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Abstract. Wind power forecasting is gaining international significance as more regions promote policies to
increase the use of renewable energy. Wind ramps, large variations in wind power production during a period
of minutes to hours, challenge utilities and electrical balancing authorities. A sudden decrease in wind-energy
production must be balanced by other power generators to meet energy demands, while a sharp increase in
unexpected production results in excess power that may not be used in the power grid, leading to a loss of
potential profits. In this study, we compare different methods to generate probabilistic ramp forecasts from the
High Resolution Rapid Refresh (HRRR) numerical weather prediction model with up to 12 h of lead time at two
tall-tower locations in the United States. We validate model performance using 21 months of 80 m wind speed
observations from towers in Boulder, Colorado, and near the Columbia River gorge in eastern Oregon.

We employ four statistical post-processing methods, three of which are not currently used in the literature for
wind forecasting. These procedures correct biases in the model and generate short-term wind speed scenarios
which are then converted to power scenarios. This probabilistic enhancement of HRRR point forecasts provides
valuable uncertainty information of ramp events and improves the skill of predicting ramp events over the raw
forecasts. We compute Brier skill scores for each method with regard to predicting up- and down-ramps to
determine which method provides the best prediction. We find that the Standard Schaake shuffle method yields
the highest skill at predicting ramp events for these datasets, especially for up-ramp events at the Oregon site.
Increased skill for ramp prediction is limited at the Boulder, CO, site using any of the multivariate methods
because of the poor initial forecasts in this area of complex terrain. These statistical methods can be implemented
by wind farm operators to generate a range of possible wind speed and power scenarios to aid and optimize
decisions before ramp events occur.
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1 Introduction

Global wind-energy installation reached 486 GW in 2016;
the total installed generation capacity in the US alone
reached > 82 GW by the end of 2016 and has experienced a
rapid rise since then (GWEC, 2017). Increased interest in al-
ternatives to fossil-fuel-based energy to mitigate greenhouse
gas emissions as outlined in the international Paris Agree-
ment (UNFCCC, 2015) has propelled the global wind-energy
sector even further. Because of increased interest and deploy-
ment of wind energy in the US and worldwide, accurate wind
speed and power forecasts are becoming increasingly impor-
tant for successful power grid operation. In particular, the
prediction of specific wind situations such as power ramps
is key to the effective operation and control of wind farms
(Kuik et al., 2016).

Power ramp events are challenging to forecast because
these abrupt and large increases or decreases in wind speed
- and thus power - happen on timescales of minutes to hours
making it difficult for wind farm operators and the power grid
to respond. Up-ramps, or sharp increases in wind farm power,
can lead to an overload of electricity generation. Sometimes
the additional electricity is sold to nearby utility companies,
but frequently wind farms must curtail or stop power pro-
duction if there is not enough time to make the sale. Con-
versely, down-ramps, or sharp decreases in power production
over short time periods, also have serious implications for the
power grid. If power generation from the wind farm does not
meet contractual expectations, then power must be generated
by another source to “balance the load” and avoid brownouts
and blackouts. Additionally, the wind farm owners may have
to pay costly fees for not meeting their quota.

Improving the accuracy of ramp forecasts can help avoid
the situations described above. The overall effects of ramps
on the grid can be reduced in several ways. The development
of a geographically aggregated power grid which connects
many wind farms and diverse renewable sources such as so-
lar, hydro, and nuclear power (Budischak et al., 2013) can
help minimize the effects of sudden gusts and lulls of wind
speed on the power grid. Additionally, optimized wind farm
locations and layouts (St Martin et al., 2015) could reduce
fluctuation on the grid caused by individual wind farms. Di-
rectly improving ramp forecasts is also a viable option to re-
duce stress on the power grid and make wind energy even
more reliable. Increased reliability may be realized in the
form of decision making. A wind farm operator may make
conservative estimates of how much power their wind tur-
bines can generate during times with an elevated probability
of a down-ramp event. In practice, a persistence forecast of
wind speed and power generation over a 1 h or 30 min time
interval is commonly used (Milligan et al., 2003). Persistence
forecasts are generally reasonable on these timescales be-
cause local weather conditions usually do not change dras-
tically during these lengths of times except during certain
weather events, such as fronts, convective outflow, etc., that

often cause ramps. However, persistence forecasts are poor
at predicting ramps; a ramp identified in the previous 30 min
to an hour can change magnitude or even sign (i.e., up- or
down-ramp) in a short period and therefore lead to large fore-
cast errors. In recent years, there has been a growing interest
in information regarding the uncertainty of wind power fore-
casts to make energy decisions (Nielsen et al., 2006b). Typi-
cal single (i.e., point) forecasts cannot provide this necessary
uncertainty information, but probabilistic forecasts can.

Considerable effort over the last decade has been made to
improve short-term wind and power forecasts (Wilczak et al.,
2014). To improve beyond the use of persistence of a point
forecast, some of these methods include the use of predictive
distributions broken into quantiles for each lead time to quan-
tify uncertainty. These methods neglect the serial correlation
among forecast lead times (Bremnes, 2006), a characteristic
needed for time-dependent events such as the evolution of
ramps. Other methods construct the serial dependence across
forecast lead times but achieve the original quantiles (i.e.,
margins) from nonparametric forecast distributions (Pinson
et al., 2009; Pinson and Girard, 2012). Another method in-
cludes the direct use of an ensemble of forecasts produced by
perturbing the initial conditions of a numerical weather pre-
diction (NWP) model, which does not require the generation
of predictive distributions and their serial correlation across
lead times through statistical means. However, the ensembles
themselves are under-dispersive and lack small-scale vari-
ability in time and space so that not all possible scenarios are
captured (Nielsen et al., 2006a; Bossavy et al., 2013). Others
have used analogs of past forecasts based on weighted at-
mospheric predictors to quantify forecast uncertainty (Delle
Monache et al., 2013; Junk et al., 2015). The statistical post-
processing techniques that we employ allow us to generate a
full predictive cumulative distribution function (CDF) from
which we can derive a variety of probabilistic forecast quan-
tities such as prediction intervals or the probability of exceed-
ing a given threshold.

In the research to be discussed here, we will correct bi-
ases in wind speed point forecasts produced by the High
Resolution Rapid Refresh (HRRR) NWP model using uni-
variate post-processing techniques and parametric distribu-
tions. We will then test four multivariate statistical post-
processing methods to generate forecast scenarios of wind
speed, representing the prediction uncertainty for a 12 h fore-
cast horizon. We then compare the skills of the methods
at predicting up- and down-ramp events. Three of the four
methods, (the standard Schaake shuffle (StSS), minimum di-
vergence Schaake shuffle (MDSS), and the enhanced version
of MDSS (MDSS+)) are not currently discussed within the
wind-forecasting literature and are offered as new forecast-
ing tools for short-term ramp events. The fourth method, the
Gaussian copula, has been assessed for short-term wind and
power forecasting, so we use this method as a benchmark of
performance for the new methods. For all of our analyses,
we physically compute wind power production via a turbine
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power curve, which relates the power that would be gener-
ated by a turbine to wind speed through the turbine rotor
layer as well as turbine-specific characteristics.

The wind speed observations from tall meteorological
towers and forecasts from the HRRR model used in this study
are discussed in Sect. 2. Up- and down-ramp events are for-
mally defined in Sect. 3.1. Univariate post-processing of the
raw HRRR forecasts is described in Sect. 3.2. The multivari-
ate methods for generating probabilistic forecast scenarios
are discussed in Sect. 3.3. In Sect. 4, we evaluate the per-
formance of each probabilistic forecast method and the raw
HRRR forecasts focusing on the prediction of up- and down-
ramp events. Specifically, we compare the relative frequency
of up- and down-ramp events produced from each forecast.
We also provide Brier skill scores to compare each multivari-
ate method and to show the performance relative to climatol-
ogy. In Sect. 5, we offer concluding remarks, uses for the
probabilistic methods in the wind-energy sector, and advice
for operational implementation.

2 Data

2.1 Wind measurements from tall meteorological towers

We use wind speed and direction measurements from two
meteorological towers. The first tower is the 135 m M5 tower
located south of Boulder, Colorado, and ≈ 5 km east of the
Colorado Front Range at the US Department of Energy’s
(DOE) National Wind Technology Centre (NWTC) (Clifton
et al., 2013). Wind speed and direction measurements from
the M5 tower were collected at 80 and 87 m above ground
level (a.g.l), respectively, from a cup anemometer and wind
vane. The instruments were mounted on tower booms aligned
at 278◦, the prevailing wind direction at the NWTC based on
a 15-year climatology (Clifton et al., 2013). We remove wind
speed measurements that are associated with wind directions
between 75 and 135◦ to ensure that the measurements are not
contaminated from the flow passing through and around the
tower or waked by a nearby wind turbine before reaching the
instrument sensors. We also remove data flagged by quality-
control methods such as testing for constant values during
a measurement interval (which indicates icing events dur-
ing cold months), and checking for standard deviation values
< 0.01 % of the mean (which indicates instrument malfunc-
tion) among other measures described by Clifton et al. (2013)
and St. Martin et al. (2016). After filtering, 81 % of the data
was retained. The M5 tower data that we use are measured
at a 20 Hz rate and averaged over 10 min for the period from
31 August 2012 to 28 February 2017.

