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Abstract. A reliable load history is crucial for a fatigue assessment of wind turbines. However, installing strain
sensors on every wind turbine is not economically feasible. In this paper, a technique is proposed to reconstruct
the thrust load history of a wind turbine based on high-frequency Supervisory Control and Data Acquisition
(SCADA) data. Strain measurements recorded during a short period of time are used to train a neural network.
The selection of appropriate input parameters is performed based on Pearson correlation and mutual informa-
tion. Once the training is done, the model can be used to predict the thrust load based on SCADA data only. The
technique is validated on two different datasets, one consisting of simulation data (using the software FAST v8,
created by Jonkman and Jonkman, 2016) obtained in a controllable environment and one consisting of mea-
surements taken at an offshore wind turbine. In general, the relative error between simulated or measured and
predicted thrust load barely exceeds 15 % during normal operation.

1 Introduction

As the older wind farms slowly reach their designed lifetime,
topics concerning fatigue, remaining useful lifetime and a
possible lifetime extension gain importance. Moreover, as fa-
tigue is a design driver for current offshore wind farms, fa-
tigue analysis of existing wind turbines can optimize future
design. Currently, fatigue assessments of support structures
are often based on measurements of the load history (Lo-
raux and Brühwiler, 2016; Iliopoulos et al., 2017; Schedat
et al., 2016; Ziegler et al., 2017). Most of them imply contin-
uous strain measurements at accessible locations. However,
for several reasons accelerometers are preferred over strain
gauges, although they are not suited to measuring quasi-static
loads. In the research presented by Iliopoulos et al. (2017),
the strain gauges are thus crucial to capture the quasi-static
part of the loading. The research presented in this paper aims
to replace the use of strain gauges for the estimation of quasi-
static loads. Existing approaches to estimate thrust loads are
based on simulations and additional design information (e.g.,
thrust coefficient) or acceleration measurements (Baudisch,
2012; Cosack, 2010).

Although supervisory control and data acquisition
(SCADA) data are available for every wind turbine by de-
fault, their possibilities for load monitoring are still underuti-
lized. Several authors (Hofemann et al., 2010; Vera-Tudela
and Kühn, 2017) have suggested using 10 min SCADA
statistics to estimate the loads on the blades. If the estimated
model uses solely SCADA data, it can be translated to ev-
ery turbine in the farm without the need of installing addi-
tional sensors. Recently, the use of 1 s SCADA signals has
also become common practice in the industry. Therefore, the
authors of this contribution propose to use 1 s SCADA data
to estimate the thrust load, acting on the wind turbine and its
substructure.

Although the authors will solely focus on the estimation of
the thrust load, additional loads with higher frequencies con-
tribute to fatigue as well. These additional loads are the result
of rotor harmonics (3 p, 6 p, 9 p and in case of a rotor im-
balance 1 p) and structural dynamics (first and second mode,
FA1 and FA2). Figure 1a shows the frequency spectrum of
measured bending moments, which illustrate the presence of
the harmonics as well as the structural modes at an opera-
tional wind turbine. In the case of offshore wind turbines, an

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



140 N. Noppe et al.: Modeling of quasi-static thrust load of wind turbines

additional load is induced by waves. These additional wave
loads cannot be coupled one on one with any SCADA pa-
rameter in time frames of a couple of seconds. Wind turbines
installed on monopiles are more affected by waves than those
installed on jacket substructures. An approach using SCADA
data and accelerometers is proposed by Noppe et al. (2016)
to account for the higher-frequency loads as well. However,
it was concluded an improvement of the quasi-static model
was needed. An alternative approach consists in using a re-
duced finite element model of the wind turbine and its sub-
structure (Hartmann and Meinicke, 2017). Here, acting thrust
loads are estimated using wind estimator software, which is
not publicly available.

As explained, the thrust load has an important contribution
to fatigue. However, it is also possible to associate the thrust
with properties of wake flows. Therefore, an accurate estima-
tion of thrust has also proved important in estimating wake
wind speeds and turbulence (Réthoré, 2006).

