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Abstract. Remote-sensing devices such as lidars are currently being investigated as alternatives to cup
anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can
measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one
location to another, they measure different values of turbulence than an instrument on a tower. Current methods
for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scan-
ning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to
smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available.
Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to
lidars that are used in the wind energy industry.

In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error
Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and
requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based
corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and
variance contamination. These corrections are applied in conjunction with a trained machine-learning model to
improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating
the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices.

L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-
based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly
reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning
methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that
machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work
will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error
and to determine how these errors can be reduced using information from a stand-alone lidar.

As turbine hub heights increase and wind energy expands to
complex and offshore sites, new measurements of the wind
resource are needed to inform decisions about site suitabil-
ity and turbine selection. Currently, most of these measure-
ments are collected by cup anemometers on meteorological
(met) towers. Met towers are fixed in location and typically

only collect measurements up to and including the height
corresponding to the turbine hub height. However, the mea-
surement of wind speeds across the entire turbine rotor disk
is extremely important for power estimation (e.g., Wagner
et al., 2009), particularly as modern turbines increase in size.
In addition, met towers are expensive to construct and main-
tain; the estimated cost for installing and maintaining an 80 m
land-based met tower for a 2-year campaign is EUR 92 000
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(USD =105 000; Boquet et al., 2010). In response to the
limitations of met towers for wind energy, remote-sensing
devices such as lidars (light detection and ranging) have been
proposed as potential alternatives to cup anemometers on
towers. Lidars are now frequently used in the research com-
munity (e.g., Barthelmie et al., 2013; Stawiarski et al., 2013;
Fuertes et al., 2014; Sathe et al., 2015b), and acceptance of li-
dars in the wind energy community is increasing. The use of
remote-sensing devices for power performance testing in flat
terrain is discussed in Annex L of the most recent draft ver-
sion of IEC 61400-12-1 (International Electrotechnical Com-
mission, 2013).

While lidars are capable of measuring mean wind speeds
at several different measurement heights (e.g., Sjoholm et al.,
2008; Pefia et al., 2009; Barthelmie et al., 2013; Sathe et al.,
2015b), they measure different values of turbulence than a
cup or sonic anemometer (e.g., Sathe et al., 2011; Newman
et al., 2016b). Turbulence, a measure of small-scale fluc-
tuations in the atmospheric flow, is an extremely important
parameter in the wind energy industry. Turbulence measure-
ments are used to classify potential wind farm sites and se-
lect suitable turbines (International Electrotechnical Com-
mission, 2005) and can also impact power production (e.g.,
Elliott and Cadogan, 1990; Peinke et al., 2004; Clifton and
Wagner, 2014). Because of the paramount importance of tur-
bulence measurements to the wind energy industry, lidars
must be able to accurately measure turbulence to be consid-
ered a viable alternative to met towers. The inability of lidars
to accurately measure turbulence is currently one of the main
barriers to replacing met towers with lidars.

In this work, a new turbulence error reduction model, the
Lidar Turbulence Error Reduction Algorithm (L-TERRA),
was developed for the WINDCUBE v2 (WC) vertically pro-
filing lidar. The model combines physics-based corrections,
such as a spectral correction, with machine-learning tech-
niques to improve estimates of lidar turbulence intensity (TT),
defined as the standard deviation of the stream-wise wind
speed divided by the average wind speed over a 10 min
period and multiplied by 100 %. While the physics-based
corrections can be applied using data from the lidar itself,
the machine-learning portion of L-TERRA requires training
with a collocated lidar or met tower dataset. Unlike other
methods for improving lidar turbulence estimates, L-TERRA
is a simple method that can be easily applied to vertically
profiling lidars. The goal of L-TERRA is to bring lidar TI
estimates closer to the values of TI that would be measured
by a cup anemometer on a tower. Although cup anemome-
ters are affected by overspeeding (e.g., Kaimal and Finnigan,
1994) and mast distortion (e.g., Wyngaard, 1981), they pro-
vide sufficient information for wind resource assessment and
power performance testing and are the current instrument of
reference for wind energy.

The paper is organized as follows. Section 2 outlines the
main factors that affect lidar turbulence estimates and cur-
rent methods for improving turbulence estimates. A basic
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description of the different modules in L-TERRA is given
in Sect. 3. The datasets used to train and test L-TERRA are
discussed in Sect. 4. Results from L-TERRA are discussed in
Sect. 5, and a sensitivity analysis is conducted to determine
the effects of site conditions on lidar TI error both before and
after L-TERRA has been applied. Conclusions and plans for
future work are discussed in Sect. 6.

2 Background

Although lidars are frequently used in wind energy studies
(e.g., Pena et al., 2009; Krishnamurthy et al., 2013; Clifton
etal., 2015; Wharton et al., 2015; Newsom et al., 2015), they
typically measure different values of turbulence than a cup
or sonic anemometer (e.g., Sathe et al., 2013; Newman et al.,
2016b). In this section, the factors that cause these turbu-
lence discrepancies are discussed. In addition, current meth-
ods for reducing turbulence measurement errors from lidars
are highlighted. Throughout this work, the process of “cor-
recting” lidar turbulence refers to techniques that are used to
bring lidar turbulence estimates closer to the turbulence that
would be measured by a cup or sonic anemometer and “er-
ror” is used as a synonym for “difference”.

2.1 Lidar technology

Lidars emit laser light into the atmosphere and measure
the Doppler shift of the backscattered energy to estimate
the mean wind velocity of volumes of air. Laser light from
Doppler lidars is typically scattered by aerosol particles in
the atmosphere, which are normally prevalent in the bound-
ary layer (Emeis, 2010). For pulsed Doppler lidars, the time
series of the returned signal is split into blocks that corre-
spond to range gates and processed to estimate the average
radial wind speed at each range gate (Huffaker and Hardesty,
1996). In contrast, continuous wave lidars focus the laser
beam at different distances from the lidar to estimate wind
speeds at different ranges (Slinger and Harris, 2012).

Vertically profiling lidars, which are commonly used in
wind energy, involve scanning a cone directly above the lidar
to derive the u, v, and w velocity components. If the atmo-
sphere is horizontally homogeneous in the area enclosed by
the cone, the radial velocity measured by the lidar, v, can be
related to the three-dimensional wind components as follows
(Weitkamp, 2005):

vr = usiné cos¢ + vcosf cos¢p + wsing, €))

where 0 is the azimuthal angle of the lidar beam, measured
clockwise from north, and ¢ is the elevation angle of the li-
dar beam, measured from the ground. Typically, a raw time
series of u, v, and w is derived from Eq. (1), and these raw
wind speed components are used to calculate turbulence pa-
rameters. A different method involves taking the variance of
Eq. (1) and combining the radial velocity variance values
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from multiple beam positions to directly estimate the u, v,
and w variance components (Sathe et al., 2015b).

