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Abstract. We define and demonstrate a procedure for quick assessment of site-specific lifetime fatigue loads
using simplified load mapping functions (surrogate models), trained by means of a database with high-fidelity
load simulations. The performance of five surrogate models is assessed by comparing site-specific lifetime fa-
tigue load predictions at 10 sites using an aeroelastic model of the DTU 10 MW reference wind turbine. The
surrogate methods are polynomial chaos expansion, quadratic response surface, universal Kriging, importance
sampling, and nearest-neighbor interpolation. Practical bounds for the database and calibration are defined via
nine environmental variables, and their relative effects on the fatigue loads are evaluated by means of Sobol sen-
sitivity indices. Of the surrogate-model methods, polynomial chaos expansion provides an accurate and robust
performance in prediction of the different site-specific loads. Although the Kriging approach showed slightly
better accuracy, it also demanded more computational resources.

1 Introduction

Before installing a wind turbine at a particular site, it needs to
be ensured that the wind turbine structure is sufficiently ro-
bust to withstand the environmentally induced loads during
its entire lifetime. As the design of serially produced wind
turbines is typically based on a specific set of wind condi-
tions, i.e., a site class defined in the IEC (2005) standard,
any site where the conditions are more benign than the ref-
erence conditions is considered feasible. However, often one
or more site-specific parameters will be outside this envelope
– and disqualify the site as infeasible unless it is shown that
the design load limits are not going to be violated under site-
specific conditions. Such a demonstration requires carrying
out simulations over a full design load basis, which adds a
significant burden to the site assessment process.

Various methods and procedures have been attempted for
simplified load assessment for wind energy applications.
Kashef and Winterstein (1999) and Manuel et al. (2001) use
probabilistic expansions based on statistical moments. Sim-

ple multivariate regression models of first order are em-
ployed by Mouzakis et al. (1999) and Stewart (2016), while
in Toft et al. (2016) a second-order response surface is used.
Another response surface approach using artificial neural
networks is described in Müller et al. (2017). Polynomial
chaos expansion (PCE) is employed by Ganesh and Gupta
(2013) for blade load prediction, albeit on a very simple
structural representation. Teixeira et al. (2017) use a Krig-
ing surrogate model to map the load variations with respect
to offshore environmental conditions. Other relevant studies
use some of the methodologies that represent specific anal-
ysis steps shown in the present work. These include Hübler
et al. (2017) where variance-based sensitivity analysis is em-
ployed, Yang et al. (2015) where Kriging is used to enable ef-
ficient implementation of reliability-based design optimiza-
tion, and Murcia et al. (2018) where polynomial chaos ex-
pansions are used to carry out uncertainty propagation. In the
latter, the model training sample is generated using a Monte
Carlo (MC) simulation with a quasi-random sequence, a
technique that is also employed in Müller and Cheng (2018)
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and Graf et al. (2016). An alternative to the surrogate model-
ing approach discussed in this paper could be the load set re-
duction, as described in, for example, Häfele et al. (2018) and
Zwick and Muskulus (2016), which also reduces the num-
ber of simulations required. This approach, however, still re-
quires carrying out high-fidelity simulations that leads to us-
ing more time for simulation setup, computations, and post-
processing, while with a surrogate model the lifetime equiva-
lent load computation takes typically less than a minute on a
regular personal computer. The studies most in line with the
scope of the present paper are those by Müller et al. (2017),
Teixeira et al. (2017), and Toft et al. (2016). The former
two employ advanced surrogate modeling techniques (arti-
ficial neural networks and Kriging, respectively); however,
the experimental designs are relatively small and with a lim-
ited range of variation for some of the variables, and the dis-
cussion does not focus on the practical problem of comput-
ing lifetime-equivalent site-specific loads. The computation
of site-specific lifetime-equivalent design loads is the main
focus in Toft et al. (2016), but with a limited number of vari-
ables and using a low-order quadratic response surface. The
vast majority of the studies employ a single surrogate mod-
eling approach, meaning that it has not been possible to di-
rectly compare the performance of different approaches.

