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Abstract. The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting
to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was
generated for a 2-week period. Uncertainties in initial and boundary conditions are represented with an ensemble
forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method.
Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the
ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be
used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best
results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast
and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for
wind power in cold climates can be valuable when planning next-day energy production, in the usage of de-icing
systems and for site safety.

1 Introduction

Wind power production in cold climates experiences signifi-
cant problems with production losses because of icing. Icing
on the turbine blades reduces the energy production due to
a change in the aerodynamic balance, generation of vibra-
tion and increased load (Kraj and Bibeau, 2010). Further-
more, site safety is an issue since falling ice poses a threat
to the public and to maintenance. Despite these complica-
tions, a substantial part of the wind power production is lo-
cated in cold climate regions. This geographical choice re-
sults from both the possible higher production in lower tem-
peratures where the air is more dense than in warmer regions,
and from the low population density, which reduces public
safety risks and disturbance. According to the World Mar-
ket Update 2012 (Wallenius et al., 2013), more than 24 % of
the global wind energy capacity was located in cold climate
regions at the end of 2012 and most of these turbines ex-
perience between light and heavy icing. In order to plan for
next-day energy production and site safety, short-range fore-

casts of icing and related production losses are vital tools for
the energy market.

Forecasting icing and related production losses is chal-
lenging due to uncertainties in both the meteorological con-
ditions and the modelling of the involved processes (e.g.
Bergström et al., 2013; Davis et al., 2014). A common ap-
proach for the modelling chain is shown in Fig. 1. A numeri-
cal weather prediction (NWP) model is used to forecast me-
teorological parameters that serve as input to an icing model.
Finally, a statistical production model calculates the icing-
related production losses from the forecasted wind and icing.
It should be noted that all steps in the modelling chain of
Fig. 1 contain uncertainties, either in the model formulation
or the required input data. The NWP model and the icing
model suffer from a lack of knowledge about the physical
processes, from the numerical discretization and from sim-
plifications to make the models computationally affordable
for operational use (Yano et al., 2015). Initial conditions for
the NWP model are also uncertain due to errors in the mete-
orological observations and assumptions in data assimilation
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Figure 1. The modelling chain for forecasting icing-related produc-
tion losses. Uncertain parts are pointed out.

methods (Megner et al., 2015). Forecasting wind power pro-
duction requires high horizontal resolution of the order of
kilometres to capture wind fields at 100 m above ground in
the Scandinavian mountains and also to model small-scale
atmospheric phenomena leading to icing (Bergström et al.,
2013). Due to the computational needs of such models, the
domain size is limited and lateral boundary conditions are
provided by a host model, adding further uncertainties in
the modelling chain. Finally, a statistical production model is
based on a limited set of previous forecast validations and on
assumptions about the functional relationship between wind,
ice and production, also resulting in uncertainties. Because of
these error sources in the modelling chain, the forecasted pro-
duction losses are uncertain. This issue has been addressed
by using different NWP models that result in different esti-
mations of ice load and icing intensity, and hence production
losses (Ronsten et al., 2012; Bergström et al., 2013). Here,
we address this problem in another way.

A common approach for uncertainty quantification in
NWP is to use ensemble forecasting (Leith, 1974). It is
known that in a non-linear dynamical system such as the
weather, the largest uncertainty results from initial errors
growing rapidly with forecast time. These errors can be
represented by re-running the model multiple times, start-
ing from slightly different initial conditions (Leutbecher and
Palmer, 2008). This collection of forecasts is generated by an
ensemble prediction system (EPS). Global EPSs have been
run since the early 1990s at, for example, the European Cen-
tre of Medium-range Weather Forecasts (ECMWF). In the
beginning, the focus of ensemble forecasting lay mostly on
medium-range global forecasting. In the last 10–15 years,
meso-scale EPS has been developed at different weather cen-
tres (e.g. the Met Office, Bowler et al., 2008, and NOAA, Du
et al., 2003) addressing the uncertainties in the short range,
i.e. during the first 48 h of the forecast.

An ensemble forecast can be used in several ways. The en-
semble mean generally has a lower error than a single fore-
cast, because the less predictable parts have been filtered out
when averaging the ensemble members (WMO, 2012). This
method was used by Al-Yahyai et al. (2011) to estimate the
average wind speed over Oman in different seasons, and the

ensemble mean reduced the forecast error compared to a sin-
gle forecast. The difference between, or the spread of, the
ensemble members can represent the uncertainty of the fore-
cast. An ensemble forecast can also be used probabilistically
to estimate the likelihood of a specific event; for example,
the timing of a sudden change in wind speed (Schäfer, 2014).
Furthermore, an EPS for short-range forecasting has been in-
vestigated for wind energy purposes (e.g. Pinson and Karin-
iotakis, 2010; Traiteur et al., 2013). Traiteur et al. (2013)
studied the use of a short-range EPS for 1 h wind speed fore-
casting and showed that a statistically calibrated EPS outper-
forms other forecast methods. Here, we will employ an EPS
for forecasting icing-related wind power losses.

An additional uncertainty arises due to the fact that
kilometre-scale phenomena, such as convective clouds, have
faster forecast error growth than phenomena on larger scales,
such as the position of a low-pressure system. Thus, a fore-
casted small-scale cloud can be misplaced by some tens of
kilometres generating an error in spatial representation. This
uncertainty has implications for how the forecast can be in-
terpreted at a specific wind turbine location. Mittermaier
(2014) suggested the use of the neighbourhood method in
order to address this misplacement of small-scale features
in forecasts. In this method, a selected number of the sur-
rounding grid points to an observation site are treated as
equally likely forecasts. These forecasts can then be used
in the same way as an ensemble, accounting for the uncer-
tainties in the representativeness at each wind turbine loca-
tion. An approach to generate probabilistic forecasts of wind
power, called adapted resampling, was already used earlier
by Pinson and Kariniotakis (2010), where the value of prob-
abilistic forecasting for trading and wind power management
was demonstrated and it was suggested that methods of wind
power forecasting should not rely directly on point forecasts
as input.