One lidar that is frequently used in the wind energy
industry is the WC, manufactured by Leosphere (Orsay,
France). The WC employs a Doppler-beam swinging (DBS)
(e.g., Strauch et al., 1984) technique to estimate the three-
dimensional wind vector wherein an optical switch is used
to point the laser beam toward the four cardinal directions
(north, east, south, and west) at an angle of 28° from zenith
and Eq. (1) is used to derive a time series for u, v, and w. The
WC used in this work also includes a vertical beam position
for a direct measurement of the vertical velocity. The WC ac-
cumulates measurements at each beam position for just under
1's, such that a full scan takes approximately 4-5 s. However,
velocity data from the WC are updated each time new in-
formation is obtained (i.e., every time the beam moves to a
different position), leading to an output frequency of 1 Hz.

2.2 Errorsin lidar data

In Doppler wind lidars, instrument noise results from fac-
tors such as the limited amount of aerosol scatterers in the
probe volume (Lenschow et al., 2000) and spontaneous ra-
diation emissions from the laser (Chang, 2005). Instrument
noise increases the variability of the radial wind speeds mea-
sured by the lidar, which artificially increases the turbulence
estimates. In contrast, volume averaging decreases the tur-
bulence estimated from the lidar. To obtain a reasonable es-
timate of the radial velocity, lidars require backscatter data
from a large number of scatterers within a probe volume. For
the WC, the probe volume measures 20 m along the beam
and is negligibly small in the cross-beam and vertical di-
rections. The probe volume acts as a low-pass filter, effec-
tively filtering out all turbulent motions that occur on spa-
tial scales smaller than 20 m. The probe volume is a trade-
off between spatial resolution and data accuracy; if the probe
volume were smaller than 20 m, fewer data points would be
available to estimate the radial velocity, and there would be a
higher amount of uncertainty in the measurements.

The scanning strategy used by a lidar can also induce er-
rors in the turbulence estimates. For example, the DBS tech-
nique used by the WC requires the assumption that the in-
stantaneous flow field is uniform across the scanning circle.
However, this assumption is generally not true in turbulent
flow, when the wind field changes significantly in both space
and time (e.g., Wainwright et al., 2014; Lundquist et al.,
2015). As the WC scanning circle has a diameter of 106 m at
a measurement height of 100 m above ground level (AGL),
it is likely that the instantaneous flow field changes in space,
even in flat terrain. This changing flow field across the lidar
scanning circle introduces additional terms into the variance
calculations in a phenomenon known as variance contamina-
tion (e.g., Sathe et al., 2011; Newman et al., 2016b). This ef-
fect contaminates the true value of the velocity variance and
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can cause the lidar to measure higher values of turbulence
than a cup or sonic anemometer.

2.3 Current methods for correcting lidar turbulence

Several data processing techniques and state-of-the art mea-
surement configurations have already been developed for ac-
quiring turbulence measurements from lidars (Sathe et al.,
2015a). However, many of these measurement configurations
require expensive scanning lidars or the fitting of turbulence
models that are technically only valid under neutral atmo-
spheric conditions. These techniques are applicable in a re-
search setting but largely require more instrumentation and
measurement data than are typically available during a wind
resource assessment.

2.3.1 Fitting a turbulence model

One method for correcting lidar turbulence includes model-
ing the spatial averaging effects of the lidar probe volume.
This method involves convolving the true radial velocity field
with a spatial weighting function that is controlled by the
lidar beam pattern (e.g., Sjoholm et al., 2009; Sathe et al.,
2011). Spatial weighting functions for both pulsed and con-
tinuous wave lidars are relatively straightforward (e.g., Son-
nenschein and Horrigan, 1971). However, modeling the true
velocity field requires knowledge of the three-dimensional
turbulence structure, which can be described by the spectral
velocity tensor, ®;;.

The spectral velocity tensor can be modeled through the
use of the Mann (1994) turbulence model, as in Sjoholm
et al. (2009), Mann et al. (2010), Sathe et al. (2011), and
others. Fitting the model requires three parameters: a turbu-
lence dissipation rate parameter, a length scale, and a param-
eter that describes the anisotropy of the flow. Values for these
parameters can be estimated by using high-frequency sonic
anemometer data and can also be approximated from lidar
data. However, the Mann (1994) turbulence model is techni-
cally only valid in the surface layer under neutral conditions
and is not valid in complex terrain.

2.3.2 Six-beam method

To reduce variance contamination caused by the DBS and
velocity—azimuth display (VAD; Browning and Wexler,
1968) techniques, Sathe et al. (2015b) proposed a new six-
beam scanning technique for Doppler lidars that utilizes the
variance of the radial velocity. Newman et al. (2016b) tested
the six-beam method with a scanning lidar at the Boulder At-
mospheric Observatory in Erie, Colorado, and compared six-
beam variance estimates to estimates from sonic anemome-
ters on a tower at the site. Newman et al. (2016b) found
that while the six-beam method did generally reduce vari-
ance contamination in comparison to estimates from a WC
lidar, errors in the different radial velocity variance estimates

Wind Energ. Sci., 2, 77-95, 2017




80 J. F. Newman and A. Clifton: Improving lidar turbulence estimates

caused large errors and even negative values in the resulting u
and v variance estimates. Better estimates of the radial veloc-
ity variance are likely needed from lidars to obtain accurate
results for the six-beam technique.

2.3.3 Multiple lidars

While single lidars require measurements around a scanning
circle to estimate the three-dimensional velocity field, mul-
tiple scanning lidars can be pointed toward a particular vol-
ume of air to obtain turbulence estimates with much higher
spatial resolution (e.g., Calhoun et al., 2006; Fuertes et al.,
2014; Newsom et al., 2015; Newman et al., 2016a). To col-
lect turbulence measurements, multi-lidar systems must be
temporally and spatially synchronized with a high degree of
accuracy. Synchronization techniques have been developed
for a set of user-customized scanning lidars (Vasiljevic et al.,
2014) but are currently not easily implemented on most other
scanning lidars. In addition, scanning lidars are much more
expensive than commercially available vertically profiling li-
dars, particularly if more than one scanning lidar is required
for operation.

2.3.4 Structure functions

Structure functions describe the spatial correlation of a vari-
able at different separation distances (e.g., Stull, 2000). If
the turbulence is isotropic and the turbulence length scale is
large, the structure function can be approximated by the Kol-
mogorov (1941) model and used to estimate the velocity vari-
ance. Krishnamurthy et al. (2011) used scanning lidar data
from a field campaign to calculate structure functions in both
the along-beam and azimuthal directions and fit the functions
to the Kolmogorov (1941) model to obtain estimates of the
velocity variance. The lidar data used by Krishnamurthy et al.
(2011) were obtained from a series of plan-position indicator
(PPI) scans with high azimuthal resolution, which is typically
not available from a scanning strategy used by a vertically
profiling lidar.

2.3.5 Doppler spectrum

As discussed by Mann et al. (2010), the spectral density of a
particular radial velocity, vy, is essentially a weighted count
of all the positions within the probe volume where the ra-
dial velocity is equal to v;. The weighting occurs because
the intensity of the lidar beam is highest at the center of the
probe volume and drops off for distances in either direction
from the probe volume center. The ensemble-averaged spec-
trum can then be related to the probability density function of
the radial velocity at each position within the probe volume.
Given this relation, the unfiltered (“true”) variance can be ob-
tained from the second central moment of the Doppler spec-
trum. If the lidar is mounted on a turbine nacelle and point-
ing upstream, as in Branlard et al. (2013), it can be assumed
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that the wind field is homogeneous along the lidar beam and
that the probability density of v, is approximately uniform
along the probe volume. However, if a ground-based, ver-
tically profiling lidar is used, the mean wind field will not
be uniform along the lidar’s line-of-sight and the effects of
shear must be taken into account when estimating the un-
filtered variance from the Doppler spectrum (Mann et al.,
2010). Currently, this method is more clearly defined for con-
tinuous wave lidars, as the Doppler spectra of pulsed lidars
are affected by the finite length of the probe volume in addi-
tion to turbulent fluctuations.

