
Wind Energ. Sci., 3, 475–487, 2018
https://doi.org/10.5194/wes-3-475-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Adaptive stratified importance sampling: hybridization of
extrapolation and importance sampling Monte Carlo

methods for estimation of wind turbine extreme loads

Peter Graf, Katherine Dykes, Rick Damiani, Jason Jonkman, and Paul Veers
National Renewable Energy Laboratory, Golden, CO, 80401, USA

Correspondence: Peter Graf (peter.graf@nrel.gov)

Received: 7 July 2017 – Discussion started: 25 July 2017
Revised: 11 April 2018 – Accepted: 29 April 2018 – Published: 11 July 2018

Abstract. Wind turbine extreme load estimation is especially difficult because turbulent inflow drives nonlinear
turbine physics and control strategies; thus there can be huge differences in turbine response to essentially equiv-
alent environmental conditions. The two main current approaches, extrapolation and Monte Carlo sampling, are
both unsatisfying: extrapolation-based methods are dangerous because by definition they make predictions out-
side the range of available data, but Monte Carlo methods converge too slowly to routinely reach the desired
50-year return period estimates. Thus a search for a better method is warranted. Here we introduce an adaptive
stratified importance sampling approach that allows for treating the choice of environmental conditions at which
to run simulations as a stochastic optimization problem that minimizes the variance of unbiased estimates of
extreme loads. Furthermore, the framework, built on the traditional bin-based approach used in extrapolation
methods, provides a close connection between sampling and extrapolation, and thus allows the solution of the
stochastic optimization (i.e., the optimal distribution of simulations in different wind speed bins) to guide and
recalibrate the extrapolation. Results show that indeed this is a promising approach, as the variance of both the
Monte Carlo and extrapolation estimates are reduced quickly by the adaptive procedure. We conclude, however,
that due to the extreme response variability in turbine loads to the same environmental conditions, our method
and any similar method quickly reaches its fundamental limits, and that therefore our efforts going forward are
best spent elucidating the underlying causes of the response variability.

1 Introduction

Estimating extreme loads for wind turbines is made espe-
cially difficult by the nonlinear nature of the wind turbine
physics combined with the stochastic nature of the wind re-
sources driving the system. Extreme loads, such as those ex-
perienced when a strong gust passes through the rotor or
when a turbine has to shut down for a grid emergency, can
drive the design of the machine in terms of the material
needed to withstand the events. The material requirements in
turn drive wind turbine costs and overall wind plant cost of
energy. Thus, accurate modeling and simulation of extreme
loads is crucial in the wind turbine design process. This pa-
per discusses the use of adaptive importance sampling (IS)
in estimation of such loads. IS (Robert and Casella, 2004) is

a well-established method for using samples from one dis-
tribution to estimate statistics from another. Adaptivity in
IS has been introduced in Karamchandani et al. (1989) and
elsewhere (Melchers, 1990; Mori and Ellingwood, 1993), but
does not appear to have broadly taken hold, especially in the
context of wind turbine load estimation. Here we introduce
an adaptive IS method for extreme load estimation.

The essential task in wind turbine extreme load estimation
is to evaluate the probability of exceedance (POE) integral

P (Y > l)=
∫

P (Y > l|x)f (x)dx. (1)

Here P (Y > l) is the probability of load Y exceeding tar-
get/threshold l, P (Y > l|x) is the conditional probability of
exceedance given wind speed x, and f (x) is the distribution
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of wind speeds (or other environmental conditions). Because
we are interested in extremely low-probability events and
Y (x) is stochastic and only available via simulation, standard
methods of integration do not apply.

Existing approaches fall generally into two main classes.
The first is based on extrapolation: data are gathered in dif-
ferent wind speed bins, extreme value distributions are fit to
the empirical distribution function for each bin, and these
are then integrated. The second is based on Monte Carlo
(MC) methods: exceedance probabilities are written as ex-
pectations of indicator functions, samples are drawn from an
assumed wind distribution, and unbiased estimates are made
by the usual MC summation. Unfortunately, to date neither
of these approaches is satisfactory. The crux of the difficulty
is that on the one hand too many samples are required for
converged MC estimates, but on the other hand reliable ex-
trapolation of nonlinear physics under uncertain forcing is
extremely problematic, especially without knowledge of the
form (e.g., quadratic) of the nonlinearity. Nevertheless, the
computational expense of MC implies that except in rare
cases, some sort of extrapolation will be necessary in order to
reach the desired 50-year return period estimates. This paper
is motivated by the intuition that perhaps we can at least use
MC–IS to make sure extrapolations are accurate to the res-
olution of data we actually have, and to gather data in ways
that accelerate their convergence.

The difficulty of estimating these “tail probabilities” of in-
terest in extreme load estimation is one of timescales. We are
trying to estimate loads seen roughly once in 50 years using a
set of simulations whose total length is only a few hours. This
large difference in timescales means that any uncertainty in
the data is necessarily magnified by the extrapolation. Small
variations in short-term data could lead to significant over- or
underestimation of long-term extreme loads.

One of our main conclusions will be that while we may
have reasonable knowledge of the distribution of environ-
mental conditions a turbine faces, we have very little knowl-
edge regarding the distribution of the response of the tur-
bine to its environment, and this response variability may
in fact be so large that our knowledge of the distribution
of environmental conditions is of limited use. A conceptual
aid is provided by the inverse first-order reliability method
(IFORM) (Winterstein et al., 1993; Sultania and Manuel,
2017) and a variant of it called the environmental contour
(EC) method, which will be discussed briefly below. These
methods, though highly practical in their own right, are not
the main subject of the present paper, but they will help us ap-
preciate the important distinction between environment and
response.

