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Abstract. The interannual variability (IAV) of expected annual energy production (AEP) from proposed wind
farms plays a key role in dictating project financing. IAV in preconstruction projected AEP and the difference
in 50th and 90th percentile (P50 and P90) AEP derive in part from variability in wind climates. However, the
magnitude of IAV in wind speeds at or close to wind turbine hub heights is poorly defined and may be overes-
timated by assuming annual mean wind speeds are Gaussian distributed with a standard deviation (σ ) of 6 %,
as is widely applied within the wind energy industry. There is a need for improved understanding of the long-
term wind resource and the IAV therein in order to generate more robust predictions of the financial value of
a wind energy project. Long-term simulations of wind speeds near typical wind turbine hub heights over the
eastern USA indicate median gross capacity factors (computed using 10 min wind speeds close to wind turbine
hub heights and the power curve of the most common wind turbine deployed in the region) that are in good
agreement with values derived from operational wind farms. The IAV of annual mean wind speeds at or near
typical wind turbine hub heights in these simulations and AEP computed using the power curve of the most
commonly deployed wind turbine is lower than is implied by assuming σ = 6 %. Indeed, rather than 9 out of
10 years exhibiting AEP within 0.9 and 1.1 times the long-term mean AEP as implied by assuming a Gaussian
distribution with σ of 6 %, the results presented herein indicate that in over 90 % of the area in the eastern USA
that currently has operating wind turbines, simulated AEP lies within 0.94 and 1.06 of the long-term average.
Further, the IAV of estimated AEP is not substantially larger than IAV in mean wind speeds. These results indi-
cate it may be appropriate to reduce the IAV applied to preconstruction AEP estimates to account for variability
in wind climates, which would decrease the cost of capital for wind farm developments.

1 Introduction

Wind speeds and thus electrical power production from wind
turbines (WTs) vary across multiple temporal and spatial
scales. Short-term forecasts (hours to days) of wind speeds
at or near WT hub heights (and ideally across the swept
area of the WT rotor) are key to grid management and elec-
tricity pricing (Barthelmie et al., 2008; Orwig et al., 2015)
and are exhibiting progressively greater accuracy from direct
numerical simulation and statistical post-processing (Pin-
son et al., 2007; Sperati et al., 2015; Dowell and Pinson,
2016; Wilczak et al., 2015). Monthly to seasonal forecasts
are also increasingly available to inform planning for WT

and grid maintenance (Yu et al., 2015; Torralba et al., 2017).
Variability on intra-annual to decadal timescales (Pryor and
Barthelmie, 2011; Pryor et al., 2006) arises primarily due to
the action of internal climate modes such as the El Niño–
Southern Oscillation (ENSO) (Schoof and Pryor, 2014; Pryor
and Ledolter, 2010; Kirchner-Bossi et al., 2015; Bett et
al., 2017; Watts et al., 2017) and climate nonstationarity
(e.g., climate change due to the rising concentration of heat-
trapping gases) (Pryor and Barthelmie, 2010; Pryor et al.,
2012a, b; Tobin et al., 2016) and is also key to dictating the
electricity produced by WT arrays over their lifetime.
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Wind farm developments (i.e., arrays comprising multiple
WTs) are highly capital intensive with the fuel being free
(Lantz et al., 2012). According to some estimates, capital
costs (e.g., purchase of wind turbines, installation of foun-
dations and grid connections) comprise up to 80 % of the to-
tal cost of a typical onshore project over its entire lifetime
(Blanco, 2009). The ratio of capital expenditure to opera-
tional expenditures for wind farms in Germany is approxi-
mately 0.69 for onshore and 0.54 for offshore wind farms
(Steffen, 2018). While the majority (61 %) of global “con-
ventional” power plants are commissioned by state-owned
enterprises, private companies commissioned 53 % of non-
hydro-renewable power plants in 2015 (Steffen, 2018). Fur-
ther, in Germany, wind farms are overwhelmingly funded
through project finance (88 % for onshore, 50 % for onshore)
rather than corporate finance, again in contrast to traditional
power stations (Steffen, 2018). Thus, financing risk is par-
ticularly important to wind energy (and other non-hydro-
renewables) and to the levelized cost of energy (LCOE). For
example, for a project lifespan of 20 years, increasing the
cost of capital from 3 %year−1 to 15 %year−1 multiplies the
required annual payments by a factor of 2.4 (Krupa and Har-
vey, 2017).

The cost of capital investments and/or rates of return is
determined by the “risk” associated with each wind energy
project and hence the annual electricity production and vari-
ability therein and the resulting anticipated revenue (Feld-
man and Bolinger, 2016). The variability of revenue due to
meteorological and resource variability is described as a spe-
cific risk (Gatzert and Kosub, 2016) and requires a mini-
mum debt service coverage ratio if the financing involves
debt. Two metrics are often used to quantify the viability
(and risk) of wind projects in terms of the annual energy
production (AEP) (i.e., the amount of electricity generated
from deployed wind turbines) over the lifetime of existing
and planned wind farms.

– P50: AEP projected to be equalled or exceeded on 50 %
of years during wind farm operation (P50(AEP)).

– P90: AEP that is associated with a 10 % risk of not being
reached (P90(AEP)).

Accurate quantification of the wind resource and the
P50(AEP) and P90(AEP) presents a significant challenge to
current models (Zhang et al., 2015), and even small uncer-
tainties in modeled wind speeds cause major uncertainties in
P50(AEP) and P90(AEP) and significantly impact the cost
of investment capital in new wind projects (Tindal, 2011;
Clifton et al., 2016). Capital investments by the wind en-
ergy industry within the United States of America during
2016 are estimated at USD 14.5 billion (Dykes et al., 2017),
while estimates of investment in European offshore wind en-
ergy are projected to be between USD 90 and 124 billion
over the period 2013–2020 (Gatzert and Kosub, 2016). Even
small refinements of perceived and actual project risk deriv-

ing from the interannual variability of wind speeds may pro-
vide tremendous cost efficiencies (i.e., more accurate assess-
ment of financing costs) and contribute to continuing the re-
cent tendency towards reduced LCOE. It has been suggested
that the LCOE from wind turbines could be reduced by half
to USD 23 per megawatt hour in part due to reductions in
financing costs by lowering this long-term production risk
(Dykes et al., 2017).

