single load case and one mean wind speed bin, Zwick
and Muskulus (2015) show that basing a wind turbine analy-
sis on six 10 min wind speed simulations, generated from six
different random seeds, results in a difference of up to 34 %
in the ultimate loads for the most extreme 1 % of seed combi-
nations. Tibaldi et al. (2014) present a study which indicates

that turbine loads extracted even from 20 different 10 min
wind fields, generated from 20 different random seeds, vary
greatly. This shows that in a deterministic framework, load
variations from different random seeds can dominate effects
from design parameter changes even with a fairly large num-
ber of realizations analyzed. Obviously this constitutes a se-
vere problem, particularly when concerned with gradient-
based optimization where not only relatively fast solutions
times but also reliable design variable gradients are vital.

A direct stochastic treatment of the wind loading (path C in
Fig. 1), on the other hand, considers the wind as a stochastic
process throughout the turbine simulation procedure. It post-
pones the generation of realizations until after the calculation
of a solution for the system equations, which thus become
stochastic equations. Hence, it can be a means to efficiently
include stochastic parameters, directly obtain a stochastic so-
lution, and arrive at the statistics of the resulting loads much
more quickly. Fluck and Crawford (2017a) present an exam-
ple of a stochastic analysis for wing loads in turbulent inflow,
and show that such a stochastic approach does not rely on the
repeated analysis of multiple (e.g. 600 s) realizations of the
wind field. Instead, one (possibly short, e.g. 10 s) stochastic
result yields all possible realizations and hence contains the
full spectrum of uncertainties. Thus, it will enable the ana-
lyst to obtain a more complete description of the resulting
load ensemble at large, calculate its statistics, and eventually
arrive at more precise estimates of, e.g., the probability of the
exceedance of some load threshold more quickly.

Recently, progress has been made towards stochastic anal-
ysis of wind turbines. For example, results have been shown
for an aeroelastic analysis with one uncertain system param-
eter – stiffness or damping (Desai and Sarkar, 2010) – and
for a stochastic formulation of airfoil lift, drag, and pitch-
ing moment in stall conditions (Bertagnolio et al., 2010).
Moreover, stochastic models have been used for wake mod-
elling, treating wake center and shape as random processes
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(Doubrawa et al., 2017). However, only very early steps have
been completed to include the biggest source of uncertainty:
the uncertain inflow from turbulent atmospheric wind. On
a wind farm scale, Padrón et al. (2016) recently presented a
layout optimization based on a polynomial chaos formula-
tion for the freestream wind speed and direction. Guo (2013)
offers a stochastic wind model used for a stochastic analysis
of wind turbine loads. However, he still bases the stochas-
tic analysis on deterministic sampling (i.e. path B in Fig. 1).
Moreover, this model is driven by the decomposition (bi-
orthogonal and Karhunen–Loève) of a specific set of wind
field data. Hence, it is not generally applicable but relies on
the availability of sufficient data.

As turbulent wind is already represented as a stochastic
field in many common wind models, a transition from a de-
terministic aerodynamic model for specific wind realizations
to a stochastic model yielding the whole stochastic load en-
semble at once seems an obvious step. However, this step
comes with a simple, yet fundamental challenge: current
wind models, even simple spectral models, rely on a large
number of random variables to set the wind sample’s phase
angles. Since realizations of large sets of random variables
can be generated very quickly, this is not a problem for de-
terministic load analyses. However, the computational cost
of stochastic analysis methods increases dramatically with
the number of random variables included, a fact commonly
known as the “curse of dimensionality” (Majda and Bran-
icki, 2012). This renders current wind models inaccessible
to stochastic methods and thus poses a major barrier to the
further development of stochastic models for the analysis of
wind turbine loads based on a stochastic description of the
turbulent wind input.

To address this problem we reformulate an industry stan-
dard wind model into a reduced-order engineering model.
The aim of our work is to develop a wind model that can
generate a realistic wind field with appropriate (long-term)
dynamic properties from considerably less random variables
than the current models. In the last 3 decades numerous tur-
bulent wind models have been proposed. Kleinhans et al.
(2008) summarize a few. However, none of the previous
models had an application in stochastic aerodynamic mod-
els in mind. Since random numbers can be generated very
quickly, existing models rely on a large set of random vari-
ables to be used as a seed for a wind field realization. How-
ever, this random seed usually contains too many random
variables to be applicable to a direct stochastic modelling of
the aerodynamic wind turbine equations (path C in Fig. 1).

