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Abstract. Wake interactions between wind turbines in wind farms lead to reduced energy extraction in down-
stream rows. In recent work, optimization and large-eddy simulation were combined with the optimal dynamic
induction control of wind farms to study the mitigation of these effects, showing potential power gains of up to
20 % (Munters and Meyers, 2017, Phil. Trans. R. Soc. A, 375, 20160100, https://doi.org/10.1098/rsta.2016.010).
However, the computational cost associated with these optimal control simulations impedes the practical imple-
mentation of this approach. Furthermore, the resulting control signals optimally react to the specific instanta-
neous turbulent flow realizations in the simulations so that they cannot be simply used in general. The current
work focuses on the detailed analysis of the optimization results of Munters and Meyers, with the aim to identify
simplified control strategies that mimic the optimal control results and can be used in practice. The analysis
shows that wind-farm controls are optimized in a parabolic manner with little upstream propagation of informa-
tion. Moreover, turbines can be classified into first-row, intermediate-row, and last-row turbines based on their
optimal control dynamics. At the moment, the control mechanisms for intermediate-row turbines remain unclear,
but for first-row turbines we find that the optimal controls increase wake mixing through the periodic shedding
of vortex rings. This behavior can be mimicked with a simple sinusoidal thrust control strategy for first-row
turbines, resulting in robust power gains for turbines in the entrance region of the farm.

1 Introduction

Wake interactions between turbines within a wind farm cause
reduced power extraction and increased turbine loading in
downstream rows. The current control paradigm in such
farms optimizes performance at the wind turbine level and
does not account for these interactions, resulting in sub-
optimal wind-farm efficiency. In contrast, control strategies
at the farm level allow the wake interaction to be influenced
and promise to improve overall wind-farm performance by
improving wind conditions for downstream turbines. This
can be achieved by redirecting propagating wakes (yaw con-
trol; see, e.g., Fleming et al., 2014; Gebraad et al., 2016;
Campagnolo et al., 2016) or by affecting the induced wake

velocity deficits (axial induction control; see, e.g., Nilsson
et al., 2015; Annoni et al., 2016; Bartl and Sætran, 2016).
A more exhaustive survey of wind-farm control in a broader
context can be found in Knudsen et al. (2015) and Boersma
et al. (2017).

In contrast to the studies cited above that all focus on the
static set point optimization of wind farms, Goit and Mey-
ers (2015) introduced a dynamic induction control approach
based on large-eddy simulations (LES) and adjoint gradient
optimization. In this study, individual turbines were used as
dynamic flow actuators that influence the wind-farm bound-
ary layer flow in such a way as to optimize aggregate wind-
farm power extraction. The methodology was applied to the
asymptotic case of a fully developed “infinite” aligned wind
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farm, and power gains of about 16 % were quantified. Later,
this approach was also used in induction control studies of
wind farms with entrance effects in Goit et al. (2016) and
more recently in Munters and Meyers (2017), in which sim-
ilar gains of the order of 15–20 % were achieved. It is im-
portant to note that the computational cost of this LES-based
dynamic induction control methodology is orders of magni-
tude too high for direct implementation as a practical control
strategy. However, the methodology allows us to assess the
theoretical potential for wind-farm control, and increased un-
derstanding of the flow physics can lead to simplified control
strategies that can be applied in practice.

Recently, the methodology of Goit and Meyers (2015) was
generalized to include dynamic yaw control in Munters and
Meyers (2018). In this study, induction control and yaw con-
trol were compared for a relatively small aligned wind farm,
and yaw control was found to yield higher power gains for
this setup. Furthermore, the high potential of combined in-
duction and yaw control was quantified, and analysis of the
yaw control signals allowed for the identification of practi-
cal simplified dynamic yaw control strategies. The search for
similar practical control strategies for induction control has
remained unsuccessful to date.

The current paper presents efforts on understanding op-
timal control dynamics observed in the optimal induction
control simulations by Munters and Meyers (2017) (further
denoted as MM17). The outline of the paper is as follows:
first, Sect. 2 discusses the numerical setup and optimal con-
trol simulations of MM17 that will be further analyzed in the
current paper. Section 3 presents an analysis of the control
and thrust force dynamics and performs some numerical ex-
periments to elucidate the characteristics of the optimal con-
trols. It will be shown that the coherent behavior of turbines
situated in the first row of the wind farm stands out from
their downstream counterparts. Thereafter, Sect. 4 identifies
the shedding of vortex rings from the first row based on a
flow visualization. Further, a simple sinusoidal thrust control
approach is presented that successfully mimics this process
with a robust increase in power extraction in the second row.
Next, Sect. 5 shortly discusses the behavior of the interme-
diate rows, i.e., turbines that have both upstream and down-
stream neighbors, for which similar simple control strategies
remain elusive thus far. In conclusion, Sect. 6 summarizes
the main findings of this paper.

2 Description of optimal control simulations in
MM17

The current section describes the optimal control simulations
performed by MM17, the results of which are further ana-
lyzed in the current paper. First, the methodology is intro-
duced. Then, the numerical setup is detailed. Afterwards, the
optimization results on power extraction and time-averaged
flow field features are discussed.

2.1 Control methodology

A schematic overview of the wind-farm control methodol-
ogy is shown in Fig. 1. Figure 1a illustrates the control block
diagram: an iterative optimization loop updates the wind-
farm control vector ϕ(t) until a set of optimized controls
ϕ

q(t) is found. This optimization is based upon an unsteady
turbulence-resolving LES wind-farm flow model, and sen-
sitivities of the cost functional J (i.e., the total wind-farm
power extraction) are calculated using an adjoint formula-
tion of this flow model. In this way, a priori simplifications
to the turbulent boundary layer and wake representation are
avoided as much as possible, and the control signals are de-
signed in a such a way that turbines actively tap into the dy-
namics of the turbulent flow. The optimization is performed
using a receding-horizon control framework, as illustrated in
Fig. 1b. In this framework, wind-farm controls ϕ(t) are opti-
mized for a finite time horizon T , involving a sequential set
of LES and adjoint LES simulations. Upon convergence of
the optimization, optimized control signals are applied in a
flow advancement simulation for a time TA < T , after which
a new optimization window is initiated.