In this case study, probabilistic next-day forecasts for wind
power in cold climates has been run for a 2-week period in
winter 2011/2012. The modelling chain (Fig. 1) is extended
with meso-scale ensemble forecasts and the neighbourhood
method. These extensions address the uncertainties in the ini-
tial and boundary conditions as well as the representation
error of the NWP part. In order to examine the impact of
these terms separately, different combinations of ensemble
forecasting and the neighbourhood method are examined as
the uncertainty quantification of the forecast for icing and re-
lated production losses. Thus, it will be investigated whether
these probabilistic methods add value to specific challenges
of wind power forecasting in cold climates.

The models in the modelling chain are described in
Sect. 2.1. The specific experiment period and available ob-
servational data are described in Sect. 2.2. The different ap-
proaches for the uncertainty quantification are presented in
Sect. 2.3 and the verification methods in Sect. 2.4. The re-
sults in Sect. 3 are divided into two parts: meteorological pa-
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rameters in Sect. 3.1 and forecasts of icing and production
losses in Sect. 3.2. Concluding remarks are given in Sect. 4.

2 Method

2.1 Description of the models

2.1.1 NWP model

As the NWP model, the ensemble prediction system
HarmonEPS is used. HarmonEPS is a non-hydrostatic,
convection-permitting model intended for predictions of
probabilities of high-impact weather events. It is based on the
ALADIN-HIRLAM shared system and contains two pack-
ages of physical parameterizations, AROME and ALARO,
of which the AROME package (cy38h1.2) was used here in
the HARMONIE-AROME configuration (Bengtsson et al.,
2017). HARMONIE-AROME has been used for operational
weather forecasts at the Swedish Meteorological and Hydro-
logical Institute (SMHI) since 2014 (Müller et al., 2017), also
as an ensemble in HarmonEPS since 2016. In the present
study, the horizontal resolution of the model is 2.5 km and
it has 65 vertical levels. The model domain can be seen in
Fig. 2. The lateral boundary conditions come from the global
EPS at the ECMWF with an horizontal resolution of 30 km
and are updated at 00:00 and 12:00 UTC. A spin-up period
of 3 weeks was used to generate the start of the forecast
period. The HarmonEPS ensemble consists of 10 perturbed
members and 1 control member. The number of ensemble
members was chosen based on a short-range EPS study, by
Du et al. (1997), where it was shown that 8–10 ensemble
members are sufficient for at least 90 % of the possible ben-
efit of using an EPS. Since an EPS is computationally de-
manding to run, 10 members were therefore considered to be
sufficient for the present study. The control member is us-
ing 3-D-variational data assimilation of conventional obser-
vations as well as satellite observations from the instruments
AMSU-A and AMSU-B, with 6 h cycling. For the genera-
tion of the initial conditions for the ensemble members, the
so-called PERTANA option is used, where the difference be-
tween the control analyses of HarmonEPS and ECMWF is
added to the fields from the ECMWF EPS-perturbed mem-
bers. The HarmonEPS set-up used here differs from the op-
erational HarmonEPS currently running at SMHI in several
aspects: the operational version uses a new model version
(cy40h1.1), boundary conditions with the scaled lagged av-
erage forecast method and also some physics perturbations
(Andrae and MetCoOp-Team, 2017). As the control member
has no perturbations on the initial and boundary conditions, it
should statistically outperform the other ensemble members.

2.1.2 Postprocessing of the NWP data

Despite of increasingly higher resolution, the NWP models
still lack some topographic details. The height of mountain-
tops in the model terrain remains, in most cases, below the

Figure 2. NWP model domain. Colours represent topography de-
scribed in legend.

actual height. The NWP output parameters are therefore ad-
justed to account for the difference between model terrain
and real topography. The following vertical interpolation is
used for the NWP output; here for the example of tempera-
ture (T ):

Ti =
T (hm+1h+hnacelle)+ T (hm+hnacelle)

2
, (1)

where Ti is the vertically interpolated temperature, hm is the
model terrain height, 1h is the difference between the real
terrain height and the model terrain height, and hnacelle is the
height of turbine nacelle. Effectively, the forecast made at
the actual terrain height plus nacelle height and the forecast
made at the model terrain height plus nacelle height are aver-
aged in Eq. (1). This averaging method was employed since
using only the forecast data at the actual height over sea level
for the wind turbine nacelle can result in using atmospheric
parameters well above the terrain compared to the turbine
height. On the other hand, using only the forecast data at the
height of the turbine nacelle above the model terrain can re-
sult in atmospheric data at lower height than the actual height
of the wind turbine. This interpolation is done for all atmo-
spheric parameters that serve as input to the icing model. It
should be noted that in the case where model terrain height
is higher than the real terrain height, only the model terrain
height is used. However, no such grid point was found in the
current study.
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2.1.3 Icing model

The meteorological parameters forecasted by the NWP
model are used to calculate ice loads utilizing a cylindrical
ice accretion model. The model is following the ISO stan-
dard with a cylinder of 30 mm in diameter and is based on an
equation often referred to as the Makkonen equation:

dM
dt
=

5∑
i=1

α1α2α3WvA−L, (2)

where M is the mass of ice; t is the time, the sum represent
the sum of the ice accumulation due to the different hydrom-
eteors such as rain, cloud water, snow, graupel and cloud ice;
α1, α2 and α3 are efficiency coefficients; W is liquid wa-
ter content; v is wind speed; A is the cross-sectional area
of the cylinder on which the ice accumulation is calculated
(Makkonen, 2000) and L is the ice loss term which is an ad-
dition to the original Makkonen model. L includes functions
for melting, sublimation, wind erosion and ice shedding. The
efficiency coefficients take into account aspects of the object
where the ice is accumulated, such as the possibility for wa-
ter adhering to the surface. A detailed description of the co-
efficients is found in Makkonen (2000). Meteorological in-
puts needed for the ice calculations are temperature, wind
speed, liquid/solid water content, relative humidity and me-
dian volume droplet size. The latter is not directly available
from the present NWP models, so a value is estimated for
all water components based on the liquid/solid water content
and the concentration of droplets. The concentration of cloud
droplets is set to a constant of 100 cm−1 except in the case of
precipitation, when the number of droplets is instead based
on output from the NWP model.