In the present study, we focus on a formulation for the
IEC standard spectral wind description (IEC 61400-1, Ed. 3,
2005), so that it may be directly used for stochastic aero-
dynamic models. Veers’ model (Veers, 1988) was chosen as
a baseline and starting point. This model is widely used, for
example in the stochastic wind simulator TurbSim (described
by Jonkman and Kilcher, 2012), which synthesizes a sample
of turbulent atmospheric wind from Veers’ spectral formula-

tion. Although it is well known that Veers’ model does not
capture all physical details of “real” atmospheric wind (e.g.
Mücke et al., 2011; Morales et al., 2012; Lavely et al., 2012;
Park et al., 2015), it is for many cases an appropriate en-
gineering model (Nielsen et al., 2007). Due to its compar-
atively high independence of site-specific parameters, ease
of use, and low resource requirements, Veers’ model is the
preferred model for many applications (Lavely et al., 2012).
Moreover, it is endorsed by the governing wind turbine de-
sign standard (IEC 61400-1, Ed. 3, 2005) and thus is widely
used in the wind energy industry. This underlines that its fi-
delity is accepted as a reasonable compromise in engineer-
ing practice for wind energy. As such, Veers’ model provides
a well-accepted foundation to base further development on.
Note that our goal is not to improve on the known deficien-
cies of Veers’ model but to arrive at a model that can gener-
ate a wind sample of comparable (and accepted) fidelity with
significantly less random variables, geared towards eventual
inclusion in a stochastic wind turbine simulation.

The following sections will first briefly review Veers’
model to set the stage for the proposed modifications. Sub-
sequently, the new reduced-order wind model is introduced,
and finally results are presented, which confirm that key sta-
tistical properties (cross-correlation, covariance, auto- and
cross-spectrum) are conserved by the new model. The pa-
per concludes by giving direction for continued work on in-
tegrating the wind model into a turbine simulation and on
refinements with other turbulent wind descriptions. To not
overload this paper, the focus is solely on the details and
validation of the stochastic wind inflow model itself. Inter-
ested readers should refer to Fluck and Crawford (2017a) for
the basic stochastic aerodynamic model or Fluck and Craw-
ford (2016b) for an example of how the reduced-order wind
model is used to calculate stochastic loads on a stationary
wing.

2 Method

Veers’ method represents the established method for synthe-
sizing turbulent wind (Nielsen et al., 2007; Lavely et al.,
2012) and at the same time is the baseline for our contri-
bution. Hence, the method is briefly summarized here to lay
out the basics for the following work. For a complete intro-
duction the reader is referred to Veers’ original paper (Veers,
1988) and successive work, e.g. Kelley (1992), Nielsen et al.
(2004), and Burton et al. (2011).

2.1 Veers’ method

In Veers’ spectral method, the wind speed time series uk(t)
at each point Pk , k = 1. . .NP in the sampled wind field is
obtained through the inverse discrete Fourier transform of a
set of discrete frequencies components from the double-sided
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(symmetric) spectrumUmk at ωm = 2π fm,m=−NF . . .NF :

uk(t)=
∑
m

Umke
iωmt . (1)

Here m is used to index the frequency bins, and k is used to
index the points in space where wind speed data are recorded.
Usually, the terms Umk are binned Fourier amplitudes cen-
tered at the frequency ωm, prescribed by the wind speed
spectrum S(ωm). In many cases, the Kaimal spectrum is used
(Kaimal et al., 1972).

Following Veers’ method (Veers, 1988),Umk ∈C contains
not only the amplitude but also the random phase angles at
Pk for each frequency ωm. To obtain the desired coherence
for all frequencies and between any two points in the wind
field, all phase angles

θmk = arctan
(

Im(Umk)
Re(Umk)

)
(2)

need to be correlated correctly. To achieve this, Veers starts
with a set of NR =NF ·NP independent, uniformly dis-
tributed random variables ξjm ∼ U (0,1) and multiplies these
with a weighting tensor Hjkm, obtained from the discrete
cross-spectrum Sjk(ωm) (given by the relevant design stan-
dard or physics model), to obtain the complex Fourier coef-
ficients Umk for each frequency band ωm:

Umk =

k∑
j=1

Hjkm e
i 2πξjm . (3)

Through Eq. (3) the phase angles at each point Pk are related
to the phases at all previously computed points Pj<k . Thus,
correctly correlated Fourier coefficients are obtained, which
can now be inserted into Eq. (1) to obtain a correlated wind
field.

This method works well to generate multiple (determin-
istic) wind speed data sets at many points. However, as
already noted by Veers in his original publication (Veers,
1988), Eq. (3) changes the amplitude of each Fourier co-
efficient, such that |Umk| 6=

√
Skk(ωm) for all but the point

computed first. Thus, the prescribed (e.g. Kaimal) spectrum
Skk(ωm) is not conserved anymore at each point for any sin-
gle realization; see Fig. 2. However, if spectra are averaged
over either several points or several realizations, the wind
field’s average spectrum converges to the prescribed spec-
trum as limN→∞1/N