Interannual variability (IAV) is used to describe the year-
to-year variability in a given property. According to some es-
timates, IAV contributes “anywhere between 10 % and 25 %”
of the overall uncertainty in project energy yield over a 10-
year period (Pullinger et al., 2017). In the wind energy litera-
ture IAV is often represented by assuming a Gaussian dis-
tribution for annual mean wind speeds and specifying the
dispersion of values around that mean in terms of the stan-
dard deviation (σ ) of annual mean wind speeds to the long-
term mean value. IAV is thus often quoted as a percentage
of the mean. The IAV for annual mean wind speeds (as de-
scribed using σ ) of 6 % is often quoted within the wind en-
ergy industry as a representative estimate (Brower, 2012).
Indeed, the website (https://www.wind-energy-the-facts.
org/the-annual-variability-of-wind-speed.html, last access:
4 June 2018) states that “the annual variability of long-term
mean wind speeds at sites across Europe tends to be sim-
ilar, and can reasonably be characterized as having a nor-
mal distribution with a standard deviation of 6 per cent.”
This implies that approximately two-thirds of years will have
an annual mean wind speed within ±6 % of the long-term
mean. However, much of the research that underpins this
assumption is derived from examination of wind speeds at
10 m a.g.l. and employs either data from a limited number
of in situ observing stations or relatively coarse-resolution
reanalysis output (see the overview of previous research in
Table 1). Further, use of the mean and standard deviation to
describe the central tendency and dispersion of a sample im-
plicitly makes an assumption that the sample(s) of annual
mean wind speeds are Gaussian distributed. In the event that
the sample of annual mean wind speeds is not Gaussian dis-
tributed, σ is neither a robust nor a resilient measure of dis-
persion.

In one of the first published studies on this topic, the IAV
of mean wind speeds as described using the σ of annual val-
ues around the mean across five surface (i.e., within 10 m of
the ground) stations in Ireland ranged from 4.7 % to 6.4 %
(Raftery et al., 1998). In a more recent analysis of surface
observations from 16 stations, also in Ireland, collected over
data periods of up to 13 years, σ was reported to lie between
4.4 % and 6.9 % of the mean (Pullinger et al., 2017). Con-
versely, an analysis of monthly wind speeds at approximately
80 m over the period 1979–2014 from the North American
Regional Reanalysis (NARR) data set found “variations in
the wind speed of up to 30 %” at some existing wind turbine
locations in the United States (Hamlington et al., 2015).
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Table 1. Overview of past research on the IAV of wind climates and a summary of results presented herein. Results from the current study
are shown for grid cells that contain areas with currently operating wind farms denoted by the underlining and for all other grid cells; these
represent results for 90 % of the grid cells in each class.

Descriptor Data type Location & no. of
sites

Assumption & metric Magnitude Implied 90 %
interval of
IAV around
“average”
value

Reference

Annual mean
wind speed

Observations at 10 m a.g.l. Ireland; five stations Gaussian distribution;
σ to describe disper-
sion

4.7 % to
6.4 %

0.89 to 1.1 Raftery et al. (1998)

Annual mean
wind speed

Observations at 10 m a.g.l. Approx. 30 (site de-
tails not given)

Gaussian distribution;
σ to describe disper-
sion

Approx. 6 % 0.9 to 1.1 Raftery et al. (1999)

Annual mean
wind speed

Observations at 10 m a.g.l. 16 stations in Ireland
(data duration up to
13 years)

Gaussian distribution;
σ to describe disper-
sion

4.4 %–
6.9 %

0.89 to 1.1 Pullinger et al. (2017)

Annual mean
wind speed and
capacity factors
derived from
wind speed

Observations at
10 m a.g.l. extrapolated
to nominal WT hub height
of between 60 and 100 m
and a nominal power curve
fitted to generate capacity
factors

Six sites in Scotland
(durations of 13 to
43 years)

Dispersion described
as difference in X

from one year to the
next divided by mean

1 mean
wind
speed
at 10 m:
10 %–
20 %
(mean= 15 %)
1 mean
CF: 11 %

Qualitative
remarks im-
ply approx.
0.85–1.15

Früh (2013)

Annual mean
wind speed

NARR interpolated to 80 m 1979–2014 Max % increase or de-
crease in wind speed
anomaly from 35-year
mean

Absolute
range in
different
grid cells:
5 %–40 %

NA Hamlington et al. (2015)

Annual wind in-
dices

Reanalysis (NCEP–NCAR
and ECMWF) 10 m a.g.l.;
spatially aggregated coun-
try

1960-2001 Gaussian distribution;
σ to describe disper-
sion

8 %–12 % 0.80 to 1.2 Pryor et al. (2006)

Annual wind in-
dices

Spatial composites of 10 m
observations, UK

Mostly 29 years Gaussian distribution;
σ to describe disper-
sion

3.1 %–7 % 0.88–1.15 Watson et al. (2015)

Annual
mean wind
speed at ap-
prox. 83 m a.g.l.

WRF output at 12 by 12 km
grid cells over eastern
North America

2002–2016 Median and interquar-
tile range

5.5 %;
5.2 %

0.95–1.05;
0.94–1.06

This study

Annual wind
indices at ap-
prox. 83 m a.g.l.

WRF output at 12 by 12 km
grid cells over eastern
North America

2002–2016 Median and interquar-
tile range

14 %;
11 %

0.85–1.15;
0.83–1.17

This study

Annual AEP
derived by ap-
plying a GE
1.5 MW power
curve to 10 min
output

WRF output at 12 by 12 km
grid cells over eastern
North America

2002–2016 Median and interquar-
tile range

4.9 %;
5.9 %

0.95–1.05;
0.93–1.07

This study

NA: not available

Wind indices (WIs) have also been used in an attempt to
better reflect the IAV of the energy available to be harnessed
by wind turbines (Table 1) and are calculated as

WI=
n∑
j=1

U3
j

U3
i...k

× 100, (1)

where j = 1. . .n, n is the number of years, i. . .k =

normalization period and the mean denotes the spatial aver-
age.