The second tower is an 80 m tall proprietary tower located
near the Columbia River gorge, which divides the southern
boundary of Washington and the northern boundary of Ore-
gon. Herein, we refer to this tower as the Pacific Northwest
(PNW) tower. The wind speed and direction measurements
are collected from a heated cup anemometer and wind vane at

79 and 76 m a.g.l, respectively, over a 1 min averaged period.
We perform quality-control measures on the data to remove
suspect data using similar quality-control processes as for
the M5 tower. We also remove unrealistic wind speed values,
such as negative numbers, and remove data associated with
waked flow from the PNW tower or nearby turbines. After
filtering, 73 % of the data were retained. Data from the PNW
tower were made available as part of the DOE-funded second
Wind Forecast Improvement Project (WFIPII) that took place
from fall 2015 to spring 2017 (A2E, 2017). We use data from
this tower for all available dates between 18 March 2015 and
6 March 2017.

2.2 Wind forecasts from HRRR system

Deterministic forecast data are obtained from the second ex-
perimental version of NOAA’s real-time, HRRR assimilation
and model forecast system (HRRRv2). The HRRRv2 do-
main covers the contiguous US at 3 km horizontal resolution.
HRRRv2 is updated hourly with initial conditions from the
13 km Rapid Refresh model and observations via data assim-
ilation. Detailed model physics for HRRRv2 are discussed
by Benjamin et al. (2015). The available dates for this ver-
sion of the HRRR are from 1 January 2015 to 28 Septem-
ber 2016. Forecast verification is performed on this period of
interest, which overlaps with the observation availability. For
comparison of the 80 m wind speed forecasts to the tower ob-
servations, the HRRR forecast values at each tower location
are from the nearest model grid cell to the tower latitude and
longitude (Fig. 1; map for the PNW tower is not shown for
proprietary reasons.) The closest model grid points are 1.65
and 1.49 km away from the M5 and PNW tower, respectively.
The topography at the closest grid points is representative of
the terrain at each of the tower sites. Since the HRRRv2 fore-
casts are output hourly, we apply our analyses to the obser-
vations that occur at the top of the hour to match the forecast
availability. The HRRR output is instantaneous at every hour,
but because it represents a 3 km grid cell, comparing this out-
put to the averaged observations is preferred. For the obser-
vations and model output, we only analyze dates that have
a continuous 12 h segment of data from the 00:00 UTC and
12:00 UTC forecast initialization times to encompass an en-
tire day. These criteria yield ≈ 80–150 continuous 12 h fore-
cast segments that overlap with available observations for
each initialization time and tower location. The criteria also
yield ≈ 300–400 continuous 12 h segments of observations
for each initialization time and tower location that will be
used for forecast verification and the multivariate methods
discussed in Sect. 3.3.
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Figure 1. Model elevation (color contour) surrounding the M5
tower (white triangle). The 50 closest model grid points (dots) are
overlaid. The white dot shows the closest model grid point to the
M5 tower.

3 Methods

3.1 Ramp definition

Wind power ramps are large changes in power production
over short time periods. Despite the significant influence of
ramp events on the electric grid and a clear need for accu-
rate forecasts of these events, there is no commonly accepted
method to define and identify them. Ramp definitions vary
in the literature (Kamath, 2010, 2011; Pinson and Girard,
2012; Bossavy et al., 2013; Bianco et al., 2016) regarding
the threshold of power change and the duration over which
that change occurs. Variations also exist regarding which data
points in a given window of time should be used when calcu-
lating the change in power and, lastly, whether to use power
time series directly when defining ramps or instead use a fil-
tered time series (Bossavy et al. 2013). Commonalities in the
literature include the need to define ramp magnitude, dura-
tion, and sign (i.e., up- or down-ramp).

This lack of a standard definition is primarily because what
is considered an important ramp event depends on the needs
of the wind farm operator or grid-system manager at any
given time or location. Here, we employ a combination of
the minimum–maximum method used by Pinson and Girard
(their Eq. 8, 2012) and that employed in the Ramp Tool &
Metric created by Bianco et al. (2016) to generate separate
ramp time series for up-ramps and down-ramps. Up-ramps
and down-ramps are considered separately because they have
different impacts on the power grid and lead to different deci-
sions. Up-ramps may result in a swap of conventional energy
sources for cleaner wind power while a down-ramp may re-
sult in the opposite and can have more detrimental effects on
the grid during periods of high electricity demand.

Before identifying power ramps, wind speed observations
and forecasts must be converted to power. A conversion from
wind speed to power in this study is achieved via the Inter-
national Electrotechnical Commission (IEC) turbine power
curve for Class 2 turbines (IEC, 2007). This power curve is
for wind turbines with a cut-in wind speed > 3 m s−1, rated
power ≥ 16 m s−1, and a cut-out wind speed > 25 m s−1. Us-
ing the resulting power time series, we create binary time se-
ries of up- and down-ramp events into ones (ramp occurred)
and zeros (no ramp occurred). We do this by first dividing the
power time series intoNwin sliding time windows of length h
and then finding the largest positive and negative power dif-
ferences that exist within each window (1pmax and 1pmin,
respectively). If the largest positive power difference equals
or exceeds the defined power change threshold ξ , then the
up-ramp time series is given a value of 1 for that time win-
dow. Conversely, if the largest negative power difference is
less than or equal to ξ , then a 1 is assigned to the down-ramp
time series for that time window. If the above respective crite-
rion is not met, then a 0 is assigned for that time window. The
window then slides 1 h forward in time and the process is re-
peated until there areNwin binary values for both the up-ramp
and down-ramp time series. We allow up-ramps and down-
ramps to happen within the same time window, so that there
could be a value of 1 assigned for the same time window
in both the up- and down-ramp time series. This allowance
is reasonable because for some longer window lengths, up-
ramps and down-ramps could both occur and are equally im-
portant to forecast. If a small up-ramp (down-ramp) inter-
rupts an overall large down-ramp (up-ramp), the ramp will
still be classified as a down-ramp (up-ramp) as long as the
large ramp meets the power threshold criteria. An example of
the identification of up- and down-ramps according to these
methods appears in Fig. 2. While more complex ramp def-
initions are available, the chosen criteria for up- and down-
ramps reflect the common intuition about ramps including
threshold ξ and window length h to customize the definition
to specific needs. As determined later, this ramp definition
can be employed in a probabilistic framework and will be
used to compare the different approaches to scenario genera-
tion.

3.2 Deterministic to probabilistic forecasts: univariate
post-processing

To improve the skill of the raw HRRR forecasts at predict-
ing ramp events, we employ statistical post-processing tech-
niques to enhance the HRRR forecasts through the addition
of uncertainty information. These methods convert the deter-
ministic (single value) raw HRRR forecast into probabilistic
forecasts by creating a set of forecast scenarios of wind speed
that represent the forecast uncertainty. Wind speed scenar-
ios are converted to power scenarios and then probabilities
of ramp events are derived. The first step to generating sce-
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Figure 2. Ramp identification at the M5 tower location for an ob-
served power time series at 00:00 UTC on 3 March 2016 for a win-
dow size h= 3 h and change in power threshold ξ = 60% of turbine
power capacity. Three consecutive time windows are shown as the
gray rectangles in (a), (b), and (c). The identified ramps in those
time windows are highlighted in red (up-ramps with ≥ 60% power
change) and blue (down-ramps with ≤−60% power change). The
change in power capacity associated with each ramp is written in the
white text boxes within the gray time windows. The total number of
up- and down-ramps identified within all 3 h sliding time windows
is two and six, respectively.

narios is to perform univariate post-processing on the HRRR
forecasts at each individual lead time.

We first determine a predictive distribution model for each
tower and forecast initialization time which accurately pre-
dicts future observations for each forecast lead time. We em-
ploy ordinary least-squares regression on the observed wind
speed data during which the HRRR forecasts are also avail-
able (1 January 2015–28 September 2016). To make use of
the ≈ 21 months during which both the HRRR forecasts and
observations are available, we cross-validate these data. We
leave 1 month out for verification and fit the statistical mod-
els used to determine the parameters of the predictive distri-
butions with the remaining 20 months of data (training pe-
riod). We repeat this process so that 21 months of forecasts
and independent verifying observations are obtained for each
month, forecast initialization, lead time, and tower location.
We find the mean and standard deviation of the predictive
distributions by inserting verifying forecasts into the fitted re-
gression model. Before performing the regression, we apply
a power transform (not to be confused with wind-speed-to-
power conversion) with power exponent P to the forecasts
x̃ = xP and observations ỹ = yP to address the increase in
forecast uncertainty with wind speed (i.e., heteroscedastic-
ity in the dataset). Heteroscedasticity in the data is visible as
more spread in the data points at higher wind speeds than
at lower wind speeds in Fig. 3a. We select power exponents
for the transformations that produce slope coefficients near-
est to zero from a second regression of the absolute residuals
from the first regression on the transformed forecasts. The
exponent is 0.66 (0.75) for both forecasts and observations at
each initialization time and all lead times at the NREL M5
(PNW) tower.