∑N
k=1|Umk(ωm)| =

√
Skk(ωm), with N

the number of samples or realizations. This means the field is
still stochastically homogeneous, as expected. However, for a
stochastic analysis where only a limited number of samples
might be used, this may pose a challenge. We introduce a
reduced-order model based on phase angle increments. This
model not only yields a significant reduction in random vari-
ables required to synthesize a stochastic wind field, but it also
analytically preserves the prescribed spectrum at any single
point for each realization (see Fig. 2 “phase increments”).
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Figure 2. Raw wind spectra from a single wind speed sample;
no averaging. Kaimal: the analytic spectrum; Veers: sample of the
spectrum resulting from Eq. (3) at two different points P1 and P6;
phase increments: the spectrum from the reduced-order phase in-
crement model Eq. (8) (identical for all points). The values from
Kaimal, Veers’ original (P1), and the phase increment models all
collapse to the same line.

2.2 The reduced-order model with phase increments

To arrive at a reduced-order model, we follow a two-step pro-
cess. First is a reduction in the number of frequencies nec-
essary for the spectral composition of the wind speed time
series at a single point in space, which yields a reduction
in the number of random phase angles associated with each
frequency. This frequency reduction has been done before.
For example, Fluck and Crawford (2017a) showed that with
10 frequencies from the IEC Kaimal spectrum, logarithmi-
cally spaced in [0.003,5]Hz (a T = 333 s sample, resolved
at 10 Hz, a reasonable time step for wind turbine simula-
tions; cf. Bergami and Gaunaa, 2014), a realistic wind speed
time series can be produced. The choice of 10 frequencies
is not driven by physical arguments but by the fact that it is
sufficient to obtain a wind speed time series similar to re-
sults from a full TurbSim simulation at 10 Hz for 10 000 s
(roughly 5× 104 frequency bins), including a similar proba-
bility distribution (and thus turbulence intensity), as well as
similar wind speed auto-correlation. On the other hand, 10
frequencies, and thus 10 random variables for the phase an-
gles, is manageable as input to a stochastic model. However,
when dealing with a wind field big enough to be used for
wind turbine calculations, many points (for a D = 90 m di-
ameter rotor, somewhere in the order of 15× 15 points over
the rotor disk are typically used) of correlated wind speed
are necessary. The challenge is to extend this limited fre-
quency wind description from a single point to a spatially
varying wind field without excessively increasing the number
of random variables required. Fung et al. (1992) introduced
a wind model which describes both the spatial and the tem-
poral dimension through Fourier modes. They reduced the
number of modes down to as little as 38; however, the model
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then relied on several random numbers associated with each
mode. Fung et al. (1992) did not report in detail how many
random variables they used for their model, but the equa-
tions indicated that this number was still considerably larger
than manageable by stochastic methods. The following para-
graphs will introduce a new approach, which will allow us
to create a stochastic wind field from a significantly reduced
number of random variables, independently of the spatial size
of the wind field, i.e. independently of the number of data
points over the rotor disc.

In Veers’ model the phase angle matrix 2= [θmk] is pop-
ulated with random numbers. We note that random phase
angles in the rows and columns of 2 carry out two dis-
tinctly different functions. At each individual point Pi the
different phase angles in the column vector [θm]i =2i gen-
erate constructive/destructive interference of the ensemble of
base sinusoids. Thus, different realizations of 2i generate
the “gusty” nature of the wind speed time series at that point.
This is indeed the streamwise and thus the temporal vari-
ability in the wind field. On the other hand, the wind speed
structure in space, for example the fact that strong winds at
one point correlate with strong winds at a nearby point, is
captured through the relation of phase angles for the one par-
ticular frequency ωl at different points Pi and Pj – that is in
each row of 2, [θk]l =2l . This is the spatial variability in
the wind.

While the phase angles at each point (the columns 2i)
are uncorrelated, the phase angles between two points (the
rows 2l) have to be somehow dependent on each other to re-
produce the spatial structure correctly. For two column vec-
tors [θm]i and [θm]j , this means while the entries within each
column vector are uncorrelated (cov(θmk,θnk)= 0), the ele-
ments within each vector are not independent, i.e. correlated
(|cov(θmk,θml)|> 0); cf. Fig. 3. For wind, this correlation de-
creases with both increasing frequency and increasing dis-
tance. Based on these observation, we note the following for
our use case of turbulent wind as input to dynamic wind tur-
bine analysis.

1. The temporal variability (in the columns of 2) is of pri-
mary importance, since it drives the dynamic excitation
of the system under investigation. This is the structure
of gusts and lulls, captured by the energy distribution in
the frequency spectrum of the wind sample.

2. The spatial variability (in the rows of 2) also needs
to be represented correctly to yield representative wind
loads, which eventually result in the correct integral
loads. For example, at any instance when a sensor A
somewhere on the blade experiences an increased load,
another sensor B a certain distance away from A needs
to experience a load correctly correlated to the load at
A. However, since there will necessarily be some aver-
aging of the loads across the blades, this is of secondary
importance.
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Figure 3. Schematic of random phase angle vectors and determin-
istic phase increments.