Our goal is to develop methods that make unbiased esti-
mates that minimize variance as a function of the number of
samples and simulations, and to use these to dynamically up-
date extrapolations. Our proposed method, adaptive stratified
importance sampling (ASIS), is essentially a global stochas-
tic optimization method in which the search variables are the

number of samples from each wind speed bin we use, and
the objective function is the variance of our MC estimates.
The key tool here is IS, which allows us to continually pro-
duce unbiased estimates of exceedance probabilities even as
the distribution of bins changes. These quasi-optimal sam-
ples are then used to make the best possible extrapolations.
Results below show that this is indeed a promising approach.

The organization of this paper is as follows. First we
present the necessary background on the existing extrapola-
tion method (e.g., as recommended in the International Elec-
trotechnical Commission (IEC) standard IEC, 2005), MC
methods, and IS. Next we describe our ASIS algorithm. Then
we present a brief study illustrating some of its properties.
The paper provides a context for discussing extrapolation and
IS in the same framework. Our conclusion highlights the po-
tential for this approach, reiterates some of the fundamental
difficulties with the endeavor, and leads to suggestions for
where we should next focus our efforts to solve this difficult
problem.

2 Background on turbine simulation, extrapolation,
Monte Carlo, and IS

2.1 Turbine simulation

Throughout this paper, we use FAST, NREL’s aeroelastic
simulation tool (Jonkman, 2013). FAST is a widely used
industry and academic tool for wind turbine load estima-
tion. NREL’s WISDEM software allows for the execution
of FAST and its companion tool TurbSim (which generates
turbulent wind fields for input to FAST) in a programmatic
fashion from Python, as has been reported previously (Graf
et al., 2016).

The particular turbine on which we are testing these meth-
ods is the NREL 5 MW reference turbine, often used for
such studies (Jonkman et al., 2015; Choe et al., 2016), in
an onshore configuration. The environmental conditions are
thus described by hub height mean wind speed (modeled
by a Weibull distribution with scale and shape parameters
of 11.28 m s−1 and 2, respectively). Additional environmen-
tal parameters of turbulence intensity, spectrum, coherence
function, and wind shear are kept fixed at nominal values.
It should be noted that the stochasticity in the combined
TurbSim–FAST simulation comes from the random seed that
is input to TurbSim. This seed governs the exact starting con-
ditions for the generation of the turbulent inflow wind field.
Because this is an ergodic system, a long enough simulation
would eventually cover all possible wind conditions. How-
ever, for finite simulations, multiple runs using different ran-
dom seeds allow us to sample the space of all possible tur-
bulent flow field snapshots with the same mean wind speed,
turbulence intensity, etc. This is common practice in extreme
load analysis. We can regard random seed as a proxy for sam-
pling over a uniform distribution of turbulent inflows for each
set of environmental conditions.
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For this study, we selected two output channels of interest,
tower base side–side bending (“TwrBsMxt” in FAST nomen-
clature) and tower base fore–aft bending (“TwrBsMyt”),
which provide contrast because the wind speeds at which
their highest loads occur overlap differently with the typical
wind speed distribution. The side–side moments grow with
hub height wind speed, making their extremes hard to esti-
mate with traditional MC sampling because they do not over-
lap well with typical wind distributions. The fore–aft coun-
terparts do overlap quite closely with the typical wind distri-
butions.

2.2 Extrapolation

The current standard for estimating extreme loads relies on
extrapolation. We refer the reader to the relevant literature for
a detailed exposition of the extrapolation method (Ragan and
Manuel, 2008; Moriarty, 2008; Toft et al., 2011; Graf et al.,
2017). Here we present a concise statement of the method
and discuss one or two subtleties. The protocol to construct
exceedance curves using binning and extrapolation is as fol-
lows:

1. Run TurbSim–FAST Ni times per wind speed xi at the
center of bin i (typically Ni ∼ 6).

2. For each bin i, concatenate the data from each seed and
extract peaks (see below regarding peak extraction and
timescales). For future reference we refer to the result-
ing dataset as {Yi,k}, where i indexes over wind speed
bins and k indexes over the peaks we have extracted at
that wind speed.

3. For each bin i, form empirical cumulative distribution
functions (CDFs) and fit a chosen distribution Fi(x)=
P (Y < l|x) to them. In this paper we use a three-
parameter Weibull distribution.

4. (Optional). For each bin, convert each fitted distribution
to the desired timescale (see below regarding peak ex-
traction and timescales).

5. Finally, P (Y < l)=
∫

P (Y < l|x)f (x)dx∼
∑

iP (Y <

l|xi)f (xi)1xi , where f (x) is the probability density
function (pdf) of wind distribution, and 1xi is the width
of bin i. The probability of exceedance is the comple-
mentary distribution P (Y > l)= 1−P (Y < l), and its
estimate is P̂ (Y > l)= 1−

∑
iP (Y < l|xi)f (xi)1xi .

The distributions chosen to fit the bin-wise CDFs are the
theoretically appropriate extreme value distributions (gener-
alized extreme value (GEV), three-parameter Weibull, etc.).
However, this does not mean they accurately represent the
behavior of the particular FAST loads in a specific context.
The optimality properties of extreme value distributions are
asymptotic properties, but we are performing “intermedi-
ate asymptotics”: long-term – but not infinitely long-term –

trends. Nevertheless, these distributions are the appropriate
starting point.

In this paper we are using a three-parameter Weibull dis-
tribution, but this is not meant as a claim that this choice is
better than any other in the literature (Gumbel, GEV, etc).
We used the three-parameter Weibull because we have used
it with success in previous work (Graf et al., 2017). There
are many excellent studies examining the choice of distribu-
tion and the method of extracting peaks (Ragan and Manuel,
2008; Moriarty, 2008; Toft et al., 2011; Naess and Gaidai,
2009; Dimitrov, 2016), but this is not the focus of the present
work.