2.3.6 Summary

Several methods are currently available for obtaining more
accurate turbulence estimates from Doppler lidars. Only a
few methods were discussed here; a more extensive dis-
cussion of turbulence retrieval techniques can be found in
Sathe and Mann (2013) and Sathe et al. (2015a). Most of
these methods require the fitting of models and the use of
very specific scanning strategies that can currently only be
achieved with expensive scanning lidars. The Doppler spec-
trum method is promising for continuous wave lidars but re-
quires knowledge of the Doppler spectrum obtained at each
lidar beam position, which is usually not available in the
output of vertically profiling systems. Thus, there is clearly
a need for a turbulence estimation method that can be im-
plemented on vertically profiling lidars that use DBS and
VAD techniques and that does not require high-resolution
data from a sonic anemometer. Details of the new turbulence
estimation method proposed in this paper are discussed in the
next section.

3 Tl error model: L-TERRA

The TI error model described in this work, L-TERRA, was
initially developed for the WC pulsed Doppler lidar. Fu-
ture work will involve expanding L-TERRA to different li-
dar configurations and scanning strategies, although the ba-
sic framework for the model will stay the same. The different
modules of L-TERRA in its current form are described in this
section.

A flowchart depicting different methods for correcting TI
with L-TERRA is shown in Fig. 1. Input data to L-TERRA
are extracted from the high-frequency output files from the
lidar (e.g., the 1 Hz files from the WC). These files typically
contain line-of-sight and/or derived u, v, and w wind speed
components that have been estimated from data collected
during the lidar’s accumulation time at each measurement
point. L-TERRA passes these initial data points through sev-
eral modules that reduce the lidar TI error in different ways.
For each of the main modules, outlined in red in Fig. 1,
several different methods are available to reduce the TI er-
ror, or no method at all can be applied in that module. For
example, four different methods were evaluated to reduce
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noise: a spike filter and three different methods discussed
by Lenschow et al. (2000) (Lenschow 1, Lenschow 2, and
Lenschow 3).

Some methods can only be applied to the u, v, and w ve-
locity data, while others can only be applied to radial velocity
data, v;; thus, two different model paths can be followed for
volume averaging and variance contamination, depending on
which wind speed parameters are selected to calculate the
variance. In this work, only model combinations that use the
u, v, and w velocity components were evaluated, as not all
vertically profiling lidars include the line-of-sight wind speed
in the output files. However, methods for both the u, v, and
w components and the radial velocity components are de-
scribed here for completeness. All possible combinations of
the different u, v, and w methods were tested on each dataset
to determine which combination produced the largest reduc-
tion in TI mean absolute error (MAE).

3.1 Preprocessing

Several steps are taken before the lidar data enter the TI cor-
rection process. First, values of u, v, and w are calculated
from the raw lidar time series (and values of v, are extracted
from the lidar output files if needed). For the WC lidar, the
wind speed components can be calculated in two different
ways: by estimating new u, v, and w components every time
the lidar beam moves to a new position (i.e., just under 1 s) or
by estimating a single value of each of the wind components
for every 4s scan, similar to a VAD technique. In Sect. 5,
both the 1 and 4 s techniques are used to calculate the wind
components in the evaluation of L-TERRA.

Next, the data are interpolated to a grid with constant tem-
poral spacing (e.g., 1 Hz for the 1s scans and 0.25Hz for
the 4 s scans), as statistical measures such as the calculation
of variance and spectra require that the frequency resolution
of the measurements is constant. The mean horizontal wind
speed and shear parameter are calculated before L-TERRA is
applied, as these parameters are required for implementation
of L-TERRA and are relatively unaffected by the errors that
plague turbulence measurements.

The 10 min mean horizontal wind speed, U, is defined by
Eq. (2):

U =@u?+v?)l/2, (©))

where u and v are the east—-west and north—south wind com-
ponents, respectively, and the overbar denotes temporal aver-
aging. The shear parameter, «, is derived from the standard
power law equation (International Electrotechnical Commis-
sion, 2005):

U(zx)= U(Zr)(zi) , 3)

where z is height above ground and z; is a reference height.
Equation (3) can be simplified by letting U(z;)z; “ equal a
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constant B, as in Clifton et al. (2013). The power law then
becomes the following:

U(z) = Bz°. “)

A 10 min mean value of @ can be found by taking the natural
logarithm of Eq. (4) and fitting the resulting equation to a
straight line. In this work, values of U measured by the WC
between 40 and 200 m were used to calculate values of «.

The raw wind speeds are rotated into a new coordinate sys-
tem by forcing v and w to 0 and aligning u with the 10 min
mean wind direction (e.g., Kaimal and Finnigan, 1994). The
TI is then defined by Eq. (5):

Ou
TI= (E) % 100%, )
where o), is the standard deviation of u over a 10 min pe-
riod, defined in the new coordinate system, and u is the
10 min mean wind speed. Equation (5) gives the initial lidar-
estimated value of the horizontal TI. The same procedure was
used to calculate TI from the sonic anemometer data used
in this work. Cup anemometer TI was calculated using the
mean horizontal wind speed and standard deviation in the
cup anemometer output data stream. As the main purpose of
this work is to bring lidar TI estimates closer to point mea-
surements from any type of reference device on a met tower,
the difference in the way TI is calculated for cup and sonic
anemometers is not of paramount importance.

3.2 Physics-based corrections

The next three modules comprise the physics-based correc-
tions in L-TERRA. These corrections rely only on data from
the lidar itself and use meteorological theories to apply cor-
rections to the TI estimates.

3.2.1 Instrument noise

After the lidar data are processed, different techniques are
used to remove noise and spurious data. A standard way to
remove outliers from a time series is to use a spike filter (e.g.,
Vickers and Mahrt, 1997). A basic spike filter was evaluated
for the model in addition to several methods developed by
Lenschow et al. (2000).

The spike filter routine used in this work was based on
one of the lidar preprocessing steps presented by Wang et al.
(2015). First, the difference between adjacent velocity val-
ues, Av, is calculated for all velocity measurements in a
10 min period, defined by the following equation:

Av,' =Vi+1 — V;. (6)

A data point v; is defined as a spike and removed from the
dataset if the following conditions are met:
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Figure 1. Flowchart depicting different methods for correcting TI with L-TERRA. Starting and ending points are indicated by blue-outlined

ovals and modules are indicated by red-outlined diamonds.
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where IQR,, is the interquartile range of all values of Av
within the 10min period. This spike filter eliminates data
points defined by a large decrease in velocity followed by
a large increase in velocity (or vice versa).