Within each optimization window, the total wind-farm
power is optimized by solving the following optimization
problem constrained by partial differential equations.

minimize
ϕ,q J (ϕ,q)=−

T∫
0

Nt∑
i=1

Pi dt (1)

s.t.
∂ũ

∂t
+ (̃u · ∇) ũ=−∇ (p̃+ p̃∞)/ρ−∇ · τ sgs

+

Nt∑
i=1

f i in �× (0,T ), (2)

∇ · ũ= 0 in �× (0,T ), (3)

τ
dĈ′T ,i

dt
= C′T ,i − Ĉ

′

T ,i i = 1. . .Nt in (0,T ), (4)

0≤ C′T ,i ≤ C
′

T ,max i = 1. . .Nt in (0,T ), (5)

The cost functional that is optimized in Eq. (1) is the to-
tal wind-farm energy extraction over time horizon T . The
control variables are the time-dependent thrust coefficient
set points C′T ,i of every turbine i (= 1. . .Nt ), i.e., ϕ =
[C′T ,1(t), . . .,C′T ,Nt (t)], and the state variables are denoted as

q = [̃u(x, t); p̃(x, t); Ĉ′T ,1(t), . . ., Ĉ′T ,Nt (t)], with ũ the fil-

tered velocity, p̃ the filtered pressure, and Ĉ′T ,i the (time-
filtered) thrust coefficient for turbine i (see below).

The filtered Navier–Stokes momentum and continuity
state equations in Eqs. (2)–(3) are solved using an in-house
LES solver (see, e.g., Calaf et al., 2010; Meyers and Mene-
veau, 2010; Goit et al., 2016 for a detailed discussion of the
solver). The time-filtering state equation in Eq. (4) applies
a one-sided exponential time filter to the thrust coefficient
set points C′T ,i with a characteristic wind turbine response
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Figure 1. Schematic overview of wind-farm optimal control methodology from MM17. (a) Control block diagram with adjoint gradient-
based optimization and LES flow models illustrating data flow of (optimal) controls ϕ( q), system state q, cost functional J , and its gradient
∇J . (b) Receding-horizon framework subdividing time into discrete flow advancement windows of length TA with prediction horizon T .
Each arrow represents a forward or adjoint LES. Every window consists of an optimization stage (blue and red lines) followed by a flow
advancement stage with optimal controls ϕ q (green lines).

timescale τ (Munters and Meyers, 2016). Finally, the box
constraints in Eq. (5) limit the variations in the turbine thrust
coefficients to technically feasible values.

The forces exerted by turbine i on the boundary layer
flow are parameterized using a standard nonrotating actua-
tor disk model as f i(x, t)=−(1/2)Ĉ′T ,i(t)Vi(t)

2Ri(x)e⊥,i ,
whereRi is a smoothed representation of the geometric foot-
print of the turbine on the LES grid and e⊥,i is the rotor-
perpendicular vector. Further, the disk-averaged velocity is
defined as Vi = (1/Ai)

∫
�
Ri(x )̃u · e⊥,i dx, with Ai the ro-

tor disk area. Mechanical power captured by the wind tur-
bine is calculated as Pi = (1/2)C′P,i(t)Vi(t)

3Ai , with C′P,i =
0.9C′T ,i , resulting from a fit of LES results to momentum the-
ory, eliminating the overprediction of wind turbine power on
typical wind-farm LES grid resolutions (Munters and Mey-
ers, 2017).

2.2 Case setup

The wind farm considered in MM17 has an aligned pattern of
12 rows by 6 columns. The wind turbines have a hub height
zh = 100 m with a rotor diameter D = 100 m and are spaced
apart by 6D in both the axial and transversal directions. The
flow is simulated on a domain of 10×3.6×1 km3 discretized
on a simulation grid of 384× 192× 144 grid points. A snap-
shot of the streamwise velocity field is shown in Fig. 2. The
wind farm was controlled over a total of NA = 15 time win-
dows with a prediction horizon T = 240 s (i.e., the time it
takes for the flow to pass four rows of turbines) and a flow
advancement time of TA = T/2= 120 s, resulting in a total
control time Ttot =NATA = 30 min.

A conventionally (greedily) controlled wind farm with
steady C′T = 2 was defined as a reference case. Note that this
would correspond to a farm with ideal turbines for which
generator torque is being controlled dynamically to track
the maximum power point at the Betz limit perfectly. In a

real turbine controller this may, e.g., be achieved with the
extremum-seeking control proposed by Ciri et al. (2017).
Several different optimal control cases were defined based
on the wind turbine response time τ = 0, 5, or 30 s (instan-
taneous, fast, or slow response; see Eq. 4) and the maximal
thrust coefficient C′T ,max = 2 or 3, with thrust forces that can
respectively only be reduced (underinductive) or increased
(overinductive) compared to the Betz optimum at C′T = 2
(see Eq. 5). Cases are denoted as C <X > t < Y >, where
X and Y represent C′T ,max and τ , respectively, e.g., C3t30
for the case with C′T ,max = 3 and τ = 30 s. The choice of
(and sensitivity to) setup parameters is further elaborated in
MM17.

2.3 Simulation results

Figure 3 illustrates the energy extraction of the optimally
controlled wind-farm cases normalized by the greedy ref-
erence control case. Figure 3a shows that the adjoint LES-
based control approaches achieve energy gains ranging from
a minor 2 % in the most restrictive C2t30 case to over 20 % in
the C3t0 case. From Fig. 3b it can be seen that, for all cases
except C3t30, power is curtailed in the first row to a limited
degree, whereas the downstream rows compensate for this
loss by extracting significantly more energy. Furthermore,
not taking into account the first row, the last row achieves the
highest energy extraction in every case, as it can act greed-
ily without compromising power extraction in downstream
neighbors.

In the remainder of this section, time-averaged wind-farm
flow properties will be investigated. Here and throughout the
remainder of this paper, we focus on case C3t5, as it pro-
duces similar energy gains as the highest-yield case C3t0
(see Fig. 3a), but achieves this with smoother thrust coeffi-
cient signals. In the following discussion, the time-averaging
operation is denoted by an overline, and flow field variables
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Figure 2. Instantaneous streamwise velocity ũx for the 12× 6 aligned wind farm considered in MM17. Black lines indicate wind turbine
locations. The black dashed line near the end of the domain indicates a buffer region used for the imposition of inflow boundary conditions.
Figure originally published in Munters and Meyers (2017) under a CC-BY 4.0 license.

Figure 3. Energy extraction EO of optimally controlled wind-farm cases from MM17 normalized by a greedy reference case ER. (a) Total
energy extraction. Error bars indicate confidence intervals of ±2 standard deviations. (b) Energy extraction by row normalized by first-row
reference power. C3t0, red line; C3t5, yellow line; C3t30, blue line; C2t0, red dashed line; C2t5, yellow dashed line; C2t30, blue dashed line.
Figure originally published in Munters and Meyers (2017) under a CC-BY 4.0 license.

are decomposed into mean and fluctuating components as
ũ= ũ+ ũ′ ≡ Ũ + ũ′. Figure 4 illustrates the time-averaged
flow field quantities of the reference case (left panels, a1–g1)
and the differences between the optimized C3t5 case and the
reference case (right panels, a2–g2). Simulation results are
averaged over the different columns and are shown as either
top views at hub height (Fig. 4b, f, g) or side views through
a turbine column (Fig. 4a, c, d, e).