3. For each point, all elements in each column vector 2i

are independent (Fig. 3). However, the column vectors
2i and 2j at two points Pi and Pj are correlated in
an element-wise way. This means the phases in each
row vector 2l are not independent. Following Veers’
method, only the elements in 21 are independent, while
the phases at all other points are mapped from indepen-
dent and identically distributed random variables ξmi
such that they are correlated to the phases at the base
point P1 (and thus to each other); Eq. (3). This means
there is more “randomness” in the columns of 2 than
in the rows – an important fact, which we will soon ex-
ploit.

To obtain a reduced-order model which requires fewer ran-
dom variables, we propose splitting the complex Fourier co-
efficients Umk into a temporal and a spatial part. The tem-
poral part will contain the amplitude of each Fourier mode
as well as the random phase angles. It will therefore deter-
mine the structure of the wind speed sample in time. The
spatial part will contain the phase correlation between differ-
ent points across the wind field. It will thus set the wind field
structure in space. To reflect this approach we can write

Umk = Um1︸︷︷︸
temporal

· ei1θmk︸ ︷︷ ︸
spatial

. (4)

The temporal part contains the amplitude according to the
prescribed power spectrum S(ωm) and a vector of random
phase angles θm1 = 2πξm at an arbitrary base point P1 within
the wind field:

Um1 =
√
S (ωm)eiθm1 , (5)

with independent and identically distributed ξm ∼ U (0,1) as
before. Similar to the wind speed increments used for wind
interpolation by Fluck and Crawford (2016a), the spatial part
is based on the idea of phase increments 1θmk , which are
specific to each point and each frequency relative to the base
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point P1:

1θmk = θmk − θm1. (6)

The increment 1θmk holds the correlated phase information
to generate the correct spatial structures. Since θmk and θm1
are random numbers, the increments 1θmk should be ran-
dom, too. However, in contrast to Veers’ approach of em-
ploying the cross-spectrum to map a set of uncorrelated ran-
dom variables to a set of correlated phases for each point in
the wind field, we neglect the random nature of 1θmk and
consider the phase increments deterministic constants. This
means that for different wind field realizations, the correla-
tion coefficient between two points in space is fixed for each
frequency (NB this is the stochastic correlation; it does not
establish a deterministic one-to-one dependence of the wind
speeds at two points). For example, for a frequency bin at
f1 = 10 Hz and point P4, 1θ14 has the same value for each
realization. Similarly, for a frequency bin f5 = 0.1 Hz and
the same point, 1θ54 once again always has the same value
(but different from 1θ14).

Assuming 1θmk to be constant is the core assumption of
the presented reduced-order model. It clearly is a simplifi-
cation, but it is essential to arriving at a model reliant on a
reduced number of random variables. The results presented
in Sect. 3 will confirm the validity of this assumption. Note,
moreover, that 1θmk only contains the spatial structure but
not the temporal part. This means gusty features of the wind
(lulls and gusts at different points) are still generated from
random numbers; only the wind field’s spatial correlation is
fixed with each specific set of phase increments. Based on
the three observations above (1–3), this seems justified for
two reasons. Firstly, the phases in each row vector 2l are
correlated, while the phases in each column vector 2i are
uncorrelated (3). This means there is more randomness in the
temporal dimension then in the spatial dimension. Secondly,
for the dynamic analysis of a wind energy device, the tempo-
ral part is of primary importance. While the spatial structures
have to be represented correctly, their exact variability, how-
ever, can be considered secondary (1, 2).

It is important to note that focusing on the temporal part
does not mean that each realization of the reduced-order
wind field will exhibit the same spatial structure of gusts and
lulls, i.e. that a gust at point Pi would necessarily come with
a lull at another point Pj . By contrast, the proposed method
does not alter the original correlation between wind speeds
at two points, which is generally smaller than unity. From a
graphical point of view, gusts and lulls result from the in-
terference of different frequency component sinusoids and
phase offsets. Based on the specific realization θm1, the phase
angles at each point θmk =1θmk+θm1 will be different each
time. Thus, the interference between the frequency compo-
nents and consequently the structure of the gusts and lulls
will be different with each different realization of phases at
the base point θm1. Figure 6, which will be discussed later,
demonstrates this fact. Nonetheless, the proposed reduction

of random variables necessarily causes a certain increase in
dependence of wind speeds across the wind field. An investi-
gation into how this dependence actually looks in detail will
be the subject of future work.