The Lenschow et al. (2000) methods involve the use of
the lidar’s velocity spectrum or auto-covariance function to
estimate the amount of noise in the variance measurements
from the lidar. In the lidar velocity spectrum, power at the
high-frequency end of the spectrum is assumed to be largely
attributed to white noise. The average power at the high-
frequency end of the spectrum is integrated across all fre-
quencies to estimate the variance due to noise. An estimate
of noise variance can also be made by assuming that noise is
random and completely uncorrelated with the velocity signal.
Thus, the value of the auto-covariance function at lag 0 is a
sum of the noise variance and actual velocity variance. The
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noise variance can be estimated by extrapolating the auto-
covariance function from non-zero lags to lag 0. The differ-
ence between the auto-covariance function at lag 0 and the
extrapolated value is the noise variance.

3.2.2 Volume averaging

Two methods were considered to mitigate the effects of vol-
ume averaging: structure functions and spectral extrapola-
tion. As discussed in Sect. 2.3.4, structure functions can
be estimated using available lidar data and fit to models to
estimate turbulence parameters (e.g., Krishnamurthy et al.,
2011). By fitting the lidar data to a model, the reduction in
turbulence due to volume averaging is mitigated. Although
the estimation of structure functions with a lidar is optimized
with the use of a high-resolution PPI scan, as in Krishna-
murthy et al. (2011), structure functions can also be esti-
mated from DBS scans. A longitudinal (i.e., along-beam)
structure function can be estimated from a DBS scan by us-
ing velocity data from different range gates along the same
radial. An azimuthal structure function can be estimated by
combining data from different azimuthal directions at the
same height, although the fit is likely to be poor for a DBS
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scan due to the small number of azimuthal angles where data
are collected.

Another method of mitigating volume averaging is to
model the lidar velocity spectrum and use the model to
extrapolate the spectrum to higher frequencies. The high-
frequency part of the modeled spectrum can then be inte-
grated to obtain an estimate of the variance that is not mea-
sured by the lidar as a result of spatial and temporal resolu-
tion (e.g., Hogan et al., 2009). The standard Kaimal spectrum
used for wind energy (e.g., Burton et al., 2001) requires three
parameters for fitting: the mean wind speed, the variance, and
a length scale. The first two parameters can be calculated
from the lidar data directly, while the last parameter must
be estimated. In this work, the length scale was estimated in
two different ways: by minimizing the difference between the
actual velocity spectrum and the Kaimal spectrum (Spectral
Fit 1) and by calculating the integral timescale from the raw
velocity time series, which can then be related to the integral
length scale through Taylor’s frozen turbulence hypothesis
(Spectral Fit 2).

3.2.3 Variance contamination

Methods to reduce variance contamination include the six-
beam technique developed by Sathe et al. (2015b), discussed
in Sect. 2.3.2, and the use of Taylor’s frozen turbulence hy-
pothesis with data from the WC’s vertical beam (Newman,
2015). The six-beam technique can be adapted for the WC
DBS scans by estimating the variance from the five differ-
ent radial beam positions (four off-vertical and one vertical)
and solving a system of five equations to determine the vari-
ance and covariance components. Although the covariance
of the u and v components cannot be determined with this
method, the three velocity variance components can be es-
timated (Newman et al., 2016b). Taylor’s frozen turbulence
hypothesis can be used to relate temporal changes in the ver-
tical velocity measured by the WC’s vertical beam to spatial
changes in the vertical wind field across the WC scanning cir-
cle. Spatial changes in the w component can then be used to
reduce contamination in either the raw wind speed (Taylor 1)
or the variance directly (Taylor 2).

3.3 Machine learning

The last module in L-TERRA uses a trained machine-
learning model to further reduce TI error. Inputs for the
machine-learning module include lidar-measured parameters
(e.g., mean wind speed and shear) and the corrected TI pro-
duced by the physics-based corrections. The model must first
be trained on one or more datasets that contain data from a
collocated met tower and lidar.

Two machine-learning methods were evaluated as part of
L-TERRA: random forests and multivariate adaptive regres-
sion splines (MARS). The use of other machine-learning
techniques such as neural networks could be an area of fu-
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ture research, though we decided to focus mainly on the
physical corrections for this work. Random forest models
are developed by averaging multiple decision trees that were
trained on different subsets of the data. By averaging tens
or hundreds of decision trees, the variance of the overall
model is reduced significantly (Friedman et al., 2001). Ran-
dom forests were evaluated because they are relatively easy
to understand and have previously been used for wind energy
applications (e.g., Clifton et al., 2013; Bulaevskaya et al.,
2015). MARS is essentially a stepwise regression model,
where different coefficients and basis functions are used to
predict the output depending on each region in the dataset
(Friedman, 1991). MARS is well-suited for the prediction of
physical processes due to its ability to model nonlinearities
and interactions among variables.

Potential predictor variables for the machine-learning
models were divided into two broad categories: atmospheric
state and lidar operating characteristics. Variables that were
evaluated as predictor variables in L-TERRA are given in Ta-
ble 1. Atmospheric state variables included shear parameter,
mean wind speed, Doppler spectral broadening, and « and w
velocity variances. Lidar operating characteristics included
signal-to-noise ratio (SNR) and internal instrument temper-
ature. In all, 18 predictor variables were considered for the
machine-learning portion of L-TERRA.

3.4 Comparison to previous methods

In contrast to the methods discussed in Sect. 2.3, L-TERRA
uses only information that is available from a standard
vertically profiling lidar. The physics-based corrections in
L-TERRA require only data from the lidar itself, while the
machine-learning module in L-TERRA can be trained using
either cup or sonic anemometer data. The majority of the cor-
rections in L-TERRA can be implemented with fewer than
20 lines of code, and the models employed in L-TERRA
are well-documented in the literature and simple to under-
stand. It takes approximately 0.1 s to run L-TERRA for a sin-
gle 10 min period, making it easy to implement in real time.
As discussed in Sect. 5.1.2, a stability-dependent version of
L-TERRA can be used to adapt to changing conditions and
apply corrections appropriate for the current atmospheric sta-
bility regime.

4 Datasets

4.1 Measurement sites

L-TERRA was tested on data from two different locations:
the Southern Great Plains Atmospheric Radiation Measure-
ment (ARM) site in Lamont, Oklahoma (Fig. 2), and an oper-
ational wind farm in the Southern Plains region of the United
States. At both sites, a WC lidar was deployed for field cam-
paigns lasting several months and was configured to collect
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Figure 2. Inset: Google Earth image of the state of Oklahoma. Location of Southern Great Plains ARM site is denoted by white marker.
Larger figure: Google Earth image of the central facility of the Southern Great Plains ARM site (outlined in red box) with overlaid elevation
contours in feet. Elevation map is from the United States Geological Survey and uses contour intervals of approximately 10 feet (3.05 m).

Locations of WC lidar and 60 m tower are indicated by white markers.

Table 1. Potential predictor variables evaluated in the machine-learning module of L-TERRA.

Potential predictor variables

Atmospheric state

Lidar operating characteristics

Original TI

Corrected TI

o

oy

U

a

Horizontal wind speed dispersion
Vertical wind speed dispersion
Spectral broadening

Integral timescale (horizontal)

Integral timescale (vertical)

SNR

Instrument pitch

Instrument roll

Instrument internal temperature

Stationarity (e.g., Vickers and Mahrt, 1997)

Maximum instantaneous value of w
Precipitation

measurements at heights corresponding to reference instru-
ments.