2 Measurement campaign

2.1 Monitoring setup

To validate the proposed technique, results are shown us-
ing measurements taken at an offshore wind turbine. The
monitored turbine is installed on a jacket and instrumented
with strain gauges at the interface between transition piece
and tower (Fig. 1b). The measured strains are converted into
bending moments in the fore–aft and side–side directions us-
ing the turbine yaw in the SCADA. The quasi-static contri-
bution of the thrust load to the measured bending moment
Mtn,m is obtained by using a Butterworth filter of the fourth
order on the recorded bending moments in a frequency range
from 0 to 0.2 Hz. This frequency band is defined in a way
so that the filtered signal is not influenced by the first natu-
ral frequency (0.31 Hz) since this is unrelated to any SCADA
signal anyway. This is shown by the red solid line in Fig. 1a.
The targeted quasi-static load (filtered) no longer contains the
effects of structural dynamics and rotor harmonics.

The resulting signal is then transformed into thrust load
Ft,m, using the distance between the sensors (location of the
measured bending moment) and the hub (location of act-
ing force) (Réthoré, 2006). To match the time steps of the
SCADA data, the obtained thrust load is down-sampled us-
ing an antialiasing filter to a time frame of 1 s and addition-
ally averaged over 10 min.

As the turbine is installed on a jacket, the role of wave
loading in the bending moment is assumed to be negligible.

2.2 SCADA data

Every wind turbine is installed with a SCADA system. The
main purpose of the SCADA system is to monitor and control
plants, for which reason it records continuously. The main
advantage of using SCADA data is the default availability.

However, the correct calibration and quality of the sensors is
not guaranteed over the entire lifetime. A common example
is the anemometer to measure wind speeds and wind direc-
tions. It is installed behind the rotor and known for its high
uncertainties due to poor calibrations. Moreover, the qual-
ity and accuracy of the data can differ among the different
manufacturers. A proper preprocessing of the SCADA data
and associated filtering process is advised. In this case, the
preprocessing and filtering process consisted in exclusion of
improbable and unrealistic values for wind speed (outside in-
terval [0; 50] ms−1) and for generated power (outside interval
[−0.1; 1.25] ·Prated) and periods of constant wind speed from
the dataset. In total, less than 0.2 % is removed.

For this research a subset of 1 year of both 10 min statis-
tics and 1 s signals of SCADA data was available. The subset
consisted in both cases of measurements for wind speed, ro-
tor speed, generated power, blade pitch angle, yaw angle and
ambient temperature. Figure 2a shows the power curve ob-
tained with 1 s and 10 min SCADA, respectively in blue and
purple. The lines indicate the median value of the dataset,
while the surface spans from the 5th to the 95th percentile of
the data. The power curve shows a much higher variability
for 1 s SCADA then for 10 min SCADA. The same differ-
ence in variability can be observed in Fig. 2b and c, where
1 s and 10 min averages of measured thrust load are plotted
versus the 1 s and 10 min SCADA parameters wind speed and
generated power, respectively. The present variability in 1 s
data is not only the result of noise but is mainly due to the
inertias within the controlling system and the wind turbine.
For example, when the wind speed increases, the power out-
put increases only a few seconds after. These inertias result in
time delays of up to several seconds between, for example,
the wind speed and the generated power. These delays are
not considered constant over time and will differ for every
SCADA parameter. Moreover, they last for only a couple of
seconds and in consequence they cannot be observed within
10 min averages.

2.3 Meteorological data

Measurements of air pressure are available from a nearby
met mast (15 km). Using the ambient temperature (from the
SCADA dataset), the air density ρ is calculated using Eq. (1),
where p is air pressure (Pa), T is ambient temperature (K)
and Rspecific is the specific gas constant for dry air (287.058

J
kg·K ).

ρ =
p

RspecificT
(1)
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Figure 1. (a) Frequency spectrum of measured tower bending moment in the fore–aft direction during 10 min (blue dashed line). The quasi-
static part of the bending moment is filtered out (red solid line). The targeted quasi-static load (filtered) no longer contains the effects of
rotor harmonics. (b) The measured thrust load Ft,m is obtained using the bending moment Mtn,m measured by strain gauges located at the
interface between tower and transition piece.

