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Abstract. This paper is an extended version of our paper presented at the 2016 TORQUE conference (Shapiro
et al., 2016). We investigate the use of wind farms to provide secondary frequency regulation for a power grid
using a model-based receding horizon control framework. In order to enable real-time implementation, the con-
trol actions are computed based on a time-varying one-dimensional wake model. This model describes wake
advection and wake interactions, both of which play an important role in wind farm power production. In order
to test the control strategy, it is implemented in a large-eddy simulation (LES) model of an 84-turbine wind farm
using the actuator disk turbine representation. Rotor-averaged velocity measurements at each turbine are used
to provide feedback for error correction. The importance of including the dynamics of wake advection in the
underlying wake model is tested by comparing the performance of this dynamic-model control approach to a
comparable static-model control approach that relies on a modified Jensen model. We compare the performance
of both control approaches using two types of regulation signals, “RegA” and “RegD”, which are used by PJM,
an independent system operator in the eastern United States. The poor performance of the static-model control
relative to the dynamic-model control demonstrates that modeling the dynamics of wake advection is key to
providing the proposed type of model-based coordinated control of large wind farms. We further explore the
performance of the dynamic-model control via composite performance scores used by PJM to qualify plants for
regulation services or markets. Our results demonstrate that the dynamic-model-controlled wind farm consis-
tently performs well, passing the qualification threshold for all fast-acting RegD signals. For the RegA signal,
which changes over slower timescales, the dynamic-model control leads to average performance that surpasses
the qualification threshold, but further work is needed to enable this controlled wind farm to achieve qualifying
performance for all regulation signals.

1 Introduction

Recent market trends are rapidly changing the composition
of power grid energy sources, replacing conventional dis-
patchable power sources with non-dispatchable, variable re-
sources, such as wind energy. These changes are putting pres-
sure on the power system by reducing the number of re-
sources available to provide a wide range of grid services tra-
ditionally provided by conventional power plants (Aho et al.,

2012). A particularly important example is grid frequency
regulation, which is closely tied to short-term imbalances
in active power generation and load over timescales ranging
from milliseconds to tens of minutes (Rebours et al., 2007).
In order to deal with this challenge, a number of independent
system operators (ISOs) are beginning to consider requiring
wind plants to provide frequency regulation services and ex-
panding frequency regulation markets to include wind plants
(Aho et al., 2012; Díaz-González et al., 2014).
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12 C. R. Shapiro et al.: Wind farms providing secondary frequency regulation

Secondary frequency regulation, in which participating
generators track a power signal sent by an ISO over tens of
minutes, is an area of growing interest. Recent work (Aho
et al., 2013; Jeong et al., 2014) has shown that stand-alone
wind turbines can effectively provide secondary frequency
regulation, but recent fluid dynamics simulations (Fleming
et al., 2016) have shown that interactions between wakes can
lead to poor tracking performance when these single-turbine
control strategies are applied to an array of turbines (Aho
et al., 2013; Jeong et al., 2014). This poor performance is not
unexpected because aerodynamic interactions between tur-
bines occur on timescales commensurate with those of the
secondary frequency regulation signals. Such considerations
have led to recent emphasis on approaches that consider the
collective behavior of the farm (Annoni et al., 2016; Gebraad
et al., 2015), but few of these studies provide real-time im-
plementable algorithms that can respond to changing wind
farm power output levels.

Our recent work (Shapiro et al., 2017a) sought to over-
come these challenges by developing a time-varying exten-
sion of the classic Jensen wake model (Katić et al., 1986)
that accounts for the dynamics of wake advection through
the farm. This new wake model was incorporated into a pre-
dictive model-based receding horizon control framework to
coordinate an array of wind turbines to provide secondary
frequency regulation by modulating the thrust coefficients
of individual turbines. This approach used predictions from
the underlying model to iteratively solve an online optimiza-
tion problem representing the power tracking goal. Feedback
from measurements of the velocity at each turbine was used
to correct modeling errors. This approach showed promising
results when tested in a large-eddy simulation (LES) model
of a wind farm in which turbines were represented using ac-
tuator disk models (Shapiro et al., 2017a). In these simula-
tions, we used set-point reductions of only 50 % of the max-
imum regulation provided, but were able to track a sample
regulation signal with the wind farm test system used. In pre-
vious studies (Aho et al., 2013; Jeong et al., 2014), in which
the control was designed at the individual turbine level, suc-
cessful power tracking required set-point reductions exactly
equal to the maximum change in power production requested
by the ISO. The ability to lower the set-point reduction repre-
sents an important advantage over single-turbine approaches,
as the amount of set-point reduction corresponds directly to
the amount of power that wind farms are sacrificing in the
bulk energy market to provide regulation. In fact, previous
studies have shown that set-point reductions equal to the one-
sided regulation signal variation may not be economically
prudent (Rose and Apt, 2014).

The feasibility of providing secondary frequency regula-
tion with wind farms was demonstrated by our initial re-
sults (Shapiro et al., 2017a). In this work we further eval-
uate the performance of this approach and consider the ef-
fect of reducing the control design and wake model com-
plexity. In particular, we evaluate the importance of explic-

itly modeling the dynamics of wake advection by comparing
the performance of the dynamic-model approach to a simi-
lar static-model approach, i.e., we replace the dynamic wake
model with a wake model that does not include wake advec-
tion (Katić et al., 1986). In order to make appropriate com-
parisons, the static-model controller solves an online opti-
mization problem with feedback similar to that solved in the
dynamic-model controller.