Regarding the fitting procedure, in light of the interest in
extrapolation, rather than just fitting, we have fit the empiri-
cal CDF of the data directly to the theoretical CDF of the dis-
tribution by nonlinear least squares. We have done this sepa-
rately for the data from each wind speed bin. Furthermore, in
order to emphasize the largest peaks (i.e., the lowest proba-
bility values) we do not use all the data, just the Mpks largest
peaks in each bin, where Mpks is an algorithmic parameter.
Mpks plays a role in our studies similar to the threshold used
in peak-over-threshold methods, but for purposes of connect-
ing to the bin-based approach it has the advantage that there
are always the same number of peaks extracted from a given
length simulation. As an exercise, we experimented with us-
ing different values of Mpks, as discussed below in Sect. 4
and illustrated in Fig. 2. The broad conclusion is that there
is a window of values of this parameter that provides similar
performance, which suggests this parameter will not be an
impediment to practical implementation of this algorithm.

It is important to be clear regarding various time spans at
play here. First, there is the ultimate time of interest, typically
in wind studies the 50-year return period. This does not mean
that in 50 years the event in question happens with a proba-
bility of 1. Sometimes it is loosely defined as an event having
a probability of 1/50 of happening in 1 year. Strictly speak-
ing it is an event that happens on average one or more times
in 50 years according to a Poisson process whose events-
per-interval parameter is one in 50 years. Next there is the
simulation time, i.e., the length of each FAST run. This is
almost always 10 min in the literature. In relation, there is
the time span over which our estimates of exceedance proba-
bility apply. These are also traditionally 10 min, i.e., reported
probabilities of exceedance are probabilities of exceedance in
10 min, but there is nothing in principle to make this fixed. Fi-
nally, there is the length of time between independent peaks.
This time can be estimated empirically by examining the au-
tocorrelation of the data; values as low as 4 s have been justi-
fied in previous studies (Ragan and Manuel, 2008), and 10 s
seems to be more than adequate.

The various time spans come into play as we extract peaks
and make estimates. The rule that connects them is the simple
AND rule of probability: if Y < l for time T , and T =Kt ,
then Y < l for time t for K times in a row, so PT (Y < l)=
Pt (Y < l)K . For probabilities of exceedance P (Y > l), we
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write P (Y > l)= 1−P (Y < l) and use the same idea, result-
ing in the familiar expression PT (Y > l)= 1− (1−Pt (Y >

l))K . For example, the former is typically used to convert
peak distributions collected on a 10 s, 1 min, or peak-over-
threshold basis to a 10 min basis, while the latter is used when
we derive the ubiquitous value of 3.8× 10−7 that represents
the probability of the 50-year return period event happening
in 10 min.

In this paper we adopt the following setup: all our simula-
tions are 11 min long, for which we discard the first minute
as a transient and retain the final 10 min for our studies
(we will occasionally be loose with the terminology and re-
fer to these as “10 min simulations”). To gather peaks, we
take the maximum of each 1 min segment in our simula-
tions. This provides exactly 10 peaks per simulation, which
allows for building 1 min empirical CDFs (i.e., probability
of exceedance in 1 min) in a consistent manner. The result-
ing 1 min empirical POEs are converted to 10 min POEs as
described above (i.e., K = 10) to conform to standard prac-
tice. Below we experiment with how many of these peaks
should be used in the fitting of the extreme value distribu-
tions used in the extrapolation method. This alternative to
the peak-over-threshold method makes comparison and cor-
respondence between extrapolation and sampling easier, be-
cause we have a fixed number of peaks per FAST run. The
tradeoff between gathering more peaks (at the risk of sacrific-
ing statistical independence) versus fewer peaks (at the risk
of not having enough data) is an algorithmic detail that we
could study further, but it is not the focus of this paper. Our
motivation for using 1 min interval peak separations is to pick
a reasonable point along this tradeoff that avoids the pitfalls
of either extreme. Finally, we have divided the wind speed
range into five bins centered at 8, 12, 16, 20, and 24 m s−1.

To acquire a sense of the basic variability in the re-
sponse, we have run 20 independent sequences of the simula-
tions described above for the extrapolation method (six ran-
dom seeds per bin). Figure 1 consists of box-and-whisker
plots of the peaks from the first 6000 peaks (10 peaks per
run× 6 seeds× 20 repetitions× 5 bins). For both the side–
side and fore–aft loads, the variability within each bin is
large. For example, the difference between the 95th and 5th
quantiles for the 24 m s−1 side–side bin is comparable to its
median value. For the side–side load the dependence on wind
speed is clearly also very strong, whereas for the fore–aft
load, the variability within the bins is as large as it is between
the bins. A detailed study of response variability in the con-
text of offshore wind turbine fatigue loads is given in Zwick
and Muskulus (2014).

2.3 Monte Carlo importance sampling for extreme loads

MC methods are widely used to estimate expectations of
quantities calculated using stochastic simulations (Robert
and Casella, 2004). IS is an MC method in which an auxiliary
importance distribution q(x) is used to focus sampling on ar-

eas of the target distribution f (x) that are most relevant with
respect to the functions of interest (e.g., the loads Y (x)). Of-
ten relevant means minimal variance (see below). The broad
applicability of the method arises from the so-called IS iden-
tity:

Ef [Y (x)] =
∫

Y (x)f (x)dx, (2)

=

∫
Y (x)

f (x)
q(x)

q(x)dx, (3)

= Eq

[
Y (x)

f (x)
q(x)

]
, (4)

where Ef and Eq represent the expectation with respect to
f and q, respectively. This means, from an MC standpoint,
that both

Ef [Y (x)] ∼
1

Mtot

Mtot∑
i

Y (xi) ,with xi drawn from f, (5)

and

Eq

[
Y (x)

f (xi)
q(xi)

]
∼

1
Mtot

Mtot∑
i

Y (xi)
f (xi)
q(xi)

,

with xi drawn from q, (6)

(where Mtot is the total number of samples we have of the
quantity we are estimating) are unbiased estimates of the
same quantity Ef [Y (x)].