Figure 2. Characteristic curves obtained using SCADA data in combination with averages of thrust load measurements. Operational data
for a period of 2.5 months are shown. Data in both the 10 min time frame (blue) and 1 s time frame (purple) are shown. The line indicates
the median value, calculated per bin of 0.5 ms−1 or 100 kW, whereas the surface spans from the 5th to the 95th percentile of the data. Rated
power is reached for wind speeds of approximately 13 ms−1 (indicated by the green dashed line).

3 Input parameter selection

3.1 SCADA data

A crucial part in the model creation is the parameter selec-
tion. Input parameters are chosen based on their Pearson cor-
relation and mutual information to the thrust load. The Pear-
son correlation between a thrust signal and all considered
SCADA signals is calculated using Eq. (2), in which X is
the mean value of the signal X (May et al., 2011).

R(X,Y )=
∑n
i=1(xi −X)(yi −Y )√∑n

i=1(xi −X)2
∑n
i=1(yi −Y )2

(2)

Since the problem we are facing is not necessarily linear,
an analysis to identity and quantify possible chaotic or non-
linear dependence is recommended as well. A possible mea-
sure is mutual information, a measure of dependence based
on information theory and the notion of entropy. The mu-
tual information I (X;Y ) between two signals X and Y is de-

termined with Eq. (3) (Bonnlander and Weigend, 1994), us-
ing the probability density functions f (x), g(y) and h(x,y).
To obtain these probability density function estimations, a
histogram-based estimation as explained by Benoudjit et al.
(2004) with bin widths defined using the interquartile range
of the data, as suggested by Freedman and Diaconis (1981),
is implemented. Opposed to Pearson correlation coefficients,
mutual information does not have a general maximum value
indicating perfect dependence between two signals. There-
fore, the resulting mutual information should be normalized
first. This is carried out by dividing by the joint entropy of
the two signals (Bouma, 2009), as indicated by Eq. (3).

Inormalized(X;Y )=

∑
x∈X

∑
y∈Yh(x,y) log h(x,y)

f (x)g(y)

−
∑
x∈X

∑
y∈Yh(x,y) logh(x,y)

=
I (X,Y )
H (X,Y )

(3)

The calculation of Pearson correlation and mutual infor-
mation is performed for operational data only, both 1 s data
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and 10 min data, for a period of 2.5 months. During this pe-
riod the full wind speed range is covered, as shown by Fig. 2.
Additionally, the datasets are divided into two subsets: data
when the turbine was operating below rated operation (64 %
of 10 min and 62 % of 1 s operational data) and at rated oper-
ation (36 % of 10 min and 38 % of 1 s operational data).

The resulting Pearson correlation and mutual information
between the measured thrust load and several SCADA pa-
rameters for all datasets is depicted in Fig. 3.

Focusing first on the results for the total operational
dataset, a high Pearson correlation can be found for rotor
speed (0.8871 and 0.8935 for 10 min and 1 s data, respec-
tively), generated power (0.7513 and 0.7497) and to a lesser
extent wind speed (0.5082 and 0.4829). When looking at
the results of mutual information for the total operational
datasets, the highest dependencies are again found for wind
speed (0.3934 and 0.1068 for 10 min and 1 s data, respec-
tively), generated power (0.3453 and 0.1904) and rotor speed
(0.2888 and 0.1217). Interestingly, a relatively high value is
also found for the blade pitch angle (0.2330 and 0.1186).
In the case of the operational data below rated power, the
values for Pearson correlation and mutual information are
even higher for rotor speed (0.9383 and 0.9622 for Pearson
correlation and 0.4660 and 0.2161 for mutual information),
generated power (0.9396, 0.9603, 0.5158 and 0.2811) and
wind speed (0.9417, 0.9086, 0.4342 and 0.1057). Here, the
values for mutual information of pitch angle decreased to
0.2075 and 0.1103 for the 10 min and 1 s datasets, respec-
tively, since the pitch angle does not vary a lot as long as
generated power is below rated. Conversely, operational data
at rated power reveal a high Pearson correlation of the blade
pitch angle (0.9499 and 0.9298) and wind speed (0.8898 and
0.8194). The same observation is made for the results of mu-
tual information: 0.4492 and 0.1268 for the blade pitch an-
gle and 0.3804 and 0.0793 for the wind speed. This differ-
ence in behavior is explained as follows. Once the turbine
reaches its rated power value, the only parameter acting to
vary wind speed and thrust load will be the blade pitch an-
gle. Hence a significantly lower correlation and mutual in-
formation for the rotor speed (0.1562, 0.1385, 0.0333 and
0.0098) is found. However generated power is still correlated
to thrust load with a significant value in the case of 10 min
averages (0.6354). The value for mutual information in the
case of 10 min data is significantly higher as well (0.1308).
Figure 2c reveals a very steep curve between thrust and gen-
erated power once rated power is reached.