The standard deviation of WI integrated over the Scandi-
navian countries at 10 m of height from both NCEP–NCAR
and ECMWF reanalyses during 1960–2001 ranged from
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8 %–12 % (Pryor et al., 2006). The σ of WI for the UK
computed using observations collected at 10 m varied from
3.1 %–7.0 % depending on the source, number of stations,
data period and whether the data were detrended (Watson
et al., 2015). Annual WIs generated using Eq. (1) are very
sensitive to the frequency of occurrence (and magnitude) of
high wind speeds. The actual electrical power derived from
wind turbines varies according to the power curves that relate
power produced to the wind speed at WT hub height. This
power is zero below cut-in wind speeds, increases rapidly as
wind speeds increase and is a constant once the wind speed
exceeds that necessary to generate the “rated power” (RC)
(Fig. 1) until they exceed a cut-out wind speed (of 25 ms−1

for the wind turbine used herein). This nonlinearity in turbine
power curves means long-term electricity production is typ-
ically dominated by the upper percentiles of the wind speed
probability density function, but is relatively insensitive to
the occurrence of extremely high wind speeds (i.e., above
WT cut-out) assuming that they occur only a small fraction
of the time (Pryor and Barthelmie, 2010). In short, the IAV
in AEP may not be directly proportional to either the IAV
of annual mean wind speeds or WI. Very few studies have
quantified the actual IAV in wind farm power output. Power
output data from a single individual wind farm in the US over
the period 2000–2010 ranged between 0.82 and 1.13 of the
long-term mean (Wan, 2012). This range in net AEP natu-
rally includes the impact of other factors such as curtailment
and maintenance and does not seek to decompose the vari-
ability into the root causes.

Here we investigate IAV in mean wind speeds and WI near
typical WT hub heights using purpose-performed numeri-
cal simulations with the Weather Research and Forecasting
(WRF) model (v3.8.1). We further estimate IAV in likely
AEP due to IAV in wind climates by applying the power
curve (Fig. 1) from a common wind turbine deployed within
the study area to 10 min wind speed output from these sim-
ulations. The results are validated and contextualized using
net capacity factors (CFs) generated based on power produc-
tion data from operating wind farms within the simulation
domain.

2 Methods

2.1 Simulations

Herein we present model-based analyses of the IAV in mean
wind speeds, WI and estimated AEP using simulations per-
formed with WRF applied at 12 km resolution over the do-
main shown in Fig. 2a. The domain is extended to the west
of the region with the highest numbers of deployed WTs (i.e.,
the Central Plains) to avoid collocation of the lateral bound-
aries with a region of strong surface forcing (i.e., the Rocky
Mountains). Default settings as specified in the WRF user
guide for v3.8 (available at: http://www2.mmm.ucar.edu/wrf/
users/docs/user_guide_V3.8/ARWUsersGuideV3.8.pdf, last
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Figure 1. Power curve (i.e., expected electrical power production as
a function of the hub height inflow wind speed) for the GE 1.5 SLE
wind turbine. The three colored bars shown in magenta, grey and
green on this figure show the 95 % confidence intervals on the boot-
strapped mean annual mean wind speed in the three example grid
cells in Texas (TX), Iowa (IA) and New York (NY) state, respec-
tively (see Fig. 2a for the locations of these grid cells).

access: 4 June 2018) are used for the boundary proper-
ties (i.e., five cells are added for boundary value nudging,
four of which are in the relaxation zone). Further, a buffer
zone comprising 19 grid cells along all four edges of the
domain are removed from the simulation output (i.e., used
as an adjustment zone to the LBC) prior to the analyses
conducted herein. Lateral boundary conditions (LBCs) for
these simulations are supplied every 6 h from the ERA-
Interim reanalysis data (Dee et al., 2011). The NOAA real-
time global sea surface temperature (RTG-SST) data set
(Gemmill et al., 2007) is used to provide initial SST and
Great Lakes conditions and are updated every 24 h. Data
from the 30 arcsec Global Multi-resolution Terrain Elevation
Data 2010 (GMTED) (Danielson and Gesch, 2011) are used
to describe the topography and, for consistency with our use
of the Noah land surface scheme, land cover is described us-
ing the Noah-modified 21-category IGBP-MODIS land use
data set (Friedl et al., 2010).

The time step used for the simulations is 72 s, and there
are 41 vertical levels (in sigma hydrostatic pressure coor-
dinate) up to a model top at 50 hPa. A total of 18 of those
levels are below 1 km and the lowest 10 levels represent ap-
proximate heights (in flat terrain) of 16.7, 50.1, 83.6, 117,
151, 184, 218, 253, 293 and 338 m a.g.l. Wind speeds used
herein are derived from the third model layer that represents
a height above the ground in flat terrain at mean sea level
of approximately 83 m. Variations in the actual height above
the local terrain of this layer (Fig. 2b) arise primarily due to
topographic variability such as the very high and steep com-
plex terrain of the Rocky Mountains in the west of the sim-
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Figure 2. (a) Simulation domain showing the terrain elevation in each of the total 101 761 grid cells, each of which is 12 km by 12 km. The
white box denotes the edge of the adjustment zone applied and thus delimits the 78961 grid cells (281× 281) that are considered herein.
The overlaid white dots denote the grid cells in which there were one or more operating WTs as of March 2018. The sub-domains outlined
in magenta, grey and green denote the areas referred to herein as the Central Plains, Midwest and Northeast, respectively. The magenta
(TX), grey (IA) and green (NY) dots denote the grid cells used as illustrative examples of the simulated wind climate throughout (e.g., in
the bootstrapping of the annual mean AEP and power spectral analyses). (b) Mean height of the third model layer above the local grid cell
average model elevation for 10 sample locations across the simulation domain.

ulation domain (where the sigma levels are compressed near
the surface). The following physics schemes are employed.
Numbering is as in the WRF namelist file.