Both controllers are implemented in ”virtual wind farms”
comprised of actuator disk turbine models in LES. We evalu-
ate the two approaches with regulation test signals from PJM,
an ISO in the United States Eastern Interconnection (PJM,
2012, 2015). PJM has two types of secondary frequency reg-
ulation signals that are based on the area control error (ACE)
signal, a combined measure of the power imbalance and devi-
ation of the frequency from its nominal operating value. The
“RegA” signal is a low-pass filter of the ACE that is gen-
erally followed using traditional regulating resources, such
as fossil fuel plants. The “RegD” signal is a high-pass filter
of the ACE that can be followed by more quickly respond-
ing resources, such as energy storage devices. Our results
show that the static wake model leads to poor tracking perfor-
mance, which indicates that the complexity of this particular
control design cannot be reduced by ignoring the dynamics
of wake advection. We then evaluate the performance of the
dynamic-model controller using PJM’s performance evalua-
tion criteria (PJM, 2012, 2015) to determine whether the con-
trolled wind farm system can meet PJM’s threshold for qual-
ification in the two regulation markets. These computations
allow us to evaluate whether wind farms with this control
strategy are better suited to provide traditional or fast-acting
regulation.

The remainder of this paper is organized as follows. The
static and dynamic wake models are described in Sect. 2, and
the respective model-based controller designs are outlined
in Sect. 3. Sections 4 and 5 describe the virtual wind farm
test system and the simulation cases. The two controllers are
compared in Sect. 6. The performance of dynamic-model
control is further explored in Sect. 7 using PJM’s perfor-
mance criteria. Finally, we present conclusions and discuss
directions for future work in Sect. 8.

2 Wake models

The two wake models employed here are based on static
and dynamic adaptations of the classic Jensen wake model
(Katić et al., 1986). In this presentation of the Jensen model,
we consider regularly arranged wind farms with N rows and
M columns of turbines, where each column is aligned with
the prevailing wind direction, as shown in Fig. 1. The stream-
wise coordinate is denoted as x, and the nth turbine row is
located at x = sn. Every turbine is assumed to have the same
rotor diameter D.
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Figure 1. Diagram of a regular wind farm (left panel) with N = 5 rows and M = 3 columns of turbines and the corresponding row-averaged
wake model representation (right panel). Each column is aligned with the streamwise coordinate x, and each row is aligned with the spanwise
coordinate y.

The standard Jensen model assumes each turbine gener-
ates a wake region that expands radially at a linear rate k
with increasing downstream distance from the turbine. This
leads to the following definition of the wake diameter:

Dw(x)=D+ 2kx, (1)

where x is the streamwise distance from the turbine rotor
plane. Conservation of mass leads to the following velocity
deficit in the wake of the mth turbine in the nth row:

δunm(x)=
2U∞anm[

Dw (x− sn)/D
]2 , (2)

where anm is the induction factor and U∞ is the velocity up-
stream of the wind farm. This representation yields top-hat
profiles of velocity deficits in each cross-stream plane. The
velocity field experienced by the each turbine is found by su-
perimposing the squared velocity deficits:

u∞nm = U∞−

√ ∑
(j,k)∈Snm

δu2
jk

(
sn− sj

)
, (3)

where Snm is defined as the set of turbines whose wakes lie
within the swept area of the turbine rotor of the mth turbine
in row n. The definition of these sets means that Eq. (3) re-
duces to u∞1m=U∞ for the first row of turbines. The power
production of each turbine is subsequently found using

P̂nm =
1
2
ρ
πD2

4
CPnmu

3
∞nm, (4)

where CPnm is the power coefficient of the turbine in row n

and column m.
For ease of implementation, each wake model used in

this paper makes the following modifications to the stan-
dard Jensen model. First, we consider each row of turbines
collectively (as shown in Fig. 1; see Shapiro et al., 2017a),
which means that each modeled value is homogeneous in the
spanwise direction and we neglect the spanwise merging of

wakes. To reflect this modification, the column index m used
in Eqs. (2)–(3) is dropped in subsequent equations. Second,
to account for entrance effects in the farm and compensate
for the neglected spanwise wake interactions, we allow each
wind turbine row to have a separate wake expansion rate kn.

Furthermore, we express the turbine power production us-
ing the local thrust coefficient C′Tn and modeled velocity at
the turbine rotor ûn. Simple momentum theory can be used
to show that (Meyers and Meneveau, 2010; Goit and Meyers,
2015; Shapiro et al., 2017a)

an =
C′Tn

4+C′Tn
, ûn = (1− an)u∞n, and C′Tn =

CTn

(1− an)2 . (5)

Similarly, one can show that C′Pn=CP/(1−an)3, from which
we conclude C′Tn=C

′
Pn. Replacing the induction factor an in

Eq. (2), the modeled upstream velocity u∞n in Eq. (3), and
the power coefficient CPn in Eq. (4) with these equations, the
power production can be rewritten as

P̂n =M
1
2
ρ
πD2

4
C′Tnû

3
n. (6)

These idealized conditions assume that the electrical
power generated by the turbine is proportional to the power
extracted from the flow and the control actions do not signif-
icantly affect the aerodynamic efficiency of the blades (Goit
and Meyers, 2015, Appendix A). Aerodynamic losses could
also be taken into account by reducing the local power coef-
ficient by a constant factor α (Stevens and Meneveau, 2014),
i.e., C′P≈αC

′
T. For example, a wind turbine operating at

a thrust coefficient of CT= 0.75 and CP= 0.45 would use
α= 0.8. The following subsections describe the static and
dynamic wake models in more detail.