In the results of Pearson correlation (Fig. 3, left) negative
values are the result of an additive inverse relationship be-
tween the depicted parameter and the thrust load. For a tur-
bine operating below rated power, a higher wind speed re-
sults in a slightly lower blade pitch angle and an increased
thrust load. Therefore, a decreasing blade pitch angle (due
to an increase in wind speed) leads to a higher thrust load.
Hence, a negative value for Pearson correlation between
pitch angle and thrust load when the turbine is operating be-

low rated power is expected. Once rated power is reached,
increasing wind speeds result in higher blade pitch angles,
slightly increasing generated power and decreasing thrust
loads (Fig. 2b). Accordingly, an increase in blade pitch angle
and generated power (thanks to an increase in wind speed)
enforces a decrease in thrust load. And thus, a resulting neg-
ative Pearson correlation between thrust load and wind speed
and generated power and pitch angle for operational data at
rated power is consistent.

It is obvious the turbine reacts differently to varying wind
speeds depending on the operational state. Once rated power
is reached, the relation of the thrust load to the depicted
SCADA parameters often differs. This leads to lower cor-
relation values for the total dataset in comparison to the op-
erational states separately. In the case of the pitch angle, the
correlation is even nonexistent when looking at the total op-
erational dataset. However, when taking into account the ex-
isting nonlinearities, as with mutual information, the blade
pitch angle is clearly correlated with the thrust load based on
the total operational dataset as well.

In general the values for Pearson correlations and clearly
for mutual information are less considering 1 s averages com-
pared to 10 min averages. This can be explained by the
present time delays of several seconds between parameters,
as a result of the inertias present within the system. When
calculating the autocorrelation between the thrust load signal
and shifted SCADA signals, the biggest time shift was found
for the pitch signal and corresponded to −3 s.

For the continuation of this research, only the yaw angle
will not be considered as an input parameter due to its small
correlation and mutual information (0.0598, 0.0596, 0.0403
and 0.0367 for Pearson correlation of 10 min and 1 s datasets
and mutual information of both datasets, respectively) with
the thrust load.

3.2 Meteorological data

According to Baudisch (2012), thrust loads are influenced
by air density. While changes in the depicted SCADA vari-
ables happen within seconds, air density changes on a differ-
ent timescale (several hours). Instead of including air density
in the set of input parameters, it is accounted for as a correc-
tion of the modeled thrust load F̂T: F̂T,corr = ρF̂T.

4 Modeling method

Seeing that the relation between thrust load and the de-
picted SCADA parameters is nonlinear, a model will be cre-
ated using a neural network. A neural network is capable
of finding and characterizing nonlinear dependencies within
datasets. Therefore, it can handle the inverted relations be-
tween thrust load and the considered SCADA parameters
once rated power is reached. The neural network used in
this paper has three hidden layers with four neurons each.
By choosing a different topology the root-mean-square error

Wind Energ. Sci., 3, 139–147, 2018 www.wind-energ-sci.net/3/139/2018/



N. Noppe et al.: Modeling of quasi-static thrust load of wind turbines 143

Figure 3. The Pearson correlation is calculated between thrust load averages and five standard SCADA parameters for operational data only.
Both 10 min and 1 s averages are considered. The total dataset is divided based on the operational state of the turbine (operating below rated
power and operating at rated power).

Table 1. The selected output variables for FAST simulations.