For us Mtot will be the number of peaks gathered from the
FAST runs. In what follows we will use M to represent num-
bers of peaks and N to represent numbers of FAST runs. With
our convention of taking the maximum over 1 min spans
of 10 min simulations, we will have M = 10N throughout.
The subscript “tot” will be the total number (over all bins),
whereas index subscripts (e.g., “i”) will refer to the peaks
or runs within the corresponding bin. Thus as above, Ni is
the number of FAST runs (i.e., random seeds) in the ith bin,
Mi = 10Ni is the number of peaks extracted from the Ni

runs, and Ntot is the total number of FAST runs.
Although the estimates above in Eqs. (5) and (6) are

both unbiased, they could have drastically different variance,
which means that they may converge at drastically different
rates. The minimal variance importance distribution can be
derived and is

q∗(x)=
Y (x)f (x)
Ef [Y (x)]

. (7)

From a practical standpoint there are two obvious prob-
lems with this result. First, it depends on the expectation we
wanted to calculate in the first place. This objection we can
overcome using some form of accept–reject sampling that
does not depend on the normalization constant. (As long as
we can evaluate Y (x), even if by simulation (we assume we
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Figure 1. Box-and-whisker plots of the distribution of the raw response (specifically, all 1 min maxima) of the combined TurbSim–FAST
simulation as a function of wind speed bin for side–side (a) and fore–aft (b) loads. The difference in general trend between side–side and
fore–aft loads is clearly evident. The variability within each bin is extreme (especially for the fore–aft load), which puts an upper bound on the
utility of sampling methods (e.g., IS) targeting certain wind speeds. The boxes show the median and 25th and 75th percentiles. The whiskers
are positioned at the 5th and 95th percentiles. The data are the absolute maxima in 1 min segments of 120 separate 10 min simulations per
bin (1200 total peaks for each bin).

can also evaluate f (x)), we can sample from any distribu-
tion proportional to Y (x)f (x) using the accept–reject algo-
rithm (see, e.g., Robert and Casella, 2004), which involves
sampling uniformly in a 2-D region containing the function
Y (x)f (x). The probability of x with respect to the Y × f

distribution is just the proportion of these uniform samples
below Y · f in this 2-D box. This procedure does require as-
sumptions on the bounds of Y and the support of Y and f , but
in principle these can be made large enough to sample any
reasonable probability Y · f ). A more significant problem,
however, is that q∗ also depends on the function Y (x) whose
expectation we are trying to calculate with as few evalua-
tions as possible. Finally, in our case, an even worse prob-
lem is that Y (x) is not a deterministic function of x; thus, as
stated, q∗ is also a stochastic function. Nevertheless, Eq. (7)
provides a guide for our quest to find the minimal variance
importance distribution: it should be as close as possible to
proportional to the product of load Y (x) and wind probability
f (x).

For our purposes, finally, note that Eq. (1) can be written
as an expectation of the so-called “indicator” function that
is 1 if Y (x) > l and 0 otherwise:

P (Y > l)= Ef [I (Y > l)] ∼
1

Mtot

∑
i

I (Y (xi) > l)
f (xi)
q(xi)

,

with xi drawn from q. (8)

Equations (1) and (8) form the basis of the mathematical
bridge between extrapolation and the MC–IS methods de-
scribed in Sect. 3.

2.4 IFORM

The following section is not essential to understanding our
adaptive IS algorithm and may be considered optional. How-
ever, we believe it provides useful conceptual context, espe-
cially to understand the limits of statistical methods for sys-
tems whose response variability is large. Here, keeping in
mind the goal – minimal variance unbiased estimates of ex-
treme loads through IS, minimizing the use of extrapolation
– we summarize the IFORM and EC methods. IFORM was
introduced by Winterstein (Winterstein et al., 1993) and ad-
dresses the estimation of extreme loads from a different per-
spective. Instead of directly computing the integral in Eq. (1),
IFORM seeks to find the combined set of environmental con-
ditions and resulting loads that have a desired joint return pe-
riod probability. The EC variant explicitly separates the en-
vironment from the turbine’s response to it, in effect being a
method that seeks to directly find the conditions that cause
the extreme load.

In the general IFORM approach, the combined environ-
mental and response variable space is considered to be one
joint probability distribution, and the quantile corresponding
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to the desired return period is explored to find the maximal
response. In practice, the distribution of the environmental
part of this combined space is assumed known. For example,
in this paper, the environmental component is wind speed,
which is assumed to have a Weibull distribution with a shape
and scale of 11.28 m s−1 and 2, respectively. Then response
data are gathered for samples in the environmental space,
and a conditional distribution “response given the environ-
ment” is fit to these data, which allows finally for extrapo-
lation to the desired return period. This use case of IFORM
is thus a form of extrapolation, with its strengths (it requires
very few samples to build arbitrarily low POE estimates) and
weaknesses (there is no guarantee, as outlined above, that ex-
trapolation outside the range of data, i.e., from short to long
times, is valid). In this sense everything we can say about
using adaptive IS to reduce the variance of traditional extrap-
olations applies to IFORM estimates as well. The more data
we have in the relevant bins, the more accurate our statistical
fits and resulting extrapolations will be.