– Longwave radiation: 1. rapid radiative transfer model
(RRTM; Mlawer et al., 1997)

– Shortwave radiation: 1. Dudhia (Dudhia, 1989)

– Microphysics: 5. Eta model (Ferrier et al., 2002)

– Surface-layer physics: 1. MM5 similarity scheme (Bel-
jaars, 1995)

– Land surface physics: 2. Noah land surface model
(Tewari et al., 2004)

– Planetary boundary layer: 5. Mellor–Yamada–
Nakanishi–Niino 2.5 (Nakanishi and Niino, 2006)

– Cumulus parameterization: 1. Kain–Fritsch (Kain,
2004)

The simulations start on 15 February 2001 (on the first date
for which RTG-SSTs are available) and run through the end
of 31 December 2016. Analyses conducted herein are based
on output from 1 March 2011 to 31 December 2016 to al-
low for a 14-day “spin-up”. The period required for “conver-
gence” of interannual variability estimates of annual mean
wind speed was previously evaluated by computing the stan-
dard deviation of mean annual wind speeds using output from
a reanalysis data set of 35 years and comparing that estimate
with the estimate derived from truncated samples thereof.
That study found σ converges on the long-term estimate to
within ±15 % after 11 years (Pullinger et al., 2017), which

implies that the simulations presented herein are of sufficient
duration to adequately characterize IAV.

Multiple factors impact the IAV of net AEP from operating
wind farms, including but not limited to curtailment for sys-
tem operation and/or WT maintenance (Clifton et al., 2016),
WT wake losses (Clifton et al., 2016; Barthelmie et al., 2013)
and wind speed variability. Here we focus on this last factor.

2.2 Estimating WI and AEP

Annual mean wind speeds are computed for each grid cell as
the arithmetic mean of all 10 min output from the third model
layer in each model grid cell. Wind indices (WIs) are com-
puted by applying Eq. (1) to the same WRF output and using
a reference time period of 2002–2016. The USGS database of
the locations and types of all WTs deployed in the continen-
tal USA as of March 2018 indicates that 57 636 WTs were
installed in the contiguous USA, of which three-quarters fall
within the simulation domain (see Fig. 2a for the locations).
The most common WT is a variant of the GE 1.5 SLE that
has a hub height (HH) of 80 m, a rotor diameter (D) of 77 m
and a rated capacity (RC) of 1.5 MW. Thus, WRF output is
post-processed to generate a first-order estimate of AEP in
each grid cell by assuming there is a single WT deployed
in the center of each WRF grid cell and applying the power
curve of a GE 1.5 SLE (Fig. 1) to 10 min wind speeds from
the third model level.

2.3 Statistical methods

Output from three example grid cells (located in Texas (TX),
Iowa (IA) and New York state (NY); see Fig. 2a) is used
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throughout to provide illustrative examples of the simulated
wind climate. Time series of 10 min output from the third
model layer for each calendar year in these grid cells are fit-
ted to Weibull distributions using maximum likelihood meth-
ods (Pryor et al., 2004) wherein the probability of a wind
speed of a given magnitude is given by

p (U |A,k)=
k

A

(
U

A

)k−1

exp

[
−

(
U

A

)k]
, (2)

where A is the scale parameter and k is the shape parameter.
The results are used to demonstrate the year-to-year vari-

ability in the probability distribution parameters. These time
series from each calendar year are also used with the power
curve from the GE 1.5 MW WT to generate empirical es-
timates of the contribution of wind speed bins to the over-
all estimated power production in each year. Output from
these grid cells over the entire period from 1 January 2002
to 31 December 2016 is also used to illustrate the temporal
scales of variability in the entire sample using fast Fourier
transform (FFT) applied to compute the variance across a
range of frequencies and to present power spectra in the
range f ≈ 1× 10−3 to 50 day−1. Lastly, time series from
these grid cells are also used to consider the question “how
long is long enough?” In other words, what duration of time
series is sufficient to characterize the overall annual mean
wind speed and AEP with a certain level of confidence? Time
series of the annual mean wind speed and AEP from the three
grid cells highlighted in Fig. 2a (TX, IA and NY) are sub-
ject to a bootstrap analysis (Wilks, 2011) in which the annual
mean wind speed and AEP estimates are resampled (with
replacement) to generate a synthetic resampled data set of
1000 samples. These are used to compute an estimate of 95 %
confidence intervals on the long-term mean wind speed AEP
and identify the calendar years that differ most profoundly
from the bootstrapped mean values in those three locations
(Table 2).

Although it is common practice to describe the IAV of
annual wind speeds using a standard deviation around the
mean, the assumption that the samples of annual mean wind
speed conform to a Gaussian distribution is not always evalu-
ated. The distributions of the 15 values of annual mean wind
speed, WI and AEP from each grid cell considered herein
are not normally distributed, rendering the mean and stan-
dard deviation poor descriptors of both the central tendency
and the dispersion around the central tendency. Indeed, the
samples of 15 annual mean wind speed and AEP estimates
fail the Anderson–Darling test for normalcy (Wilks, 2011)
in 97.7 % and 96.3 % of grid cells (for a 95 % confidence
level). Thus, herein we describe the central tendency using
the median value (P50) and use the interquartile range (IQR;
i.e., 25th to 75th percentile range) to describe the dispersion.
We also derive estimates of the 90 % intervals around the
median annual mean wind speed and AEP (i.e., the range
within which 9 out of 10 years are expected to fall), but em-

phasize that these are based on a very small sample size (of
15) and thus are subject to relatively large uncertainty. They
are presented solely to permit comparison with 90 % inter-
vals around the mean computed using 1.645σ (for normally
distributed variables; Wilks, 2011) applied to past literature
that has stated variability in terms of the standard deviation
around the mean (Table 1).

P50(AEP) and P90(AEP) are computed for individual cal-
endar years and for rolling consecutive 12-month periods.
In the former, 10 min output wind speeds from all grid cells
for each of the 15 full calendar years (i.e., 2002, 2003 etc.)
are subject to the WT power curve and used to compute
AEP for each calendar year. In the latter, 10 min output wind
speeds from all grid cells for rolling 12-month periods (i.e.,
March 2001 to February 2002, April 2001 to March 2002)
are subject to the WT power curve and used to compute AEP
for all consecutive 12-month periods. Output from the rolling
12-month periods is used to identify the 12-month period
with the highest and lowest AEP, and those values are evalu-
ated spatially to examine the degree to which that time index
and hence the timing of periods with the highest and lowest
AEP are spatially coherent. The results are considered in the
context of monthly indices of the phase of three important
internal climate modes that have previously been shown to
influence the intra-annual and interannual variability of wind
speeds over the USA (Schoof and Pryor, 2014; Pryor and
Ledolter, 2010): the Pacific North American (PNA) (Leathers
et al., 1991), North Atlantic Oscillation (NAO) (Hurrell et al.,
2003) and Niño Oceanic Index (ONI), which is a 3-month
running mean of sea surface temperature anomalies in the
Niño 3.4 region (Ren and Jin, 2011).