In addition to the original Makkonen equation, which only
accounts for ice accretion due to cloud water, ice accretion
due to cloud ice, graupel, snow and rainwater are included
in the icing model. It is assumed that snow and graupel are
only contributing to the ice accretion if rain or cloud water is
also present since dry snow easily re-bounces after the col-
lision with the turbine. The sticking efficiency α2 is differ-
ent for snow and graupel compared to cloud water. Based on
Nygaard et al. (2013) where both α2 = 1/v0.5 and α2 = 1/v
were discussed, α2 = 1/v0.75 is used here. For simplicity, the
accretion efficiency α3 is calculated in the same manner for
the liquid and solid water components. The different forms
of water in the cloud are fed separately into the equations
using their forecasted concentrations from the NWP model.
The equations for calculating droplet number concentrations
for cloud ice, rain, snow and graupel have been taken from
the AROME microphysics scheme (Seity et al., 2011). The
median volume droplet diameter is calculated according to a
scheme for cloud water by Thompson et al. (2008).

Formulas for melting, shedding, sublimation and wind
erosion are also additions to the model compared to the orig-
inal Makkonen equation. Melting of ice is calculated using

an energy balance equation, which includes an empirical ice
shedding. The ice shedding is simulated by multiplying a
constant of 8 with the melting term, increasing the process
of removing the ice by a factor of 8. The sublimation is cal-
culated using Eq. (19) in Mazin et al. (2001), which uses
wind speed and relative humidity in the calculations. The
wind erosion is calculated by multiplying an hourly rate co-
efficient of 10 g m−2 (m s−1)−1 with the wind speed when the
wind speed is greater than 5 m s−1, otherwise the erosion is
zero. Here, only the wind speed at the nacelle is used. If the
actual winds at the rotating wind turbine are used, the wind
erosion coefficient needs to be reduced approximately by a
factor of 10 (Davis et al., 2016).

A more detailed documentation of the icing model can
be found in Bergström et al. (2013). It should be noted that
there are some differences in the model version since used in
Bergström et al. (2013) as described above, i.e. the additional
wind erosion calculations and the height interpolation.

2.1.4 Production model

The production model consists of two parts, one part for the
potential production and one for the production loss.

Ice-free seasonally varying power curves were calculated
for each wind turbine at every wind park, using a minimum
of 2 years of production and wind speed observations. Only
production observations with temperatures above 5 ◦C were
used to ensure that the blades are free of ice. The power
curves are then used with forecasted wind speed to calculate
the potential production.

The production loss forecast requires the modelled param-
eters of ice intensity, ice load and wind speed as input. It
uses two matrices separating the losses due to ice load and
icing intensity (Bergström et al., 2013). For a specific wind
speed, ice load and icing intensity, the model yields a pro-
duction loss in percent. Only one of the matrices is used
for each forecast depending on which gives the highest pro-
duction loss. The matrices were constructed manually using
hindcasts of ice load and wind speed from a 2-month period
in 2010 combined with observed production values from one
specific wind park, which showed good agreement between
observed and modelled icing. Due to contractual reasons, the
wind park will not be specified. The matrices were generated
by fitting 0 % and 100 % losses against observations and then
by linearly interpolating the values in between. The empiri-
cal functions for production loss, determined for one specific
wind farm, were used in the production forecasts for all wind
farms. Generally, the icing intensity influences the produc-
tion losses more than the ice load (Bergström et al., 2013).
Finally, the potential production is combined with the fore-
casted loss to provide the actual forecasted production out-
put.
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Table 1. Observation sites with approximate latitude, description if the measurements were made from a mast or at the wind turbine nacelle
(WT) and available production data (×).

Site A B C D E F G H I J

Latitude 65◦ N 67◦ N 58◦ N 68◦ N 68◦ N 68◦ N 62◦ N 60◦ N 60◦ N 58◦ N
WT or Mast WT WT WT Mast Mast Mast Mast WT WT Mast
Production data × × ×

2.2 Experiment period and available data

The case study is based on a 2-week period. HarmonEPS was
run from 26 December 2011 to 7 January 2012, initializing
a 42 h long forecast at 00:00, 06:00, 12:00 and 18:00 UTC,
with hourly output. The forecasted values from 18 to 42 h
starting from 06:00 UTC are used as the “next-day” forecast
in the evaluation of the forecasted production losses and pro-
duction.

Observations are available from 10 wind parks in Sweden
that will not be specified due to contractual reasons. At some
sites the observations were made from meteorological masts
and at others at the turbine nacelle. All 10 sites measure
temperature, wind speed, wind direction, relative humidity,
pressure and ice load. The sites are located from northern to
southern Sweden between 250 and 1000 m above sea level
and the measurement height above ground is between 60 and
150 m. From three of the sites, production data from each tur-
bine is available for the period. The approximate location of
the sites can be seen in Table 1 together with a specification
if mast or nacelle (WT) observations were available and if
the site had production data. The three sites with production
data are at some distance from each other (Table 1). Site A
is located on a hill with relatively high terrain west and north
of the site, and somewhat lower terrain toward the south and
east. In the location of site B, there is a similar terrain height
to the south and west, while the terrain to the north and east
is lower. The hill of site C extends mainly in the south–north
direction, with lower terrain to the west and east. Site B and
C have around 10 wind turbines, while site A consists of 20
turbines. All sites are surrounded with forest and with some
lakes at lower levels. For each site, one single value of pro-
duction data is calculated by averaging production data from
wind turbines without an error code. No de-icing system was
used on the wind turbines included in the study.