In the present work, we analyze, refine, and expand the
existing simplified load assessment methods, and provide a
structured approach for practical implementation of a surro-
gate modeling approach for site feasibility assessment. The
study aims at fulfilling the following four specific goals:

– define a simplified load assessment procedure that can
take into account all the relevant external parameters re-
quired for full characterization of the wind fields used
in load simulations;

– define feasible ranges of variation in the wind-related
parameters, dependent on wind turbine rotor size;

– demonstrate how different surrogate modeling ap-
proaches can be successfully employed in the problem,
and compare their performance; and

– obtain estimates of the statistical uncertainty and param-
eter sensitivities.

The scope of the present study is loads generated un-
der normal power production, which encompasses design
load cases (DLCs) 1.2 and 1.3 from the IEC 61400-1 stan-
dard (IEC, 2005). These load cases are the main contribu-
tors to the fatigue limit state (DLC1.2) and often the blade
extreme design loads (DLC1.3) (Dimitrov et al., 2017; Bak
et al., 2013). The methodology used can easily be applied
to other load cases governed by wind conditions with a
probabilistic description. Loads generated during fault con-
ditions (e.g., grid drops) or under deterministic wind con-
ditions (e.g., operational gusts without turbulence) will in

general not be (wind climate) site-specific. The loads anal-
ysis is based on the DTU 10 MW reference wind tur-
bine (Bak et al., 2013) simulated using the Hawc2 software
(Larsen and Hansen, 2012).

2 Definition of the surrogate load modeling
procedure

2.1 Schematic description

Figure 1 shows a schematic overview of the procedure for
site-specific load assessment using simplified load mapping
functions (here referred to in general as surrogate models).
The main advantage of this procedure is that the computa-
tionally expensive high-fidelity simulations are only carried
out once, during the model training process (top of Fig. 1).
In the model deployment process (bottom of Fig. 1), only the
coefficients of the trained surrogate models are used, and a
site-specific load evaluation typically takes less than a minute
on a standard personal computer.

2.2 Definition of variable space

The turbulent wind field serving as input to aeroelastic load
simulations can be fully statistically characterized by the fol-
lowing variables:

– mean wind field across the rotor plane as described by
the

– average wind speed at hub height, U ;

– vertical wind shear exponent, α;

– wind veer (change of mean flow direction with
height, 1ϕ);

– turbulence described via

– variance of wind fluctuations, σ 2
u ;

– turbulence probability density function (e.g., Gaus-
sian);

– turbulence spectrum defined by the Mann (1994)
model with parameters

– turbulence length scale L,
– anisotropy factor 0,
– turbulence dissipation parameter αε2/3;

– air density ρ;

– mean wind inflow direction relative to the turbine in
terms of

– vertical inflow (tilt) angle ϕv and

– horizontal inflow (yaw) angle ϕh.
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Figure 1. Schematic overview of the site-specific load analysis procedure.

All the quantities referred to above are considered in terms
of 10 min average values. All variables, except the variables
defining mean inflow direction, are probabilistic and site-
dependent in nature. The mean inflow direction variables rep-
resent a combination of deterministic factors (i.e., terrain in-
clination or yaw direction bias in the turbine) and random
fluctuations due to, for example, large-scale turbulence struc-
tures or variations in atmospheric stability. Mean wind speed,
turbulence, and wind shear are well known to affect loads and
are considered in the IEC 61400-1 standard. In Kelly et al.
(2014) a conditional relation describing the joint probability
of wind speed, turbulence, and wind shear was defined. The
effect of implementing this wind shear distribution in load
simulations was assessed in Dimitrov et al. (2015), showing
that wind shear has importance especially for blade deflec-
tion. The Mann model parameters L and 0 were also shown
to have a noticeable influence on wind turbine loads (Dim-
itrov et al., 2017). By definition, for a given combination ofL
and 0, the αε2/3 parameter from the Mann model is directly
proportional to σ 2