2.1 Static wake model

The static wake model used in this work is the Jensen model
with the modifications described above. In order to use this
static wake model in a model-based controller for the farm
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power production, the model must be augmented to ac-
count for time-varying changes in the local thrust coeffi-
cient C′Tn(t). Including time dependency in the thrust coef-
ficient and replacing the induction factor in Eq. (2) with the
expression in Eq. (5) gives the following expression for the
velocity deficit for the nth turbine

δun(x, t)=
C′Tn(t)

4+C′Tn(t)
2U∞[

1+ 2kn (x− sn)/D
]2 . (7)

With this approach, thrust coefficient changes instanta-
neously affect the velocity deficit everywhere, i.e., the wakes
implicitly have an infinitely fast advection speed. Finally, the
velocity at the turbines of the nth row can be found by ex-
plicitly writing out the set of upstream turbines in Eq. (3) af-
fecting the velocity at the nth turbine and using the equation
for the rotor-averaged velocity in Eq. (5):

ûn(t)=
(

1−
C′Tn(t)

4+C′Tn(t)

)U∞−
√√√√n−1∑
m=1

δu2
m (sn− sm)

 . (8)

Equations (7) and (8) are therefore the static wake model
equations W s(C′T, qs)= 0, where qs= [δu, û] denotes the
model states and boldface indicates vectors.

2.2 Dynamic wake model

The dynamic wake model also borrows from the classic
Jensen model, but instead allows the wake velocity deficit
to move downstream at a finite velocity. The resulting one-
dimensional time-varying wake model, which assumes that
the wake travels with the inlet velocity U∞, was previously
proposed and validated against LES of wind farms at startup
(Shapiro et al., 2017a). The velocity deficit is governed by

∂δun

∂t
+U∞

∂δun

∂x
=−wn(x)δun(x, t)+ fn(x, t), (9)

where wn(x) is the wake decay function and fn(x, t) is a
forcing function used to account for the effect of the turbine
on the flow field. The wake decay function

wn(x)= 2
U∞

dn(x)
d

dx
dn(x) (10)

is determined by assuming that the wake diameter normal-
ized by the rotor diameter dn(x)=Dwn(x)/D at a fixed lo-
cation x is constant in time. Momentum theory shows that as
the air flows through the turbine rotor, the velocity reduces
to U∞− 2U∞C′Tn/(4+C

′
Tn) (Shapiro et al., 2017a). In or-

der to retrieve this expected velocity reduction, the forcing
function is specified as

fn(x, t)=
2U2
∞

d2
n(x)

C′Tn(t)
4+C′Tn(t)

G (x− sn) , (11)

where G(x− sn) is a smoothing function that integrates to
unity, centered at the streamwise location of the turbine
x= sn. A Gaussian function with characteristic width 1,

G (x− sn)=
1

1
√

2π
e
−

(x−sn)2

212 , (12)

maintains smoothness in the velocity deficit fields.
In the Jensen model (Katić et al., 1986), the dimension-

less diameter of the wake generated by turbine row n is
dn(x)= 1+ 2kn(x− sn)/D, where kn is an empirical wake
expansion coefficient. We make two modifications to this
equation. First, the linear expansion is assumed to begin at
x= sn+ 21 to prevent the wake expansion from occurring
within the induction zone imposed by the Gaussian forcing.
The second modification addresses the fact that the equation
for the standard Jensen dimensionless wake diameter is ill-
posed upstream of the turbine, where it can vanish or become
negative. Therefore, we use the following modified function
that smoothly approximates the linear expansion in the far
wake while preventing the wake diameter from becoming
less than unity close to the turbine:

dn(x)= 1+ kn ln
[

1+ exp
(
x− sn− 21

D/2

)]
. (13)

As in the static model, squared deficits (Katić et al., 1986)
are superposed to calculate the estimated streamwise veloc-
ity ûn at the turbine:

ûn(t)= U∞−

L∫
0

(
N∑
m=1

δu2
m(x, t)

)1/2

G (x− sn)dx. (14)

Finally, the total estimated power P̂n of the M turbines in
row n is found using Eq. (6). The dynamic wake model equa-
tions, Eqs. (9)–(14), are written as W d(C′T, qd)= 0, where
qd= [δu, û] denotes the model states.

3 Controlled wind farm designs

The model-based controllers implementing the static and dy-
namic wake models discussed above are designed to track
the power reference signals Pref(t) sent by an ISO by mod-
ulating the thrust coefficients of each turbine row C′Tn(t).
Thrust modulation control is used as a proxy for direct ac-
tuation of blade pitch angle and generator torque. Explicit
actuation of these control variables is the subject of future
work. In both cases, feedback is included by measuring the
row-averaged, rotor-averaged wind speed un(t). The result-
ing feedback term εn(t) is fed into the controller and used
to correct the predicted power output of the wake model. A
block diagram of the controlled wind farm system is shown
in Fig. 2.

3.1 Controller designs

Each controller calculates the local thrust coefficient trajec-
tories by repeatedly solving a minimization problem of the
form
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Controller Wind farm

Error correction

Pref(t) C ′
Tn(t) Pfarm(t)

un(t)

ûn(t)

εn(t)

Figure 2. Block diagram of the controlled wind farm system for
both controllers. Each controller computes a thrust coefficient com-
mand signal C′Tn(t) using the reference signal Pref(t) and an error
correction term εn(t). The error correction is computed using the
measured velocity un(t) and the predicted velocity ûn(t) from the
underlying wake model.

minimize
C′T,q

J
(
C′T,q

)
+R

(
C′T
)

(15)

subject to W
(
C′T,q

)
= 0, (16)

where W (C′T, q)= 0 and q are placeholders for the static
and dynamic wake model and states, which were previously
indicated by the subscripts “s” and “d”, respectively. The
cost functional J represents the reference tracking goal, and
the functional R contains regularizations to maintain well-
behaved control trajectories. These regularizations include
a penalization for fast changes in the thrust coefficients to
avoid excessive oscillations in the control and a penalization
for deviations away from the pre-control reference power to
prevent the thrust coefficients from moving outside of physi-
cal bounds.