Inserting Eqs. (5) and (6) into Eq. (4) yields the Fourier
coefficients based on only one vector [θm1] of random phases
and the (auto-) spectrum:

Umk =
√
S (ωm)ei(θm1+1θmk). (7)

Substituting θm1 = 2πξm, Eq. (1) can be turned into our
reduced-order model (with ξm ∼ U (0,1) as before):

uk(t)=
∑
m

√
S (ωm)ei(ωmt+2πξm+1θmk). (8)

Note that while Eq. (3) changes the amplitude of each Fourier
coefficient and thus distorts the spectrum at each point,
Eq. (8) fully conserves the spectrum.

In contrast to Veers’ original model, whereNR =NF ·NP ,
in the reformulated modelNR =NF . This means the number
of random variables NR only depends on the number of fre-
quencies NF used for the wind speed Fourier series, not on
the number of wind speed measurement pointsNP in the 3-D
wind field. With the available strategies to reduce the num-
ber of frequencies required in a spectral wind model Eq. (8)
now allows the expression of a turbulent wind field consistent
with Veers’ model but with significantly fewer frequencies.

What remains is to obtain the phase angle increments
1θmk . Since these determine the cross-correlation between
any two points in the wind field, and since the cross-
correlation and the cross-spectrum are linked as a Fourier
transform pair (correlation theorem; see, e.g., Kauppinen and
Partanen, 2011), it should be possible to analytically generate
one set (one realization) of phase increments directly from
the cross-spectrum. For now, however, we extract one phase
angle increment set from one realization of Veers’ Eq. (3),
with an analytic solution left to future work.

3 Results and discussion

In the following, we will take a closer look at statistical met-
rics of the synthetic reduced-order wind field. As mentioned
earlier our goal is not to develop a more physically faithful
wind model but rather to reduce the number of random vari-
ables required while retaining a similar fidelity to the meth-
ods currently in use. TurbSim (Jonkman and Kilcher, 2012)
is widely used in industry and is the de facto standard to gen-
erate synthetic wind fields for wind turbine analysis. Hence,
we use TurbSim wind speed data sets as the benchmark. In
the following, we compare results obtained from TurbSim to
two different reduced-order models.

The first is our implementation of Veers’ model, which al-
lowed us to freely choose the number of frequencies at each
data point and the frequency binning. Following Veers this
implementation relies on an inverse discrete Fourier trans-
form with random phase angles at each frequency bin. This
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Table 1. Comparison of random numbers used in different wind
models for a common grid size.

TurbSim Veersred Veersred,1θ

Sample length 10 min 10 min 10 min
Grid size NPy ×NPz 15× 15 15× 15 15× 15
Frequencies NF ∼ 3000 20 20
Total number of random
Variables NR 6.75× 105 4500 20

model was validated directly against TurbSim. If many fre-
quencies are used and identical phase angles are enforced
perfect agreement of the resulting data set was found as
expected. As shown by Fluck and Crawford (2017a), the
wind speed time series at a single point for a 333 s sam-
ple can be well represented with Nf = 10 logarithmically
spaced frequencies, which allowed a more efficient represen-
tation of the wind and its spectrum. We set f = ω/(2π )=
[fm] ∈ [f1,fNF ] = [0.003,5]Hz with fm = 10am and am =

log10

(
fNF
f1

)
m−1
NF−1 for m= 1, . . .,NF . For better compari-

son (equal sample length T = 600 s), we use NF = 20 fre-
quencies in f = [fm] ∈ [1/600,5]Hz. The results of this
model are labelled “Veersred” in the following discussion.
This model does not include new theory, yet it is a critical
step between TurbSim (and thus Veers’ original model) and
our reduced-order model. The second model presented is our
reduced-order model as described above (Eq. 8). The newly
introduced theory of deterministic phase increments 1θ is
employed here, together with a limited number of NF = 20
frequencies and thus a reduced number of stochastic vari-
ables NR = 20. These results are labelled “Veersred,1θ”.

Table 1 gives a comparison of the three models. Note par-
ticularly the total number of random variables required by
each model, assuming a typical grid resolution in the order of
15×15 points over a rotor disk ofD = 90 m diameter. While
the use of a limited set of frequencies (Veersred) yields a no-
ticeable reduction in random numbers, for a turbulent wind
field with several wind speed data points in x and y direc-
tions, this alone is not enough to arrive at a wind model with
few enough random numbers to be applicable in a stochas-
tic method (several dozen random variables to be tractable).
Only the additional introduction of deterministic phase incre-
ments (Veersred,1θ ) to decouple the number of random vari-
ables from the number of wind speed data points reduces the
number of random variables drastically enough to obtain a
wind model which can be reasonably handled by a stochastic
method.

Since the goal here is not to calculate wind turbine loads,
but to merely asses the quality of the reduced-order wind
model, we used a dummy wind field generated on NPy ×
NPz = 5×3= 15 points located on a regular grid as depicted
in Fig. 4. This is fewer points than the usual grid for the
analysis of a modern D = 90 m rotor diameter wind turbine.

90 m

2
m

Not to scale

Figure 4. Schematic of grid points of wind speed data (minimal test
case). We arbitrarily chose the right-hand top point (P1) to be the
base point.