The meteorological parameters are measured every 10 min
with the instrument Quatro-Ind H (Lambrecht Meteorologi-
cal Instruments, Germany), except at one site where the in-
strument WXT510 (Vaisala, Finland) is used. Since the NWP
forecast output is hourly, only the 10 min observations at ev-
ery full hour are used in the verification.

The ice load is measured with an IceMonitor (Combitech
AB, 2016). The IceMonitor measures ice on a rotating cylin-
der according to ISO 123494 specifications (ISO 12494,
2001). Some problems have been identified with this instru-
ment. One is that it may stop rotating, and the ice is then only

accumulated on one side of the cylinder. Another issue is that
the ice can cause the rod to lift and thus to measure an incor-
rect ice load (Thorsson et al., 2015). Therefore, it is difficult
to use the ice measurements quantitatively, but they are still
used here to get an approximate observation of the icing.

The following quality controls were conducted for the ob-
servations of temperature (T ), wind speed (WS) and relative
humidity (RH). Values for T <−40 ◦C, WS< 0 m s−1 and
RH< 0 % are removed from the data set as being unrealistic.
Also, if the standard deviation of the 10 min averaged wind
speed was zero, the observation was removed. Finally, in or-
der to remove unrealistic jumps in the observations, the fol-
lowing check was performed: if the difference between the
current observed value and the next deviates by more than
3 times the standard deviation of this difference for the entire
period, the observation was removed.

For the production data, data were only used when no error
code from the site was given. Thus, the reduction in observed
production should be caused by icing. The observed produc-
tion loss was calculated from the ratio between the observed
production and the potential production, given the observed
wind speed and the ice-free power curves. A value of 30 %
means 30 % less production than the potential production.

2.3 Uncertainty quantification approaches

Two methods for uncertainty quantification are employed
in this study; ensemble forecasting and the neighbourhood
method.

Ensemble forecasting is used here to account for uncer-
tainties in the initial and boundary conditions within the
NWP model HarmonEPS as described above. The possibil-
ity to include model errors in the ensemble prediction system
was omitted in order to stay as close as possible to the oper-
ational set-up of the NWP model.

The neighbourhood method, following Mittermaier
(2014), is used in order to capture the local uncertainty in
the NWP data, e.g. the uncertainty in the representativeness
of the forecast for a specific location of the wind turbines.
Averaging forecasts made at several grid points around an
observation site results in a better forecast than one single
forecast from the kilometre-scale NWP. Furthermore, the
spread of the forecast from the neighbouring grid points
provides an estimate of the forecast uncertainty. Here, the
25 nearest grid points to an observation site are chosen as
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equally likely forecasts. Since these grid points are some
kilometres apart from the turbine site, the height difference
of the local topography can be several hundred metres.
Two versions of the neighbourhood method were tested.
In the first version, which is also the version presented
in the Results section (Sect. 3.2.3), model data from the
same height above sea level was used for all grid points,
resulting occasionally in a height above ground much larger
than the wind turbine height. The other version tested was
a terrain-following method, where model data from the
same height above ground was used for all grid points,
meaning that 1h in Eq. (1) is the same for all grid points.
The different versions are further discussed in the Results
section.

The control member (CM) from the ensemble forecast is
used as baseline, as it reflects the use of a single deterministic
forecast. In order to quantify the role of the different uncer-
tainty sources in the forecast uncertainty, the benefit of using
different combinations of the two above methods compared
to baseline is investigated.

Four different combinations of the two methods were stud-
ied. These four uncertainty quantification approaches are in
addition to CM presented in Fig. 3 and are described below.

– CMngb (control member neighbourhood): the model
chain starts with a single NWP forecast, namely the CM
from the ensemble forecast. Next, the neighbourhood
method is added providing multiple forecast input to the
icing and production model. This approach results in 25
forecasts from the 25 neighbouring grid points.

– EM (ensemble mean): the model chain starts with the
ensemble forecast from HarmonEPS. The 11 ensemble
members (the 10 perturbed members and the 1 control
member) are then averaged before the icing forecast,
providing the single statistically best meteorological in-
put for the icing and production model. The uncertainty
in the icing and production forecasts cannot be deter-
mined.

– ENS (ensemble): the first modelling step is based on the
ensemble forecast. All ensemble members are then used
each as input to the icing and production loss models,
resulting in 11 forecasts of icing and production loss.
The 11 forecasts give an estimation of the uncertainty
in the icing and production forecasts.

– ENSngb (ensemble neighbourhood): the ensemble and
the neighbourhood method combined. The neighbour-
hood method is added to each ensemble member after
the NWP model step, resulting in 25 forecasts for each
ensemble member and a total of 275 forecasts used as
input to the icing and production model.

Figure 3. Uncertainty quantification approaches. The commonly
used approach CM and the four uncertainty quantification ap-
proaches. CM: control member, a single forecast used in each fore-
cast step. CMngb: control member together with the neighbourhood
method. EM: ensemble mean, averaging the ensemble members
after the first modelling step. ENS: ensemble, using all ensemble
members throughout all modelling steps. ENSngb: ensemble to-
gether with the neighbourhood method. The number in each box
represents the number of forecast members in each forecast step.

2.4 Verification methods

The forecast skill is assessed by the root mean squared error
(RMSE), the mean forecast error called bias, and the unbi-
ased forecast error, i.e. the standard deviation (SD) of the
forecast error. They are connected by

RMSE2
= bias2

+SD2. (3)

The calculation of the forecast error as the deviation between
forecasted and true value uses an observation as replacement
for the truth. Thus, the observational error needs to be taken
into account in the calculation of the error terms. Due to the
lack of a consistent estimate for the observational error, the
observational error is neglected. This leads to an overestima-
tion of the RMSE, bias and SD.

The magnitude of the bias of the meteorological param-
eters in this study varied between the observation sites and
with forecast lengths. Thus, the average bias for each fore-
cast length was estimated and removed from the RMSE to
get SD.