Although both controllers solve an online optimization
problem, the mechanics of the implementation are quite dif-
ferent. Since the equations for the static model have no dy-
namics, every instance in time is uncoupled. Therefore, the
static-model controller can consider each point in time as a
separate minimization problem, and the cost functionals can
be written solely in terms of the current state. With this ap-
proach, the power tracking cost functional at time t is written
as

Js
(
C′T,qs

)
=

1
P2

(
N∑
n=1

P̂n(t)−Pref(t)

)2

, (17)

and the regularization terms are

Rs
(
C′T
)
= η

N∑
n=1

(
C′Tn(t)−CT,ref

)2
+ γ T 2

N∑
n=1

(
dC′Tn

dt

)2

. (18)

The constants P and T in Eqs. (17)–(18) are used to make
each term in the power tracking cost functional and regular-
ization functional dimensionless and of comparable magni-
tude. Here we choose P =M 1

2ρ
πD2

4 U3
∞ and time T as the

time horizon of the reference signal considered. The con-
stants η and γ are the respective weights of each regulariza-
tion term, which are set to η= 0.005 and γ = 2.083× 10−5

in this study.
The dynamic-model controller (Shapiro et al., 2017a),

however, accounts for the time-dependent advection of tur-
bine wakes. We therefore employ a model-based receding
horizon framework, which is a predictive approach that uses
the model to plan future control actions. The receding hori-
zon method works by iteratively solving a finite-time mini-
mization problem over a time horizon T . The solution is im-
plemented for a shorter period TA before re-solving the min-
imization problem. More details about this procedure can be
found in Bewley et al. (2001) and Goit and Meyers (2015).
With this predictive framework, the reference tracking goal
is represented by the cost functional

Jd
(
C′T,qd

)
=

1
P2T

T∫
0

(
N∑
n=1

P̂n(t)−Pref(t)

)2

dt, (19)

and the regularization functional is defined as

Rd
(
C′T
)
=
η

T

N∑
n=1

T∫
0

(
C′Tn(t)−C′T,ref

)2dt

+ γ T

N∑
n=1

T∫
0

(
dC′Tn

dt

)2

dt. (20)

Consistent with the distinction between the non-predictive
and predictive nature of the static-model and dynamic-model
controllers, the functionals for the static wake model are not
integrated forward in time. In other words, the static wake
model is not a receding horizon method because the modeled
system does not include dynamics.

All minimizations are solved using the modified uncon-
strained reduced cost functional J̃ (C′T)=J (q,C′T) (Bewley
et al., 2001; Goit and Meyers, 2015), instead of the cost func-
tional defined in Eq. (15). Minimizations are performed using
the gradient-based nonlinear Polak–Ribière conjugate gradi-
ent method (Press, 2007) combined with the Moré–Thuente
line search method (Moré and Thuente, 1994) and are ter-
minated after 100 iterations. For the static wake model, gra-
dients are obtained using finite differencing, which can be
implemented efficiently because there are only N control
variables per minimization. For the dynamic wake model,
gradients are obtained using one backward simulation of
the adjoint equations of the wake model using the for-
mal Lagrangian method (Goit and Meyers, 2015; Borzì and
Schulz, 2011). The full procedure is detailed in Shapiro et al.
(2017a). This approach was chosen because it is computa-
tionally efficient for systems with large state spaces, such as
the discretized partial differential equation system described
by the dynamic wake model.

www.wind-energ-sci.net/3/11/2018/ Wind Energ. Sci., 3, 11–24, 2018



16 C. R. Shapiro et al.: Wind farms providing secondary frequency regulation

In this work, we use horizon and advancement times of
T = 40 min and TA≈ 10 s, respectively. With these values,
the optimization takes approximately 1 min on a single pro-
cessor, which is roughly 6 times as long as the advancement
time of TA= 10 s. However, several modifications can reduce
the optimization time significantly. For example, a previous
implementation reduced the optimization time to a fraction
of the advancement time by employing a quasi-Newton min-
imization method, reducing the horizon and advancement
times, and limiting the number of minimization iterations
(Shapiro et al., 2017b). As a result, this approach is feasible
for real-time control.

3.2 Measurement feedback

As shown in Fig. 2, the controller employs closed-loop feed-
back for velocity measurements at each turbine to correct
modeling errors and assumptions. The row-averaged power
and row- and rotor-averaged wind velocities are defined as

Pn =

M∑
m=1

Pnm, and un =
1
M

(
M∑
m=1

u3
nm

)1/3

, (21)

where unm is the velocity measured at the turbine in the
nth row and mth column of the wind farm. The definition
of the row-average velocity at the turbine disk is necessary to
ensure that Pn=M 1

2ρ
πD2

4 C′Tnu
3
n. These measurements are

used to calculate an error term εn and provide feedback by
replacing Eq. (6) with

P̂n =M
1
2
ρ
πD2

4
C′Tn

(
ûn+ εn

)3
. (22)

For the static wake model, the error term for turbine row n

at time step p is calculated using the difference between the
measured and estimated velocity from the previous time step
p− 1

ε
p
n = u

p−1
n − û

p−1
n . (23)

For the dynamic wake model, the error correction at the re-
ceding horizon iteration starting at time tc is

εn(t)=
(
un (tc)− ûn (tc)

)
e−(t−tc)/τ . (24)

The exponential decay accounts for the reduced future accu-
racy of the error term in the receding horizon prediction and
is set to τ = 120 s in this study.