After applying a power transform to the data, we remove
the seasonal cycle for each location, initialization time, and
lead time by normalizing the transformed forecasts and ob-
servations by the corresponding seasonal cycle. The seasonal
cycle model takes on the form

s(T )= a0+ a1 sin(2πT )+ a2 cos(2πT ) , (1)

and the model coefficients a0, a1, and a2 are determined by
fitting the seasonal cycle model to the transformed forecasts
for every forecast date in the form of fractional day of the
year T . We fit the seasonal cycle model solely on the trans-
formed forecasts because there are more forecasts than obser-
vations available during the period of interest. Therefore, the
same seasonal cycle coefficients are used to derive the sea-
sonal cycle for the transformed forecasts and observations.

The transformation and removal of the seasonal cy-
cle makes the relationship between the transformed fore-
casts and transformed observations more homoscedastic (i.e.,
more consistent forecast variability for all wind speeds in
Fig. 3b). The idea of removing seasonal characteristics from
forecast and observation data to be able to fit a statisti-
cal model with data across different seasons has previously
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Figure 3. Scatterplots of (a) observations (obs) versus forecasts (fcst), (b) unit-less transformed observations versus transformed forecasts,
and (c) the back-transformation of the observations versus the back-transformed forecasts from the NREL M5 tower at an 00:00 UTC
initialization and a 2 h forecast lead time. The exponent P used in the power transformation is shown in (b). The least-squares linear
regression trends (solid red line in b and red dots in c) and lines representing 1 standard deviation (solid black line in b and black dots in c)
from the regression lines are displayed for the transformed and back-transformed data.

been used by, e.g., Dabernig et al. (2017). This homoge-
nization of the data allows us to use a relatively simple re-
gression model and still account for the different sources of
heteroscedasticity. Alternatively, heteroscedasticity could be
addressed by a more complex, nonhomogeneous regression
model (Thorarinsdottir and Gneiting, 2010; Scheuerer and
Möller, 2015), but in the present context the approach of
data transformation combined with standard linear regression
seems equally appropriate. An inverse transformation of the
observations, forecasts, and regression lines reveal the com-
plexity of the regression line we would have had to use if
we had not transformed the data before applying regression
analysis (Fig. 3c). The slight curvature in the standard devi-
ation lines in Fig. 3c shows the dependence of error variance
on wind speed magnitude (i.e., heteroscedasticity); the black
dots are closer to the red regression line at lower wind speeds
than at higher wind speeds. The scatter in the red and black
regression dots in Fig. 3c illustrates how the annual cycle in-
fluences the regression; depending on the time of year, the
transformation value can be different because of the annual
cycle.

We test three candidate predictive distribution models for
the transformed wind speed: truncated normal, truncated lo-
gistic, and gamma distributions where the truncated distribu-
tions exclude negative values. These distributions, given the
same mean and standard deviation, vary in the shape of their
peaks and size of their tails. Their means and standard de-
viations are determined by the above linear regression. For
the truncated normal and truncated logistic model we use,
for simplicity, the means and standard deviations of the re-
spective untruncated distributions; for 80 m wind speeds this
approximation seems justified because observations are suffi-
ciently far away from zero for the truncation to be negligible
(see Fig. 3b). Probability integral transforms (PITs) of each
predictive cumulative distribution function (CDF, Fi) and its
verifying observation yi are calculated for each candidate
distribution as di := Fi (yi) and provide an assessment of
which distribution yields the best calibration (Dawid, 1984;
Gneiting et al., 2007). Histograms of the PITs which include

all verification days and lead times show that the gamma and
truncated logistic distributions are well-calibrated to the ob-
served transformed wind speeds at the NREL M5 and PNW
towers, respectively for 00:00 UTC (Fig. 4) and 12:00 UTC
(not shown) initialization times. The good calibration is qual-
itatively demonstrated by the mostly uniform histograms in
Fig. 4. For a more quantitative assessment of calibration, we
compute the continuous ranked probability score (CRPS).
The CRPS is a proper scoring rule that is often used to evalu-
ate the quality of a probabilistic forecast by summarizing the
sharpness and calibration of the forecast distribution (Gneit-
ing et al., 2005; Gneiting and Raftery, 2007). A proper score
is one that produces the highest reward (i.e., lowest CRPS
score) by using the true probability distribution (Gneiting and
Raftery, 2007). For a given pair of predictive CDF F and ver-
ifying observation y, the CRPS is defined as

CRPS(F,y)=

∞∫
−∞

[
F (ξ )−H (ξ − y)

]2dξ, (2)

where F (ξ ) is the probability that the forecast will not ex-
ceed threshold ξ and H is a Heaviside step function which
attains the value 1 when its argument is≥ 0 and attains 0 oth-
erwise. A low CRPS value suggests a predictive distribution
model can accurately represent future observations. We cal-
culate the CRPS for each candidate predictive distribution us-
ing the closed-form expressions for the CRPS of a truncated
normal (Gneiting et al., 2006) and the truncated logistic and
gamma distributions (Scheuerer and Möller, 2015). Based on
the CRPSs, averaged over all lead times for each tower and
initialization (Table 1), and the PIT histograms, we choose
to proceed with the gamma (truncated logistic) distribution
model for the NREL M5 (PNW) transformed observations.

3.3 Generation of forecast scenarios: multivariate
post-processing

We obtain probabilistic forecasts of univariate statistically
post-processed wind speeds for each verification day, fore-
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Figure 4. Histograms of the probability integral transform (PIT)
using the predictive truncated normal, truncated logistic, or gamma
distribution models at 00:00 UTC for the M5 tower (blue) and PNW
tower (green). The horizontal black line depicts the count that each
of the 20 bins would have if the histogram was perfectly uniform.

Table 1. Average CRPS (in m s−1) for the 00:00 UTC and
12:00 UTC calibrated probabilistic forecasts obtained using the
truncated normal (N0), truncated logistic (L0), and gamma (G) pre-
dictive distribution models. The arrow represents the direction for
good scores, and the best scores are shown in bold.

NREL M5 PNW ↓

N0 00:00 UTC 0.203 0.137
12:00 UTC 0.234 0.157

L0 00:00 UTC 0.203 0.136
12:00 UTC 0.235 0.156

G 00:00 UTC 0.202 0.137
12:00 UTC 0.233 0.158

cast initialization, and lead time for both towers by using the
truncated logistic or gamma distribution models as discussed
in Sect. 3.2. These marginal distributions provide prediction
uncertainty information for each lead time on a given day
and initialization time, but they do not provide information
about the serial dependence of the distributions across mul-
tiple lead times. Ramp events are changes in power over a
short period of time; to identify ramps and the uncertainty
associated with them, we need to generate scenarios of wind
speed which represent that serial dependence and that can
then be converted to scenarios of wind power. We model se-
rial dependence of the individual lead time predictive distri-
butions to construct forecast scenarios of wind speed which
are then converted to power. We utilize four methods to de-
fine the interdependence structure and generate the scenarios.

The Gaussian copula, StSS, MDSS, and MDSS+ methods
are discussed below.

3.3.1 Gaussian copula

We first generate scenarios of wind speed following the
Gaussian copula method (Pinson et al., 2009; Pinson and Gi-
rard, 2012). The Gaussian copula approach first converts the
transformed wind speeds (Sect. 3.2) from the chosen forecast
distribution (here, we use truncated logistic or gamma) into a
uniform marginal probability distribution and then converts
the uniform values into standard Gaussian space using a com-
bination of CDFs FD and inverse CDFs F−1

D , where D is ei-
ther a gamma G (λ,r), truncated logistic L0(µ,σ ), or Gaus-
sian N (0,1) distribution. A flow diagram of the Gaussian
copula procedure starting with a marginal gamma distribu-
tion is shown in Fig. 5 and described below. An empirical
covariance matrix of the Gaussian values is constructed to
estimate the covariance between the Gaussian values from
all pairs of lead time. This covariance matrix provides in-
formation necessary to transition from marginal distributions
for each lead time to multivariate distributions, which inform
us how the Gaussian values link across multiple lead times.
Given the limited amount of training data and gaps in the
range of dates for which observations are available, we do
not attempt to estimate a time-varying correlation model. In-
stead, we follow Pinson and Girard (2012) and use a fixed
exponential correlation model (ECM),

ECM(Xk1,Xk2)= exp
(
−
|k1− k2|

ν

)
, (3)

where Xk1 and Xk2 are the Gaussian random variables at
lead time k1 and k2, respectively, and ν is the range param-
eter which controls the extent of correlation of transformed
wind speed across lead times. An appropriate value for ν is
selected empirically so that the resultant ECM for a given
value of ν most resembles the decay of the empirical co-
variance values (Appendix A). A correlation matrix based
on the ECM and the estimated value of ν is then set up
and employed to randomly generate scenarios of multivari-
ate Gaussian-distributed values. Those Gaussian-distributed
scenarios are then converted to scenarios with uniform mar-
gins by taking the CDF of a standard Gaussian distribution
evaluated at the Gaussian-distributed values. An inverse CDF
of the forecast marginal distribution (here, we use truncated
logistic or gamma) of the uniform values yields the final re-
sult of transformed wind speed scenarios with marginal dis-
tributions as determined in Sect. 3.2. For this study, we gen-
erate 1000 Gaussian copula scenarios of transformed wind
speed. We then convert the transformed scenarios into sce-
narios of untransformed wind speeds by reversing the trans-
formation performed in Sect. 3.2. A conversion from wind
speed to power scenarios is achieved via the International
Electrotechnical Commission (IEC) turbine power curve for
Class 2 turbines (IEC, 2007) before ramps are identified.
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Figure 5. Flow diagram of how the Gaussian copula method is used to generate n number of wind speed scenarios from a multivariate
Gamma distribution. Downward-pointing arrows show the result of the top processes. The diagonally pointing arrows illustrate the next step
in the method. The original wind speeds do not have to be transformed, but for this study, we begin this method using transformed wind
speeds from a univariate Gamma distribution, which results in n number of scenarios of transformed wind speeds from a multivariate Gamma
distribution.