The EC variant of IFORM explicitly separates environ-
ment from response. It works best if the response of inter-
est is a completely deterministic function of environmental
conditions that themselves have known probability. Then one
can directly search the environmental contour (e.g., all wind–
wave–turbulence combinations that occur on average once in
50 years) to find the highest load. Otherwise, a conditional
distribution of response subject to environment can model
the response variability away from its median; in this case,
EC is then similar to IFORM in practice. Together, IFORM
and EC solidify the important notion of response variability:
the magnitude of the variation in the nonlinear stochastic re-
sponse for fixed environmental conditions.

These notions help to explain why IFORM or EC applied
to wind turbine extreme loads estimation may not be much
different than other extrapolation methods. On the one hand,
as noted above, though systematic and efficient, IFORM re-
lies on extrapolation. Just like the standard extrapolation
method, it relies on being able to extrapolate from easily ob-
servable quantiles (5th, 25th, 50th, 75th, 95th, etc.) to the
very difficult to observe quantiles corresponding to the 50-
year return period. On the other hand, EC is not applicable
when the main driver of variation in a system is the response
variability, which (see Fig. 1) is largely the case for wind
turbines; the main driver of extreme loads is not a particular
wind speed but some idiosyncratic chaotic process that even
for a prosaic wind speed just might come together to cause
an extreme load.

The present task, that of estimating extreme loads with
wind speed as the only environmental variable, is governed
mostly by the response variation. Therefore we will not es-
timate extreme loads by IFORM in this paper. However,
IFORM is critical for conceptual understanding: where pos-
sible, our goal should be to convert response variation (in-
tractable) to environmental variation (tractable) through bet-
ter understanding of its physical cause. It is the extreme re-

sponse variability (different random seeds for the same en-
vironmental conditions can cause very different FAST out-
put because they cause very different turbulent inflow) that
makes extreme load estimation a difficult problem. We re-
turn to this subject in Sect. 5.

3 Adaptive stratified importance sampling (ASIS)

3.1 Bin-wise empirical CDFs as the bridge between
extrapolation and MC

When we perform the bin-wise simulations used in the ex-
trapolation methods, we are performing stratified sampling.
Recognizing that these samples can be described as a prob-
ability distribution provides a bridge to using them in an IS
context, as discussed in Graf et al. (2017). The basic idea is as
follows. Assume a set of samples {xi} from an arbitrary dis-
tribution g(x) of wind speeds (g may be either f (x), q(x), or
an empirical one derived from binning the data). By running
FAST, the set {Yi} of corresponding loads can be generated
and sorted from the lowest to the highest. Then for any given
load Yj , the IS estimate is

P (Y < Yj )= Ef [I (Y < Yj )], (9)

=

∫
I (Y (x) < Yj )f (x)dx, (10)

=

∫
I (Y (x) < Yj )

f (x)
g(x)

g(x)dx, (11)

∼
1

Mtot

∑
i

I (Y (xi) < Yj )
f (xi)
g(xi)

with xi drawn from g, (12)

=
1

Mtot

∑
i


f (xi)
g(xi)

if i < j

0 otherwise
, (13)

=
1

Mtot

∑
i<j

f (xi)
g(xi)

. (14)

Letting wi ≡
f (xi )
g(xi )

, we can concisely write the empirical
CDF for all the loads {Yj } as

P (Y < Yj )=
1

Mtot

∑
i<j

wi . (15)

To apply this formula to data from the binning method, we
need the appropriate g(x), i.e., the appropriate weights wi of
each sample. Recall, we write the dataset as {Yi,k}, where i

indexes over wind speed bins and k indexes over peaks ex-
tracted at that wind speed. We rewrite the integral over wind
speeds as a sum of integrals, and then approximate each sepa-
rate integral by the Mi peaks derived from the Ni runs (in our
case, over TurbSim random seeds) at the fixed wind speed xi

for bin i:∫
I (Y (x) < Yj )f (x)dx
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(a) (b)

E E

Figure 2. Weibull three-parameter fits to the empirical CDF for the wind speed bin centered at 20 m s−1 for a variety of choices for how
many peaks Mpks we use for the fit for side–side (a) and fore–aft (b) tower base loads. In all cases we are fitting the analytical CDF to the
highest Mpks loads of the empirical CDF (a lower value of Mpks is like a higher threshold in the peak-over-threshold method). Especially for
the side–side moment, the extrapolated POE values depend heavily on how many peaks are used.

=

Nbins∑
i=1

xi+1∫
xi

I (Y (x) < Yj )f (xi)dx, (16)

∼

Nbins∑
i=1

1
Mi

Mi∑
k=1

{
f (xi)1xi ifYi,k < Yj

0 otherwise . (17)

From this, we see that the “weight” contributed by sam-
ple i,k to the probability of non-exceedance (1-POE) of
Yj is 1

Mi
f (xi)1xi for all i,k such that Yi,k < Yj . To calcu-

late the empirical CDF from the bin data, then, we assign
weight wi =

1
Mi

f (xi)1xi for all samples from bin i and ap-
ply Eq. (15). Table 1 summarizes the exact correspondence
between extrapolation and IS–MC. The importance density
corresponding to stratified sampling is seen to be

g(xi)=
Mi

Mtot

1
1xi

=
Ni

Ntot

1
1xi

. (18)

We note that g(x) is in fact normalized:

∫
g(x)dx =

Nbins∑
i=1

xi+1∫
xi

g(xi)dx

=

Nbins∑
i=1

xi+1∫
xi

Ni

N

1
1x

dx

=

Nbins∑
i=1

Ni

N

1
1x

1x

=

Nbins∑
i=1

Ni

N

= 1.