4 Virtual wind farm test system

A LES model of a wind farm with wind turbines repre-
sented using actuator disk models is used to test the two con-
trol approaches. The wind farm is composed of N = 7 rows
of M = 12 aligned columns of turbines. Each turbine has a

Streamwise velocity (m s  )
0 3.5 10.57 14

Wind direction

Turbines

-1

Figure 3. Instantaneous streamwise velocity contours for a large-
eddy simulation with actuator disk turbine models, which are in-
dicated by black dashes. Each turbine has a rotor diameter of
D= 100 m and hub height of 100 m. The mean and maximum in-
let velocities are approximately 9.5 and 12 m s−1, respectively. The
inlet conditions are generated using a concurrent precursor simula-
tion (Stevens et al., 2014b) shown at the beginning of the plotted
domain.

100 m rotor diameter D and a 100 m hub height. The spac-
ing between turbines is 7D in the streamwise direction and
5D in the spanwise direction. Prior to the initiation of the
control actions, all of the turbines are operated at a constant
reference local thrust coefficient of C′T,ref= 1.33, which is
assumed to be representative of wind turbines operating in
region 2 (Calaf et al., 2010; Stevens et al., 2014a).

These simulations are performed using Johns Hopkins
University’s LES code LESGO (Calaf et al., 2010; Stevens
et al., 2014b; VerHulst and Meneveau, 2015), which uses
pseudo-spectral discretization in the horizontal directions
with periodic boundary conditions. The code also employs
second-order Adams–Bashforth time integration, second-
order finite differencing in the vertical direction, and the
dynamic scale-dependent Lagrangian Smagorinsky subgrid
stress model (Bou-Zeid et al., 2005). Inlet conditions for
the wind farm are generated using the concurrent-precursor
method (Stevens et al., 2014b). The force exerted by and
the power extraction of the mth turbine of the nth row are
both a function of the filtered rotor-averaged velocity unm
(Calaf et al., 2010) and the thrust coefficient C′Tnm. The force

is modeled as a drag force Fnm=− 1
2ρ

πD2

4 C′Tnmu
2
nm, and

the power extraction is Pnm=−Fnmunm. An instantaneous
color contour plot of the streamwise velocity field from one
of these simulations is shown in Fig. 3.

5 Test cases

The performance of the controlled wind farms is evaluated
using a series of PJM’s published RegA and RegD test sig-
nals as well as historical RegA and RegD signals from three
hours in 2015 (PJM, 2012, 2015, 2016). For each regulation
signal, we use three initial conditions for the wind farm and
two levels of power set-point reduction, which we also re-
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Figure 4. Probability density functions of S1–S3 defined in Eq. (25) for RegA (black) and RegD (red) during 2015. The three selected
historical hours are shown in the PDFs as vertical dashed lines.

fer to as derates. For each controller test, the reference signal
is defined as Pref(t)= [1−α+ 0.08r(t)]Pbase, where Pbase is
the 5 min average power prior to initiation of the control, α is
the derate amount, and r(t)∈ [−1, 1] is the regulation sig-
nal from the ISO. As a result, the reference signal varies by
±8 % of the baseline power Pbase.

The combination of test signals and initial conditions leads
to 48 unique test cases, each of which is given a unique iden-
tifier that is a combination of identifiers for each of the vari-
able types shown in Table 1. “Signal” refers to the regulation
signal type (RegA or RegD), “Derate” refers to the derate
amount (4 or 6 %), “Initial condition” refers to the initial con-
dition of the controlled plant simulation, and “Period” refers
to the regulation signal period, which is either the PJM test
signals or one of the selected hours in 2015. For example, the
test case “RegA.D4.IC1.TS” refers to the case with the RegA
test signal, 4 % derate, and the first initial condition.

5.1 Historical PJM regulation signals

The number of historical hours used to test the controlled
wind farm is constrained by the computational cost of run-
ning the model wind farm LES. As a result, it is impractical
to select enough hours to sample the entire range of possible
regulation signals provided by PJM. To prevent systematic
bias, the three hours were selected without considering the
characteristics of the regulation signals during those periods.

In order to evaluate whether the selected signals are rep-
resentative cases, we compare them to the range of all possi-
ble regulation signals provided by PJM in 2015 using three
statistics:

S1 =
1
T

T∫
0

r(t)dt

S2 =
1
T

T∫
0

r2(t)dt −S2
1

S3 =
1
T

T∫
0

(
dr
dt

)2

dt, (25)

Table 1. Test case identifiers describing the signal type, derate
amount, initial condition of the wind farm, and regulation signal
period. For example, the test case “RegD.D6.IC1.H2” refers to the
case with the second RegD historical signal, 6 % derate, and the first
initial condition.