By averaging the ensemble members for the same valid
time, they can be treated in the same way as a single forecast,
and the same skill scores can be used allowing us to com-
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pare the skill of the different probabilistic approaches with
the skill of the single deterministic forecast denoted as CM.

The spread of the ensemble forecast contains important
additional information compared to a deterministic forecast,
such as a situation-dependent estimate of the forecast uncer-
tainty. The spread, SPRE, is defined as

SPRE=

√√√√ 1
M − 1

M∑
i=1

(xi − x)2, (4)

where xi is the ith forecast member, x is the ensemble mean
and M is the number of forecast members.

In a perfect probabilistic forecast, any of the simultane-
ous forecast members would be statistically indistinguish-
able from the truth. If this is not the case, the forecast un-
certainty is over- or underestimated, i.e. providing a too wide
or a too narrow range of forecast outcomes, respectively. In
order to verify the ensemble spread (SPRE), it is compared to
the forecast skill of the ensemble mean in terms of unbiased
forecast error (SD) following Johansson (2018).

Both the SD and the SPRE are statistically expected to
increase with increasing forecast length. In a perfectly cali-
brated forecast, the spread should be as large as the skill. The
so-called spread–skill relationship of the forecasts, SPRE–
SD, should therefore equal 1. As the unbiased forecast er-
ror SD is overestimated due to the neglected observational
error as mentioned above, the spread–skill relationship will
consequentially be underestimated. This error could be cor-
rected with an appropriate estimate of the observational error
(Schwartz et al., 2014).

The skill of the forecasts made with the different ap-
proaches from Sect. 2.3 and the spread–skill relationship are
presented below. Since a relatively short period of forecasts
is studied with only two icing events, it is not possible to test
the significance of the statistical measures. The results should
therefore only be considered to show the potential benefit of
the use of probabilistic forecasting for wind power in cold
climates.

3 Results

3.1 Meteorological parameters

For the 2-week period examined in this study, the skill of
the basic meteorological model performance is presented in
Fig. 4 in terms of bias and unbiased forecast error for rela-
tive humidity, wind speed and temperature for the 42 h fore-
casts. The statistics are based on all forecasts at all 10 obser-
vation sites for each forecast length. The unbiased forecast
error averaged over the forecast window amounts to about
7 %, 2.3 m s−1 and 0.9 ◦C for relative humidity, wind speed
and temperature, respectively. The forecast error is expected
to increase with forecast length, which is the case for temper-
ature (Fig. 4c). The unbiased forecast error of the wind speed
and relative humidity (Fig. 4a and b), however, displays a flat
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Figure 4. CM: unbiased forecast error SD and bias for (a) relative
humidity in percent, (b) wind speed in m s−1 and (c) temperature in
◦C for increasing forecast length. The statistical measures are cal-
culated for the 2-week period and averaged over all available sta-
tions. The meteorological observations at 60 to 150 m height above
ground from 10 sites (9 for wind speed) are used.

shape suggesting that the error is saturated during the fore-
cast window. This behaviour points to a difficulty in the anal-
ysis, i.e. the initialization of the wind field in the model. One
aspect in this regard is the lack of wind observations in the
planetary boundary layer to initialize the meso-scale wind
field.

The temperature bias increases from −0.3 ◦C to close to
−1 ◦C after 42 h (Fig. 4c). This behaviour might be caused
by a spin-up problem in the model, since it is changing with
forecast length. Additionally, a negative temperature bias that
is not changing with forecast length can be attributed to the
warm turbine affecting the measurements. A difference in
the temperature bias between mast (Mast) and turbine (WT)
measurements amounts on average to −0.4 ◦C for mast and
−1.1 ◦C for turbine. The bias of the wind speed (Fig. 4b)
decreases slightly with forecast length from 1 to 0.5 m s−1

after 42 h. The bias in the relative humidity (Fig. 4a) displays
only small changes with forecast length and remains gener-
ally small with absolute values less than 1 %.

In general, the meteorological model displays good per-
formance for the basic meteorological parameters. The lack
of forecast error growth in wind speed and relative humidity
suggests that the model forecast could be improved by assim-
ilating more observations, especially for wind and humidity.
A better initial state of the forecast might even improve the
bias behaviour.

The meteorological performance of the different uncer-
tainty quantification approaches in terms of spread and skill
is shown in Fig. 5. The skill as defined as the unbiased fore-
cast error SD, and spread for the temperature forecasts is dis-
played for each approach. The baseline approach of a de-
terministic forecast (CM) shows the largest forecast error.
For the examined period, the benefit of using the neigh-
bourhood and/or ensemble methods can already be seen in
the first hours of the forecasts, and increases with forecast
length as expected. The CMngb has the smallest improve-
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Figure 5. Unbiased forecast error SD for all uncertainty quantifica-
tion approaches for the temperature in ◦C and the spread, SPRE, for
the three approaches consisting of multiple forecasts as a function
of increasing forecast length. The SD is calculated for the average
forecast in case of multiple forecasts, i.e. approaches CMngb, ENS
and ENSngb.

ment of forecast error, but still suggesting that the neigh-
bourhood method is valuable if an ensemble forecast is not
available. Even higher improvement is achieved by the ap-
proaches ENS and EM that provide by construction the same
values here. The largest reduction of the forecast error is
achieved using both the ensemble forecast method and the
neighbourhood method (ENSngb), with an average reduction
of 9 % for the temperature, 7 % for the wind speed and 12 %
for the relative humidity forecast error, averaged for all sites
and all forecasts averaged for all sites and all forecasts.

Figure 5 also displays the forecast spread of the ap-
proaches ENS, ENSngb and CMngb. The spread is always
clearly lower than the unbiased forecast error, which means
that the forecast uncertainty is underestimated in all ap-
proaches. This behaviour might result from neglected uncer-
tainty sources in the modelling chain (Fig. 1) The employed
ensemble represents uncertainties in the initial and bound-
ary conditions, but it does not take into account uncertainties
in the model physics or numerical formulations. There are
methods to account for these uncertainties, such as stochastic
physics, which increase the spread (Bouttier et al., 2015), but
they are not in the scope of this study. It is also important to
consider the observational error when validating the spread–
skill relationship of the forecast, as discussed in Sect. 2.4.
Since the forecast error estimate is not corrected for the ob-
servational error, the under-dispersiveness of the approaches
is not as large as it appears in Fig. 5.