3.3.2 Standard Schaake shuffle

We also generate forecast scenarios of transformed wind
speed using the Schaake shuffle method, which uses his-
torical wind speed scenarios to determine serial dependence
of the wind speed forecasts across forecast lead times. This
method for generating multivariate forecasts is used widely
for precipitation and temperature forecasts (Clark et al.,
2004) but has not yet been applied for wind speed and
power forecasts. This method generates wind speed fore-
cast scenarios which can be converted to power. Alterna-
tively, the method could be used to generate power scenar-
ios directly if given predictive distributions and observations
of power. Forecast scenarios are easier to visualize in wind
speed space (transformed wind speed for our data) because
of the strong nonlinearity of the power curve, so we discuss
the method starting with predictive distributions and obser-
vations of transformed wind speed. For a given date, we con-
struct 50 forecasts for each forecast lead time by breaking the
predictive distributions in Sect. 3.2 into 50 quantiles so that
the η forecasts are simply the η quantiles of the predictive
distribution. For 50 quantile forecasts, the quantile propor-
tions range from 0.01 to 0.99 of the predictive distribution in
increments of 0.02.

The next step in the Schaake shuffle method is to se-
lect an identical number of observed historical scenarios of
transformed wind speed. The historical scenarios are selected
from the 50 available dates preceding the forecast initializa-
tion date, so that the historical scenarios of transformed wind
speed are from a similar season. Alternatively, dates could be
pulled at random throughout the observed historical record.
The method then ranks the 50 historical observations sep-
arately for each lead time and assigns the same ranking to
the 50 sorted forecast quantiles (an illustration of this pro-
cess for three historical scenarios and three forecast quantiles
is shown in Fig. 6b, c). The final step of the Schaake shuf-
fle method is to connect the ranked quantile forecasts across

lead times to yield multivariate forecast scenarios (Fig. 6d).
For instance, a forecast quantile that is associated with his-
torical scenario “3” at lead time 0 will connect to all forecast
quantiles that are also associated with historical scenario “3”
at their lead time (Fig. 6d). This shuffling of forecast quan-
tiles to match the rank of historical scenarios yields forecast
scenarios that maintain a realistic temporal interdependence
and shape across lead time while matching the predictive
marginal distribution as described in Sect. 3.2.

Like in the Gaussian copula method, the generated scenar-
ios of transformed wind speed forecasts from the Schaake
shuffle method can then be converted to power, if desired,
to identify ramp events. Here, the selection of the historical
scenarios used in the Schaake shuffle was ad hoc; the method
does not make a preferential selection of dates. We next dis-
cuss two methods which preferentially choose historical sce-
narios that are most similar to the (1) quantiles of the forecast
marginals and (2) the quantiles of the forecast marginals and
also the quantiles of the wind speed difference between lead
times. We distinguish between these three methods by refer-
ring to the standard method above as the StSS, the first pref-
erential method which will be discussed below as the MDSS,
and the enhanced preferential method also discussed below
as the MDSS+.

3.3.3 Minimum divergence Schaake shuffle

The first of the two methods that we use to preferentially
select and generate probabilistic forecast scenarios of trans-
formed wind speed is the MDSS method (Scheuerer et al.,
2017) . The MDSS follows the same procedures as the StSS
method that impose the ranking of historical scenarios on
sorted quantiles of the forecast distributions and that connect
forecasted quantiles associated with one particular historical
scenario across all lead times. Like for the StSS, the MDSS
can also utilize historical observations from dates when no
forecasts are available, an advantage over another variant of
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Figure 6. Illustration of how the Schaake shuffle method generates three wind speed forecast scenarios for a given date. For a given forecast
date, three observed historical scenarios of wind speed are selected from the historical record (a). The historical scenarios are ranked (b)
and then the same ranking is imposed onto the sorted forecast quantiles (c). The forecast quantiles are connected across forecast lead time
according to their corresponding rank (d). In panel (b), we emphasize the ranking of the second historical scenario to show how the ranking
of a historical event manifests itself in the shape of a forecast scenario in (d).

the Schaake shuffle method introduced in Schefzik (2016).
The identical processes of the StSS and MDSS methods are
shown in Fig. 6. The MDSS deviates from the StSS in its
selection of historical scenarios; the MDSS preferentially
chooses dates such that the marginal distributions of the sam-
pled historical scenarios are most similar to the quantiles of
the post-processed forecast marginal distributions across all
forecast lead times rather than a random or user-assigned se-
lection of dates used for the StSS method. In the hydrological
context discussed by Scheuerer et al. (2017), this preferential
selection helped preserve features in the historical scenarios
during the shuffling procedure shown in Fig. 6c and d and led
to improved multivariate probabilistic forecasts compared to
StSS.

Because historical scenarios selected for the MDSS
method are not limited to the most recent η scenarios from
the forecast initialization date as with the StSS method, the
number of scenarios must be narrowed down to η scenarios
starting from the total number of candidate scenarios N0 in
the historical record, which for our dataset is≈ 300–400 sce-
narios for each initialization time and tower location. This

selection seeks the η historical scenarios that yield the least
divergence1 1Hk between the CDF of the forecast marginal
distribution F fk at each lead time k, and the empirical CDF
FHk calculated from a set H of historical observation scenar-
ios:

1Hk =

∫ (
FHk (x)− F fk (x)

)2
dx. (4)

Each scenario within the setH is evaluated for final selection
based on whether the scenario results in a larger or smaller
total divergence 1Htot =

∑
k1

H
k when it is removed from the

calculation. If the scenario results in a smaller divergence
when it is left out of the computation, then it is not an op-
timal choice. Conversely, if leaving out the scenario results
in a larger divergence, then we know that the scenario is im-
portant for minimizing the divergence and should be kept as

1Divergence in this study means the integral of the squared dif-
ference between two CDFs and is different from the divergence term
∇ ·F commonly used in meteorology, where ∇ is the del operator
and F is a meteorological field.
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one of the final η scenarios. Ideally, a set H that includes
all possible candidate scenarios would be reduced to size η
one by one, but this is computationally expensive. Therefore,
we use a sequence of H that reduces the starting number
of candidate scenarios to test and eliminate more than one
scenario with each iteration until η scenarios are reached.
For example, for the M5 tower location at initialization time
00:00 UTC, there areN0 = 416 total candidate historical sce-
narios, but we use the sequence 350, 300, 250, 200, 180,
150, 140, 130, 120, 100, 80, 70, 65, 60, 55, η, which reduces
N0 to η = 50 historical scenarios in 15 iterations rather than
N0− η iterations. Coding details of the method are given by
Scheuerer et al. (2017) along with a computationally efficient
method for calculating the integral.

3.3.4 Enhanced version of the minimum divergence
Schaake shuffle

Constraining the marginal distributions does not necessarily
improve the representation of temporal gradients of the quan-
tity of interest. If the HRRR forecasts of temporal wind speed
changes have some skill, then using a predictive distribution
of these differences explicitly in the MDSS algorithm might
result in a better selection of historical dates that have sim-
ilar temporal gradients. This formulation is the idea behind
the final method we use to generate transformed wind speed
scenarios. The final method is much like MDSS but includes
an additional term to explicitly capture the variation in wind
speed between neighboring forecast lead times. For this en-
hanced MDSS method, η historical scenarios are chosen that
yield the least divergence from both the forecast marginal
distributions and the forecast distribution of the lag 1 h lead
time differences of transformed wind speed. Forecast distri-
butions of lag 1 h lead time differences are attained in the
same way as forecast marginal distributions (Sect. 3.2), ex-
cept that now we perform a regression on lag 1 h difference
of transformed wind speed. Based on PIT histograms (not
shown), the best predictive distribution that represents these
differences for both tower locations is the (non-truncated) lo-
gistic distribution. For this method, the η historical scenarios
that yield the smallest divergence when considering both the
forecast marginal distributions and the forecast distributions
of wind speed differences are selected. To emphasize the
temporal gradient between two neighboring lead times, we
assign more weight to the divergence term associated with
wind speed differences. In this study, we weight the wind
speed difference term as 5 times greater than the marginal
distribution term. This method requires that the lag 1 h dif-
ference between lead times in the historical scenarios best
match the lag 1 h differences of the forecast and is therefore
an enhanced method to the MDSS.