Parameter Category Description Unit

Wind1VelX InflowWind Nominally downwind component of the hub-height wind
velocity

ms−1

BldPitch1 ElastoDyn – blade pitch motions Blade pitch angle (position) ◦

LSSGagVxa ElastoDyn – shaft motions Low-speed shaft strain gage angular speed (on the gearbox
side of the low-speed shaft

rpm

YawPzn ElastoDyn – nacelle yaw motions Nacelle yaw angle (position) ◦

TwrBsMyt ElastoDyn – tower base loads Tower base pitching (or fore-aft) moment (i.e., the moment
caused by fore-aft forces)

kNm

GenPwr ServoDyn – generator and torque control Electrical generator power kW

of the test set improved with a maximum of 0.2 % if more
than one neuron was chosen in each layer.

It is trained using operational data only, while operating
both below and at rated power. The training data consisted
of 1 s SCADA data and 1 s averages of thrust load measure-
ments (FT,m_training). The input parameters chosen are wind
speed, blade pitch angle, rotor speed and generated power, as
concluded in Sect. 3. To account for the inertias in the sys-
tem, not only instantaneous SCADA values but also the val-
ues of five previous seconds are included in the model. Since
the model will be used in every normal operational state of
the wind turbine, it is important that the full operational wind
speed band is covered in the training dataset. For every oper-
ational state, e.g., during a down-rating or curtailment, that is
not represented in the training data, the model will probably
not be able to predict the thrust load correctly.

To train the neural network, the Neural Network toolbox
of MATLAB is used with the default settings (Guide, 2002).
This means the preprocessing is performed with a min–max
mapping function, tan-sigmoid transfer functions are used
for hidden layers and a linear transfer function is used for
the output layer. Furthermore, the data chosen to train the
model are randomly divided into 70 % training data, 15 %
validation data and 15 % test data. This so-called hold-out
method is preferred over cross-validation to reduce the com-
putational load since large datasets are used. Training is car-
ried out using the training data and the Levenberg–Marquardt
algorithm. Training of the network is stopped when the error
on the validation data failed to decrease for six iterations or a

maximum number of 1000 iterations is reached. The test data
are used as an independent dataset of the network training to
calculate the final model error.

As explained in Sect. 3.2, the effect of air density is ac-
counted for by applying a correction on the model results. To
make sure the effect of air density is not present in the train-
ing data, the inverse correction is applied on the measured
thrust loads of the training dataset: FT,m_training =

FT,m
ρ

.

5 Results

The modeling method proposed in Sect. 4 is validated using
two different datasets. The first one is obtained by simula-
tion in FAST, while the second one is obtained thanks to a
measurement campaign performed at an offshore wind tur-
bine. The dataset obtained using simulations was included to
illustrate the approach in a controlled and reproducible envi-
ronment.

5.1 FAST simulations

The simulated data are obtained by using the software FAST
v8 (Jonkman and Jonkman, 2016), offered by the National
Renewable Energy Laboratory (NREL). The chosen simu-
lated turbine is the NREL 5.0 MW baseline wind turbine, in-
stalled on an OC3 Monopile RF configuration. All simulation
specifications are kept as proposed by the software (Jonkman
and Jonkman, 2016) for use of this turbine type. This means
that turbulence and irregular waves are also accounted for. To
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Figure 4. Modeled and simulated thrust loads for the total dataset during the training phase (training, validation and test set combined,
simulated time of 2.5 days) (a) and the total dataset during the validation phase (1.5 days) (b). The relative error (c) for the test dataset during
the training phase and the additional dataset during the validation phase (simulated time of 1.5 days) is shown as well. The lines indicate
median values for every wind speed bin of 0.5 ms−1; the surface spans from the 5th to the 95th percentile of the data.

Figure 5. Time series (spanning 10 min) of modeled and simulated thrust loads below rated (a, c) and at rated power (b, d). For each
operational state, the time series with the highest averaged absolute error is shown (c, d). MRE shows the averaged absolute relative error
over 10 min.

make sure the full wind speed range is sufficiently covered in
the simulation data, several input wind files with varying av-
erage wind speed between 3 and 25 ms−1 are generated us-
ing TurbSim. Each wind speed is accounted for equally. In
essence, the wind distribution is thus considered uniform.