The ARM site, a field measurement site operated by
the US Department of Energy, contains several remote-
sensing and in situ instruments (Mather and Voyles, 2013).
From November 2012 to June 2013, a WC lidar owned by
Lawrence Livermore National Laboratory was deployed at
the ARM site approximately 100 m from a 60 m tower. Gill
Windmaster Pro 3-D sonic anemometers are mounted on the
tower at 25 and 60 m AGL and collect velocity data at a fre-
quency of 10 Hz. The ARM site is relatively flat, with max-
imum elevation changes of approximately 5m in the sur-
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rounding area. The land to the east of the tower slopes gen-
tly upward toward the ARM site (Fig. 2), although few data
points from this sector were used to evaluate L-TERRA, as
the sonic anemometers are located on the west side of the
tower and are thus affected by tower wakes when winds are
from this direction.

The WC was also deployed at an operational wind farm
in the Southern Great Plains. (Due to a nondisclosure agree-
ment with the wind farm, we cannot disclose the exact loca-
tion of the wind farm.) Similarly to the ARM site, the wind
farm is located in fairly flat terrain with maximum elevation
differences of 5-10m in the regions surrounding the WC
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Table 2. Stability classifications used in this work.

Shear parameter ~ Stability
range classification
a>02 Stable
0.1<a<02 Neutral
a<0.1 Unstable

deployments. The WC was located on the wind farm from
November 2013 to July 2014, with a break from February to
April 2014 while the WC was deployed for a different field
experiment. During the wind farm deployments, the WC was
sited in the same enclosure as a met tower with standard wind
energy instrumentation, including a cup anemometer at 80 m.
For the winter deployment, the WC was located near a met
tower on the north end of the wind farm, and for the spring
and summer deployment, the WC was moved to a tower en-
closure at the south end of the wind farm, in accordance with
the dominant wind direction during each season at the wind
farm. Directional sectors that may have been influenced by
nearby turbines were determined following the guidelines in
Annex A of IEC 61400-12-1 (International Electrotechnical
Commission, 2013) and were excluded from the dataset.

4.2 Stability classification

Typical atmospheric stability parameters include the gradi-
ent Richardson number (Ri) and the Monin—Obukhov length
(L) (e.g., Stull, 2000). The calculation of Ri requires temper-
ature and wind speed measurements at two different heights,
while the calculation of L requires high-frequency flux mea-
surements at a single height. As the goal of L-TERRA is to
apply TI corrections to a stand-alone lidar, we preferred to
classify stability depending only on measurements available
from a lidar.

One option for a lidar-based stability parameter is the
shear exponent, « (Eq. 4). Although o can change with
height or surface roughness (e.g., Petersen et al., 1998), it
is strongly tied to the atmospheric stability in the Central
and Southern Plains regions of the United States (e.g., Wal-
ter et al., 2009; Vanderwende and Lundquist, 2012; Newman
and Klein, 2014). This relation is likely apparent because the
diurnal transition of the atmospheric boundary layer largely
controls the wind speed profile in flat terrain (e.g., Arya,
2001).

To test the ability of the lidar shear exponent to classify
stability, values of « calculated with WC data between 40
and 200 m were compared to values of Ri calculated from 4
and 60 m wind speed and temperature data from the ARM
site. Ri was estimated with the following equation (Bodine
et al., 2009; Newman and Klein, 2014):

_ 8l(Toom — Tum)/Azr + Tl Az,
T4m(Usom — Usm)?

Ri , ®)
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® O ® Incorrect classification (47.5 %)
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Figure 3. Richardson number from tower data at the ARM site vs.
shear exponent calculated from WC data. Dashed lines denote sta-
bility thresholds as defined in the text. Magenta, green, and blue
circles correspond to times when the classification based on both
Ri and o was unstable, neutral, or stable, respectively, and gray cir-
cles correspond to times when the classification was different. Open
gray circles denote times when the classification was stable based
on Ri and unstable based on « or vice versa. Percentages of the to-
tal combined Ri—« dataset corresponding to each case are shown in
parentheses in the figure legend.

where g (m s’z) denotes the gravitational acceleration, T
(K) is the temperature, U (ms~') is the mean horizontal
wind speed, 'y (Km™!) is the dry adiabatic lapse rate, and
Az7 and Azy (m) represent the difference in measurement
height for values of 7' and U, respectively. Thresholds for
« are loosely based on the thresholds used in Wharton and
Lundquist (2012) and are given in Table 2. Thresholds for Ri
were —0.17 for the transition between unstable and neutral
conditions and 0.06 for the transition between neutral and
stable conditions, as in Vanderwende and Lundquist (2012).

A scatterplot of Ri versus « for the ARM site is shown in
Fig. 3. (Only 30 min temperature data were available from
the tower, so 30 min, rather than 10 min, values of Ri and «
are shown.) Of the 558 time periods of 30 min represented in
Fig. 3, the same stability classifications were made based on
both Ri and « approximately 52.5 % of the time. However,
many of the incorrect classification periods occurred during
near-neutral conditions, with Ri values near O and/or « val-
ues near the neutral standard of 1/7 (*0.143). Opposite clas-
sifications were made in 5 % of the cases shown in Fig. 3.
The potential impact of these stability misclassifications on
TI correction methods is discussed in Sect. 5.1.3.
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Figure 4. Scatterplots of met tower vs. WC TI for data from 60 m measurement height at the ARM site (a) before and (b) after L-TERRA-S
has been applied. The 1: 1 line and regression lines are shown for reference, and regression line statistics are shown in figure legends.

4.3 Comparison of mean wind speed and Tl

At both sites, 10 min mean wind speeds measured by the WC
and the met tower instruments were well-correlated, with re-
gression line slopes of approximately 1 and R? values of ap-
proximately 0.99 (not shown). Thus, we felt confident that
the WC was measuring similar conditions to the reference
instruments, though a modified version of L-TERRA could
be used in the future to mitigate any small errors in mea-
surement of mean wind speeds. Larger discrepancies were
evident in the comparison of TI values, which is our current
area of focus for L-TERRA. Sample scatterplots of met tower
versus lidar TI for the ARM site are shown in Fig. 4a, and
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corresponding regression statistics for the raw TI are shown
in Table 3.

At the ARM site, o was strongly related to the sign of
TI errors, with the WC overestimating TI under unstable
conditions and underestimating TI under stable conditions
(Fig. 4a). The over- and underestimation of TI was likely
due to the effects of variance contamination and volume aver-
aging, respectively. Regression line slopes increase with de-
creasing stability (Table 3), which is consistent with previous
modeling and observational studies in flat terrain (e.g., Sathe
et al., 2011; Rodrigo et al., 2013; Schneemann et al., 2014).
Initial TT error trends from the wind farm dataset are quite
similar to those found in the ARM dataset (Table 4). As TI
error trends based on o were consistent with previous work
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Table 3. Mean absolute error (MAE) and slope and RZ values of regression lines for WC TI compared to met tower TI before and after
L-TERRA-S has been applied for the 60 m measurement height at the ARM site.