3.3.5 Differences between historical observations
selected by StSS, MDSS, and MDSS+

Marginal distributions of transformed wind speed of the his-
torical scenarios used for each of the three Schaake shuffle
methods (Fig. 7a) and the distributions of the lag 1 h dif-
ferences of those scenarios (Fig. 7b) reveal that the MDSS
and MDSS+ produce historical scenarios closer to the fore-
casted distributions than does the StSS method. Of course,
the MDSS+ is the only multivariate method that utilizes the
lag 1 h differences when selecting historical scenarios, and
for that reason, we see that the MDSS+ distributions for
the lag 1 h differences (green boxes in Fig. 7b) are often
a slightly better match to the forecasted distribution (gray
boxes in Fig. 7b) than the regular MDSS or StSS methods
(pink and blue boxes in Fig. 7b, respectively). The MDSS+
method sometimes makes compromises in the selection of
optimal scenarios for one of its two terms because it seeks
to find the historical scenarios that are an overall best match
when considering both the quantiles of the forecasted trans-
formed wind speed distribution and the distribution of lag
1 h differences of those wind speeds. Also, the MDSS and
MDSS+ methods only have a limited set of historical dates
from which they can choose scenarios, so we cannot expect a
perfect match. Box plots of the distributions of transformed
wind speeds and the lag 1 h differences of those wind speeds
are not shown in Fig. 7 for the Gaussian copula (GC) method
because we wanted to point out the differences among the
historical scenarios selected by each Schaake shuffle method;
the GC method does not use historical scenarios. Once the
historical scenarios are chosen, the quantiles of the forecast
marginal distributions are reordered to have the same ranking
of the corresponding historical scenarios. Like for the Gaus-
sian copula and StSS methods, both the MDSS and MDSS+
scenarios are then transformed back into wind speed space
and converted to power before identifying ramp events.

4 Results

4.1 Verification of deterministic HRRR forecasts with
observations

To provide a reference for the performance of predicting up-
and down-ramp events, we first illustrate how ramps iden-
tified from the raw HRRR forecasts compare to those iden-
tified from the observations at the M5 and PNW tower lo-
cations. The correlation between ramps identified with the
HRRR forecasts and observations are low at both tower lo-
cations (Fig. 8) ranging between 0.23 and 0.37. The ramp
definition used for Fig. 8 is different from the ramp defini-
tion discussed in Sect. 3.1 because it shows ramps identi-
fied with wind speed instead of power. This ramp definition
is only used in Fig. 8 to show the magnitude of the change
in wind speed that is observed and forecasted at each tower
location during a period of 3 h. Utilizing the magnitude di-
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Figure 7. Box plots of (a) the forecast marginal distributions of transformed wind speed (gray boxes) and (b) forecast lag 1 h wind speed
differences (gray boxes) for 00:00 UTC forecast initialization on 28 March 2015 at the PNW tower location. Distributions of transformed
wind speed and lag 1 h differences in transformed wind speed from the 50 historical scenarios used by the StSS (blue boxes) and selected by
the MDSS (pink boxes) and MDSS+ (green) methods are also shown. The box plots display the interquartile range (rectangle region), the
median (middle line within rectangle), outliers (dots), and values outside the interquartile range but not considered outliers (lower and upper
whisker) of the distributions. Outliers are values more than 1.5 times the interquartile range.

rectly – rather than a particular exceedance event – elimi-
nates the need to set any particular threshold for a change in
wind speed, which would be difficult to define anyway be-
cause of the nonlinear relationship between wind speed and
the power curve. The purpose of Fig. 8 is to reveal biases in
the HRRR forecasts and differences between the two tower
sites, while the analysis of power ramp events in the subse-
quent sections is more applicable for the decision making of
power grid operations.

At the M5 tower site, the HRRR predicts stronger wind
speed ramps compared to observations; forecasted wind
speed ramps ≥ 5 m s−1 make up 40 % of the total number
of up- and down-ramps while the observed ramps of the
same magnitude only make up 33 % of the total number of
ramps. The HRRR generally underpredicts the magnitude of
wind speed ramps at the PNW site; observed wind speed
ramps ≥ 5 m s−1 make up 18 % of the total number of up-
and down-ramps while the forecasted ramps ≥ 5 m s−1 only
contribute to 9 % of the total number of ramps. These per-
centages also highlight that the M5 location has a greater
percentage of observed ramps of the same magnitude than at
the PNW location (33 % vs. 18 %), suggesting that the wind
speeds at the M5 site are more variable than at the PNW site.

The M5 tower is located in a region of very complex terrain
about 5 km east of the Colorado Front Range, which because
of the atmosphere’s interaction with the mountainous terrain,
can cause large changes in wind speed over short periods of
time. The PNW tower is also located in a region of complex
terrain near the Columbia River gorge, but the terrain is not
as complex as the M5 site.

The low correlation coefficients between the HRRR fore-
casts and observed wind speed ramps suggest that there is
some skill in the HRRR forecasts at predicting ramps, but
the skill is limited and differs between up- and down- ramps.
Low correlation limits the extent to which statistical post-
processing can improve the forecast. However, we will show
that systematic over- and under-forecasting biases in the cli-
matological frequency of ramp events can be reduced with
statistical post-processing (see Fig. 9). Moreover, the multi-
variate methods discussed in this paper can provide informa-
tion about the uncertainty of the forecast via the generation
of many possible wind speed scenarios.
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Figure 8. Observed (obs) and HRRR-forecasted (fcst) wind speed
ramps during sliding 3 h time windows over a period of 12 h. Abso-
lute values of the ramp magnitudes are shown. Wind speed ramps
are plotted for every sliding 3 h time window starting at 00:00 UTC
and for both the M5 (a, b) and PNW (c, d) tower locations. The cor-
relation coefficient, r is displayed for each tower location and type
of ramp.

4.2 Verification of multivariate methods compared with
HRRR forecasts

We now compare the various multivariate methods used to
generate scenarios of transformed wind speed. To also com-
pare the different methods to the deterministic raw HRRR
forecasts, we first employ an event-based metric to assess
systematic biases with regard to the frequency of ramp
events. This metric counts the number of power ramps de-
fined as in Sect. 3.1 identified from the scenarios generated
by each method described in Sect. 3.3. The relative frequency
of power ramps that exceed ξ = 60 % change in power capac-
ity during 6 h for all days when forecasts and observations
are available (Fig. 9) represents a climatology of up- and
down-ramps for each tower location. The number of ramps
identified in each 6 h window of time for each of the 50 sce-
narios (1000 scenarios for the Gaussian copula method) were
averaged together and plotted as a single line in Fig. 9. We
again see a general over-forecasting bias of the number of
ramp events (this time power ramps) produced by the raw
HRRR forecasts compared to observations at the M5 tower
(Fig. 9c, d) and the opposite behavior of the HRRR forecasts
at the PNW tower (Fig. 9a, b). The HRRR forecasts espe-
cially struggled with the diurnal cycle and magnitude of the
relative frequency of up- and down-ramps at the PNW lo-
cation. The HRRR predicted the most up-ramps in the first
four ramp windows (between 00:00 UTC and 09:00 UTC)
and then leveled out for the remainder of the early morning
while the observations show a minimum in up-ramps during
the first four ramp windows and a maximum during the re-

maining windows, which suggests that the HRRR incorrectly
captured the diurnal cycle. For the down-ramps, the HRRR
forecasted a gradual increase in ramp events across all ramp
windows, while the observations show a peak in down-ramps
around the fourth ramp window (≈ 9:00 UTC) followed by a
gradual decrease in down-ramp events during the remainder
of the morning.

The method that most closely follows the ramp climatol-
ogy of the observations (black line in Fig. 9) is the StSS
method, followed by the MDSS+ and MDSS and lastly the
Gaussian copula method. The StSS method has an overall
better prediction of up- and down-ramp climatology than the
raw HRRR forecasts when compared to a climatology of ob-
served ramp events. As discussed in Sect. 3.3, the MDSS
and MDSS+ methods make a preferential selection of his-
torical scenarios that minimize the divergence between the
post-processed forecast and past scenarios and should yield
scenarios more similar to the current forecast than the ran-
dom or assigned scenarios used in the StSS method. Despite
this preferential selection, the MDSS and MDSS+ methods
do not outperform the StSS method in predicting the clima-
tology of relative frequency of ramp events for this dataset.
The reasons for this result are presented in the discussion for
Fig. 13. Before discussing reasons for why the more com-
plex methods do not outperform the standard Schaake shuf-
fle method at predicting a climatology of ramp events, we
next examine a metric used to compare the skill of various
probabilistic forecast methods to determine the differences
in performance between the StSS and two MDSS methods.