The mean gross capacity factor (CF) for each grid cell
is computed as the amount of electrical power produced
in each calendar year by applying the power curve for the
GE 1.5 MW machine to output from each 10 min period and
comparing the result to the maximum possible as determined
by the rated capacity (1.5 MW) multiplied by the number of
hours in a year.

The 1612 of the 281× 281 (i.e., 78 961) total grid cells
(with adjustment zone removed) that contain operating WTs
as of March 2018 are the primary focus of the analyses pre-
sented herein (and are referred to as WT grids). Results are
also compared to output from the other grid cells (without
WTs, referred to herein as “no”) to determine whether areas
that currently have WTs deployed in them exhibit higher or
lower interannual variability than typifies the study domain.

2.4 Observational data

There are a number of “bottlenecks” to improved estimation
of IAV in mean wind speeds at WT relevant heights and in
AEP from WTs. These include the lack of publicly acces-
sible high-accuracy data at WT relevant heights and high
temporal resolution for the evaluation of numerical simu-
lations such as those presented herein (Kusiak, 2016). The
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Table 2. Bootstrapped estimates of the mean wind speed in the third model layer and mean annual energy production (AEP); the associated
95 % confidence interval (i.e., (P97.5(X)−P2.5(X))

X̄
) expressed as a percent of the bootstrapped mean values (X̄). Also shown are the years

that fall furthest from the bootstrapped mean wind speed and AEP values (highest and lowest) for the three grid cells shown in Fig. 2a. Note:
AEP is computed by assuming a single GE 1.5 MW WT is deployed in each 12km×12km grid cell and by applying the power curve of that
WT to 10 min output from the WRF model.

Bootstrapped 95 % confidence Calendar year Calendar year Bootstrapped 95 % confidence Calendar year Calendar year
mean annual interval (%) (lowest) (highest) mean AEP interval (%) (lowest) (highest)

mean wind
speed (ms−1) (MWh)

TX 10.94 3.2 2005 2008 5113 3.1 2002 2012
IA 12.08 2.0 2012 2007 5553 2.1 2010 2006
NY 12.66 2.0 2016 2009 5381 2.3 2016 2010

National Weather Service (NWS) operates over 900 stations
where wind speeds are measured at a height of 10 m a.g.l.,
but these data are not at or close to WT hub heights and
the actual vertical profile of wind speed is strongly depen-
dent on stability, making vertical extrapolation highly un-
certain (Badger et al., 2016; Barthelmie et al., 1993; Motta
et al., 2005). Additionally, wind speeds as measured by 2-
D sonic anemometers at NWS stations are recorded at a
resolution of 1 knot (0.514 ms−1) rounded up to the near-
est knot when they are archived. The resulting sample is
thus systematically biased and pseudo-categorical. Further,
in terms of model validation, local topography and obsta-
cles greatly impact near-surface observations of wind speeds,
which makes comparison with grid cell mean values as de-
rived from a numerical model challenging. For these and
other reasons, herein we contextualize the results of our nu-
merical simulations using observationally derived estimates
of the IAV of annual net power production from operating
wind farms. Power production data for nearly 1000 operat-
ing wind farms as obtained from the US Energy Informa-
tion Administration (EIA) (downloaded from https://www.
eia.gov/electricity/data/eia923/, last access: 4 June 2018) are
used to estimate monthly capacity factors for each calendar
month; January 2001 to December 2016. Sites with≥ 9 years
of data with ≥ 9 months of data availability in each year
are used to compute the median annual mean net CF and
the normalized IAV therein as represented by the interquar-
tile range of annual net CF divided by the median net CF
(IQR(CF) /P50(CF)). A total of 68 sites meet this data com-
pleteness criterion. It is important to note that the applica-
tion of these selection criteria is necessary to ensure that
the resulting IQRs in CF estimates are robust, but it biases
the resulting sample in two important ways: the overwhelm-
ing majority of these wind farms are located in the Central
Plains (Fig. 3b) and they tend to represent older-generation
wind farms in which WTs may no longer be under warranty
and may experience declining performance (Olauson et al.,
2017), potentially leading to inflation of the IAV(CF).

3 Results

3.1 Wind speed variability

Median annual mean wind speeds from the third model level
exhibit the expected spatial variability with the highest wind
speeds over the Central Plains and in a swath across the upper
Midwest into the northeastern states (Fig. 3a). This is consis-
tent with the placement of WTs in the domain (Fig. 2a) and
previous resource assessments (Pryor and Barthelmie, 2011;
U.S. Department of Energy, 2015; Clifton et al., 2018). An-
nual gross capacity factors (CFs) for grid cells with WTs cur-
rently deployed in them (WT grid) as derived from the ap-
proximations used herein are also consistent with direct ob-
servations. The median gross CF computed herein is 40.4 %
(Fig. 3d), which is higher than the net CF derived from the 68
operating wind farms (shown in Fig. 3c) of 36 % and slightly
lower than the value of 42.5 % for WT installations commis-
sioned in 2016 (Wiser and Bolinger, 2017). The median gross
CF computed herein for WT grids is higher than the observed
net CF from the 68 operating wind farms because the net CF
also incorporates reductions in power production due to WT
maintenance activities, wind turbine wake effects and curtail-
ment for grid management. Observed levels of curtailment
over much of the study domain considered herein were≤ 4 %
during 2007–2012 (Bird et al., 2014). Wind power plant ef-
ficiency reductions due to wind turbine wakes are known to
be smaller in onshore wind farms than those offshore due to
the irregular layouts, higher ambient turbulence intensity and
the typically smaller wind turbine densities. Typical wind-
turbine-induced wakes losses for onshore wind farms are of-
ten estimated to be ≤ 5 % (Staid et al., 2018), while those
offshore are frequently in excess of 10 % (Barthelmie et al.,
2013). Onshore availability typically exceeds 98 % (Carroll
et al., 2017), but tends to decrease with WT age (Olauson
et al., 2017). Thus gross CF derived from the WRF simula-
tions that assume 100 % WT availability (i.e., no downtime
for maintenance or curtailment of production) and no wake
losses is inevitably higher than the observed values derived
from wind farms that have been in operation for more than
10 years. The estimated median CFs derived herein are lower
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than observed values for new WT deployments in 2016 be-
cause the newer WTs that are currently being installed have
higher WT hub heights and larger rotors and RCs than the
GE 1.5 MW WT applied herein.