MAE Slope \ R?
Raw L-TERRA-S | Raw L-TERRA-S | Raw L-TERRA-S
Stable (N = 1246) 1.02 0.78 | 0.90 1.00 | 0.88 0.89
Neutral (N = 590) 1.48 148 | 1.04 1.01 | 0.89 0.87
Unstable (N=1322)  1.95 1.59 | 1.12 1.00 | 0.79 0.77
All (N=3158) 1.50 125 | 1.05 1.00 | 0.86 0.86

that classified lidar variance errors by stability, we felt confi-
dent in using « as a proxy for stability for the datasets in this
work.

5 L-TERRA results

First, data from each site were examined individually to as-
sess the performance of L-TERRA. Results from the physics-
based corrections were analyzed separately from results from
the full version of L-TERRA (physics-based corrections plus
machine learning) to assess how well each set of corrections
performed.

5.1 Application of physics-based corrections
5.1.1 Initial version of L-TERRA

For both the ARM site and the wind farm, all possible
combinations of the physics-based corrections described in
Sect. 3.2 for the u, v, and w components were evaluated. Ini-
tially, the model combination that minimized the overall TI
MAE was selected as the optimal model combination for that
particular site. Data were filtered to avoid mast shadowing,
and 10 min periods where the mean wind speed was less than
4ms~! were not used to evaluate L-TERRA, as the standards
outlined in IEC 61400-12-1 (International Electrotechnical
Commission, 2013) restrict remote-sensing classification to
wind speeds between 4 and 16 ms ™.

At the ARM site, the original TI MAE was 1.5 %, and
MAE values that resulted from the application of L-TERRA
ranged from 1.31 to 2.73 %. MAE values above the origi-
nal value of 1.5 % indicate that for these model combina-
tions, L-TERRA actually increased overall error in WC TI.
For many of these model combinations with high MAE val-
ues, the MAE increased for stable conditions, while decreas-
ing for unstable conditions and vice versa, indicating that
some model combinations work better for particular stabil-
ity conditions than others. Many of the high MAE values
were also associated with model combinations that used the
Lenschow noise removal techniques with the 4 s VAD scans.
The Lenschow techniques are more aggressive with noise re-
moval than a spike filter and also involve directly reducing
the variance due to noise, rather than removing spikes in the
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raw velocity time series. It is possible that the noise appar-
ent in the original WC data artificially brought the WC TI
estimates closer to the sonic TI, and removing the noise vari-
ance decreased the WC TI values, bringing them further from
the sonic values and increasing the MAE. In addition, spec-
tra and auto-covariance functions derived from the 4 s data
are expected to be less accurate than those derived from the
higher-resolution 1 s data, which could affect the accuracy of
the Lenschow techniques.

TI MAE values also varied a large amount at the wind
farm, with an original MAE of 1.46 % and L-TERRA MAE
values ranging from 1.38 to 2.9 %. Similarly to the ARM
site, many of the higher MAE values were associated with
model combinations that decreased the MAE for certain sta-
bility conditions while increasing the MAE for other stability
conditions.

Overall, the model combination that minimized the TI
MAE was nearly the same for both sites and is shown in the
first row of Table 5 (the only difference between the opti-
mal model combination at the sites was in the variance con-
tamination module). The application of this initial L-TERRA
model combination resulted in a modest reduction in lidar TT
MAE from 1.5 to 1.31 % at the ARM site and from 1.46 to
1.38 % at the wind farm (not shown). Several slightly dif-
ferent model combinations produced similar MAE values at
both sites, suggesting that there may actually be multiple
optimal combinations of L-TERRA at each site when the
MAE is minimized. For example, at the wind farm, the mini-
mum MAE of 1.38 % was achieved when the first Lenschow
method was used to reduce noise from the raw 1Hz wind
speeds and the first correction using Taylor’s frozen turbu-
lence hypothesis was employed to reduce variance contami-
nation. However, MAE values within 0.01 % of 1.38 % were
also achieved when different noise removal techniques were
used instead of the first Lenschow technique or when no
noise removal technique was used at all. Thus, at this site,
noise removal appeared to have a very minor impact on the
WC TI values. It may be useful to consider other parameters
in determining the optimal model combination, such as re-
gression line statistics or the sensitivity of TI error to atmo-
spheric stability. However, minimizing the MAE is a stan-
dard approach for determining optimal model combinations
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Table 4. As in Table 3 but for Southern Plains wind farm data.

MAE Slope \ R?
Raw L-TERRA-S | Raw L-TERRA-S | Raw L-TERRA-S
Stable (N = 1866) 1.13 0.88 | 0.90 1.00 | 0.92 0.92
Neutral (N = 856) 1.22 114 | 1.07 1.04 | 0.87 0.85
Unstable (N=1771)  1.94 1.56 | 1.14 1.05 | 0.84 0.78
All (N=4493) 1.46 119 | 1.07 1.03 | 0.88 0.87

and provides a useful baseline combination for evaluating
L-TERRA.

5.1.2 Stability-dependent version of L-TERRA

By examining the change in lidar TI after each step in
L-TERRA, it was determined that some corrections de-
creased error under stable conditions but increased error un-
der unstable conditions and vice versa. This is not surpris-
ing, as the magnitude and sign of TI errors was strongly de-
pendent on atmospheric stability at both sites (Tables 3, 4)
as a result of the different factors that affect TI error under
different stability conditions. Thus, optimal model combina-
tions were next determined separately for the three different
bulk stability classes to form a stability-dependent version
of L-TERRA (L-TERRA-S). Optimal model combinations
were very similar for both sites and are shown in Table 5.

For stable and unstable conditions, a spike filter was the
optimal noise removal technique. Only the model chain for
stable conditions included a volume averaging correction,
likely because volume averaging effects on TI are largest
under stable conditions. For unstable conditions, using the
velocity time series from the VAD technique produced the
largest reduction in MAE. While the raw output time series
from the WC is available at 1 Hz (Sect. 2.1), the VAD tech-
nique is typically applied once per full scan to derive the
three-dimensional wind vector. For the WC, this results in
an output data frequency of 0.25 Hz for the VAD technique.
The lower temporal resolution of the VAD technique likely
served to artificially reduce some of the effects of variance
contamination, as smaller scales of turbulence were not mea-
sured.

The impact of each of the different physics-based correc-
tion modules on the TI error is shown in Fig. 5. Overall, MAE
steadily decreased after the application of the different cor-
rections, with the largest decrease occurring for the volume
averaging module. For unstable TI values, the noise reduc-
tion module had the largest impact on reducing MAE and
bringing the regression line slope closer to 1. The variance
contamination module served to further reduce the MAE
and regression line slope, bringing the slope from approxi-
mately 1.05 to 1.00, but the R? value of the regression line
decreased. Similarly, the variance contamination module re-
duced the regression line slope for neutral TI values, bringing
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it closer to 1, but caused the R? value of the regression line to
decrease. This resulted in an MAE value of 1.48 % for neu-
tral TI values after L-TERRA was applied, which is the same
as the original MAE value for neutral conditions. The cor-
rections performed best on stable TI values, with MAE val-
ues steadily decreasing and R? values increasing with each
correction. The volume averaging module caused the largest
change in stable TI values, with the regression line slope in-
creasing from 0.90 to 1.01 after the application of the volume
averaging module. In summary, all the physics-based correc-
tions in L-TERRA appear necessary to the correction of WC
TI, though the importance of each correction depends on the
stability. The variance contamination module likely needs to
be improved for certain types of unstable and neutral condi-
tions, as it increased TI error for some unstable and neutral
TI values.