The StSS, MDSS, MDSS+, and the Gaussian copula
methods produce probabilistic forecasts of ramp events. To
verify the skill of and compare among the different prob-
abilistic methods, we compute Brier skill scores (BSSs).
The Brier skill score quantifies the extent to which a fore-
cast method improves the prediction of a two-category event
compared to a reference forecast:

BSS= −
BSfcst−BSref

BSref
(5)

where BSfcst is the Brier score of the forecast and BSref is
the Brier score of the reference forecast. The Brier score is a
strictly proper score that summarizes the accuracy of a proba-
bilistic forecast; it is defined as the squared error of the prob-
ability forecast of an event and the observed binary outcome
(1 if the event happened, 0 if not). The events here are char-
acterized by the exceedance of a particular ramp threshold ξ
during a ramp window size h. Climatological probabilities of
occurrence of up- and down-ramp events with a particular ξ
and h are used as the reference forecast. Persistence forecasts
are another commonly used baseline for wind power fore-
casting, but because ramp events can change magnitude and
even direction in a short period of time, persistence is often
not a practical estimate of ramp events. Before calculating
the BSfcst, we took the average of the binary event forecasts
from all 50 scenarios (1000 scenarios for the Gaussian cop-
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Figure 9. Relative frequency of up-ramps (a, c) and down-ramps (b, d) identified with ≥ 60 % change in power capacity during each 6 h
time period (i.e., ramp windows) starting at 00:00 UTC. Relative frequencies of observed ramps (black lines) and forecasted ramps from
the HRRR model (orange lines) are shown for the PNW (a, b) and M5 (c, d) tower locations. Relative frequencies are also shown for the
four different multivariate methods: standard Schaake shuffle (StSS; blue lines), minimum divergence Schaake shuffle (MDSS; pink lines),
enhanced minimum divergence Schaake shuffle (MDSS+; green lines), and Gaussian copula (GC; brown lines).

ula method) for each method to create a probabilistic forecast
with a value between 0 (no ramps occurred in any of the sce-
narios) and 1 (ramps occurred in all of the scenarios). Brier
scores were calculated for each type of ramp (i.e., up- and
down-ramps with ξ = 0.20, 0.40, 0.60, and 0.80 and h= 3
and 6 h). To quantify the sampling variability of the BSS
induced by the limited data sample size, we first generated
100 bootstrap samples with replacement of the daily BSfcst
and BSref separately for each forecast initialization time (i.e.,
00:00 UTC and 12:00 UTC). Then, we summed the 100 BSs
from each initialization time together before calculating the
BSS to reduce sampling variability.

Box plots of the BSS for both tower locations and differ-
ent types of power ramps reveal dependencies of the fore-
cast skill on ξ , h, and tower location (Figs. 10 and 11). The
most noticeable difference among the BSS is that the skill
is generally higher for forecasts made at the PNW tower lo-
cation compared to those at the M5 tower location for all
types of ramps. Recall from Sect. 4.1 that the observed up-
and down-ramps and those predicted by the HRRR had low
correlation coefficients, which is why it is difficult to get
positive skill with any of the methods at the M5 site; statis-
tical post-processing can correct for systematic forecasting
biases, but it cannot improve random errors which lead to
low correlation. Conversely, at the PNW site, there are over-

all higher correlation values (Fig. 8) compared to those at
the M5 site meaning that statistical post-processing will be
more consequential. This behavior results in generally pos-
itive and higher BSS for the PNW site than for the M5 site
(Figs. 10 and 11). Greater positive skill is gained when we
identify ramps in a window size of 6 h (Fig. 11) instead of
3 h (Fig. 10) for both the PNW and M5 sites because timing
errors are less consequential when the time window is larger.

The multivariate methods do not present as much skill in
forecasting down-ramps as they do in forecasting up-ramps
at the PNW site, except for events with small (20 %) power
changes during 3 h. In Fig. 8, the correlation between ob-
served ramps and ramps forecasted by the HRRR is greater
for up-ramps (0.37) than down-ramps (0.27) at the PNW
site. At the M5 site, the correlation between observed and
HRRR-forecasted down-ramps (0.31) is larger than for up-
ramps (0.23). We also note greater skill for the multivariate
methods at predicting down-ramps opposed to up-ramps at
the M5 site, which combined with the relative skill of up-
and down-ramps at the PNW site suggests that the quality of
the initial raw forecast skill impacts the amount of skill that
can be gained from the probabilistic approaches.

How does skill vary among the different multivariate
methods? The scenarios produced with the Gaussian copula
method result in significantly less skill than all of the other
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methods for the M5 tower location and marginally less skill
than the other methods at the PNW site. The Gaussian cop-
ula utilizes an exponential correlation model that defines the
temporal dependence of scenarios through the range param-
eter υ, which was set to 2.5 and 1.5 for the PNW site and M5
site, respectively. Those parameters were selected based on
empirical covariances but did not yield the highest BSS. In
fact, the average BSS from predicting up- and down-ramps
using the Gaussian copula method is highly sensitive to the
empirical range parameter used in the exponential correlation
model (Table 2). For example, for the M5 location, υ = 4.5
yields the closest BSS values (Table 2) to those calculated for
the Schaake shuffle methods (Fig. 11) for all power thresh-
olds and ramp types. This value of υ would also reduce the
number of Gaussian copula ramp events that are currently
over-forecasted in Fig. 9. However, based on the empiri-
cal covariances obtained for the M5 tower (Fig. A1 in Ap-
pendix), selecting a υ value this large did not seem plausible.
It is possible that the assumption of an exponential corre-
lation model (suggested by Pinson and Girard, 2012) is not
ideal for this setup, but with the limited training dataset, we
felt that a parametric assumption was necessary to control
sampling variability of the estimated covariance matrix. Even
then Fig. A1 suggests that stronger correlations of the em-
pirical covariances would lead to better results. Our conclu-
sion from results in Table 2 is that selecting an appropriate
υ value before generating the Gaussian copula scenarios is
critical but difficult to achieve with the usual statistical diag-
nostics. The Schaake shuffle approaches do not rely on the
selection of a sensitive parameter, which could make these
Schaake shuffle methods more preferable. Additionally be-
cause the Gaussian copula method uses random sampling
rather than quantile sampling, the Gaussian copula method
requires many more scenarios to represent the distribution
than do the Schaake shuffle methods. From an operational
perspective, too many scenarios (e.g., 1000 vs. 50) may add
unnecessary complication to the forecasting process.

The most surprising result from the analyses is that the
MDSS and MDSS+ methods are not overall significantly
better than the StSS method despite their preferential selec-
tion of historical scenarios. The MDSS method selected his-
torical scenarios of transformed wind speed that were most
compatible with the marginal distributions of the forecast day
and theoretically should provide higher BSS than the StSS
method, which only could use scenarios from the 50 avail-
able historical dates prior to the forecast day. The original
MDSS method used by Scheuerer et al. (2017) worked well
for precipitation events but does not focus on the selection of
historical scenarios based on their compatibility with fore-
casted (temporal) gradients, which are crucial for the predic-
tion of ramps. This understanding led us to include an ad-
ditional term in the MDSS method that is based on lag 1 h
differences of transformed wind speed. The modified MDSS
method MDSS+ matches historical scenarios to not only the
forecast marginal distributions but also to the forecast distri-

butions of lag 1 h differences. The term of lag 1 h differences
ensures a better selection of historical scenarios with ramps
of similar slope or magnitude to the forecast.

We see that the median BSS using the MDSS+ forecast
scenarios are often higher than those of the MDSS method
and more competitive with the StSS method for all ramp
types (Figs. 10 and 11). However, minute differences be-
tween the three Schaake shuffle methods are indistinguish-
able because of the limited sample size, which resulted in
considerable overlap between the BSS box plots. To high-
light the differences between the three Schaake shuffle meth-
ods, we generated 25 years of synthetic wind speed observa-
tions and forecasts (Appendix B). These synthetic data un-
derwent the same univariate post-processing steps (Sect. 3.2)
as the real data before applying the different Schaake shuf-
fle methods. The synthetic forecasts were purposefully gen-
erated to be better forecasts than that of the real data so
that differences among the different Schaake shuffle meth-
ods would be more apparent. Box plots of BSS using the
synthetic data present positive skill, show considerably less
variability than the real data, and highlight the differences
between the MDSS and MDSS+ methods (Fig. 12). The in-
clusion of the lag 1 h differences in the MDSS+ is essen-
tial to achieve optimal and competitive skill from the method
when compared to StSS. Recall that the lag 1 h differences
are weighted 5 times more than the forecast marginal distri-
butions in the MDSS+, meaning that the transformed wind
speed gradient between lead times is even more important
to match than the forecast marginal distributions. With this
additional term, the MDSS+ is as competitive as the StSS
method at choosing scenarios that lead to skilful ramp fore-
casts.