Output for each calendar year from the three grid cells (in
Texas (TX), Iowa (IA) and New York (NY); see Fig. 2a for
locations) conforms to two-parameter Weibull distributions
as indicated by narrow 95 % confidence intervals around the
distribution parameters and also illustrate relatively high con-
sistency across the calendar years (Fig. 4a). The fraction of
power production from each wind speed bin (also plotted in
Fig. 4a) highlights the fact that the variability of the tail of
the wind speed distribution dominates IAV in power produc-
tion rather than values below the annual mean. Indeed, wind
speeds in excess of the annual mean contribute an average
of 69 %, 66 % and 57 % of the estimated annual total power
production in these grid cells from TX, IA and NY. This em-
phasizes important potential disconnects between the vari-
ability of the annual mean wind speed and AEP. The boot-
strapped estimate of the annual mean wind speed (and 95 %
confidence intervals based thereon) in the illustrative grid
cells from TX, IA and NY state fall at a place on the power
curve that is relatively close to the wind speed at which the
GE 1.5 MW WT generates rated power (i.e., the power out-
put ceases to increase with increasing wind speeds). This im-
plies that small changes in annual mean wind speeds may not
greatly impact the cumulative power output.

Analyses of time series of 10 min output from these three
grid cells in the frequency domain indicate that in all of these
grid cells the variance is dominated by the meso-α to synop-
tic timescale (f ≈ 0.2–0.5 day−1, thus periods of 2–5 days)
(Fig. 4b). There is also a clear diurnal peak, particularly in IA
and NY, while in TX this local maximum is displaced to pe-
riods slightly shorter than 1 day. Power spectra derived from
output from all three grid cells also exhibit maxima in the fre-
quency range 2 to 5×10−3 day−1 (i.e., on annual timescales).
This timescale exhibits the greatest magnitude of variance in
the grid cell from New York state and is of lowest magnitude
in Iowa. Variability across all these timescales contributes
to the variations in power output from WTs, the resulting
AEP, and thus both P50(AEP) and P90(AEP). Although the
power spectra of wind speeds exhibit a height dependence
in the planetary boundary layer and due to the parameteriza-
tions used mesoscale model simulations are deficit in high-
frequency variability (Larsén et al., 2012, 2016), Fig. 4b fur-
ther reemphasizes the motivation for this research. As shown,
the variance at virtually all frequencies considered herein is
highest in output from the NY grid cell. This inevitably leads
to the question of whether the use of a constant factor to
represent IAV (as in work that has used σ = 6 %) on annual
mean wind speeds and/or AEP is appropriate everywhere.

The normalized IQR of annual mean wind speeds
(IQR(WS) /P50(WS)) is < 4 % in nearly 60 % of WT grid
cells, < 5 % in 83 % of WT grid cells and < 6 % in 96 % of
WT grid cells (Fig. 3b and c; see summary in Table 1). Re-

call that a large IQR(X) /P50(X) indicates a site or area with
high IAV in parameter X. Thus, this analysis indicates that
in 5 out of 10 years the annual mean wind speed will fall
within ±4 % of the long-term average in 90 % of the sim-
ulation grid cells that contain operating wind turbines. The
estimated 90 % confidence interval around the median an-
nual mean wind speed (i.e., 5th to 95th percentile span in
values divided by the median, P50) is < 8 % in half of all
WT grid cells and < 11 % in 90 % of WT grid cells. Thus,
this implies that in 9 out of 10 years the annual mean wind
speed is expected to fall within ±5.5 % of the long-term av-
erage in 90 % of the simulation grid cells that contain cur-
rently operating wind turbines. Comparative estimates of the
range of expected annual mean wind speeds derived assum-
ing a Gaussian distribution and σ of 6 % are considerably
larger. They yield 90 % confidence intervals around of mean
that span 19 % (i.e., in 9 out of 10 years the annual mean
wind speed is expected to fall within±10 % of the long-term
average). Several grid cells in the Southern Great Plains in-
dicate higher IQR(WS) /P50(WS) than the median value of
3.8 %. However, the lowest 50 % of IQR(WS) /P50(WS) of
annual mean wind speeds in WT cells is lower than in grid
cells without WTs. This indicates that, on average, the loca-
tions at which WTs are currently operating are characterized
by lower IAV in wind speeds than typifies the eastern half of
North America.

3.2 Wind indices and AEP

The spatial mean P90(AEP) from WT grid cells is
5157 MWhyr−1, while P50(AEP) is 5323 MWhyr−1

(Figs. 5c, d and 6). Comparable figures from grid cells that
do not contain the locations of currently operating WTs (i.e.,
no WT grid) are 4893 and 5078 MWhyr−1, indicating that
WTs are deployed in locations that have atypically high
wind speeds and projected AEP.