Figure 4a and b illustrate side views and top views of the
axial velocity throughout the wind farm. It can be seen that
downstream turbines in the controlled case experience con-
sistently higher incoming velocities, which explains the in-
creased energy extraction discussed above. Furthermore, a
larger drop in streamwise velocity over the turbine disk can
be observed, most notably in the first-row turbines, indicat-
ing deeper wakes with enhanced recovery before hitting the
next row of turbines. Furthermore, it can be observed that the
axial velocity in the flow above and beside the wind turbine
column is reduced, indicating that the mean flow kinetic en-
ergy is depleted in these regions to the benefit of the flow
passing through the wind turbines.

Figure 4c shows side views of turbulence kinetic energy
k. The figure shows an increase in turbulence throughout the
entire wind farm, spreading to the internal boundary layer
above the turbines. Note specifically the sharp increase in
turbulence in the core wake region behind the first-row tur-
bine, for which an enhanced recovery was found as discussed
above. The turbulence intensity T I ≡ (2k/3)1/2/U∞ at hub
height (not shown in the figure) is 10 % at the inlet for both
the reference case and the controlled case. The combination
of reduced near-wake mean velocities and increased velocity
fluctuations in the controlled case increase local T I in the
turbine wakes (ranging from ≈ 2 % points in the wakes of
the middle rows to ≈ 12 % points in the first and last rows).
This increase in turbulence intensity dissipates to below a
1 % point difference at 10D downstream of the last row.

Figure 4d and e show side views through the rotor center-
line of top-down turbulence and mean flow transport of ax-
ial momentum, i.e., −ũ′x ũ′z and −ŨxŨz, respectively. It can
be seen that, although mean flow vertical transport is virtu-
ally unaffected, the turbulence top-down transport of axial
momentum is increased significantly in the upper part of the
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wakes, indicating increased turbulent mixing with the inter-
nal boundary layer above the wind-farm canopy. The effect is
somewhat more pronounced in the wake behind the first row
of turbines, for which a slight increase in the upwards trans-
port of momentum can also be observed in the lower part of
the wake.

Figure 4f and g show plan views at hub height of the
transversal turbulence and mean flow transport of axial mo-
mentum, i.e., ũ′x ũ′y and ŨxŨy , respectively. The sign con-
vention is such that positive values correspond to transport in
the positive y direction in the figure. A slight increase in tur-
bulent transversal transport towards the wake centerline can
be observed behind every row. The mean flow transversal
momentum transport into the wake region is increased sig-
nificantly behind the first two turbine rows. Downstream of
these rows, the difference between these cases and the refer-
ence case is far less coherent. The latter can be explained by
the fact that Ũx in the inter-column channels starts to deviate
significantly from the reference case as shown in Fig. 4b.

The analysis of flow features given above indicates that
the optimal controls in case C3t5 influence the wind-farm
flow field in such a way as to provide better flow conditions
for downstream turbines. Increased axial velocities are ob-
served for all downstream turbines, and enhanced momen-
tum transport towards the turbine region is achieved. Further-
more, many of the observed flow features are most salient for
the first-row turbines. In the following section, the optimized
thrust coefficients themselves will be investigated. It will be
shown that, also from a controls perspective, first-row tur-
bines stand out from their downstream counterparts.

3 Thrust coefficient analysis and numerical
experiments

The current section focuses on the optimal thrust coefficients
generated by the optimal control simulations in MM17 and
performs numerical experiments to uncover some of the char-
acteristics of these control signals. Note that the conclusions
drawn within this section should be interpreted as observa-
tions of the current C3t5 optimal control cases given specific
wind-farm layout and flow conditions, and hence cannot just
be generalized for any wind-farm control in general.

First, the thrust coefficient signals themselves are analyzed
in Sect. 3.1. Second, the optimized thrust coefficients are ap-
plied only to subsets of turbine rows in Sect. 3.2. In this way,
the interdependency of optimized thrust coefficients in dif-
ferent rows can be evaluated. Third, additional optimal con-
trol simulations, in which only one single active row is op-
timized, are discussed in Sect. 3.3. These optimizations pro-
vide an indication of how increased power potential is dis-
tributed among the rows and allows us to compare the re-
sulting single-row optimized thrust coefficients with the fully
cooperative coefficients from case MM17. Fourth, Sect. 3.4
evaluates the dependency of optimized thrust coefficients on

the actual turbulent flow realization. Finally, Sect. 3.5 dis-
cusses the main conclusions from the abovementioned sec-
tions and summarizes the lessons learned.

3.1 Analysis of thrust coefficient signals

Figure 5 illustrates the time evolution of some of the thrust
coefficients Ĉ′T in the C3t5 case. The figure shows that, for
all rows but the last one (i.e., R12), Ĉ′T varies significantly in
time and that the amplitudes and frequencies of these varia-
tions are somewhat higher in the upstream rows of the farm.
In contrast, row 12 features only minor unsteadiness at lower
frequencies and has an increased mean value of Ĉ′T . This rel-
atively steady behavior of the last row can be explained by
the fact that there are no further downstream turbines that
can benefit from row 12 actively influencing local flow con-
ditions; hence, the row optimizes its own power only. The
increase in mean Ĉ′T in row 12 can be explained based on
Fig. 6, which shows the power extraction as a function of
steady Ĉ′T for unwaked turbines, subject to identical turbu-
lent inlet as in case C3t5. Although momentum theory pre-
dicts maximal power extraction for steady uniform inflow at
Ĉ′T = 2, the actual optimal steady value for the ADM at the
current spatial resolution lies somewhat higher at Ĉ′T ≈ 2.4,
for which power extraction is about 1.4 % higher than at
Ĉ′T = 2. This behavior is related to the overprediction in
ADM power due to the diffuse turbine representation on typ-
ical simulation grids: the mass flow through the rotor disk
at Ĉ′T > 2 is slightly too high compared to momentum the-
ory, resulting in a shift of optimal Ĉ′T towards somewhat
higher values. Although the linear fit C′P = aĈ

′

T introduced
in Munters and Meyers (2017), Appendix A, eliminates the
error in maximal power extraction, it does not correct the
value of the optimal Ĉ′T (note that this could be achieved
through a more complex relation between C′P and Ĉ′T ). Re-
turning to the more complex thrust coefficients in the other
rows, it is worth noting that based on the current dataset no
statistically significant correlations between the thrust coef-
ficients of different turbines could be found. Furthermore,
attempts towards linking thrust coefficient dynamics to up-
stream flow measurements (e.g., velocities, shear or kinetic
energy) through linear regression models and random forest
regressors have been unsuccessful to date.