However, the reduced number of grid points enabled us to
solve the equations quickly with all models and more clearly
illustrate the method. At the same time, the configuration of
Fig. 4 still allowed us to study both the wind speed time se-
ries of points in close proximity (e.g. P1 and P6), as well as at
more distant points (e.g. P1 and P5). The origin of the wind
field was located 100 m above ground with mean wind speed
u= 10 m s−1 and no wind shear. The IEC class A normal
turbulence model with a Kaimal spectrum and homogeneous
turbulence was used (IEC 61400-1, Ed. 3, 2005). Data were
sampled at 10 Hz. We arbitrarily chose the top left-hand point
(P1) as the base point.

Figure 5 shows realizations of the wind speed time series
sampled at four points (P1, P5, P6, and P10 in Fig. 4) from
the three different models. For each model the samples are
generated from different random seeds. Thus, the time series
are not identical. Still, it can be seen that the fundamental
structures are conserved through both reduced-order mod-
els. In particular, even if wind samples are synthesized with
only 20 random numbers and deterministic phase increments
(Veersred,1θ ), the wind speeds at two points in close proxim-
ity (P1 and P6, or P5 and P10) are highly correlated, while at
more distant points (e.g. P1 and P5) the correlation is weaker.
It is important to note that this holds not only for points in re-
lation to the base point but for all point pairs. For example,
points P5 and P10 are both far away from the base point, but
close to each other. As expected, the wind speeds at these
two points are well correlated.

Figure 6 shows three realizations of wind speed time series
plots at three points obtained from the new phase increment
model (Veersred,1θ ), Eq. (8). The phase increments are con-
sidered deterministic, and 1θmk is fixed for all realizations.
The randomness enters the time series only via random phase
angles at the base point P1 with θm1 = 2πξm. As can be seen
from the figure, this does not result in a complete determina-
tion of the spatial relation between wind speeds at different
points, since the samples still contain different gusts and lulls
at different instances in time.

Beyond this qualitative visual comparison of the wind
speed time series, the remainder of this section will show
that the phase increment model produces the same statistics
as Veers’ original model (with only 20 frequencies) as well
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Figure 5. Three 50 s excerpts of a wind speed time series samples at four points generated from different models and different random seeds.
TurbSim: NREL’s original TurbSim model; Veersred: Veers’ model with a limited number of frequencies (NF = 20); Veersred,1θ : Veers’
model with a limited number of frequencies and deterministic phase increments. See Table 1 for additional information.
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Figure 6. Three realizations of wind speed time series at three points generated from the new reduced-order model with fixed phase incre-
ments (Veersred,1θ ).

as the full TurbSim model (with the full set of frequencies)
for the most important metrics.

3.1 Cross-correlation

Figure 7 compares the cross-correlation for two different
point pairs – P1-P5 (90 m apart) and P1-P6 (1 m apart) – as
obtained from six 99 s windows from a 600 s sample from our
reduced model with fixed phase increments (Veersred,1θ ),
from Veers’ model with 20 frequencies (Veersred), and from
the full TurbSim simulation. To reduce noise and compare
meaningful (rather than possibly extreme) values, the results
are presented as averages of 100 realizations from different
random seeds for both phase angles and phase increments.

As can be seen from Fig. 7, the cross-correlation in general
agrees very well for both the close points and the distant point
pair. The results from our implementation of Veers’ model
and from the phase increment model are almost identical and
hence difficult to distinguish. Note that the TurbSim data are
smoother, presumably due to the significantly higher number
of frequencies contained in the TurbSim data set.

Further investigation with the pair P5 and P10, two points
close to each other but far away from the base point P1
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Figure 7. Wind speed cross-correlation for two point pairs gener-
ated from different models: a close pair (P1,P6) and a distant one
(P1,P5).

(not included in Fig. 7), shows that for all three models the
cross-correlation is almost identical to the curve for P1–P6.
This confirms that with our phase increment model the cross-
correlation of the homogeneous turbulence field, and with it
the length scale of spatial structures, is indeed only depen-
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dent on the distance between two points but not on the two
specific points themselves.

3.2 Covariance

Now we look at the covariance as a function of the dis-
tance between two points and compare data from TurbSim
to Veers’ model (Veersred) and to our reduced model with
phase increments (Veersred,1θ ). As above we use averages
from 99 s windows out of 100 realizations of 600 s samples.