On its own, the ensemble forecasting method (ENS) has
better skill, spread and spread–skill relationship than the
neighbourhood method (CMngb) for this period, around
0.6 and 0.3, respectively, for all meteorological parame-
ters. Specifically, the spread–skill relationship improves from
around 0.3 for CMngb to around 0.6 for ENS for temper-
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Figure 6. Site A. (a) Forecasted ice load in kg m−2. Blue lines are
ensemble members, grey line is the CM and black line is the ENS
mean. The ice load observations are in red. (b) The related spread of
the ensemble members in ENS. (c) Forecasted ENS ensemble mean
liquid water content in g kg−1 for the period.

ature, wind speed and relative humidity. The approach EN-
Sngb results in the best spread–skill relationship around 0.7.
This implies that the neighbourhood method is adding ad-
ditional information about the forecast uncertainty, which is
valuable for both the forecast skill and the forecast spread.
The spread resulting from the neighbourhood method is con-
stant with forecast length (CMngb in Fig. 5), since it repre-
sents the internal variations in the weather over the scale of
the neighbourhood domain, but it does not take into account
uncertainties due to initial boundary conditions, or model
formulations that increase with increasing forecast length.

3.2 Forecasted icing and production losses

The forecasted icing is, as mentioned before, more difficult
to validate since the observations of icing are unreliable. Al-
ternatively, the forecasted production loss for the three sites
with production data is also considered as a measure of the
forecast skill of the icing. Results from two of the three sites,
here A and B, with consistent production observations will be
presented in more detail in the following to point out some
interesting features when using the probabilistic forecasts.
Site C is not shown, but had icing during about 3 days of the
2 weeks. In Sect. 3.2.3, the average skill and spread of the
different approaches for the three sites are discussed. Sites A
and C were affected by a frontal passage during the 2 weeks,
while site A experienced general cloudiness and was less in-
fluenced by this front.
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Figure 7. Site A. (a) Forecasted production loss in percent. Black
line is the ensemble mean using ENS, grey line is the CM and red
line is the observed production loss. (b) The related spread of the
ensemble members in ENS.

3.2.1 Site A

Two icing events were forecasted at site A during the
2 weeks. During the first icing event, around the 30 Decem-
ber, only a small amount of ice is forecasted, while during the
second icing event, starting around 1 January, both the mod-
elled and observed ice load amounted to several kg m−2. In
Fig. 6a the forecasted icing using the ENS approach and the
CM approach is presented together with the ensemble mean
of the ENS approach and observed ice load. The spread of the
ensemble members from the ENS, which displays the fore-
cast uncertainty in the icing, are presented in Fig. 6b. Dur-
ing the icing events, the spread signals uncertainty in the ice
amount. The largest forecast uncertainty is found at the end
of the second icing event with around 1.5 kg m−2. The mag-
nitude of the overall forecast uncertainty, or spread, amounts
to about 50 % of the ice load here.

In this period, first the build up and then the loss of ice
happen almost simultaneously for all the ensemble members.
This is especially visible in the spread for the second icing
event with values close to zero at the start and end of the
event. Forecasted and observed production loss for the site
allow for studying the timing during the event in more detail
(Fig. 7a). The forecasted production loss starts about 12 h
later than the observed production loss, pointing to a prob-
lem with the agreement between the ensemble members. A
closer examination reveals low forecasted liquid and solid
water contents in the beginning of the icing period (Fig. 6c),
resulting in no accumulation of ice by the icing model. In-
stead the ice starts to accumulate in the model when solid
water components are forecasted, in addition to the liquid
water content. Interestingly, all ensemble members behave
very similarly with this timing (not shown). This could be
related to an error in the modelled cloud characteristics or in
the icing model causing a too slow ice buildup.

Additionally, the ensemble fails to describe the end of the
icing period (6–9 January) where the modelled production
loss drops to zero for the remaining period, while the ob-
served production loss is high around 8 January (Fig. 7a).
The end of the 2 weeks also lacks forecasted liquid and
solid water contents, and thus no further buildup by the ic-
ing model is possible. Again, the ensemble was overconfi-
dent with all members displaying a similar behaviour. By in-
cluding the neighbourhood method to the ensemble, there is
some improvement in the end of the 2 weeks adding some
forecasted liquid water content at the end of the simulation
(Fig. 8) in some members. However, the amount of fore-
casted water content was still too low to generate any notable
buildup by the icing model.

A closer look at the weather situation shows that site A is
affected by a frontal passage during the second week. The en-
semble members all have the front passage at the same time,
resulting in similar values for cloud cover as well as liquid
and solid water contents. This problem results from the insuf-
ficient representation of the uncertainties in the boundaries.
The boundary data from different members of the ECMWF
EPS prescribes very similar surface pressure patterns for this
event resulting in an overconfidence in the arrival time of the
cloud front. Furthermore, small scales are initialized for all
ensemble members in the same way using the control mem-
ber analysis. During the icing event, however, the ensemble
members have a spread of around 25 % of the ENS mean
value for liquid and solid water components, leading to a
spread in the amount of built-up ice (Fig. 6c). In Davis et al.
(2014) it was shown using a similar model that the result-
ing ice load was highly sensitive to a variation in the ingoing
median volume droplet size of the water droplets, suggest-
ing that this is an uncertain part of the icing model. Here,
the droplet size is calculated from the liquid/solid water con-
tent before being used in the icing model. This is discussed
further in the section below (Sect. 3.2.2).

3.2.2 Site B

At site B only one icing event was forecasted and observed,
starting already on the first days of the period. This site was
not as strongly affected by frontal passages as site A, and
had more general cloudiness during the period. Figure 9a–c
shows the forecasted and observed ice load, spread of fore-
casted ice load and liquid water content. In Fig. 10a–b the
forecasted and observed production loss as well as the re-
lated forecast spread is presented.