Figure 7a and b show row-averaged power spectral densi-
ties of the thrust forces and thrust coefficients, respectively.
The figure shows that the variances of both the thrust co-
efficients and their resulting forces are highest in row 1.
Further downstream, rows 2 to 11 have very similar spec-
tral behavior, and row 12 shows significantly lower vari-
ability. The high-frequency slopes of around −5 observed
both for fT and Ĉ′T indicate that force variability on short
timescales is caused mainly by thrust coefficient variations,
whereas the slower thrust force dynamics tend more to a
−5/3 slope, suggesting that these are governed by the un-
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Figure 4. Time-averaged flow field quantities of simulation results from MM17. Left: time averages of reference simulations with C′
T
= 2

for all turbines. Right: difference1 between reference and optimal control (C3t5) simulation, defined as1=XC3t5−XREF for any variable
X. (a) Axial velocity Ux (plan view at hub height). (b) Axial velocity Ux (side view through turbine column). (c) Turbulence kinetic energy
k = (1/2)(̃u′x ũ′x + ũ′y ũ′y + ũ′zũ′z) (side view). (d) Turbulence top-down transport −ũ′x ũ′z. (e) Mean flow top-down transport −ŨxŨz (side

view). (f) Turbulence horizontal transport ũ′x ũ′y (plan view). (g) Mean flow horizontal transport ŨxŨy (plan view). Black lines indicate wind
turbine locations. Simulation results are averaged over the six different wind turbine columns.

steadiness in the turbulence instead. Note that, even though
the spectra for all rows except row 12 collapse at frequencies
below 0.05 Hz, the first-row spectrum shows a small peak
at f ≈ 0.02 . . .0.03 Hz (fD/U∞ ≈ 0.2 . . .0.3) as indicated
by the purple arrow. It will be shown later in this paper that
variations in the thrust coefficient around this frequency are
directly related to increased power extraction.

3.2 Application of optimal thrust coefficients to subsets
of turbine rows

In order to further study how the optimal controls increase
overall wind-farm power, Fig. 8 shows power extraction re-
sulting from applying a subset of the optimal controls to spe-
cific turbine rows only. Figure 8a depicts simulation results
for which the optimized controls are applied only to one spe-
cific row, with the thrust coefficient in all other rows kept
at the reference value of Ĉ′T = 2. From the figure it can be
seen that only for the controls of the first row (R1) does this
result in a significant power increase in rows 2 and 3. This
indicates that the optimal controls, as generated by the op-
timization at the wind-farm level, react to the precise flow
conditions caused by upstream control actions and can hence

only be applied independently for the first row, which has no
upstream dependence on other controls.

Figure 8b shows results from simulations in which the con-
trols are applied for all rows up to a certain row; i.e., R1–R3
indicates the application of optimized controls generated by
case C3t5 to rows 1, 2, and 3. An interesting observation from
this figure is that for any row i except the last one, the power
potential as observed in case C3t5 is almost fully recovered
by only applying the optimal controls up to row i− 1. This
suggests that self-optimization is very limited: the optimal
controls for a given turbine are designed to create favorable
flow conditions in the downstream rows instead of increas-
ing local power. Furthermore, although the discussion in the
previous paragraph has shown that downstream controls are
optimized with the upstream actions in mind, the converse
is not true: upstream control actions do not require a spe-
cific downstream response in order to increase power in that
downstream row.

3.3 Optimization of single active turbine rows

The previous section has shown that, based on the full-farm
optimization case, the first-row controls can be applied inde-
pendently from other turbine controls, whereas this does not

Wind Energ. Sci., 3, 409–425, 2018 www.wind-energ-sci.net/3/409/2018/



W. Munters and J. Meyers: Towards practical dynamic induction control of wind farms 415

(a) (b)

Figure 5. Time evolution of the thrust coefficient Ĉ′
T

for a selection of optimally controlled turbines in case C3t5. (a) Total time horizon.
(b) Zoomed view including set point C′

T
in gray.

Figure 6. Normalized power extraction as a function of steady
thrust coefficient Ĉ′

T
for wind turbines subject to the same free-

stream turbulent inflow as in case C3t5. Every dot corresponds to
one LES.

work for the downstream rows. To further quantify the poten-
tial for increasing wind-farm power in each row of turbines,
the current section considers a set of additional optimal con-
trol cases in which only a single active row is optimized, with
all other rows remaining passive. Furthermore, by comparing
the optimized controls of these cases with the full-farm op-
timization case C3t5, the degree of cooperation between tur-
bines can be assessed. Note that the current single-row opti-
mal control is not equivalent to greedy control: the optimizer
still aims to increase aggregate farm power by taking into ac-
count wake interactions with downstream turbines. Further-
more, in contrast to the single-row control simulations from
the previous section (i.e., in Fig. 8a), the current optimiza-
tions will yield controls that are explicitly designed to in-
crease power given that all other rows are passive. To limit

computational costs, the additional optimizations are only
performed for a single time window.

Figure 9 shows the relative increase in wind-farm power
extraction for each of the 12 individually optimized control
cases. The optimization is run until the continuous adjoint
gradient accuracy prevents further progress in the optimiza-
tion. Upon interpreting the actual values from the figure, it
is important to note that the reported power gain covers the
full optimization horizon T and is hence affected by finite-
horizon effects. Furthermore, the first window of an opti-
mal control simulation as considered here contains an initial
dead zone corresponding to the wake advection lag before
upstream turbines start influencing their downstream neigh-
bors. This tends to reduce gains compared to later time win-
dows. Nevertheless, the relative order of the different cases
still provides information that can be generalized to full op-
timal control studies with multiple windows and longer time
horizons.

The figure shows that the first row (R1) holds by far the
most promise for optimizing wind-farm power. This is not
surprising as R1 produces the most power of all rows and
typically leaves the deepest wakes, causing second-row tur-
bines to perform poorly in aligned wind-farm layouts (see,
e.g., Porté-Agel et al., 2013; Nilsson et al., 2015; and Stevens
et al., 2016). At the other end of the spectrum, the last row
(R12) is the least useful. The intermediate rows (R2–R11)
lie closer together, with the general trend being that the po-
tential is somewhat decreased with downstream distance into
the wind farm, although this decrease is not monotonous.
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Figure 7. Power spectral density (PSD) estimates of the row-averaged thrust force fT (a) and thrust coefficient Ĉ′
T

(b) as a function of
frequency f (bottom axis) and nondimensional Strouhal number St (top axis).