From Fig. 8 it can be seen that the covariance from all three
model agrees fairly well. Our implementations of Veers’
model, Veersred and Veersred,1θ , which both use a limited
set of frequencies, agree almost perfectly. The TurbSim ver-
sion with the full set of roughly 3000 frequencies, on the
other hand, yields slightly different covariance. A more de-
tailed investigation reveals the reason for this: the covari-
ance depends on the cross-spectrum and thus the spectrum
at each individual point. Consequently, the discrepancy be-
tween the covariance functions is connected to the fact that
Veers’ model distorts the spectrum at each individual point,
such that with Eq. (3) |Umk| =

√
S̃mk 6=

√
Smk (see discus-

sion in Sect. 2.1). When we replace S in our implementa-
tion by the distorted spectrum S̃ at each particular point Pk
in Eq. (8), all three curves do match. However, S̃ does not
in fact represent the prescribed Kaimal spectrum. Thus, we
conclude that our phase increment model actually represents
the desired covariance better than Veers’ original model and
TurbSim.

3.3 Power spectra

Wind speed power spectra are again obtained as average
from 100 realizations (from 100 different random seeds).
However, this time 6000 s were sampled to obtain suffi-
ciently long data sets for a proper resolution of the low-
frequency components. Note that the same set of 20 frequen-
cies [fk] ∈ [1/600,5]Hz are used for both the 20-frequency
(Veersred) and the phase increment (Veersred,1θ ) implemen-
tations. Hence, the T = 6000 s signal repeats after 600 s. The
spectrum is binned into discrete bins of frequencies fm equal
to the logarithmically spaced frequencies initially used to
generate the wind speed time series.

The wind speed auto-spectrum is included in Fig. 2. By
definition (Eq. 8), the reduced-order model produces the pre-
scribed (auto-) spectrum exactly. Figure 9 shows a compari-
son of the cross-spectra estimates for different point pairs ob-
tained through Welch’s periodogram method (Welch, 1967)
employed on the full 6000 s samples with no extra window-
ing. We study the base point and its closest neighbor (P1–P6),
the base point and a point far away (P1–P5), and a point pair
close together but far away from base point (P5–P10). For
reference, the prescribed Kaimal spectrum S is included, as
well as the analytic cross-spectrum obtained by

Sij = coh
√
SiiSjj , (9)
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Figure 8. Wind speed covariance for points different distances
apart.

with the (auto-) spectra Sii = S and the coherence function
coh as defined by the standard IEC 61400-1, Ed. 3 (2005).

Again, the phase increment model (Veersred,1θ ) in all
cases reproduces the analytic spectrum well with only 20
random variables. This time, however, the TurbSim results
do not match as well. The reason is that TurbSim chooses the
lowest frequency f1 and the frequency bin width 1f such
that 1f = f1 = 1/T and thus uses a wider frequency band
for the first bin compared to our logarithmically spaced bins.
When re-binning to the logarithmic range this results in ex-
cess power (and an artificial peak) in the first bin and hence
less power in higher-frequency bins. Note, however, that this
is an artifact of the discrete spectrum and the frequency bin-
ning and not a discrepancy in the underlying data.

3.4 Outlook: wind turbine rotor blade loads

To further assess the validity of the reduced-order wind
model, loads were calculated for one single blade on a three-
bladed R = 35 m diameter wind turbine rotor spinning at a
tip speed ratio λ= 6.1. Loads were obtained at 1t = 0.1 s
time steps through a simple blade element momentum model
supplied with wind generated either from TurbSim or from
our reduced model with fixed phase increments (Veersred,1θ )
on a 15× 15 grid of data points over the rotor disc. The hub
height is set to hhub = 90 m, with the hub height mean wind
speed u= 12 m s−1, the power law wind shear with power
law exponent a = 0.2 (according to Jonkman and Kilcher,
2012), and the IEC normal turbulence model, class A (IEC
61400-1, Ed. 3, 2005). Figure 10 shows the probability dis-
tribution p(T ) of thrust loads T on one blade calculated from
100 realizations of a 600 s wind field. TurbSim used the full
set of roughly 3000 frequencies at each of the 15× 15 grid
points. The reduced-order model, on the other hand, relied
on only 20 frequencies with all 100 realizations generated
from one set of fixed phase increments. It can be seen, that
the reduced-order model, although relying on significantly
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Figure 9. Wind speed cross power spectral density for three point pairs from different models, together with the analytic results (Eq. 9) and
the prescribed Kaimal auto-spectrum. (a) The base point and its closest neighbor. (b) The base point and a point far away. (c) A point pair
close together but far away from base point.

Figure 10. Blade thrust load probability distribution from a blade
element momentum (BEM) model based on wind fields generated
with either TurbSim or from the reduced-order Veers’ model with
constant phase increments.

fewer random variables (NR = 6.75× 105 versus NR = 20
for each realization; see Table 1), produces almost the same
load probability distribution. In a forthcoming publication
(Fluck and Crawford, 2017b), we will use the reduced-order
wind model presented here to develop a stochastic wind tur-
bine blade load model (BEM). This publication will also dis-
cuss these blade load PDFs in greater detail.