This is important because it ensures our importance weights
wi = f (xi)/g(xi) are ratios of two normalized densities.

Thus we have a “bridge” between fitting and sampling.
Bin-wise empirical CDFs can be directly compared with fit-
ted distributions (in fact, they are what we fit to). But the
estimate over all wind speeds can then be expressed generi-
cally in the IS language suited to comparison with MC and IS
estimates. IS–MC methods do not provide any bin-wise in-
formation (there are no bins); thus it is otherwise impossible
to “debug” their divergence from extrapolation. This formu-
lation allows us to see, first, that error accrues from lack of
convergence of empirical CDFs, for both methods. Addition-
ally though, for extrapolation, the error is compounded by
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Table 1. Bin-wise empirical cumulative distribution functions provide a bridge from extrapolation, which builds POE from bin-wise fitted
distributions Fi , and importance sampling, which builds an unbiased estimate from the appropriately defined distribution g.

Method P (Y < l)=
∫

P (Y < l|x)f (x)dx Remarks

Empirical bin-wise CDF
∑

i
1
Ni

∑
kI (Yi,k < l)f (xi )1xi P (Y < l|xi )∼ 1

Ni

∑
kI (Yi,k < l)

Extrapolation
∑

Fi (l)f (xi )1xi P (Y < l|xi )∼ Fi (l), fitted to above
Importance sampling 1

Mtot

∑
i,kI (Yi,k < l) f (xi )

g(xi )
sampling from g(xi )=

Ni
Ntot

1
1xi

(a) (b) (c)

(d) (e) (f)

m

SD
/m

ea
n,

 e
xt

ra
p

m m

SD
/m

ea
n,

 e
xt

ra
p

SD
/m

ea
n,

 e
xt

ra
p

SD
/m

ea
n,

 e
xt

ra
p

SD
/m

ea
n,

 A
SI

S
SD

/m
ea

n,
 A

SI
S

m

I
I
I

I
I

I
I
I

I
I

Figure 3. Summarizing the convergence of tower base load estimates using extrapolation and ASIS estimates over 100 independent runs. The
top row is side–side; the bottom is fore–aft. The y-axis units are the ratio of the standard deviation to the mean estimate (relative standard
deviation, measuring convergence). The x axis is the number of FAST runs (measuring computational expense). The target POE for the
empirical ASIS estimate (a, d) is 5× 10−2 and for the extrapolation estimate (b, c, e, f) is 10−5. Adaptively selecting samples, in a way
designed to accelerate the convergence of the empirical estimate (ASIS, a, d), also accelerates the convergence of the extrapolation estimates
(b, c, e, f). There is a somewhat weak dependence on the number of peaks used for extrapolation, but Mpks ∼ 40 appears robust for both
loads. The side–side load estimate has larger initial relative variance because (as shown above in Fig. 1) its extremes occur at high winds, but
its relative variance is reduced more quickly by the adaptive procedure than the fore–aft load.

lack of fit between the chosen extreme value distribution and
the empirical CDFs, which is the price we pay for being able
to extrapolate to arbitrarily low POEs with small numbers of
samples.

3.2 ASIS as stochastic optimization

The discussion above indicates that the samples from the bin-
based methods can alternatively be used to make empirical
estimates via their implied importance distributions. This ori-

entation suggests, also, that there is no barrier to changing
the distribution of samples as we go. Thus we can think of
the estimation procedure as an optimization problem: find
the distribution of bins (number of samples per bin) that re-
sults in unbiased estimates with minimal variance. In Graf
et al. (2017) we have used a heuristic algorithm that looked
for “gaps” in the empirical peak distribution. Here instead we
introduce a gradient-based approach. As above, let Ni be the
number of FAST runs performed in the ith wind speed bin,
and let N be the vector of bin counts. Now, the variance of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Behavior of ASIS and iterative updating of extrapolation for side–side tower base bending load over 20 separate runs as a function
of Mpks. The x-axis units are 10 000 s of kilogram newton meters; the y axis is probability of exceedance in 10 min. The top row shows the
results of both ASIS and extrapolation at iteration 0 (i.e., just based on the initial set of bin-wise samples) as a function of the number of
peaks used for fitting the extrapolation distributions. The bottom row shows the estimates after 25 ASIS iterations. (Note the ASIS results
are the same across each row because they are independent of Mpks.) Clearly the variance of the estimates is tightened. It is not clear from
visual inspection if one choice of Mpks is better than any other.

the estimate using importance distribution g is

J (N )≡ Varg[P (Y > l)] = Eg

[
I (Y > l)2f (x)2

g(x)2

]
−Eg

[
I (Y > l)f (x)

g(x)

]2

. (19)

Note the second term does not depend on g (in the cor-
responding integral, the g in the denominator cancels out).
Thus

∂J

∂Nj

=
∂

∂Nj

Eg

[
I (Y > l)2f (x)2

g(x)2

]
, (20)

∼
∂

∂Nj

∑
i,k

I (Yi,k > l)2f (xi)2 N2
tot1x2

N2
i

, (21)

=−2
∑

k

I (Yj,k > l)2f (xj )2 N2
tot1x2

N3
j

. (22)

Here we have used the fact that Mi

Mtot
=

Ni

Ntot
to write the ex-

pression in terms of bin counts instead of peak counts.

Our algorithm begins by running the standard six seeds per
bin from the extrapolation method (i.e., Ni is initialized to 6
for all i). Then we perform the following steps in an iterative
fashion.