The output parameters of interest for this research are
specified in Table 1. As the results obtained using simulated
data will be used to be compared to real-life data, only com-
parable parameters for the SCADA data and the measured
bending moment are worked with and indicated in Table 1.

The air density is kept constant during the simulations.
Therefore, the applied corrections for air density did not in-
fluence the results.

To train the model, a dataset with a total simulated time of
ca. 2.5 days is used. Additionally, the model is validated on
an additional simulated dataset with a total simulated time of
ca. 1.5 days. These data are not used to train the model and
can thus be used as a complete independent validation set.

Results are shown in Fig. 4. A good match between mod-
eled thrust load F̂T and simulated thrust load FT,s can be
found during both training and validation phases (Fig. 4a,

b). Figure 4c shows the relative error 1ε between simulated

and modeled thrust load (1ε = abs(FT,s−F̂T)
FT,s

) versus wind
speed for the test set during the training phase and the to-
tal dataset during the validation phase. The line indicates the
median value of the relative error, calculated for each wind
speed bin of 0.5 ms−1. The surface spans from the 5th to the
95th percentile of the data. In general, the relative error of
both datasets barely exceeds 10 %, except for very low wind
speeds. Here, a higher relative error is found due to the lower
absolute values of the thrust load. For higher wind speeds, er-
rors increase. Starting from 12 ms−1 an increasing variability
in relative error can be observed for increasing wind speed.
A similar behavior was found for the training and the valida-
tion set during the training phase. This indicates the training
set was representative for the validation set, the test set and
the total dataset during the validation phase.

Four time series spanning 10 min during the validation
phase are shown in Fig. 5, two while operating below rated
power (Fig. 5a, c) and two while operating at rated power
(Fig. 5b, d). The time series of 10 min with the highest av-
eraged absolute error between simulated and modeled thrust
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Figure 6. Modeled and measured thrust loads for the training data (training, validation and test set combined, being 2 weeks worth of data)
(a) and the long-term validation data (1 year worth of data) (b). The relative error (c) for the test dataset during the training phase and the
dataset of 1 year during the validation phase is shown as well. The median values for relative errors obtained with the test set of FAST
simulations are copied.

Figure 7. Time series (spanning 10 min) of modeled and measured thrust loads below rated (a, c) and at rated power (b, d). For each
operational state, the time series with the highest averaged absolute error is shown (c, d). MRE shows the averaged absolute relative error
over 10 min.

loads below rated and at rated power are shown in Fig. 5c
and d, respectively. In all cases a very good match is found.
This is represented by a low value for the averaged absolute
relative error (MRE) for those time series (MRE> 4,5 %).

5.2 Application to real world: offshore wind turbine

The proposed modeling method is also tested on an operating
wind turbine. Thrust loads are measured using strain gauges,
installed at the interface between tower and transition piece,
as explained in Sect. 2. A model is trained using 2 weeks
of 1 s data. Moreover, this model is validated on a dataset of
1 year, including the 2 weeks of training data.

Results are shown in Fig. 6. A good match between mea-
sured thrust loads FT,m and modeled thrust loads F̂T can be
found during both training and validation phases. Although
above roughly 18 ms−1, the modeled thrust curve shows less
variability than the measured curve, meaning the difference
between the 5th and the 95th percentile of modeled thrust is
lower than the difference between the 5th and the 95th per-
centile of measured thrust (Fig. 6a, b). Figure 6c shows the

relative error (1ε = abs(FT,m−F̂T)
FT,m

) of the test set during the
training phase, being 15 % of the total training set of 2 weeks,
and the total dataset during the validation phase of 1 year of
operation. Again, the line indicates the median value, cal-
culated for every wind speed bin of 0.5 ms−1. The surface
spans from the 5th percentile to the 95th percentile of the
data. A similar behavior among the training, validation and
test set during the training phase was obtained. In general,
the relative error does not exceed 15 %. Moreover, with a
median value barely exceeding 5 %, results are promising. In
general, the errors are increased with respect to the results
using FAST (as shown in Fig. 6c). The errors obtained for
lower wind speeds up to 10 ms−1 are increased due to off-
sets, the mean differences between measured and modeled
values, present in the results. When looking at the long-term
validation set, the errors are increased with respect to the test
set during the training phase due to bigger mean differences.
Furthermore, the errors obtained for wind speeds higher than
ca. 18 ms−1 are slightly higher due to the loss of variability
in the tail of the thrust curve. Again, an increasing variability