uL
−2/3 (Mann, 1994; Kelly, 2018), and can

therefore be omitted from the analysis. The probability den-
sity function (pdf) typically used to synthesize time series of
velocity components from the Mann model spectra is Gaus-
sian. For a slightly smaller turbine, the NREL (National Re-
newable Energy Laboratory) 5 MW turbine, the assumption
of Gaussian turbulence has been shown to not impact the fa-
tigue loads (Berg et al., 2016). The final list of inflow-related
parameters thus reads as (see Table 1 for details)

{U,σu,α,L,1ϕ,0,ϕh,ϕv,ρ}.

The loads experienced by a wind turbine are a func-
tion of the wind-derived factors described above, and of the
structural properties and control system of the wind turbine.
Therefore, a load characterization database taking only wind-
related factors into account is going to be turbine-specific.

The variables describing the wind field often have a sig-
nificant correlation between them, and any site-specific load
or power assessment has to take this into account using an

appropriate description of the joint distribution of input vari-
ables. At the same time, most probabilistic models require
inputs in terms of a set of independent and identically dis-
tributed (i.i.d) variables. The mapping from the space of i.i.d
variables to joint distribution of physical variables requires
applying an isoprobabilistic transformation as, for example,
the Nataf transform (Liu and Der Kiureghian, 1986) or the
Rosenblatt transformation (Rosenblatt, 1952). In the present
case, it is most convenient to apply the Rosenblatt transfor-
mation, because it allows for more complex conditional de-
pendencies than the Nataf transformation that implies linear
correlation. The Rosenblatt transformation maps a vector of
n dependent variables X into a vector of independent com-
ponents Y based on conditional relations:

X→ Y=



F1(X1)
...

Fk|1,...,k−1(Xk|X1, . . .,Xk−1)
...

Fn|1,...,n−1(Xn|X1, . . .,Xn−1)

 . (1)

Further mapping of Y to a standard normal space vector U is
sometimes applied, i.e.,

Y→ U=

 8−1(Y1)
. . .

8−1(Yn)

 . (2)

For the currently considered set of variables, the Rosenblatt
transformation can be applied in the order defined in Table 1
– the wind speed is considered independent of other vari-
ables, the turbulence is dependent on the wind speed, the
wind shear is conditionally dependent on both wind speed
and turbulence, etc. For any variable in the sequence, it is not
necessary that it is dependent on all higher-order variables
(it may only be conditional on a few of them or even none),
but it is required that it is independent from lower-order vari-
ables.
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Table 1. Bounds of variation for the variables considered. All values are defined as statistics over 10 min reference period.

Variable Lower bounds Upper bounds Distribution

U U ≥ 4 m s−1 U ≤ 25 m s−1 Beta

σu σu ≥ 0.025 ·U (m s−1) σu ≤ 0.18
(

6.8+ 0.75U + 3
(

10
U

)2
)

(m s−1) Uniform

α α ≥ αref,LB− 0.23
(
Umax
U

)(
1−

(
0.4log Rz

)2
)

α ≤ αref,UB+ 0.4
(
R
z

)(
Umax
U

)
Uniform

L L≥max{7.5m, (15m) · |α|−2/3
} L≤ 275 m Uniform

0 0 ≥ 1 0 ≤ 5 Uniform

1ϕh 1ϕh ≥−0.1D
(

5
U

)
1ϕh ≤min

{
60◦ sin |φ|, 1.0D

(
5
U

)2
}

Uniform

ϕh ϕh ≥−10◦ ϕh ≤ 10◦ Uniform
ϕv ϕv ≥−10◦ ϕv ≤ 10◦ Uniform
ρ ρ ≥ 1.1 kg m−3 ρ ≤ 1.35 kg m−3 Uniform

Where
– R is the rotor radius, D the rotor diameter;
– αref,LB = 0.15,αref,UB = 0.22 are reference wind shear exponents at 15 m s−1 wind speed;
– Umax = 25 m s−1 is the upper bound of the wind speed;
– φ is the reference latitude (here chosen as 50◦).