WIs (computed using Eq. 1) naturally exhibit larger nor-
malized IQR than annual mean wind speeds (cf. Figs. 5a and
3b). Normalized IQR of WI (IQR(WI) /P50(WI)) is < 11 %
in 60 % of WT grid cells, < 14 % in 83 % of WT grid cells
and < 15 % in 95 % of WT grid cells (Fig. 5b; see summary
in Table 1). However, a similar inflation of IAV is not antic-
ipated for AEP because of the nature of wind turbine power
curves (see example in Fig. 1). This expectation is realized
within the estimated AEP values. The spatial median value
of normalized IQR of AEP (i.e., IQR(AEP) /P50(AEP)) is
3.4 %, and thus half of all years are estimated to fall within
±3.4 % of the median (P50) AEP for half of all WT grid
cells. The 90 % confidence interval tentatively derived as the
5th to 95th percentile of annual median AEP in each grid
cell indicates that WT grid cells range from 5.0 % to 13.5 %
with a median of 7.9 %. Thus, in half of all simulation grid
cells that cover areas where WTs are currently operating, in
9 out of 10 years AEP is expected to fall within ±4 % of the
long-term average (Table 1). Comparative estimates of the
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Figure 3. (a) Median (i.e., P50) of annual mean wind speeds in the third model layer of each 12km× 12km grid cell as derived from
10 min output. (b) The normalized interquartile range of annual mean wind speeds (IQR(WS) /P50(WS)). The magenta dots shown in
this frame denote the locations of operating wind farms from which median CFs are shown in (d). (c) Cumulative density function of
IQR(WS) /P50(WS) in the sample of grid cells containing WTs (shown as WT in the legend) and those that do not (shown as “no” in the
legend). (d) Median annual gross capacity factors (CFs) for a single WT deployed in each 12km× 12km grid cell derived using 10 min
output from the WRF model and the power curve from a GE 1.5 MW WT (see Fig. 1). Also shown by the dots in (d) is the median net CF
computed directly from the power output of operating wind farms. The same color scale is used for the gross (simulated) and net (observed)
CF. If the net and gross capacity factors are equal the wind farm locations (shown in b) will not be visible, implying agreement between
observed and simulated values.

range of expected AEP derived assuming a Gaussian distri-
bution and σ of 6 % are considerably larger and yield 90 %
confidence intervals around the mean that span 19 % (i.e., in
9 out of 10 years the AEP is expected to fall within ±10 %
of the long-term average). Thus, it would appear that assum-
ing a standard deviation (σ ) of 6 % for the climate-induced
interannual variability in AEP is conservative and potentially
could be reduced. Under the assumption that the WTs de-
ployed are GE 1.5 SLE and that they are harvesting wind
speeds at a height equal to the third model layer, the normal-
ized difference between P90(AEP) and P50(AEP) in WT grid
cells is < 3.1 % in 50 % of grid cells and is below 4.6 % in
90 % of WT grid cells (Figs. 5c and d and 6c). Indeed, only
1 % of WT grid cells exhibit values in excess of 6.4 %.

The mean normalized IQR of gross AEP as derived using
output from the WRF simulations and the GE 1.5 MW power
curve for grid cells containing the 68 operating wind farms
considered herein is 3.5 % (Fig. 6d). The normalized IQR
of net CF derived from power production data at these wind
farms ranges from 3 % to 18 % and has a median value of 9 %
(Fig. 6e). Thus, the power production data from these oper-
ating wind farms indicate that in half of them the production
during half of all years lies within <±9 % of the long-term
average (see summary in Table 1). Our simulations imply that

the climate-induced variability at these locations is likely to
mean that AEP in half of all years should lie within ±2 % of
the long-term average, with the remaining variability being
derived from other factors such as performance deductions
due to WT aging, curtailment and maintenance. These esti-
mates are tentative because the power production data sets
are of short duration and contain missing data, and the model
simulations are also only 15 years in duration and make a
number of assumptions (including the use of a single WT
power curve). Nevertheless this analysis highlights the need
for further studies designed to decompose the IAV of AEP
into the root causes of wind climate variability, curtailment,
WT availability and WT performance degradation with age.

3.3 Scales of coherence in wind speed variability

Understanding the spatial scales of coherence at which wind
speed variability on different timescales is manifest is im-
portant to the integration of wind-energy-generated electric-
ity into the grid. Over much of the US, the variability of
wind speeds on seasonal to interannual timescales is deter-
mined by the frequency and tracking of midlatitude cyclones
as dictated by the phase of internal climate modes (Schoof
and Pryor, 2014). The timing of the occurrence of the rolling
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Figure 4. (a) Weibull distributions calculated for each year for the third model level wind speeds (solid lines) for three example grid cells
in Texas (TA), Iowa (IA) and New York (NY) state (see Fig. 2a for the locations of these grid cells). The dashed lines show empirical
distributions of the contribution of wind speeds in 1 ms−1 bins to the overall annual energy production (FC). The solid colored boxes on the
x axes indicate the range of mean annual wind speeds in each grid cell. The Weibull parameters for each site are shown above each frame.
A is the Weibull scale factor (in ms−1) and k is the shape factor. (b) Power spectra of 10 min disjunct horizontal wind speeds from the third
model level from each of these grid cells computed using output every 10 min for 1 January 2002 to 31 December 2016.

12-month period of minimum and maximum AEP as com-
puted from the WRF simulations exhibits relatively com-
plex spatial patterns (Fig. 7). This indicates that at least at
the annual scale, the geographic dispersal of wind turbine
deployments is such that it extends beyond regions of high
coherence in gross AEP. However, there are also regions of
coherence consistent with the importance of large-scale cli-
mate modes in dictating wind speed anomalies over the con-
tiguous USA (Schoof and Pryor, 2014). Minimum AEP over
the upper Midwest (i.e., over Minnesota, Michigan, Illinois,
Indiana and Ohio) occurred during 2011 (and early 2012;
Fig. 7a) during a weak La Niña period (i.e., negative ONI; see
Fig. 7c), while in the lower Central Plains (Fig. 7a) the timing
of this minimum was more strongly focused on 2015–2016
during a relatively strong El Niño event (i.e., positive ONI;
Fig. 7c). Conversely, the upper Central Great Plains and parts
of the southeast exhibit the lowest values for a 12-month pe-
riod starting in mid-2008 (during a weak la Niña, Fig. 7). The
timing of maximum AEP is also consistent across the upper
Midwest states and is focused on 2007 (Fig. 7b). Much of the
Central Plains indicate maximum AEP for a period centered
on 2011, while estimated AEP in the northeastern states is
highest close to the start of the simulation period in 2001–
2002. Analysis of the years that differ most from the boot-

strapped mean AEP from the three sample grid cells (IA, TX
and NY; see Table 2) reemphasizes the findings of the anal-
ysis presented in Fig. 7. Both indicate that different regions
within the eastern USA differ in terms of 12-month period
that has the lowest AEP and thus when viewed system-wide
(i.e., spatially) there are important compensating variations
in the wind climate and derived AEP. For example, although
2010 is indicated as a year of relatively low electricity pro-
duction in Iowa, it is associated with higher than average
AEP from WTs in New York state. Figure 7 further illustrates
that the IAV of AEP (and wind speeds) and the occurrence of
higher than normal values is a complex function of the state
of multiple climate modes (Schoof and Pryor, 2014). For ex-
ample, late 2006 saw a weak positive ONI and positive PNA
and NAO and was associated with relatively high AEP over
much of the Midwest, but late 2009 when ONI was also pos-
itive but NAO was negative and PNA was closest to zero was
not associated with high estimated AEP over the Midwest.