Scatterplots of ARM site TI data after L-TERRA-S was
applied are shown in Fig. 4b, and corresponding regression
statistics are shown in Table 3. L-TERRA-S served to bring
the majority of WC TI estimates closer to the 1:1 line, re-
sulting in regression line slopes of 1.00, 1.01, and 1.00 for
stable, neutral, and unstable conditions, respectively. In ad-
dition, the overall TI MAE decreased from 1.5 to 1.25 %.
However, as discussed in the previous paragraph, R? values
for neutral and unstable conditions decreased slightly. Thus,
although L-TERRA-S improved the accuracy of most lidar
TI estimates, it also increased scatter for neutral and unstable
conditions.

Results for the wind farm were similar, with overall MAE
decreasing from 1.46 to 1.19 % and regression line slopes be-
coming 1.00, 1.04, and 1.05 for stable, neutral, and unstable
conditions, respectively (Table 4). R? values for neutral and
unstable conditions also decreased slightly.

5.1.8 Effects of stability misclassification

One possible explanation for the increase in scatter at both
sites could be the misclassification of atmospheric stability
by the shear exponent, . As discussed in Sect. 4.2, opposing
stability classifications were made based on Ri and « dur-
ing approximately 5 % of the 30 min cases where both stabil-
ity parameters were available. For L-TERRA-S, an incorrect
stability classification could lead to the application of correc-
tions that are not well-suited for the actual errors in the lidar
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Table 5. L-TERRA model combinations that minimized TI MAE for different stability conditions at the ARM site and Southern Plains wind

farm.
Stability Wind speed  Noise Volume Variance
classification  frequency averaging contamination
All 1Hz Lenschow 1  None Taylor 2
Stable 1Hz Spike filter ~ Spectral Fit2  Taylor 1
Neutral 1Hz None None Taylor 2
Unstable 0.25Hz Spike filter =~ None Taylor 1
20 : : ‘ fied as neutral by Ri and slightly unstable or slightly stable
1.8\—\ by «, 12 points being classified as stable or unstable by Ri
L6} : and neutral by «, and the remaining 5 points being classified
SR ——— : ® as stable by Ri and slightly unstable by «. The majority of
2.l ¢ q these stability misclassifications appear to occur near neutral
= 10 o ] conditions, where small errors in measurement of the wind
osl v\’_ﬁ‘ shear or temperature gradient could lead to a different stabil-
0el ity classification. Thus, it may be useful in the future to use
a blend of correction techniques for points classified as near-
1207 ; ‘ e neutral or use additional parameters to classify stability from
L5k -8 Suble lidar data. However, as opposing stability classifications ac-
1-10\‘—;\ : S:‘:::‘le ] counted for fewer than 10 % of the large TI errors apparent
2 105g- g | after the application of L-TERRA-S, it is likely that other
2 100 © factors were also responsible for the large amount of scat-
0.95}: ] ter still apparent in the TI data. For example, it is likely that
0.90 o the current physics-based corrections in L-TERRA-S do not
0.85L fully capture all the factors that affect lidar TI error, result-
ing in large errors that remain for some data points. In the
next section, machine-learning techniques are evaluated as a
200 R i potential method to model the remaining physics that impact
L ° o 4 lidar TT error.
0.85} i 9
&
osol : | 5.2 Application of machine-learning techniques
’\'—’\1 The physics-based corrections described in the previous sec-
0,751 L L o tion require only data from the lidar itself and do not require
Original Noise Volume averaging Var. contamination

Figure 5. Progression of MAE (top), regression line slope (middle),
and R? value of regression line (bottom) for WC vs. sonic TI at the
ARM site after the application of different modules in L-TERRA-S.

TI. To examine the impact of incorrect stability classification
on remaining TI errors, time periods were identified where
the WC TI error at the ARM site was above the 95th per-
centile of all TI errors after L-TERRA-S was applied; these
TI values represent outliers in Fig. 4b and contribute signifi-
cantly to the low values of R.

Of the 56 TI outliers identified that were associated with
valid values of Ri and «, 16 points were classified as unstable
by both Ri and «, 5 points were classified as neutral by both
parameters, and 4 points were classified as stable by both pa-
rameters. The remaining 33 points were classified differently
by Ri and «, with nearly half (14) of the points being classi-
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any training data. In contrast, machine-learning models must
be trained on a dataset before being applied to new data.
Typically, a single dataset is split into training and testing
datasets in a method known as cross validation (e.g., Efron
and Gong, 1983) to test the accuracy of the model on data
that was not included in the training process. As the end goal
of L-TERRA is to provide accurate lidar TI values at a site
that does not have a met tower, the machine-learning model
in L-TERRA must be trained on one or more sites with a
met tower before being applied to a lidar at a new site. Thus,
the machine-learning models discussed in this section were
trained on the wind farm data and then applied to data from
the ARM site for validation.

5.2.1 Determination of predictor variables

To determine appropriate predictor variables for the
machine-learning module, a sensitivity analysis was con-
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Figure 6. Percent difference between WC and sonic TI for the ARM site as a function of (a) shear parameter, (b) raw WC TI, (¢) mean
wind speed, and (d) SNR. Differences are shown both before (red circles) and after (blue circles) L-TERRA-S has been applied. Solid circles
correspond to averages of binned data and solid lines correspond to regression line fits to bin means, following the procedure in Annex L of
IEC 61400-12-1, Draft Edition (International Electrotechnical Commission, 2013).

ducted for the WC TI error at both sites. The sensitivity of
the lidar TI error to the various predictor variables in Table 1
was quantified following the guidelines in Annex L of the
new committee draft of IEC 61400-12-1 (International Elec-
trotechnical Commission, 2013). First, predictor variables
were binned and bin means of the TI percent error corre-
sponding to each bin were calculated. A least-squares tech-
nique was then used to calculate a regression line between
the predictor bin centers and the bin means of the TI percent
error. Sensitivity, defined as the product of the regression line
slope and the standard deviation of the predictor variable,
was then calculated for each predictor. The sensitivity gives
the approximate change in the TI error for a change in the
predictor variable that is equivalent to 1 standard deviation
of the variable.
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Sample plots showing the response of TI percent error to
different variables at the ARM site are shown in Fig. 6. Raw
WC TI error was extremely sensitive to the four variables
depicted in Fig. 6, with larger TI percent errors for lower
wind speeds and SNR values and TI errors changing sign
from negative to positive for decreasing shear parameter val-
ues and increasing raw TI values. After L-TERRA-S was ap-
plied, TI error sensitivity to shear parameter and raw lidar T1
decreased significantly. This decrease in sensitivity demon-
strates a major advantage of L-TERRA-S, as it implies that
lidar TT error is no longer strongly dependent on atmospheric
stability. However, while L-TERRA-S decreased sensitivity
slightly for mean wind speed and SNR, a high dependence
of TI error on these two variables is still apparent in Fig. 6¢
and d.
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Figure 7. Scatterplots of met tower vs. WC TI for data from 60 m measurement height at the ARM site (a) after the application of the first
random forest described in the text and (b) after the application of the second random forest. The 1: 1 line and regression lines are shown for

reference.