Figure 8. Normalized row-averaged power extraction for the reference case, optimal control case C3t5, and subset control cases up to
optimization window 3. (a) Subset control cases with optimal controls applied only in one specific row. (b) Subset control cases with optimal
controls applied for all rows up to specific row.

Figure 10 illustrates the row-wise relative power increase
matrix for each of the single-row optimization cases. The
figure indicates that, for each of the optimization cases, the
largest power increase is observed in the first row down-
stream of the active turbine (i.e., Ri+1) and that the influence
on row Ri+3 is limited. This is explained by the fact that the
finite optimization horizon used in MM17 (i.e., T = 240 s)
allows for more interactions with directly neighboring tur-
bines than with those located further downstream. Further-
more, except for the optimal control case of the last row
(R12), self-optimization is virtually nonexistent: power gains
are achieved by modifying the flow to yield more favorable
conditions for downstream rows.

3.4 Modification of thrust coefficient signals

The observations from previous sections illustrate that, at
least to some degree, the optimized thrust coefficients are
tuned to local flow conditions. In the current section, the pos-
sibility of whether the coefficients contain traits that are in-
dependent of flow conditions is investigated. To this end, the
optimized thrust coefficients are modified in such a way that
correlations between them and specific flow events are elim-
inated. This is done in two independent test cases.

In the first case, the controls, which were specifically gen-
erated for selected turbines, are reassigned to other turbines
by randomly swapping the control sets of different turbine
columns. In doing so, each turbine will receive controls that
were specifically designed for another turbine in the same
row. To avoid erroneous conclusions based on coincidence,
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Figure 9. Increase in wind-farm power extraction for the first (and
only) time window of the optimal control cases in which only a
single row is optimized.

the column swap is performed in two random independent
ways. The variability of flow conditions for different columns
can be qualitatively observed in Fig. 2. To further strengthen
the hypothesis of the current experiment, we verified that the
correlation between flow conditions in different columns is
small, i.e., with an average Pearson correlation coefficient of
0.12 between columns for the incoming velocity fluctuations
6D upstream of the first row. The row-averaged power for
these cases is shown in Fig. 11a.

In the second case, controls remain assigned to their orig-
inal turbines, but are shuffled in time by randomly swap-
ping optimal controls generated for different control win-
dows. In this way, the spectral thrust characteristics for
timescales smaller than the control horizon TA = 120 s re-
main unchanged, whereas the time synchronization of con-
trol actions to specific flow events is eliminated. Similar to
the first case, this is done in two random ways, and the
limited correlation between velocity fluctuations in different
time windows was quantified at 0.07. Figure 11b illustrates
the row-averaged power for these cases.

The figure shows similar behavior for each of the modi-
fied control cases: only in the second row (R2) can a consis-
tent (though small) increase in power extraction be observed.
This suggests the presence of flow-invariant features in the
control signals of the first row. Note, however, that the full
power gain in the second row is only partially attained, indi-
cating that the first turbine row also reacts to the specific flow
conditions.

3.5 Discussion

The observations and experiments from previous sections
have revealed information that increases the understanding of
the optimized thrust coefficients and can be used as a starting
point towards designing practical wind-farm controllers that
do not require computationally expensive LES-based optimal
control simulations.

A first conclusion is that wind turbines can be classified
into three distinct categories based on their position within

Figure 10. Relative power increase matrix for downstream rows in
the single-row optimization case for row Ri , indicated in the hor-
izontal axis. N/A indicates nonexisting downstream rows. Finite-
horizon effects are eliminated by only reporting a power increase
up to t = TA for the active row Ri .

the farm: first-row turbines, last-row turbines, and intermedi-
ate turbines. The most salient behavior can be found in the
first-row turbines (R1). It was shown that these turbines ex-
hibit the largest variability in thrust forces and hold the great-
est potential for power optimization. Furthermore, they are
not influenced by upstream turbine control action and are
the only turbines that retain part of the power gains after
eliminating possible correlation between controls and spe-
cific flow events. The characteristics of the last-row turbines
(R12) also stand out from the rest due to the fact that by def-
inition the last row has no downstream turbines and hence
holds no further potential for coordinated control. The re-
maining intermediate rows (R2–R11) have similar spectral
thrust characteristics and potential for power increase, as they
are situated between but clearly separated from the first- and
last-row turbines. Further, it is worth noting that the behavior
and analysis of control actions in these turbines is most com-
plex: not only do they influence downstream turbines, but
they in turn are also dependent on the controls of upstream
turbines.

A second conclusion is that, whether or not the wind
farm is controlled with the possibility of active response
and cooperation between turbines, the resulting power and
thrust characteristics are very similar. It was shown that self-
optimization is very limited and that for any row i the full
potential in power increase is virtually attained by applying
controls only for the upstream turbines up to row i−1. These
observations strongly suggest that the optimized thrust coef-
ficients are designed in a parabolic manner, i.e., with a uni-
directional propagation of control information from the first
row to the last and very little upstream influence of down-
stream turbine actions. With this in mind, the following sec-
tion of this paper will focus on the first and most promising
link in the control chain: the turbines situated in the first row
of the wind farm.
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Figure 11. Normalized row-averaged power extraction for the reference case, optimal control case C3t5, and modified control cases. (a) Mod-
ified control cases with controls swapped between wind turbine columns. (b) Modified control cases with controls swapped randomly by
time window.

4 First-row turbine behavior

The current section further focuses on the analysis of the
first-row turbines. First, a qualitative analysis of the instanta-
neous flow field is performed in Sect. 4.1, resulting in the
observation of vortex rings being shed from first-row tur-
bines. Thereafter, this mechanism is mimicked by imposing
sinusoidally varying thrust coefficients in these turbines in
Sect. 4.2, with the aim of increasing power through simi-
lar mechanisms as in the computationally expensive optimal
control cases.