In the beginning of the 2 weeks, there is 1 day with a large
amount of liquid and solid water content; however, no ice
started to build up during this day, mainly because of too low
wind speeds. At the start of the actual icing event, the ice
growth is first small, but with increasing pace after 1 Jan-
uary 2012, reaching the largest load of about 2.5 kg m−2 on
4 January (Fig. 9a). The observed production loss shows a
similar behaviour (Fig. 10). In Fig. 11a the ENS mean me-
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Figure 9. Same as Fig. 6, but for Site B.

dian volume diameter (MVD) for the solid water compo-
nents can be seen for this site and the corresponding mean
spread is shown in Fig. 11b. The liquid water components
ENS mean MVD is not shown, as it follows the liquid water
content amount in this case (Fig. 9c). Large values of MVD
(Fig. 11a) coincide with large icing rates (Fig. 9a) stressing
the role of MVD for the icing intensity. The large spread of
the MVD around 4 January (Fig. 11b) can be connected to
the ice load differences of the different ensemble members
(Fig. 9a) and also to the simultaneous spread in the produc-
tion loss forecast (Fig. 10b). This behaviour agrees with the
effect of different MVDs discussed in Davis et al. (2014).

Generally, the forecasted ice and production loss displays
a reasonable agreement with observations. However, there
are two interesting deviations. Firstly, in the first half of the
time series the forecast is generally underestimating the ob-
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Figure 10. Same as Fig. 7, but for Site B.

served production loss (Fig. 10), while the forecasted ice load
agrees well with the observations (Fig. 9a). The reason of the
disagreement seems to be related to deficiencies in our pro-
duction model. Secondly, the observed drop in both ice load
and production loss at the end of the period is delayed in all
forecasts, opposite to the behaviour at site A.

The high forecast spread, or forecasted uncertainty in the
icing forecast (Fig. 9b), shows the value of having a proba-
bilistic forecast. This variation of the ensemble members is
probably due to a large variation in the liquid and solid water
contents (between 25 % and 50 % of the mean amount) re-
sulting in a variation of the calculated MVD. The benefit of
an ensemble in this case can also be seen in Fig. 10a where
the ensemble mean (black line) of the production loss fore-
cast starts to decrease, getting closer to observations, while
the CM is remaining nearly at 100 %. The forecast spread of
the production loss is also increasing during the last day of
the period, suggesting an enlarged uncertainty in the forecast.
Generally, forecasting the end of an icing period has been
shown to be challenging due to the difficulties in modelling
ice loss (e.g. Davis, 2014). On the other hand the start of the
stronger icing period from the 3 January is well timed in the
forecast data; and furthermore, the spread of the production
loss forecast increases from approximately 5 % to 30 % si-
multaneously. This increased spread is a useful indicator for
the uncertainty in the start of the ice period and provides ad-
ditional information to the actual forecast.

3.2.3 Forecast performance of the different approaches

In Fig. 12a the forecasted next-day production using the four
different uncertainty quantification approaches are compared
with the single forecast of CM and observed production for
site A. For the approaches that generate multiple forecasts,
the average of the forecast members is presented.

The different approaches are following the observed pro-
duction most of the time. As the figure suggests visually, and
the RMSE calculation below confirms, the ENSngb mean is
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Figure 11. Site B. (a) ENS mean MVD for the solid water compo-
nents. (b) Mean spread of MVD for the solid water components.

the most skillful approach for this site. A closer inspection of
Fig. 12a reveals some typical behaviour for the approaches.
All approaches overestimate the production during the start
of the second icing period around 1 January, which agrees
with the underestimated production loss in Fig. 10a. The dif-
ferent model forecasts tend to overestimate the production
occasionally. This probably happens due to an overestima-
tion of the potential production, since the wind speed has a
positive bias (Fig. 4b). A bias correction of the wind speed
would be useful to reduce this error.

In Fig. 12a the single forecast of CM has stronger varia-
tions than the other approaches. These variations are partly
a sign of uncertainty in the forecast and belong to unpre-
dictable phenomena. They are filtered out when averaging
over the members of the probabilistic approaches. However,
it is important to realize that this filtering creates a so-called
unoccupied average, i.e. the smoothed state is unrealistic,
since part of the variance is now included in the spread of the
forecast members describing the forecast uncertainty. This
spread for the uncertainty quantification approaches can be
seen in Fig. 12b. The ensemble (ENS) provides a larger
spread than the neighbourhood method applied to a single
forecast (CMngb). Similar to the meteorological parameters,
the largest spread, and thus forecasted uncertainty, is gener-
ally seen for the combination of ensemble and neighbour-
hood method (ENSngb). The average spread to skill ratio of
the ENSngb production forecast amounts to around 0.7, com-
pared to 0.5 for ENS. The increased spread for the ENSngb
should therefore provide the best estimate for the actual fore-
cast uncertainty, even if the model is still overconfident.

As a summary of the forecast performance, Table 2 yields
the mean error as RMSE of the 06:00 UTC +18− 42 h fore-
casts for the production loss and for the production, averaged
over the three observation sites where production data were
available. The forecast quality of the production forecast us-
ing the different approaches generally follows the order in
the first step of the modelling chain, i.e. for the meteorolog-
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Figure 12. (a) Production forecast in MW at site A for the differ-
ent approaches (Fig. 3). For CMngb, ENSngb and ENS the lines
present the average of the multiple forecasts. Observed production
is given with the dash-dotted line. The production is calculated for a
2 MW turbine. (b) The spread of the multiple members in CMngb,
ENSngb and ENS.

ical parameters (Fig. 3). The benefit of the neighbourhood
method for the production loss forecast can be seen compar-
ing the RMSE for CM and the CMngb. However, the produc-
tion loss RMSE is the same for ENS and ENSngb, suggest-
ing that the neighbourhood method neither contributes to nor
reduces the forecast skill when added to the ENS approach.
Using the ENS or ENSngb approach compared to CM re-
sults in a reduction of the production loss forecast error from
26 % to 21 %. It should be noted that the usage of the ensem-
ble mean as the input to the icing and production loss model
(approach EM) deteriorates the forecast quality to 29 % com-
pared to the ensemble-based approach ENS with 21 %, where
the output from each member is calculated through the entire
chain. This results from the non-linearity of the icing and
production loss model. The increased forecast quality for the
forecasted meteorological parameters by the ensemble mean
is lost by the usage of the unoccupied average as input into
the icing and production model.