3.5 Discussion

As shown in this section the phase increments wind model
presented in Sect. 2.2 can reproduce important statistics (both
of a wind field, as well as for resulting wind loads) with the
accuracy comparable to the full model. At the same time, the
phase increments model requires significantly less random
variables. As indicated by Fig. 6 the phase increments model
does not produce identical spatial structures with each real-
ization, even thought a large part of the spatial randomness
is neglected in Eq. (8). This further illustrates the method’s

ability to retain important stochastic information. Like Veers’
model, our method relies on a spectral representation of
a random process. The wind field is generated through an
inverse Fourier transform with random phase increments.
Thus, the underlying process is (per definition) assumed to
be stationary. As with any spectral model, singular transient
(and as such deterministic) events like fronts or downbursts
can consequently not be modelled directly. It might be possi-
ble to model these events through the superposition of a dis-
crete deterministic event with our random model. This could
be similar to Chay et al. (2006), who superposes a determin-
istic downburst profile over an ARMA model for the turbu-
lent fluctuations. However, it is our goal to derive a formu-
lation for wind as input to stochastic models. These mod-
els will have difficulties dealing with singular deterministic
events themselves. Hence, we doubt if progressing along this
way would be beneficial; nonetheless, this could obviously
be the subject of a future study.

The results from Sect. 3.1–3.3 are generated from a set
of 100 different phase increments generated from 100 dif-
ferent random seeds. This was necessary because, due to the
random equations, it was not possible to compare the results
from a single realization. This might have resulted in unchar-
acteristically bad (or good) agreement only by the chance
of comparing “bad” (or “good”) realizations. Instead, only
the averages over multiple realizations could be compared.
For a stochastic analysis as outlined in the introduction, how-
ever, only a very limited set of phase increment realizations
would be used. Hence, some part of the randomness of the
wind field will be lost. This is the price to be paid for using a
reduced-order model. In Sect. 2.2 we justify this choice. The
results, particularly Figs. 6 and 10, support the notion that
a very limited set of phase increment realizations, or even a
single one, can be sufficient. It is still to be determined, how-
ever, how many sets will actually be necessary for adequate
results and how the associated reduction in randomness influ-
ences the relevant output quantities, e.g. the resulting loads

Wind Energ. Sci., 2, 507–520, 2017 www.wind-energ-sci.net/2/507/2017/



M. Fluck and C. Crawford: An engineering model for 3-D turbulent wind inflow 517

for a wind turbine analysis, especially the probability of ex-
treme loads. Preliminary results for wind turbine blade loads
calculated from a blade element momentum model indicate
that only one single set of phase increments is sufficient to
obtain almost the same statistical load distribution as from
the conventional analysis based on standard TurbSim wind
fields.

4 Conclusions

Stochastic analysis and uncertainty quantification are very
active fields of research in engineering with the developed
methods increasingly adopted by industry. To enable practi-
tioners to apply these methods to wind turbine aerodynam-
ics and more generally wind loading analysis on various
structures, we presented a new method, which significantly
reduces the number of random variables used in the wind
model. This reduction is critical because the computational
effort of the common stochastic solutions is very sensitive to
the number of random variables involved.

The model introduced here employs a separation of the
temporal (correlation in time) and spatial (coherence in
space) part of the random dimension of turbulent wind.
While the temporal part is still determined from random vari-

ables, the spatial part is collapsed into deterministic phase
increments. Thus, the number of random variables is re-
duced by several orders of magnitude compared to the com-
monly used model developed by Veers and implemented
in TurbSim, currently the (de facto) standard tool for syn-
thetic wind generation. A comparison of the most important
stochastic metrics (cross-correlation, covariance, auto- and
cross-spectrum) showed that the reduced-order model based
on phase increments still reproduces these metrics as accu-
rately as Veers’ equations or TurbSim. Moreover, prelimi-
nary results were presented, which indicate that the reduced-
order wind model based on phase increments also preserves
wind turbine blade loads well. A detailed study quantifying
the impact of using deterministic phase increments on the
overall statistics of wind turbine loads is yet to be carried out.
Subsequent to the implementation of this reduced-order wind
model in a full wind turbine simulator, which is the focus of
ongoing work, these ultimate questions can be addressed.

Data availability. Underlying data are obtained from TurbSim and
custom implementations of the spectral wind models. TurbSim in-
put files as well as copies of the implementation of the spectral mod-
els may be obtained from the authors upon request.
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Appendix A: Nomenclature

Latin letters:

e Euler’s number
f = [fm] frequency
i =
√
−1 imaginary unit

NF number of frequencies
NP number of wind speed points
NR number of random variables
P a point in Euclidean space
Skk (auto) power spectrum
Skj cross power spectrum
t time
U wind speed Fourier coefficient
u wind speed

Greek letters:

θ phase angle
1θ phase angle increment
ξ random number
ω = [ωm] angular frequency

Indices:

j , k points in space
m frequencies
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