www.wind-energ-sci.net/3/139/2018/ Wind Energ. Sci., 3, 139–147, 2018



146 N. Noppe et al.: Modeling of quasi-static thrust load of wind turbines

in relative errors can be observed for increasing wind speeds,
starting from ca. 12 ms−1.

To illustrate these observations, four time series of 10 min
are shown in Fig. 7. Two of them show operation below
rated power (a and c), while the other two show operation
at rated power (b and d). The time series depicted in Fig. 7c
and Fig. 7d show 10 min with the highest averaged absolute
error when operating below or at rated power, respectively.
An offset can be observed in (a, c), while the loss of vari-
ability can be observed in (d). The values of the averaged
absolute relative error indicate the match is still acceptable
(MRE < 6.5 %). As explained, the resulting errors are influ-
enced a lot by present offsets between the measured and
the modeled thrust load signal. However, these offsets will
not influence a fatigue assessment performed according to
common practice in industry. This practice consists of cy-
cle counting of the stress signals and transforming the cycle
counts into damage using the Miner’s rule. Since during this
practice only the size of the cycles matters, the fatigue as-
sessment is not influenced by the mean value of the cycles.

Calculating the Pearson correlation and the mutual infor-
mation between the measured and modeled thrust load sig-
nals for the same period of 2.5 months (see Sect. 3) results
in 0.9962 and 0.2740, respectively. These increased values
for 1 s data signals indicate that a lot of the present variabil-
ity in the thrust load can be explained by combining several
SCADA parameters and allowing some latency between the
different signals. When looking at only one parameter, the
difference in value for thrust measurements occurring for the
same value of that parameter cannot be explained. When con-
sidering more parameters, this difference might already be
explained by a different value of another parameter. There-
fore, the resulting correlation between the measured thrust
load and only one parameter is lower than between the mea-
sured thrust load and a combination of multiple parameters,
as performed by the neural network.

6 Conclusions

An approach to estimate thrust load signals based on SCADA
signals is explained and validated both on simulation and
real measurement data. Wind speed, rotor speed, blade pitch
angle and generated power are selected as input parameters
based on both a linear and a nonlinear correlation analysis.
Strain sensors are used to measure the acting thrust load. This
thrust load signal is combined with SCADA signals to train
a neural network. Validation of the method is carried out us-
ing FAST simulation data and data measured at an offshore
wind turbine during 1 year. Time series show a good match
between modeled and measured or simulated thrust signals.
In general, the relative error barely exceeds 15 %. Results ob-
tained using FAST data are slightly better than those of the
real-world offshore wind turbine.

Essential in this approach is the preprocessing of the
SCADA data. Moreover, including an air density correction
proved to reduce offsets in the results. Furthermore, good re-
sults are obtained even when using the default settings of the
neural network toolbox in MATLAB. Adjusting the neural
network hyperparameters, e.g., number of layers and neu-
rons, did not improve the results significantly.

Future work

The use of 1 s SCADA data can be considered as the main
advantage of this approach. If the model proves to be trans-
ferable among turbines of the same type, this approach can
be applied on any (non-instrumented) wind turbine within
a wind farm. This transferability should be validated using
cross-validation among instrumented turbines.

The method presented is capable of estimating quasi-static
loads on wind turbines. To perform a full fatigue assessment
of wind turbines, structural and rotor dynamics have to be
accounted for as well. For offshore wind turbines with sig-
nificant wave loading, e.g., large diameter monopiles, the ef-
fect of waves on the structure also needs to be included. A
full load reconstruction can be performed by combining the
proposed approach with acceleration measurements (Noppe
et al., 2016).

Data availability. Seeing that the data are proprietary to the in-
dustrial partner of this project, the data used in this paper cannot be
made publicly available.
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