Overall, the six variables for the ARM site with the highest
sensitivity values after the application of L-TERRA-S were
as follows: integral timescale (vertical), SNR, corrected TI,
integral timescale (horizontal), mean wind speed, and shear
parameter. (For highly correlated variables, the variable with
a higher sensitivity was retained in the list.) These six vari-
ables were then used to train a random forest with the wind
farm data.

5.2.2 Results from trained machine-learning model

Results from the application of the trained random forest on
the ARM site L-TERRA-S TI values are shown in Fig. 7a.
The application of the random forest increased MAE values
from 0.78 to 0.89 % for stable conditions and from 1.48 to
1.6 % for neutral conditions and decreased the MAE from
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1.59 to 1.53 % for unstable conditions in comparison to the
results from L-TERRA-S. For all three stability classifica-
tions, R? values dropped significantly and a positive bias was
induced for low TI values.

To determine the cause of this positive bias, the sensitivity
values from both sites were compared for the six input vari-
ables. While the regression line slope and sensitivity values
for the vertical integral timescale, SNR, mean wind speed,
and shear were very similar at both sites, sensitivity values
for the horizontal integral timescale and corrected TI differed
substantially. In particular, the sensitivity of TI error to the
corrected TI was 6.86 % at the ARM site and over 5 times
larger at 39.6 % at the wind farm. After the removal of the
horizontal integral timescale and the corrected TI from the
input parameter list, the bias at low TI values largely dis-
appeared (Fig. 7b), suggesting that the positive bias was re-
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lated to the different sensitivities associated with two of the
input parameters. However, even with these two parameters
removed from the input parameter list, the MAE values still
increased in comparison to L-TERRA-S, while R? values de-
creased. Results from the MARS model were similar to those
from the random forest models.

These results highlight two major limitations of using
machine-learning techniques to improve lidar TI accuracy
in L-TERRA: (1) the most significant input parameters can
change from one site to another and will not be known a pri-
ori for a new site, and (2) the sensitivity of TI error to dif-
ferent input variables depends on the training site and the
particular lidar and reference measurements used. To inves-
tigate the effect of the training dataset used, a random forest
was also trained on 75 % of the ARM site data and then ap-
plied to the remaining 25 %. Training and testing a random
forest on data from the same site did decrease MAE values in
comparison to results from L-TERRA-S, but R? values still
decreased slightly for neutral and unstable conditions. More
importantly, using this technique would preclude L-TERRA
from being applied at a new site that does not have a met
tower.

Although machine learning can be a useful tool for turbine
power prediction (e.g., Clifton et al., 2013), it does not appear
to be an ideal technique for correcting lidar TI error. Thus,
the next steps in the development of L-TERRA will involve
further refining the physics-based corrections in L-TERRA-S
to improve TI estimates in a more robust manner. Rather than
relying on modeled patterns, physics-based corrections di-
rectly relate lidar measurements to TT errors and substantially
improved the accuracy of lidar TI estimates at both sites eval-
uated in this work (Fig. 4, Tables 3 and 4). However, the cur-
rent physics-based corrections do not completely eliminate
TI error, indicating that the physics that cause T1 error are not
being entirely captured in L-TERRA-S. Future work will in-
volve the development of a lidar uncertainty framework that
outlines all possible causes of lidar error. Different parts of
the framework could then be quantified through the use of a
simulated flow field and virtual lidar, as in Lundquist et al.
(2015).

Results from the sensitivity analysis conducted in this sec-
tion will greatly assist in determining areas of focus for the
lidar uncertainty framework. For example, TI error at both
sites was extremely sensitive to the integral timescale of the
w wind component, which is a proxy for the dominant tem-
poral scale of turbulent eddies in the vertical direction. Thus,
lidar TI error appears to be strongly affected by the scales
of vertical motion present in the area enclosed by the lidar
scanning circle, which will contribute to the degree of vari-
ance contamination. Currently, no physical models exist that
could account for these effects, and so we suggest that this
could be a fruitful research direction. In future work, the vir-
tual lidar tool will be used to examine how changes in the
vertical flow field across the lidar scanning circle impact TI
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estimates and how information from the lidar can be used to
approximate and remove these effects.

6 Conclusions and future work

Lidars are currently being considered as a replacement for
meteorological towers in the wind energy industry. Unlike
met towers, lidars can be easily deployed at different loca-
tions and are capable of collecting wind speed measurements
at heights spanning the entire turbine rotor disk. However,
lidars measure different values of TI than a cup or sonic
anemometer, and this uncertainty in lidar TI estimates is a
major barrier to the adoption of lidars for wind resource as-
sessment and power performance testing. In this work, a li-
dar turbulence error reduction model, L-TERRA, was devel-
oped and tested on WC lidar data from two different sites.
The model incorporates both physics-based corrections and
machine-learning techniques to improve lidar TT estimates.

The main findings from this work can be summarized as
follows:

— The difference between TI measured by a cup or sonic
anemometer and that measured by a vertically profiling
lidar can be reduced using appropriate physical models
of the lidar measurements.

— Performance of L-TERRA improves substantially when
different model configurations are used for different sta-
bility conditions (i.e., in L-TERRA-S).

— In addition to reducing MAE, L-TERRA-S also reduces
the sensitivity of lidar TI error to atmospheric stability.

— The accuracy of a machine-learning method in
L-TERRA-S is highly dependent on the sensitivity of
the lidar TI error to the input parameters at both the
training and testing sites.

Further improvements to L-TERRA-S can be made through a
better understanding of how atmospheric conditions and lidar
operating characteristics impact TI error. This understanding
can be achieved through the development of a lidar uncer-
tainty framework and testing of the framework with mod-
eled atmospheric data. Future work on L-TERRA-S will also
include testing with additional datasets, including datasets
from complex terrain and different areas of the world. Practi-
cal applications of L-TERRA for site assessment and power
prediction will also be explored in future work.

The development of L-TERRA and other TI correction
techniques has significant implications for the wind energy
industry, which has traditionally relied on data from fixed
met towers. L-TERRA can be applied to vertically profiling
lidars that are commonly used in the wind industry, thus ex-
panding the use of lidars for wind energy applications. Lidars
with improved TI estimates can be used for wake character-
ization, site classification, power curve testing, site monitor-
ing, and resource assessment. Improved lidar TI estimates
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could also help wind energy developers make more informed
decisions about turbine selection and wind farm layout. The
use of lidars in place of met towers for wind energy appli-
cations should allow for a more rapid development of wind
in regions where it is difficult or costly to install met tow-
ers, and the improvement of lidar turbulence estimates will
greatly assist in the adoption of lidars in the wind industry.

7 Data availability

Mean sonic anemometer wind speed data from the 60 m
tower at the ARM site are publicly available at https://
www.arm.gov/capabilities/instruments/co2flx (ARM, 2011)
and mean temperature data from the temperature probes
on the tower can be found at https://www.arm.gov/
capabilities/instruments/twr (ARM, 1993). High-frequency
sonic anemometer and lidar data are available upon re-
quest (jennifer.newman@nrel.gov). Meteorological tower
data from the wind farm cannot be shared per a nondisclo-
sure agreement with the wind farm.
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