Identifier Type Description

RegA Signal Traditional RegA regulation signal
RegD Signal Fast-responding RegD regulation signal
D4 Derate Power set point is reduced by 4 % of Pbase
D6 Derate Power set point is reduced by 6 % of Pbase
IC1 Initial condition Initial condition 1
IC2 Initial condition Initial condition 2
IC3 Initial condition Initial condition 3
TS Period PJM test signals
H1 Period PJM historical hour 1
H2 Period PJM historical hour 2
H3 Period PJM historical hour 3

where r(t) is the regulation signal, T = 60 min, S1 is the
mean of r(t), S2 is the variance of r(t), and S3 is the vari-
ance of dr

dt . For each of these statistical measures, the prob-
ability density function (PDF) is calculated using all possi-
ble hourly signals provided by PJM in 2015 and is shown
in Fig. 4. These PDFs demonstrate the differences between
the RegA and RegD signals. The RegA signals have a larger
mean and variance than the RegD signals, but the variance
of dr

dt is smaller. The values of these statistics for the three
selected hours is compared to the PDFs over the entire year
in Fig. 4. These figures show that the selected historical sig-
nals represent a reasonable cross section of the possible PJM
regulation signals. The only exception, the high percentile
ranking in S1 of the RegA signals, represents a more diffi-
cult test for the controlled wind farm because more energy is
requested than the average.

5.2 Wind farm initial conditions

We set the initial conditions of the controlled wind farm
simulations to correspond to uncontrolled simulations with
a local thrust coefficient of C′T,ref= 1.33, as previously dis-
cussed. The inflow characteristics for the three initial con-
ditions of interest are provided in Table 2. The inflow ve-
locities of the initial conditions have a mean u≈ 9.5 m s−1
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Table 2. Characteristics of wind farm initial conditions, including mean inlet velocity u, standard deviation of inlet velocity σu, and turbu-
lence intensity TI. The corresponding wake model inlet velocity U∞ and wake expansion coefficients kn are also shown.

Initial u σu TI U∞ k1 k2 k3 k4 k5 k6 k7
condition (m s−1) (m s−1) (%) (m s−1)

1 9.53 1.12 13.6 9.65 0.028 0.049 0.041 0.047 0.053 0.054 0.054
2 9.22 0.97 13.3 9.32 0.026 0.046 0.043 0.047 0.054 0.052 0.052
3 9.56 0.93 12.5 9.64 0.026 0.040 0.040 0.037 0.044 0.041 0.041

and a standard deviation σu≈ 1 m s−1 as measured at the first
row of turbines during the T0= 5 min prior to initiation of the
control:

u=
1

T0M

0∫
−T0

M∑
m=1

4+C′T,ref

4
u1m(t)dt

σu =

 1
T0M

0∫
−T0

M∑
m=1

(
4+C′T,ref

4
u1m(t)− u

)2

dt


1/2

. (26)

The turbulence intensity as measured at the center of each
of the turbine rotors is approximately 13 %, which cor-
responds to low to medium International Electrotechnical
Commission turbulence levels (IEC, 2005). The simula-
tions assume region 2 operation (Johnson et al., 2006) with
idealized aerodynamic characteristics of C′P=C

′
T. In order

to avoid any significant interaction with the rated regime,
we assume wind turbines with a rated wind speed of at
least 12 m s−1, which corresponds to the 99th percentile of
the LES velocity field. Wind turbines with a diameter of
D= 100 m and a power coefficient of CP= 0.5625, which
corresponds to C′P=C

′
T, therefore have a rated power of

approximately 4.5 MW and an average total farm power of
approximately 100 MW. Under nonideal aerodynamic con-
ditions (C′P= 0.8C′T, see Sect. 2; Stevens et al., 2014a), a
power coefficient of CP= 0.45 would yield a rated wind tur-
bine power of 3.6 MW.

The required parameters of the static and dynamic wake
models, inlet velocity U∞, and wake expansion coeffi-
cients kn are also calculated for each initial condition using
measurements from the T0= 5 min prior to initialization of
the control. The inlet velocity is set using the relationship
U∞=

1
4 (4+C′T,ref)T

−1
0
∫ 0
−T0
u1(t)dt , and the wake expansion

coefficients are found using a least-squares fit between the
measured power and the power predicted by the static model.
Note that the inlet velocity for the model is defined using the
average power and therefore the average inflow velocity is
not equal to the inlet velocity for the models, i.e., u 6=U∞.
The resulting parameters are also shown in Table 2.

6 Comparison of control methods

The power tracking performance and control trajectories of
the controlled wind farm, represented by the LES described
in Sect. 4, are shown in Figs. 5 and 6. The left and right pan-
els of these figures show the performance of the static- and
dynamic-model controllers, respectively. Figure 5 shows the
response of the controlled farms to the RegA test signals,
and Fig. 6 shows the response of the controllers to the RegD
test signals. The dynamic-model control demonstrates good
overall tracking performance, although it has some trouble
tracking the reference signal during the last 5–10 min of the
RegA.D4.IC1.TS and RegA.D4.IC3.TS cases. Conversely,
the static-model control demonstrates poor overall tracking
performance, although it is able to track the signal for certain
down regulation events, e.g., around minute 20 in all cases in
Fig. 5.

The static-model control method appears to switch be-
tween two distinct operating points, depending on the charac-
teristics of the regulation signal. Downregulation trajectories
are often successfully tracked by increasing the thrust coef-
ficient of the first row of turbines to values above C′T= 2.
This change in operating conditions increases the magnitude
of the velocity deficits throughout the farm, thereby reduc-
ing the overall wind speed and total power production. When
there is a period of upregulation approaching or the wind
farm is slightly underproducing, the controller quickly re-
duces the upstream thrust coefficients and moves to the Betz
optimal thrust coefficientC′T= 2 (Goit and Meyers, 2015) for
the last row. This operating point is likely the optimal power
point for the Jensen model with constant wake expansion co-
efficients.