1. Compute ∇NJ (N ).

2. Allocate a target number of new samples (e.g., 20 per
iteration) to bins in two ways:

a. allocate some percentage of the new samples in pro-
portion to ∇NJ ;

b. recognize this is a global optimization problem, and
allocate the rest to other bins randomly.

3. Run TurbSim–FAST for the new batch.

4. Append the new peak data to the existing data and up-
date our empirical estimates of POEs and our extrapo-
lation estimates using the cumulative data according to
Eqs. (15) and (18).

Note the algorithm as stated does not explicitly recognize
the stochasticity of the underlying quantity Y (x). Because
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Behavior of ASIS and iterative updating of extrapolation for fore–aft tower base load over 20 separate runs. The x-axis units are
10 000 s of kilogram newton meters; the y axis is probability of exceedance in 10 min. The format is the same as Fig. 4. Again it is interesting
to compare the visual representation with the statistics presented in Fig. 3. The single extremely large load discovered by ASIS was also
seen in Graf et al. (2017) (f). Though it is beyond the scope of the present paper to do so, one of our main conclusions is that the statistical
methods have come to a point at which the best course forward will be to pursue the exact causes of such loads and integrate a statistical
description of such situations into our methods.

we are using an unbiased estimate of the gradient of the vari-
ance, our approach, naive as it is, is known to converge “al-
most surely” to a local optimum (Robbins and Monro, 1951).
In fact it is a form of stochastic gradient descent (Goodfel-
low et al., 2016). Casting the problem in this form allows for
taking advantage of ongoing research in this area. There are
two reasons for step 2b of the algorithm. First, it is not clear
a priori that our optimization problem is convex. Thus there
could be multiple local minima. Step 2a and 2b correspond to
the tradeoff between exploitation and exploration common to
all global optimization algorithms. Second, because the gra-
dient is calculated from an unconverged statistical estimate,
there is an error associated with this vector. Preventing un-
converged estimates from steering us in the wrong direction
is an additional reason to include the exploration step 2b.

A slight complication comes from the need for the Ni to
be integers (we can only have an integer number of runs per
wind speed bin). Currently we simply round Ni to the near-
est integer. Thus we are following the gradient as closely as
possible subject to the integral nature of Ni . We claim that
this is a reasonable procedure because the variance of the es-
timates is observed to be a rather slowly varying function of
the bin distribution; thus taking the nearest feasible (i.e., in-

tegral Ni) point to the point suggested by our gradient will
incur a bounded and likely small error. Also, the gradient
itself is an estimate, not an exact value, so we are already
working with inexact quantities from the standpoint of tradi-
tional gradient-based optimization. A more refined approach
we could explore in the future is to apportion simulation time
spent in each bin according to Ni . This would amount to a
relaxation (from the discrete space to the continuous space
Parker and Rardin, 1988) of the problem and would allow
for exactly following the (albeit still stochastic) gradient.

Next, as stated J only concerns one load type (e.g., tower
base side–side bending moment). But previously (Graf et al.,
2017) and above (i.e., Fig. 1) we have seen that side–side
and fore–aft loads favor different importance distributions.
Since it defeats the purpose of the method to have to repeat it
for every load, we have adopted an “umbrella” concept; we
compute the desired bin distribution for all the loads of inter-
est, and form the minimal superset of bins that includes them
all. Also, note that the gradient (e.g., see Eq. 22) is always
negative; increasing any bin count will reduce the variance,
which makes obvious sense. The purpose of the algorithm is
to guide the distribution of bin counts to have optimal propor-
tions from each bin. Our current implementation works in a
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cumulative fashion. At every iteration, we are always adding
more simulations, never removing them.

Another issue, even for a single load type, is how many of
its peaks Yi are considered in computing the gradient of the
variance. We remind the reader that ASIS per se does not re-
quire any extrapolation. This question of how many peaks
to use to compute ∇NJ (N ) is different from the question
of how many peaks Mpks to use for extrapolation. It is an-
other algorithmic parameter that one could tune. Using all
the peaks would reduce the variance of the POE estimates of
all the peaks, even the small peaks we do not care about. Us-
ing just the single largest peak would overemphasize the bin
that this single peak happened to come from. The choice of
the five largest peaks is rather arbitrary, enough so that more
than the single largest peak contributes, but not so many as
to deemphasize the goal of finding large peaks.

Finally, because we are still refining the mechanics of the
algorithm, ASIS as stated does not include a stopping crite-
ria. Since what ASIS minimizes is the variance of our load
estimates, stopping should be based on driving the variance
below a user-defined threshold. The difficulty, of course, is
that unlike a deterministic gradient descent procedure, our
only access to the actual variance is through further statistical
estimates. In the results below we simply repeat the stochas-
tic optimization procedure 100 times and compute the vari-
ance of the estimated loads directly. A less computationally
expensive approach is bootstrapping (Fogle et al., 2008; Sul-
tania and Manuel, 2017), which we would recommend for
a production implementation of ASIS. In bootstrapping, the
variance of our load estimates is estimated as follows: At ev-
ery iteration, there are Mi peaks extracted from the Ni runs
at wind speed xi for bin i. Normally we use these directly
in Eq. (15) to form a single POE estimate. Instead, in boot-
strapping, we resample the Mi peaks with replacement some
number, say L, of times to form L resampled sets of peaks,
all of length Mi , but all containing different subsets of the
original Mi peaks. These are used to compute L indepen-
dent POE estimates, from which an empirical variance can
be computed and used for stopping criteria.