Why is the rather simplistic StSS method as good (even
better with regard to ramp frequency biases; see Fig. 9) as
the more sophisticated MDSS+ and significantly better than
the MDSS method? Some insight is gained by analyzing the
lag 1 h differences of wind speed forecasts generated by the
three different Schaake shuffle techniques. We compute ab-
solute lag 1 h differences of observed wind speeds and those
of the historical observed wind speed scenarios selected by
the StSS, MDSS, and MDSS+ methods before shuffling.
For each method, the absolute lag 1 h differences are calcu-
lated for each date and for each 12 pairs of lead times. For
each date and paired lead time, the lag 1 h differences are
then stratified according to the corresponding HRRR wind
speed forecast. Lag 1 h differences from all dates and paired
lead times associated with a certain range of HRRR fore-
casted wind speeds are then averaged together before plot-
ting (Fig. 13a). A dependency between the magnitudes of
lag 1 h differences and HRRR wind speed forecasts emerges.
The magnitude of the observed lag 1 h differences increases
as the HRRR forecast wind speed increases, which suggests
that higher wind speeds correspond to larger fluctuations in
wind speed. Because the StSS method does not depend on
the HRRR forecast to select historical scenarios, the lag 1 h
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Figure 10. Box plots of BSS of power ramp events identified in 3 h time windows from forecast scenarios generated with the StSS (blue),
MDSS (pink), MDSS+ (green), and GC (brown) methods. BSSs are shown for the PNW tower location (a, c, and e) and the M5 tower
location (b, d, f) and for up-ramps (filled box plots) and down-ramps (non-filled box plots). Ramp events with a power threshold of ξ = 20 %
(a and b), 40 % (c and d), and 60 % (e and f) change in the turbine power capacity are shown. The box plots display the interquartile range
(rectangle region), the median (middle line within rectangle), outliers (dots), and values outside the interquartile range but not considered
outliers (lower and upper whisker) of the distributions. Outliers are values more than 1.5 times the interquartile range. For reference, a line
(gray dashed) showing zero skill is plotted.

Table 2. Average BSSs from 1000 GC scenarios of 6 h up- and down-ramp events at the M5 tower location as a function of range parameter
ν and power threshold ξ . The bold values represents the ν value that best matched the empirical covariance values obtained for the M5 tower
(see Fig. A1).

M5, ξ = 40 % M5, ξ = 60 % M5, ξ = 80 %

up-ramp down-ramp up-ramp down-ramp up-ramp down-ramp

ν = 1 −0.201 −0.142 −0.317 −0.285 −0.395 −0.373
ν = 1.5 −0.091 −0.037 −0.166 −0.131 −0.216 −0.195
ν = 2 −0.024 0.028 −0.074 −0.038 −0.112 −0.093
ν = 2.5 0.016 0.067 −0.021 0.016 −0.058 −0.033
ν = 3 0.039 0.090 0.012 0.052 −0.026 0.002
ν = 3.5 0.055 0.103 0.031 0.072 −0.009 0.023
ν = 4 0.064 0.111 0.042 0.086 0.001 0.036
ν = 4.5 0.067 0.113 0.047 0.094 0.008 0.044
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Figure 11. Box plots of BSS of power ramp events identified in 6 h time windows from forecast scenarios generated with the StSS (blue),
MDSS (pink), MDSS+ (green), and GC (brown) methods. BSSs are shown for the PNW tower location (a, c, and e) and the M5 tower
location (b, d, f) and for up-ramps (filled box plots) and down-ramps (non-filled box plots). Ramp events with a power threshold of ξ = 40 %
(a and b), 60 % (c and d), and 80 % (e and f) change in the turbine power capacity are shown. The box plots display the interquartile range
(rectangle region), the median (middle line within rectangle), outliers (dots), and values outside the interquartile range but not considered
outliers (lower and upper whisker) of the distributions. Outliers are values more than 1.5 times the interquartile range. For reference, a line
(gray dashed) showing zero skill is plotted.

differences of the StSS historical scenarios are independent
of the magnitude of the HRRR forecast wind speed. This re-
sult is demonstrated by the relatively flat StSS (blue) curve in
Fig. 13a. Conversely, the MDSS and MDSS+methods make
a preferential selection of past observations based on the cur-
rent HRRR forecast wind speed. The result is that the MDSS
and MDSS+ methods produce curves (pink and green lines,
respectively, in Fig. 13a) of lag 1 h differences qualitatively
similar to the observed curve (black line in Fig. 13a).

This better initial selection of scenarios, however, is offset
by the effects of the shuffling procedure. Panel (b) in Fig. 13
shows the mean absolute lag 1 h differences after shuffling.
For the StSS, the shuffling makes the lag 1 h differences more
similar to the observed lag 1 h differences; lag 1 h differences
decrease for low HRRR forecast wind speeds and increase

for high HRRR forecast wind speeds during the shuffling
procedure. For the MDSS and MDSS+ methods, shuffling
always results in a slight increase in the magnitudes of lag
1 h differences (pink and green lines in Fig. 13b). This in-
crease after shuffling the scenarios explains why the MDSS
and to a lesser extent, the MDSS+ have a tendency to over-
forecast the magnitude and frequency of wind speed ramps
(see Fig. 9).

Lastly, we investigate why the shuffling procedure affects
the historical StSS scenarios differently than the MDSS and
MDSS+ scenarios. We conjecture that one of the reasons for
this effect is the difference in spread of the scenarios used
by each method before shuffling. We quantify the spread as
the mean absolute difference between the historical scenar-
ios. Since the historical StSS scenarios are chosen uncon-
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Figure 12. Box plots of BSS of power ramp events identified in 6 h
time windows from synthetic forecast scenarios generated with the
StSS (blue), MDSS (pink), and MDSS+ (green) methods. BSSs are
shown for up-ramps (filled box plots) and down-ramps (non-filled
box plots). Ramp events with a power threshold of ξ = 60 % change
in the turbine power capacity are shown. The box plots display
the interquartile range (rectangle region), the median (middle line
within rectangle), outliers (dots), and values outside the interquar-
tile range but not considered outliers (lower and upper whisker) of
the distributions. Outliers are values more than 1.5 times the in-
terquartile range.

ditionally, the spread of the scenarios’ marginal distribution
(see blue line in Fig. 13c) approximates the climatological
spread of actual observed wind speeds. Preferential selection
performed by MDSS and MDSS+ significantly decreases the
spread of the historical marginal distributions with the excep-
tion of high HRRR wind speed forecasts where the prediction
uncertainty can exceed the climatological spread (i.e., exceed
blue line). This initial reduction in spread, however, reduces a
side effect entailed by StSS: the shuffling procedure squeezes
together scenarios as the unconditional spread is transformed
into a forecast-informed spread. By doing this, the shuffling
procedure typically reduces the fluctuations present in the
historical scenarios. Because all of the Schaake shuffle meth-
ods discussed herein use the same quantiles of a particular
forecast distribution, all methods have the same spread af-
ter shuffling (gray line in Fig. 13c). Since the MDSS and
MDSS+ historical scenarios already have low spread, shuf-
fling does not change their characteristics as much as it does
for the StSS historical scenarios; the level of fluctuations is
similar before and after shuffling. In other setups, the shuf-
fling side effect can be unwanted, but in the present setup, it
seems to benefit the StSS method and results in the overall
most accurate level of wind speed fluctuations.

5 Summary and conclusion

Wind power ramps present challenges to wind power fore-
casters and the electrical grid because they cause sharp
changes in power production in time periods of minutes to
hours. Better forecasts of ramp events can lead to more re-
liable wind power generation and less strain on the power
grid. Generally, wind farm operators rely on a single forecast
of persistence to determine power fluctuations over the next
30 min to an hour, which is not suitable during ramp events.
Numerical weather prediction and statistical post-processing
techniques can improve ramp forecasts by predicting rapid
future fluctuations in wind speed and power and by provid-
ing uncertainty information to those forecasts. Because ramp
events require simultaneous forecasts of multiple forecast
lead times, multivariate statistical methods are a necessity for
accurate ramp prediction.

In this paper, we used observed 80 m wind speeds from
tall meteorological towers located in Boulder, Colorado (M5
site), and in eastern Oregon (PNW site). We also used fore-
casts of 80 m wind speeds from the HRRR model to create
probabilistic forecasts of up- and down-ramp events. With
these data, we presented how to obtain probabilistic wind
speed forecasts by first correcting biases in the forecasts and
then applying one of the four multivariate methods discussed
to generate scenarios of wind speed. We used the IEC power
curve to convert scenarios of wind speed to scenarios of
power before identifying ramps. Alternatively, a relationship
between measured wind speed and power output from a train-
ing dataset could be used to bypass the use of a power curve
for future wind speeds (Lange and Focken, 2006). Employ-
ing stochastic power curves (Jeon and Taylor, 2012) would
also take the conversion uncertainty into account. Because
our study was focused on the evaluation and comparison
of multivariate statistical post-processing methods and wind
speed to power conversion affects all methods in the same
way, using a fixed power curve warrants a fair comparison. If
observed power production rather than observed wind speed
was used as the “ground truth”, an inverse (power-to-wind
speed) transformation could be employed to reconstruct the
associated wind speeds (Messner et al., 2014), and the con-
version uncertainty would be accounted for implicitly.