The performance of the static-model control provides an
interesting demonstration of the importance of including
time dependency in the wake model used in this type of con-
trol scheme. In an attempt to track the changing reference
signal, the controller switches quickly between the two oper-
ating points discussed above. The static Jensen model erro-
neously models these transitions between operating points as
an instantaneous change of the wake velocity deficit through-
out the farm. In reality, the air around the turbine will slowly
respond to a sudden change in the thrust coefficient and the
reduced wake deficit must travel through the farm before the
effects of changing upstream thrust coefficients on down-
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparison of static-model (a, c, e) and dynamic-model (b, d, f) control methods for RegA test signals with 4 % derates. All three
initial conditions are shown from top to bottom. The top plot in each panel shows the controlled LES wind farm model power production
(black) compared to the reference signal (red). The bottom plot in each panel shows the local thrust coefficients calculated with control
methods by row: row 1 (dark blue), row 2 (orange), row 3 (yellow), row 4 (purple), row 5 (green), row 6 (light blue), and row 7 (brown).

stream power production and wind speeds are realized. De-
tailed trajectories of the power and rotor-averaged velocity
of each row in Fig. 7 show that the LES wind farm does not
respond instantaneously to the change in operating point. In-
stead, power production slowly increases between minutes 5
and 15.

As a result of these modeling errors, the static-model con-
troller produces large transient variations in power produc-
tion when moving between operating points. When moving
to the upregulation operating point identified by the con-
troller, the power production of the farm plunges. In some
cases, the total power production slowly recovers to the de-

sired set point. Furthermore, all of the static-model control
cases in Figs. 5 and 6 demonstrate significant overshoot in
the power production during the first 30 s of the simulations
as the thrust coefficients quickly move away from the pre-
control level. The frequency of the changes in the control
actions, which is determined by the advancement time of
approximately 10 s, is faster than these dynamics of wake
advection and is therefore unlikely to explain these effects.
Instead, neglecting the wake advection time in the Jensen
model best explains the poor performance of the static model
controller.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Comparison of static-model (a, c, e) and dynamic-model (b, d, f) control methods for RegD test signals with 4 % derates. All
three initial conditions are shown from top to bottom. The top plot in each panel shows the controlled LES wind farm model power produc-
tion (black) compared to the reference signal (red). The bottom plot in each panel shows the local thrust coefficients calculated with control
methods by row: row 1 (dark blue), row 2 (orange), row 3 (yellow), row 4 (purple), row 5 (green), row 6 (light blue), and row 7 (brown).

The dynamic-model control uses strategies similar to those
of the static-model controller, including increasing the thrust
coefficient during downregulation periods and moving to-
ward a Jensen model optimal power point for upregula-
tion periods. However, by including the time-dependent ef-
fects of wake advection, the controller avoids large transient
changes when changing between states. The underlying dy-
namic model can correctly predict the time-varying effect of
changing upstream thrust coefficients on downstream power
production. In the next section we further study the perfor-
mance of this dynamic-model control approach.

7 Performance evaluation of dynamic-model control

The time evolution of the total LES wind farm power is
compared to the reference signals for initial condition 3
and a 4 % derate in Fig. 8, which shows all regulation sig-
nals (RegA or RegD) and regulation period combinations.
The controlled wind farm power production is also com-
pared to the uncontrolled case, in which the wind farm is
kept at the constant pre-control thrust coefficient. These re-
sults demonstrate the good overall tracking performance of
the controlled wind farm, except for a few specific peri-
ods of underperformance. Furthermore, the results demon-
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(a) (b)

-1-1

Figure 7. Comparison of static-model (a) and dynamic-model (b) control methods for the RegA.D4.IC2.TS simulation case. Each panel
shows the controlled LES wind farm model power production, rotor-averaged velocity, and thrust coefficients by row: row 1 (dark blue),
row 2 (orange), row 3 (yellow), row 4 (purple), row 5 (green), row 6 (light blue), and row 7 (brown).
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Figure 8. Power tracking performance of dynamic-model-controlled wind farms comparing simulated farm power from a controlled LES
wind farm model (black), an uncontrolled LES wind farm model (gray), and power reference signals (red) for 4 % derates and initial condi-
tion 3.

strate that the dynamic-model-based receding horizon con-
trol method is also able to reduce the natural turbulent fluc-
tuations in the wind farm power production. Indeed, the root
mean square (RMS) of the controlled wind farm power pro-
duction about the reference signal is 1.06 MW, which is al-
most a quarter of the 3.93 MW RMS of uncontrolled power
production about the baseline power.

Quantitative measures of the performance of each regula-
tion signal type (RegA or RegD) for derate values of 4 and
6 % are shown in terms of PJM’s performance scores in
Fig. 9. In order to participate in PJM’s regulation market,
power plants must pass the regulation qualification test for
the particular regulation signal being supplied. This test is
carried out over a 40 min period, and the tracking capabil-
ity is quantified using a composite performance score, which
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Figure 9. Box plots of PJM performance scores for a dynamic-
model-controlled wind farm for all regulation signal types (RegA
or RegD) with derate values of 4 and 6 %. The qualification thresh-
old of 75 % for the composite score (red dashed line) is shown in
the lower right panel. The average controlled system performance
exceeds 75 % for both signal types, but only the RegD cases pass all
of the time.

is the weighted sum of accuracy, delay, and precision scores
(PJM, 2012, 2015). The accuracy score measures the ability
of the signal to respond to a change in the ISO regulation
signal. The delay score measures the delay in the plant’s re-
sponse to the regulation signal. The precision score measures
the difference between the requested power and the plant’s
power output. A minimum composite score of 75 % is needed
to qualify to participate in each of the two regulation services.
Once qualified for a particular service, a plant is continuously
evaluated; if its average score over the last 100 h drops below
40 %, then the plant is disqualified from providing the service
and must retake the initial performance test to re-qualify.