4.1 Flow field visualization

Figure 12 shows snapshots of the vorticity and velocity fields
at t = 300 s for the reference case (left) and the optimal con-
trol case C3t5 (right). Figure 12a and b show isosurfaces of
vorticity magnitude colored by streamwise velocity ũx . Fig-
ure 12a shows that in the reference case the first-row turbines
shed relatively stable vortex sheets that demarcate the wake
from the free-stream flow. The sheets destabilize and break
up as they are advected downstream, resulting in complex
three-dimensional vortical structures. Furthermore, as also
shown in Fig. 12c, wake mixing is limited, and downstream
turbines experience reduced velocities. In contrast, the op-
timized case shows coherent vortex rings being shed from
the first-row turbine. As indicated by the black arrows in
Fig. 12b, the locations of the rings in the controlled case co-
incide with naturally occurring bulges in the vortex sheet of
the reference case: the controlled turbines further destabilize
the sheet through well-timed temporal variations in its thrust
coefficient. Figure 12c shows that this results in smaller ve-
locity deficits in the wake region. Note that downstream of
the second turbine the vorticity field becomes much more
complex and differences in the flow fields are less coherent.

The observed shedding of ring vortices seems to occur at
specific flow-synchronized times to exploit the natural insta-
bilities in the original vortex sheets. Therefore, the remain-

der of this paper will attempt to accomplish the same effect
through simple sinusoidal thrust variations.

4.2 Sinusoidal thrust variations

The aim of the current section is to mimic the quasi-periodic
shedding of vortex rings by upstream turbines as observed
above through the use of simple periodic variations in the
thrust coefficient. Instead of optimizing a high-dimensional
control signal that can evolve freely in time as in MM17,
we impose a sinusoidal perturbation on the Betz-optimal co-
efficient Ĉ′T = 2, parameterized by its amplitude A, and its
frequency in the form of a nondimensional Strouhal num-
ber St= fD/U∞, with f the dimensional frequency, D the
turbine diameter, and U∞ the unperturbed time-averaged up-
stream velocity:

Ĉ′T (t)= 2+Asin
(

2πSt
tU∞

D

)
. (6)

4.2.1 Parameter sweep

Instead of optimizingA and St using a similar gradient-based
optimization setup as in MM17, we perform a parameter
sweep to find optimal parameter combinations. The reason
for this is that we would need a rather long optimization hori-
zon T to find a robust parameter combination that is indepen-
dent of specific flow realizations. Unfortunately, the chaotic
nature of turbulent flow fields makes long-time optimization
using adjoint LES practically infeasible to date (see, e.g.,
Wang et al., 2014). However, the fact that we have only two
parameters renders a parameter sweep computationally fea-
sible. The sweep is performed for a reduced-size wind-farm
LES, as illustrated in Fig. 13. The farm consists of 4× 4 tur-
bines in an aligned layout with S = 6D in both the stream-
wise and span-wise directions, geometrically equivalent to
the optimally controlled wind farm in MM17. The simulation
is performed on a domain of 4×2.4×1 km3 with a simulation
grid of 192×256×144 grid points. A wall roughness length
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Figure 12. Instantaneous snapshots at t = 300 s of a portion of the wind-farm flow field for the reference (left) and optimized (right) case.
(a, b) Isosurface of vorticity magnitude colored by streamwise velocity ũx . Deep-wake regions (with ũx < 4.5 m s−1) are rendered in black.
Black arrows indicate the naturally occurring unstable bulges in the reference case and the accompanying vortex rings in the optimized case.
(c) Contours of streamwise velocity ũx . Coloring is in units of m s−1. Wind turbines are represented as gray disks.

Figure 13. Reduced 4× 4 wind-farm simulation setup for sinu-
soidal variation parameter study showing instantaneous contours of
streamwise velocity ũx . Coloring is in units of m s−1. The dashed
line indicates the start of the fringe region for the imposition of un-
waked inflow conditions.

z0 = 10−1 m is used. A set of wind-farm flow simulations is
advanced in time by 30 min, during which the front row is
controlled using a sinusoidally varying thrust coefficient Ĉ′T ,
as defined in Eq. (6). Within this set, the amplitude A is var-
ied between 0.5 and 2, with increments of 0.5. Furthermore,
the Strouhal number St is varied between 0.05 and 0.6, with
increments of 0.05. In total, this leads to 48 LES cases within
the set.

Figure 14 illustrates the power extraction for all cases con-
sidered. Figure 14a illustrates the relative power gains over
the reference case. From the figure it can be seen that there is
a well-defined range of values for A and St for which wind-
farm power can be increased substantially through upstream
sinusoidal thrust variations, with a maximal power increase
of ≈ 5 % at (St∗,A∗)= (0.25,1.5). For instance, a Strouhal
number St= 0.25 corresponds here to a sine wave period of
≈ 50 s for a turbine with diameter D = 100 m and a free-
stream velocity U∞ = 8.5 m s−1. For instance, considering
the NREL 5MW blade profiles, the maximum thrust coef-
ficient of 3.5 can be attained by slightly changing the rotor
design, e.g., using a 50 % increase in blade chord length and
an operational tip speed ratio 25 % higher than the original
design value (see Appendix A in Goit and Meyers, 2015).
Furthermore, given such redesign, dynamic reductions from
this value could be realized through blade pitch control, for
which actuation rates of the order of 10◦ s−1 are possible
(see, e.g., Jonkman et al., 2009). Figure 14b illustrates nor-
malized power extraction by row for the reference case, the
best sinusoidal case, and the first four rows of the optimal
control case C3t5 from MM17. The figure shows that the
power gain in the sinusoidal cases originates mostly from the
second row and that power in the first row is decreased by
approximately 5 %. In contrast, optimal control case C3t5, in
which all rows are active, also increases power in rows 3 and
4 and reduces first-row power by only 1 %.

Figure 15 illustrates instantaneous vorticity and axial ve-
locities for a set of wind turbines of the aforementioned
reference case (a), the best sinusoidal case with (St,A)=
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Figure 14. Power extraction of baseline sinusoidal thrust case (S = 6D, z0 = 10−1 m). (a) Relative gain in mean wind-farm power extraction
over reference case as a function of sine amplitude A and frequency St. (b) Row-averaged mean power extraction for the best sinusoidal case,
the optimal control case C3t5 from MM17, and the reference case normalized by first-row reference power.

(St∗,A∗)= (0.25,1.5) (b), and a sinusoidal case that does
not lead to increased power extraction with (St,A)= (0.6,2)
(c). The figure illustrates the fact that sinusoidal variations
in the first-row thrust coefficient indeed cause the periodic
shedding of vortex rings. Figure 15b shows that at the opti-
mal frequency this leads to increased wake mixing, providing
the second-row turbine with a higher incoming velocity. In
contrast, Fig. 15c shows that even though higher-frequency
thrust oscillations also result in the periodic shedding of vor-
tex rings, this does not automatically lead to more favorable
flow conditions for downstream turbines. Therefore, it can be
concluded that the correct timing and spacing of vortex rings
is essential for increased wake mixing.