4 Discussion and concluding remarks

This study addresses a key aspect of uncertainty in wind
project financing – the magnitude of the IAV of wind speeds
as manifest in AEP. Over the eastern USA under the con-
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Figure 5. (a) Spatial map of normalized IQR wind index P75(WI)−P25(WI)
P50(WI) and (b) cumulative density plot of the normalized IQR wind

index in a sample of grid cells containing WTs (WT) and those that do not (“no”). Cumulative density plots of (c) P50(AEP) and P90(AEP)
(in MWh) and the (d) normalized difference between AEP P50, P90 (i.e., P50(AEP)−P90(AEP)

P50(AEP) ) and IQR(AEP) /P50(AEP) in the sample of
grid cells containing WTs (WT) and those that do not (“no”). AEP is computed by assuming a single GE 1.5 MW WT is deployed in each
12 km× 12km grid cell and by applying the power curve of that WT to 10 min output from the WRF model.

Figure 6. (a) P50(AEP) and (b) P90(AEP) (in 103 MWh) from a single 1.5 MW WT in each 12km× 12km grid cell derived using 10 min
output from the WRF model and the power curve from a GE 1.5 MW WT. (c) The difference in P90 and P50 AEP expressed as a fraction
of P50 AEP (1AEP /P50(AEP)). (d) The normalized interquartile range of AEP (IQR(AEP) /P50(AEP)) in each WRF grid cell and (e) the
normalized interquartile range of mean annual capacity factor (IQR(CF) /P50(CF)) from operating wind farms. Note: the scales in (d) and
(e) differ in order to best depict the full range of values from each data set.
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Figure 7. Timing of the start of the (a) minimum and (b) maximum 12-month rolling AEP value in each 12km× 12km grid cell derived
using 10 min output from the WRF model and the power curve from a GE 1.5 MW WT. The white dots indicate the locations of operating
WTs as of March 2018. As in Figs. 5 and 6 AEP is computed by assuming a single GE 1.5 MW WT is deployed in each 12km× 12km grid
cell and by applying the power curve of that WT to 10 min output from the WRF model. The panels on the right of each map denote the
fraction of all grid cells (Frac) that exhibit a minimum or maximum 12-month rolling AEP in each 12-month period. For a random variable
the expectation is that this fraction would be 0.0023 in each time period. (c) Monthly indices of the phase of the Pacific North American
(PNA), North Atlantic Oscillation (NAO) and Oceanic Niño Index (ONI).

temporary climate, the interannual variability of annual mean
wind speeds close to typical wind turbine hub heights is
smaller than implied by using a standard deviation of 6 %.
While the IAV for wind indices is naturally higher than for
wind speeds, the IAV of AEP is close to that derived for an-
nual mean wind speeds (see Tables 1 and 2). The difference
between P90(AEP) and P50(AEP) in 12km× 12km simu-
lation grid cells that currently contain WTs is generally be-
low 5 % of P50(AEP) and is < 10 % of P50(AEP) for the
overwhelming majority of grid cells within the study domain
and all grid cells that contain operating WTs. The analyses
presented herein indicate that AEP in 9 out of 10 years will
lie within ±5 % of the median value in 90 % of grid cells
that cover areas that currently contain WTs. Thus, the use
of a 6 % standard deviation to represent variability in pre-
project estimated mean AEP variability due to contemporary
climate variability would appear to be conservative over the
overwhelming majority of the eastern USA. The 90 % con-
fidence interval on AEP associated with σ = 6 % is ±10 %.
It may be more appropriate to assign σ ∼ 4 % to account for
climatological variability in the wind resource. However, we
caution that implicit assumptions that mean wind speeds and
AEP are Gaussian distributed are not warranted, and thus the
dispersion (IAV) should not be characterized using paramet-

ric statistics such as the standard deviation. In pre-project fi-
nancing for developments in the eastern half of North Amer-
ica, it may be more appropriate to assume that climatological
variability is such that the annual mean wind speed and AEP
in 9 out of 10 years will lie within ±6 % of the long-term
mean.

Although climate modes (such as ENSO) exert an impor-
tant control on wind regimes over the eastern USA and coher-
ent sub-domains within the region exist in terms of the timing
of the maximum and minimum estimated AEP, these regions
of coherence are sufficiently small that, for example, there
are compensating effects between Iowa and New York state.
Thus, for a strong and well-connected distribution grid the
interannual variability in AEP from wind turbines would be
small. Indeed, for the current distributed WT network the in-
terquartile range in system-wide AEP computed from the 15
annual total production estimates derived by equally weight-
ing all grid cells with WTs in them is only slightly over 1 %.

Naturally, there are a number of caveats that should be
applied to our findings. It is implicitly assumed herein that
2001–2016 is a representative climate period. The magnitude
of the interannual variation in wind speeds, wind indices and
AEP reported herein is a function of the simulation period
(2001–2016), the lateral boundary conditions applied (ERA-
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Interim) to the simulations and the application of a single
WT power curve to compute AEP. It is important to empha-
size that simulated wind climate regimes are a function of
the physics packages applied within WRF and the resolu-
tion at which the model is applied (Draxl et al., 2014); we
further reiterate that the research presented herein neglects
non-climatic factors that influence AEP such as curtailment
for system operation and/or WT maintenance and IAV in
reduced power production efficiency of wind farms (due to
wake loss variability resulting from changes in the prevail-
ing wind direction). Herein we assume that these effects are
secondary to variations in the magnitude of wind speeds. Fu-
ture work should address the validity of this and the other
assumptions employed herein.

This study indicates the urgent need for further research
to reduce uncertainty in climate-induced IAV in AEP. Our
research suggests the actual IAV in WT-generated electric-
ity (AEP) over the eastern USA may be substantially below
the levels that are currently adopted in financing mechanisms
within the industry. This finding implies that the cost of cap-
ital for wind projects may be too high.
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