4 Results

In this section we demonstrate the basic mechanics of the
algorithm in the context of a study of the effect of the num-
ber of peaks, Mpks, used to fit the bin-wise extrapolation dis-
tributions (Fi ∼ P (Y < l|xi), above). First, Fig. 2 illustrates
the variability in the extrapolated exceedance probability as
a function of Mpks. We have run FAST for 10 min 20 sep-
arate times for each bin (the figure shows only the results
for the 20 m s−1 bin, but the others are similar). This re-
sults in 200 min of total simulation time, thus according to
our 1-peak-per-minute convention (which is fixed throughout
the paper), 2000 peaks. Each line on the figure (5 peaks, 10
peaks, etc.) is the result of fitting the three-parameter Weibull

CDF to just the largest Mpks (Mpks = 5, 10, etc.) of these
2000. The line labeled “empirical CDF” is the empirical CDF
of the 2000 peaks. It is important that each peak always rep-
resents the same amount of simulation time. Otherwise we
would have to re-weight the contribution of each peak to the
POE in Eq. (15).

As an exercise, we examine the sensitivity of the ASIS
results to Mpks. For this, we study the variance of the result-
ing extrapolation, which we can estimate simply by repeat-
ing the entire sampling, simulating, fitting, and extrapolation
procedure 100 times. (Note, to estimate the variance in a pro-
duction environment where compute time was of paramount
importance we would recommend the more efficient if less
straightforward bootstrapping procedure described above).
The results are summarized in Figs. 3, 4, and 5.

For each of the 100 independent tests, we ran extrapola-
tion and ASIS for 25 iterations (an iteration of extrapola-
tion is simply re-performing the extrapolation procedure with
the current ASIS bin data), which adds a varying number of
new samples to each bin at each iteration. The most obvi-
ous observation is that indeed the variance of the estimates
decreases quickly as a function of iteration. ASIS reliably
drives the variance of the estimates of POE down, and sim-
ply recalculating the extrapolations to keep up with ASIS
drives the variance of the extrapolation estimates down as
well. There is a slight dependence on Mpks, but it does ap-
pear there is a “sweet spot” around 40 peaks that is good
for both loads (further study of the optimal Mpks is beyond
the scope of this paper; it is akin to the study of the optimal
threshold in the peak-over-threshold method). The standard
deviation drops by roughly a factor of 3 after only about 100
FAST runs (compared to 30 for the original extrapolation (it-
eration 0)). This is closer to a 1

N
rate of convergence than the

theoretical 1
√

N
convergence of MC integration.

Thus our adaptive extrapolation approach appears capable
of reducing variance somewhat dramatically with minimal
additional computation. The two approaches maintain corre-
spondence even while adapting the bin distribution, which
allows for leveraging the variance reduction of the empiri-
cal ASIS estimate to reduce the variance of the extrapolation
estimate. And the latter is the estimate of real importance be-
cause that is what will be used in practice. Note that ASIS
could as well drive IFORM estimates instead of the tradi-
tional extrapolation estimates. In both cases ASIS optimizes
the distribution of samples (wind speed bins in this case) that
are then used to fit statistical distributions, which are then
used to extrapolate to desired return periods.

5 Conclusions

In this paper we have built a bridge between bin-based ex-
trapolative methods and sample-based IS MC methods. With
this, we proposed an adaptive stratified importance sampling
(ASIS) algorithm that is both more efficient than existing
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MC approaches and maintains contact with the extrapola-
tion methods and thereby allows for iteratively increasing
the extrapolation accuracy. This is important because only
the extrapolations are able to routinely make estimates of ex-
tremely long return period load exceedance probabilities.

The search for the optimal importance distribution is a
stochastic optimization problem. As stated above, our algo-
rithm is a convergent algorithm. But stochastic optimization
is an active area of research, and more sophisticated algo-
rithms may exist to improve our approach. We need to keep
in mind, however, that the optimization problem is a means
to an end. The real goal is minimal variance estimates with
the smallest amount of effort. We want to use the optimal
importance distribution at the same time as we are discov-
ering it. In relation, we need to also keep in mind that we
have the dual mission of both efficiently estimating the load
POEs and accurately estimating their variance. We can use
the peaks we sample to make unbiased estimates of vari-
ance just as we do expectation, but these are only estimates,
and they themselves suffer from lack of convergence. The
resampling method of bootstrapping described above offers
a way to leverage a single dataset to estimate statistics and
their variance, and in a practical setting this would be recom-
mended (as opposed to the completely separate runs we have
described above).

In principle there is no barrier to application of ASIS to
higher-dimensional problems. In particular, it is well known
that turbulence intensity and turbulence standard deviation
have a large role in wind turbine extreme loads (Bos et al.,
2015), where a bimodal importance distribution is warranted.
It would be interesting to see if the variance minimization of
ASIS would discover this distribution. This would open the
door to trusting an automated procedure to derive the distri-
bution.

This problem may be ripe for a machine learning ap-
proach: the physics is in the solver. To the extent it is pos-
sible, we should be able to learn from increasing numbers of
data. For this, we need accurate variance estimation methods
that can build a loss function for learning algorithms that ex-
amine data and decide how to process them to make the best
next estimate, and to choose the best next places to sample;
here we have presented a framework for extrapolating from
such data that allows for learning the best extrapolation strat-
egy from the variance minimization algorithm.

Conversely, we should realize there is a physical source of
extreme response variation, which is the combination of tur-
bulent inflow and nonlinear turbine response. By “opening
up the black box”, i.e., circling back to the original physics,
we hope to transfer what in the present setup is response vari-
ability into the realm of environmental variability, at which
point we can use its probability distribution to hone in on just
the loads of interest (i.e., the extreme loads) more quickly.
Further studies into the root causes of extreme response vari-
ation in wind turbine loads and their ultimate incorporation

into more efficient statistical extreme load estimation are on-
going.
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