Before generating the scenarios, we removed the seasonal
cycle and corrected for heteroscedasticity within the observa-
tions and raw HRRR forecasts by applying a power transfor-
mation. We then regressed the transformed observations on
the transformed forecasts to obtain regression coefficients.
The mean and standard deviation of marginal predictive dis-
tributions for each forecast initialization and lead time were
determined by inserting future forecasts into the fitted regres-
sion model with these coefficients. We tested three candidate
predictive distributions and found that the gamma distribu-
tion and the truncated logistic distributions were the best
fits for the M5 and PNW tower locations with regard to
wind speed, respectively. We determined that these predic-
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Figure 13. Statistics of observed wind speeds (U ), unshuffled historical observed wind speed scenarios used by each Schaake shuffle method
and the shuffled wind speed forecast scenarios stratified according to the magnitude of the HRRR wind speed forecasts at the respective time.
Mean absolute lag 1 h wind speed differences (

∣∣Uk −Uk+1
∣∣) of observations and historical scenarios before (a) and after (b) shuffling and the

marginal spread of the unshuffled (pink, blue, and green lines) and shuffled (gray) historical scenarios (c) are shown. The spread is quantified
as the mean absolute difference between scenarios.

tive distribution models were suitable to represent observa-
tions based on uniform PIT histograms and low CRPS val-
ues. This approach to obtaining marginal predictive distribu-
tions is rather simple, but given the limited amount of data
that remained after filtering, we thought that a stable param-
eter estimation for a more complex model was not warranted.
A larger training dataset would allow one to account for fore-
cast biases that vary with wind direction (Eide et al., 2017),
or to use an analog-based regression approach similar to the
method proposed by Junk et al. (2015), and to include analog
predictor variables related to atmospheric stability.

The marginal predictive distributions provided uncertainty
information for each lead time but did not inform us about
the interdependence structure across all lead times. To con-
struct this interdependence, we first used the Gaussian copula

technique following Pinson and Girard (2012), which relates
the predictive distributions across all lead times by utilizing
an exponential correlation model of Gaussian random vari-
ables. We used a random number generator to generate 1000
scenarios of wind speed using this method. The Gaussian
copula method is based on parametric assumptions that may
not be an adequate representation of the interdependence be-
tween observed wind speeds at different lead times, so we
tested three new methods of generating scenarios of trans-
formed wind speeds. The StSS, the MDSS, and the MDSS+
methods all use historical observed scenarios to inform how
marginal predictive distributions should be connected across
all lead times, which results in more realistic forecast scenar-
ios.
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The StSS method only used an ad hoc selection of his-
torical scenarios while the MDSS and MDSS+ made pref-
erential selections of historical scenarios that best matched
the forecast marginal distributions (MDSS) or matched both
the forecast marginal distributions and the forecast dis-
tributions of the lag 1 h differences of transformed wind
speed (MDSS+). Even with these modified version of the
Schaake shuffle, we found that the StSS method provided
the highest Brier skill scores overall using real data. How-
ever, all of these methods provided improvements over the
raw HRRR forecasts, which struggled to capture the diur-
nal cycle and magnitude of the relative frequency of up- and
down-ramp events. These methods also reduced the over- and
under-forecasting biases of the raw forecasts at the M5 and
PNW tower locations, respectively. We compared the three
Schaake shuffle methods at forecasting ramp events using a
dataset of 25 years of synthetic forecasts and observations
to emphasize the differences among the multivariate meth-
ods without constraints from the limited real dataset. We
found that the MDSS+ method had significantly higher skill
compared to the MDSS and was competitive with the StSS
method suggesting that the inclusion of the lag 1 h wind
speed differences is a key component of accurate forecast-
ing of ramp events when preferentially selecting historical
scenarios.

We were limited with how much improvement statistical
post-processing could provide with the real data because the
correlation between the observations and HRRR forecasts of
up- and down-ramps was low. However, we still achieved
some positive skill by reducing over- and under-forecasting
biases and by employing the multivariate methods to gen-
erate probabilistic forecasts for the PNW tower, which had
overall higher correlation coefficients than that of the M5
tower location. Generally, the greatest skill was achieved for
the prediction of up-ramps at the PNW site, which also hap-
pened to be the ramp type associated with the highest correla-
tion. This dependence on initial forecast skill is encouraging
because it suggests that for sites with fewer random errors
and better skill (e.g., sites over flat terrain), we may be able to
achieve significant improvement in forecast skill using these
multivariate methods. A longer record of historical scenarios
would also be advantageous because it would increase the
likelihood that forecasts would have a good match with past
events for selection by the MDSS and MDSS+ methods.

We demonstrated how statistical post-processing can cor-
rect forecast biases of up- and down-ramp events and how
multivariate statistical methods can be used to generate prob-
abilistic forecasts of wind speed and power scenarios. These
methods can be implemented for real-time wind farm opera-
tions using historical observations at a particular wind farm
to gain uncertainty information regarding ramp forecasts. We
used the generic IEC power curve to convert wind speed sce-
narios to power scenarios, but wind power forecasters should
use their own turbine-specific power curves to further re-
duce uncertainty. Additionally, these methods are applica-

ble with other numerical weather prediction models besides
the HRRR model. Therefore, wind power forecasters can use
forecasts from their proprietary models as long as observa-
tions are available during the same time period for verifica-
tion. The processing time for these methods is practical for
real-time forecasting. Most of the processing does not even
need to be run in real time. Only the multivariate methods
need to be run in real time to generate probabilistic forecasts
of ramp events. The Gaussian copula method is nearly in-
stantaneous to compute because it uses a random generator
to produce scenarios. The MDSS and MDSS+ methods re-
quire the most time to process as they need to search through
historical scenarios for the best matches to the current fore-
cast. Nevertheless, they only required approximately 3 s to
find 50 historical scenarios for one forecast day and initial-
ization time. However, more time will be required to pro-
cess the MDSS and MDSS+ methods for larger historical
datasets.

Enhancements to the forecasts provided by gaining uncer-
tainty information should help with decision making in the
energy sector not only for direct power generation but also
for scheduling the availability of transmission lines, energy
reserves, and energy trading. Future research that could im-
prove these methods includes improvement to raw forecasts
via various methods (e.g., increased grid resolution and im-
proved physics parameterizations), using additional predic-
tors in the regression analysis of the univariate data (e.g.,
temperature and wind direction), and performing these meth-
ods for sites that generally yield higher-quality forecasts.
Overall these methods may find utility in assessing risks of
other wind-speed-dependent phenomena like wildfire propa-
gation or pollution dispersion.

Data availability. Data from the M5 meteorological tower
are available at https://wind.nrel.gov/MetData/135mData/M5Twr/
(NWTC, 2018). Data from the PNW tower are available by re-
quest from Avangrid (contact Michael Zulauf). The HRRR forecast
data are available from the National Oceanic and Atmospheric Ad-
ministration Global Systems Division (contact Eric James or Stan-
ley Benjamin).
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Appendix A: Determination of range parameter for
exponential correlation model

The range parameter ν defines the decay of correlation of
the exponential correlation model (Eq. 3) among lead times.
We determined the range parameters for use in the Gaus-
sian copula method (Sect. 3.3.1) by choosing values of ν that
best aligned with the observed covariance of the Gaussian
wind speeds at each tower location and forecast initialization
time. We used ν = 2.5 (associated with the purple lines in
Fig. A1a and b) and ν = 1.5 (associated with the orange lines
in Fig. A1c and d) for the PNW and M5 tower locations, re-
spectively. We only considered lagged–lead time correlations
out to 6 h because our largest ramp window size is 6 h.

Figure A1. Exponential correlation models (solid lines) given dif-
ferent values of the range parameter ν ranging from 1 to 4 in in-
crements of 0.5 as a function of lagged–lead time. Overlaid are the
observed covariance values (black asterisk) of the Gaussian wind
speed values. Empirical covariances and the fitted exponential cor-
relation models are shown for the PNW (a, b) and M5 (c, d) tower
locations for 00:00 UTC (a, c) and 12:00 UTC (b, d) forecast ini-
tialization times.
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Appendix B: Generation of a synthetic dataset to
overcome sample size limitations

To generate a synthetic wind speed dataset (deterministic
forecasts and observations), we again use a Gaussian cop-
ula approach, now applied to unconditional (climatological)
marginal distributions. For simplicity, we assume the same
climatology at each day of the year and each time of the
day. Serial dependence in the Gaussian space is modeled
via AR(1) processes, i.e., autoregressive processes of or-
der 1, that are used to generate two dependent time series(
z

(x)
t

)
t=1,...,T

and
(
z

(y)
t

)
t=1,...,T

with a time index ranging

from 1 to T . We proceed in two steps:

1. Simulate a bivariate Gaussian time series with zero
mean and marginal variances equal to 1

– let ρ = 0.8 be the correlation between the forecast
and observation time series

– simulate an AR(1) time series
(
z

(y)
t

)
t=1,...,T

corre-

sponding to the 25 years of data, using ϕ = e−0.5 as
the auto-regression parameter and σ 2

= 1−ϕ2 as
the variance of the driving white noise process

– simulate another AR(1) time series (εt )t=1,...,T with
the exact same specifications

– define a third time series
(
z

(x)
t

)
t=1,...,T

as z(x)
t = ρ ·

z
(y)
t +

√
1− ρ2 · εt

By this construction, the correlation coefficient of the
time series

(
z

(x)
t

)
t=1,...,T

and
(
z

(y)
t

)
t=1,...,T

at each

time t is ρ.

2. Transform to a bivariate time series with gamma-
distributed margins:

– denote by F−1
0(3,3) the inverse CDF of a gamma dis-

tribution with shape parameter 3 and scale parame-
ter 3

– denote by8 the CDF of a standard Gaussian distri-
bution

– the observation time series is then defined by yt =
F−1
0(3,3)

(
8(z(y)

t )
)
t = 1, . . . , T

– the forecast time series is defined by xt =

F−1
0(3,3)

(
8(z(x)

t )
)
t = 1, . . . , T .
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