The controlled wind farm performs better for the RegD
signals, meeting the composite score threshold for qualifica-
tion of 75 % in all cases. The performance of the controlled
farm in tracking the RegA signals is also satisfactory for PJM
participation, but the controlled farm would not have quali-
fied in all tests. These lower composite scores may be ex-
plained by the large values in S1, which represent the total
energy requested in the signals, compared to other PJM sig-
nals. However, in cases in which the controlled wind farm
had poor performance for the RegA signal with a 4 % derate,
increasing the derate to 6 % markedly improved the overall
performance.

The results shown in Figs. 5–9 provide important insights
into the possible strengths and limitations of the proposed ap-
proach to wind farm control for frequency regulation. These
results suggest that wind farms may be well suited to act as
a quickly responding resource for grid regulation services.
For example, the consistent passing of the composite perfor-
mance score for the RegD signals indicates that dynamic-

model-controlled wind farms are able to provide this service
reliably.

The power tracking results in Fig. 8 demonstrate that
the controller is able to track the upregulation portions
of the RegA signals at the beginning of the control pe-
riod, such as during the first 5–10 min of the first two his-
torical signals. In several cases the controlled LES wind
farm is able to produce more power than the uncontrolled
case, such as after minute 20 of the “RegA.D4.IC3.H1”
and “RegD.D4.IC3.H1” simulations. However, when upreg-
ulation is requested for prolonged periods or towards the
end of the control interval, such as the last 10 min of the
“RegA.D4.IC3.TS” and “RegA.D4.IC3.H3” cases, the con-
troller does not perform as well. A possible explanation is
that the available energy in the wind is slowly changing as the
atmospheric boundary layer evolves, as demonstrated by the
declining power production of the uncontrolled simulations
during these time periods. Since estimates of available en-
ergy are readily available over short time horizons, more fre-
quent market clearing may allow wind farms to more effec-
tively provide regulation. Ultimately, future work is needed
to determine whether this is a fundamental limitation of the
wind farm dynamics or the control strategy.

8 Conclusions

In this study we further characterize the performance of wind
farms, providing secondary frequency regulation using the
dynamic-model control framework proposed in Shapiro et al.
(2017a). This model-based receding horizon approach relies
on a simple one-dimensional time-varying wake model to
provide thrust coefficient trajectories for individual turbines
within a wind farm. As in previous work, the control ap-
proach is tested using a “virtual wind farm” represented by
LESs of an 84-turbine wind farm with turbines modeled as
actuator disks.

First, we evaluate the relative importance of including the
dynamics of wake advection in the control scheme by com-
paring the performance of the dynamic-model controller to
a comparable static-model controller. Tests using regulation
signals from PJM indicate that the dynamic-model control
demonstrates good overall tracking performance, whereas
static-model control failed to match the reference signal for
all simulated cases. These results indicate that the complex-
ity of including the dynamics of wake advection is indeed
required in model-based coordinated wind farm controls.

The tracking performance of the dynamic-model control
method is then further quantified using PJM’s performance
metrics. Tests for both regulation signal types, RegA and
RegD, exceed the PJM threshold for regulation participation
on average, but only the RegD signal exceeds the threshold
in all cases. These results indicate that this model-based re-
ceding horizon controller design could allow wind farms to
meet industry design standards and allow wind farms to fully
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participate in regulation markets, particularly in fast-acting
regulation markets.

The potential for reducing the derate required to partici-
pate in these regulation markets was also explored. Partici-
pating in frequency regulation markets currently requires a
trade-off between revenue losses in the bulk power market
and revenues generated in the frequency market. Previous
approaches (Aho et al., 2013; Jeong et al., 2014) required
power set-point reductions of an amount equal to the regula-
tion amount, which directly reduces bulk power revenue by
this amount. For this study we took a more aggressive ap-
proach by reducing the power set point by only 75 %, and
even only 50 %, of the maximum regulation provided. For
both of these derates, the controller is able to track fast-acting
RegD signals. The potential for reducing the required der-
ate has important economic implications for wind farms par-
ticipating in both energy and regulation markets, a situation
that will become increasingly common as more ISOs require
wind farms to contribute to this grid service.

Although the dynamic-model controller design showed
promising results, more work is needed to push this approach
towards the implementation phase. We used the local thrust
coefficient as a surrogate for real turbine control variables,
such as generator torque and blade pitch angle. Improve-
ments to our representation of these variables through actu-
ator line methods and the inclusion of drivetrain dynamics
in the control method are needed. Including rotational iner-
tia may allow for further reductions in the amount of derate
because rotational kinetic energy can compensate for short-
term power shortages (De Rijcke et al., 2015). Furthermore,
we assumed that the ISO provided the regulation signal at the
beginning of the control period; however, PJM provides this
reference at a 2 s scan rate. This shortcoming could be ad-
dressed by adding estimated reference trajectories to the con-
trol design. Finally, a systematic study of the relative advan-
tages of all of the emerging control designs for wind farms
to provide secondary frequency regulation (e.g., van Winger-
den et al., 2017) is needed to identify which strategies are
appropriate under various market, geographic, and technical
constraints.

Data availability. Data from the simulations, including the disk-
averaged velocity, local thrust coefficient, and disk-center velocity,
are provided in the data repository (Shapiro et al., 2017c).
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