In order to assess whether the same strategy can be used
in the downstream turbines as well, Fig. 16 illustrates the re-
sults from an identical parameter sweep as discussed above,
except that here the second turbine row is controlled using
a sinusoidal thrust coefficient. Figure 16a indicates that the
sinusoidal actuation of the second row invariably leads to
losses in wind-farm power. Figure 16b shows that, for the
optimal combination of parameters of (St,A)= (0.25,1.5)
as reported for first-row actuation above, the minor power
increase in the third row does not compensate for additional
losses in the second and fourth row. This shows that the pro-
posed simple control strategy does not work when applied to
waked turbines and that more elaborate control strategies are
required to harness the gains achieved by the optimal control
simulation in the downstream regions of the farm.

It is interesting to note that, even though the current param-
eter sweep is performed using different initial and inlet con-
ditions than those applied in MM17, the optimal frequency
of sinusoidal variations in Ĉ′T at St∗ = fD/U∞ = 0.25 cor-
responds to the location of the peak in the first-row thrust
coefficient spectrum of C3t5 in Fig. 7. In the following para-
graphs, the robustness of the best parameter pair for first-
row thrust variations, i.e., (St,A)= (0.25,1.5), is investi-
gated with the aim of assessing the general applicability of
this control strategy. To this end, similar parameter sweeps

are performed for cases with varying turbine spacings and
turbulence intensities.

4.2.2 Robustness with respect to turbine spacing and
turbulence intensity

Figure 17 shows the power extraction resulting from two
parameter sweeps with streamwise turbine spacings of 5D
and 7D. The results are promising: for the given cases, St∗

and A∗ do not depend on streamwise turbine spacing. Fur-
thermore, even in the 7D spacing case (Fig. 17c–d), which
naturally features lower overall power losses in downstream
rows, power extraction in the second row can be significantly
increased through sinusoidal variations in the first-row thrust
coefficient.

Figure 18 depicts the power extraction results from a pa-
rameter sweep with the same wind-farm layout as in the base-
line case, but with a 10-fold increase in roughness length, i.e.,
z0 = 1 m. This results in a turbulence intensity of approxi-
mately 16 % compared to 10 % in the baseline case. Again,
the best parameter combination of (St∗,A∗)= (0.25,1.5) re-
mains unchanged. Further, even for this higher turbulence
case, in which downstream losses are lower due to naturally
better wake mixing, power is increased in the second row,
leading to a relative gain in wind-farm power of around 2 %.

As evidenced above, periodic sinusoidal variations in first-
row thrust coefficients substantially increase power extrac-
tion in the second row, resulting in a net gain in total power
for the considered 4×4 wind farm. Moreover, different simu-
lation sets indicate that, at least for the range considered here,
the best values for the Strouhal number and the amplitude of
these variations, i.e., (St∗,A∗)= (0.25,1.5), are robust with
respect to turbine spacing and turbulence intensity.

4.2.3 Full-scale wind-farm LES

In the remainder of this section, the sinusoidal variation strat-
egy will be tested in a full-scale wind-farm LES correspond-
ing to the full 12× 6 aligned wind farm of MM17. Simu-
lations are performed for a reduced range of amplitudes and
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Figure 15. Snapshots of wind-farm flow fields at t = 1800 s. Left: isocontours of vorticity colored by streamwise velocity. Right: contours of
streamwise velocity. (a) Reference. (b) Best sinusoidal case with (St,A)= (St∗,A∗)= (0.25,1.5). (c) Sinusoidal case with (St,A)= (0.6,2).

Figure 16. Power extraction of second-row sinusoidal thrust case. (a) Relative gain in mean wind-farm power extraction over reference
case as a function of sine amplitude A and frequency St. (b) Row-averaged mean power extraction for the sinusoidal case with the optimal
parameters as for row 1 sinusoidal thrust and the reference case normalized by first-row reference power.

Strouhal numbers corresponding to the most favorable region
identified in the parameter sweeps above. In order to increase
statistical convergence, the time horizon for each simulation
is extended to a physical time of 10 h.

Figure 19 shows the power extraction of the full-scale
LES. Figure 19a shows the relative power gains over the ref-
erence case for the full wind farm. It can be seen that the total
power gain or loss is below 0.5 % for each of the sinusoidal
control cases. Figure 19b shows the row-wise power extrac-
tion for the reference case, the sinusoidal thrust case with
(St,A)= (0.25,1.5), and the optimal control case C3t5. It is
shown that, although the second row of the sinusoidal thrust
case achieves similar power gains as those observed above,
from the fifth row onwards power is slightly reduced in the
sinusoidal case.

The top panel of Fig. 20 shows cross sections of time-
averaged axial velocities Ũx at the rotor disk locations for the
reference case. Further, the middle and bottom panels illus-
trate deviations from the reference velocity for the (St∗,A∗)
sinusoidal case and the optimal control case C3t5, respec-

tively. The figure shows that both controlled cases show sim-
ilar characteristics at the second turbine row, with an in-
creased axial velocity at the rotor disk accompanied by de-
creased velocities above and below. Downstream, it can be
seen that the passive turbines of the sinusoidal case fail to
retain increased velocities at the rotor disks, instead result-
ing in slightly lower disk velocities starting from the fifth
row. In contrast, case C3t5, in which all turbines are actively
controlled, succeeds in attaining similar cross section char-
acteristics with higher rotor velocities in the downstream as
well. Note also that for the fifth row the disk velocity is
slightly lower for the sinusoidal control case than for the
reference case, consistent with the decreased power extrac-
tion observed in Fig. 19. This can be explained by the fact
that first-row control actions cause enhanced entrainment of
momentum from the internal boundary layer above the tur-
bine canopy that would otherwise be entrained by natural tur-
bulent mixing in passive downstream rows. In consequence,
lesser entrainment occurs for downstream rows, resulting in a
slight decrease in disk velocities from the fifth row onwards.
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Figure 17. Power extraction of sinusoidal thrust cases with varying streamwise spacing. (a, b) Decreased spacing at S = 5D. (c, d) Increased
spacing at S = 7D. (a, c) Relative gain in mean wind-farm power extraction over reference case as a function of sine amplitude A and
frequency St. (b, d) Row-averaged mean power extraction for the best sinusoidal case and the reference case normalized by first-row reference
power.

Figure 18. Power extraction of sinusoidal thrust case with increased wall roughness z0 = 1 m. (a) Relative gain in mean wind-farm power
extraction over reference case as a function of sine amplitude A and frequency St. (b) Row-averaged mean power extraction for the best
sinusoidal case and the reference case normalized by first-row reference power.