For the production forecast, the best forecast is provided
by the ENSngb approach, while the worst comes from the
single forecast of CM. Here, adding the neighbourhood
method to the ENS approach reduces the RMSE (Table 2).
Using the ENSngb approach compared to CM results in
a reduction of the production forecast error from 0.49 to
0.41 MW or by 16 % relative to the CM forecast.

The two different versions of neighbourhood methods,
i.e. terrain-following or constant-height version described
in Sect. 2.1.1, displays some differences for the production
forecast. Assuming that wind power is installed at higher el-
evation than the surroundings, the terrain-following version
provides neighbours from lower absolute heights with higher
moisture content, and thus more atmospheric icing, and more
surface-affected wind fields compared to the constant-height
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Table 2. RMSE of the different approaches for production and for
production loss forecasts averaged over the three sites with produc-
tion data. The production is calculated for a 2 MW turbine.

Approach Production (MW) Production loss (%)

CM 0.49 26
CMngb 0.44 23
EM 0.47 29
ENS 0.44 21
ENSngb 0.41 21

version. The quality of the resulting production loss fore-
cast is very similar for the two versions, resulting in the
same RMSE. For the final production forecast, however, an
improvement is seen from the constant-height version com-
pared to the terrain-following one which can be traced back
to better wind forecasts from the constant-height neighbour-
hood method.

It should be pointed out once more that the statistical sig-
nificance of the results could not be assessed since this is
a case study with a limited sample size, but the results are
consistent in the different analyses and supports theoretical
expectations. The improved forecast skill of the production
loss and of the production, using the four probabilistic fore-
casting approaches instead of the single forecast of CM, also
suggests that the icing forecast is improved, even though it is
not possible to validate with the available ice load observa-
tions.

4 Concluding remarks

The problem of predicting next-day production losses due
to icing of wind turbines has been addressed with the usage
of probabilistic forecasting. Two methods, ensemble fore-
casting and the neighbourhood method, have been used in
four different uncertainty quantification approaches to pro-
duce probabilistic forecasts. Improved skill and estimations
of the forecast uncertainty were both investigated in this 2-
week case study. The main results are the following:

– Using probabilistic forecasting improves the forecast
skill for the meteorological parameters, the icing and
the icing-related production loss compared to the com-
monly used approach with one single deterministic fore-
cast.

– The spread of the multiple forecasts can be used as
an estimation of the forecast uncertainty, also for icing
and related production losses. However, with the current
model set-up, the uncertainty is underestimated both for
the meteorological parameters and for the production.

– The approach where both the uncertainties in initial and
boundary conditions and the representativeness of the
wind turbine are represented, ENSngb, has the highest

skill for the next-day production forecast. This suggests
that both errors should be taken into account when gen-
erating a probabilistic forecast.

Improving the skill by the use of an ensemble forecast is
a useful contribution to wind power forecasting in cold cli-
mate. Additionally, a reliably forecasted uncertainty can be
of great value for end-users as probabilistic forecasts of icing
events and related production losses. Even though the spread
of the forecast is too low and, hence, the forecast uncertainty
underestimated, it could be utilized if the spread was cali-
brated (e.g. see Veenhuis, 2012, or Sloughter et al., 2012).
Knowing the likelihood for icing, the end-user can employ
site-specific cost–loss ratios in the decision-making and trad-
ing processes, the use of de-icing systems, and for the safety
of people working at the wind farm.

To further develop the use of probabilistic forecasting in
this area, it is important to note that we are not taking into
account all of the uncertainties in the modelling chain, e.g.
errors resulting from approximations made in the different
models. It is known that the icing model contains numer-
ous uncertain parameters, such as the sticking efficiency in
case of snow and wind erosion (Davis et al., 2014; Nygaard
et al., 2013). The inclusion of these uncertainties into the en-
tire modelling chain is currently ongoing research.

The weather is the most fundamental part of the modelling
chain and due to its chaotic behaviour the focus here is the
meteorological model. As the forecast skill for wind speed
and relative humidity at nacelle height appeared to be sat-
urated during the first 42 forecast hours, more effort is re-
quired in order to improve the initial state of the forecast,
e.g. through data assimilation methods or inclusion of local
observations of humidity and wind, by radar and other instru-
ments. From the meteorological spread–skill relationship, it
can be concluded that more spread is also needed. The lack of
spread in the ensemble was especially visible during a frontal
passage where all members had very similar boundary condi-
tions and thus the same timing of the frontal passage. Better
spread from the boundary conditions can be achieved by a
smart selection of the global host model ensemble members
(Molteni et al., 2001). Furthermore, full-scale data assimila-
tion for all ensemble members, and not only for the control
member, would allow for a better spread in the initial state of
the ensemble members.

Finally, a NWP-ensemble forecast is computationally ex-
pensive to run and requires extensive infrastructure. Thus,
generally, only national meteorological services can opera-
tionally produce ensemble forecasts. Many national weather
services currently run an operational ensemble forecast that
is often disseminated as open data following the European
INSPIRE directive. The delivery time for such data are
around 3 h after analysis time, thus making it possible to use
the 06:00 UTC model run for next-day wind power forecasts.
Many users will then be able to include this forecast data into
their own icing and production models, which are far less
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computationally expensive. This will allow for a wide appli-
cation of probabilistic weather forecasting for wind power in
cold climates.
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