As shown throughout the current section, a qualitative
analysis of instantaneous flow features in the optimal induc-
tion control wind farm from MM17 has led to the identifica-
tion of a sinusoidal thrust control strategy for first-row tur-
bines, resulting in increased power extraction in the second
row. However, important comments should be made. First,
sustained sinusoidal thrust variations with a large amplitude
could contribute significantly to turbine fatigue loading of the
first-row turbines. Furthermore, partial wake alleviation and
unsteady passing of the abovementioned vortex rings could
also increase fatigue loading in downstream rows. Hence,
structural aspects should be taken into account upon eval-

uating the practical viability of the approach. Second, even
though experiments have shown that, for practically relevant
tip speed ratios, wind turbines shed vortices in a similar way
as disk-like bluff bodies (Medici and Alfredsson, 2006), the
current behavior could still be an artifact of the relatively
simple ADM used throughout this study. Further verification
using higher-fidelity wind turbine models, such as actuator
line models, and wind tunnel testing is hence necessary.
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Figure 19. Power extraction of full-scale sinusoidal thrust case (S = 6D, z0 = 10−1 m). (a) Relative gain in mean wind-farm power extrac-
tion over reference case as a function of sine amplitude A and frequency St. (b) Row-averaged mean power extraction for the sinusoidal case
with parameters from previous sections, the optimal control case C3t5 from MM17, and the reference case normalized by first-row reference
power.

(a)

(b)

(c)

Figure 20. Cross section of time-averaged axial velocity Ũx at rotor locations in rows 1, 2, 3, 4, 5, and 12. (a) Reference case. (b) Difference
between best sinusoidal perturbation case (with A= 1.5, St= 0.25) and reference case. (c) Difference between optimal control case C3t5
and reference case. Coloring is in units of m s−1.

5 Intermediate-row turbine behavior

The current section discusses the intermediate rows. It was
shown that, without active participation in these rows, up-
stream gains are lost in downstream rows, and only full opti-
mal control succeeds in achieving significant gains in down-
stream rows as well (see Figs. 19, 20). It was already men-
tioned that the analysis and behavior of turbines within in-
termediate rows is more complex than in the first row: they
aim to influence the flow to the benefit of downstream rows
but are also dependent on the actions of upstream rows. The
remainder of the current section aims to illustrate the addi-
tional difficulty of power increase in downstream rows and

speculates on possible future paths for the identification of
simplified control strategies as found for the first row.

First, as shown in the top panels of Fig. 20, even in the
uncontrolled case the kinetic energy of the flow in the vicin-
ity of the turbine rotor is depleted more and more in the
downstream rows. This complicates control strategies for
these rows as the opportunity for increased mixing with high-
energy flow is decreased. Furthermore, intermediate turbines
are subjected to increased turbulence levels and more com-
plex vorticity dynamics, as illustrated in Fig. 12. This could
explain why sinusoidal thrust control did not lead to in-
creased power when applied to the second row: whereas the
first row produces increased mixing by destabilizing rela-
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tively stable vortex sheets into vortex rings, the second row
is already continuously immersed in complex vorticity pat-
terns for which this simple approach does not work. How-
ever, note that R7 in Fig. 5, for instance, also seems to show
quasi-periodic sinusoidal variations in Ĉ′T at a time period of
approximately 50 s. This is an indication that, also for inter-
mediate rows, vortex ring shedding could amount to part of
the power increase observed in the optimal control simula-
tions, albeit at specific moments in time, synchronized with
the local flow conditions.

Second, it is important to note that the vortex ring shed-
ding mechanism constitutes only part of the power increase
caused by the first row. Figure 8 illustrates that the first-row
optimized thrust coefficient also results in a significant power
increase in the third row, which is not observed using the
sinusoidal thrust strategy. Furthermore, the analysis of the
modified control cases in Fig. 11 proves that the first-row
controls are also partially synchronized with the flow. This
shows that other mechanisms, dependent on specific flow
events for increasing wind-farm power, are at play as well.
Even though the application of regression algorithms in an
attempt to link turbine actions to low-dimensional flow mea-
surements (e.g., local velocity, shear and kinetic energy) has
been unsuccessful thus far, similar analysis based upon more
complex flow features (e.g., vorticity structures, high-speed
turbulent streaks, or downdrafts) might be more promising.
This requires further optimal control simulations over an ex-
tended time, as the total control time horizon of 30 min in the
current dataset is insufficient for robust statistics in this kind
of analysis. This is an important remaining challenge to be
addressed in future research.

6 Conclusions

The current paper provided an analysis of the thrust coeffi-
cient control characteristics for the C3t5 optimal control case
featured in Munters and Meyers (2017).

Analysis of the thrust coefficients and numerical experi-
ments have shown a clear distinction between first-row tur-
bines, last-row turbines, and intermediate turbines. Further-
more, observations strongly suggest that the optimization
works in a unidirectional way: upstream turbines influence
the flow field, resulting in favorable conditions for their
downstream neighbors, yet information on the possibility of
active response and cooperation in the latter has no influence
on upstream control actions.

Qualitative analysis of instantaneous flow fields led to the
observation of the quasi-periodic shedding of vortex rings
from first-row turbines in the optimal control case. This flow
feature was successfully mimicked using simple sinusoidal
thrust actuation of the first row. The best parameter set for
these sinusoidal variations proved robust to both wind turbine
spacing and turbulence intensity, with an amplitudeA∗ = 1.5
and a nondimensional frequency at St∗ = 0.25. Interestingly,

this frequency corresponds to the peak at St= 0.2. . .0.3 ob-
served in the first-row thrust coefficient spectra of the op-
timal control case. Although the first-row sinusoidal control
led to a robust increase in total power for a reduced-size 4×4
wind farm, a full-scale test indicated that downstream turbine
activity is required to obtain increased power at larger farm
scales. It was also shown that the simple sinusoidal strategy
does not lead to increased power extraction when applied
to downstream intermediate turbines. Identifying the mecha-
nisms for power increase in these turbines hence remains an
important open research question. Finally, it is important to
remark that all current simulations were performed using a
standard nonrotating actuator disk model without the inclu-
sion of mechanical turbine loading. Therefore, wind tunnel
testing and/or simulations with more advanced turbine mod-
els (such as the actuator line model) including the assessment
of turbine loading are essential to evaluate the real-life appli-
cability of the sinusoidal thrust strategy.
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found in a figshare repository. These datasets include time-
averaged flow fields, optimized controls and optimized wind-
farm power extraction for the case reported in this paper
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