2.3 Defining the ranges of input variables

The choice for ranges of variation in the input variables needs
to ensure a balance between two objectives: (a) covering as
wide a range of potential sites as possible, while (b) ensur-
ing that the load simulations produce valid results. To ensure
validity of load simulations, the major assumptions behind
the generation of the wind field and computation of aerody-
namic forces should not be violated, and the instantaneous
wind field should have physically meaningful values.

For the case of building a high-fidelity load database, all
variables given in Table 1 except the wind speed are uni-
form, and only the distribution bounds are conditionally de-
pendent on other variables as specified by the second and
third columns of the table. The bounds of several variables
are conditional on the wind speed, and as shown on Fig. 2
they are wider at low wind speeds, meaning that more sam-
ple points are needed to cover the space evenly. This dictates
that the choice of distribution for the wind speed should pro-
vide more samples at low wind speeds. In the present study
we have selected a beta distribution, but other choices such
as a truncated Weibull are also feasible.

The turbulence intensity, Iu = σu/U, upper limit can be
written as the IEC-prescribed form (ed. 3, subclass A) with
Iref,A = 18 %, plus a constant (representing the larger ex-
pected range of TI, to span different sites) and a term
that encompasses low wind speed sites and regimes which
have higher turbulent intensities. This form is basically
equivalent to σu,IEC+ Iref,AUcut-in[1+ (Ucut-out/U )] with
{Ucut-in,Ucut-out}={4,25} m s−1. The bounds for turbulence
intensity as a function of mean wind speed are shown in
Fig. 2. The limits on shear exponent were chosen follow-
ing the derivations and findings of Kelly et al. (2014) for

P (α|U ), expanding on the established σα(U ) form to al-
low for a reasonably wide and inclusive range of expected
cases, and also accounting for rotor size per height above
ground. This includes an upper bound that allows for en-
hanced shear due to, for example, lower-level jets and terrain-
induced shear; the lower bound also includes the R/z de-
pendence, but does not expand the space to the point that
it includes jet-induced negative shear (these are generally
found only in the top portion of the rotor). The condition
L >max{7.5m, (15m)|α|−2/3

} arises from consideration of
the relationship between L,α,σu, and ε; small shear tends
to correlate with larger motions (as in convective well-mixed
conditions), as L' zIu/α (Kelly, 2018). The minimum scale
(7.5 m) and proportionality constant (15 m) are set to allow a
wide range of conditions (though most sites will likely have a
scaling factor larger than 15 m). The maximum Mann model
length scale is chosen based on the limits of where the model
can be fitted to measured spectra; this is also dictated by the
limits of stationarity in the atmospheric boundary layer (and
applicability of Taylor’s hypothesis). The range of 0 is also
dictated by the minimum expected over non-complex terrain
within reasonable use of the turbulence model (smaller 0
might occur for spectra fitted at low heights over hills, but
such spectra should be modeled in a different way, as in for
example Mann, 2000). The range of veer is limited in a way
analogous to shear exponent, i.e., it has a basic 1/U depen-
dence; this range also depends upon the rotor size, just as
(dU/dz)|rotor = αD/U (Kelly and van der Laan, 2018). The
limits for1ϕh above peak follow from the limits on α, while
for unstable conditions (1ϕh <1ϕh,peak, e.g., all 1ϕh < 0)
then the veer limit follows a semi-empirical form based on
observed extremes of ∂ϕh/∂z. For the remaining variables,
ϕh, ϕv, and ρ, the bounds are chosen arbitrarily such that
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they are wide enough to encompass the values typically used
in a design load basis.

2.4 Sampling procedure

Building a large database with high-fidelity load simulations
covering the entire variable space is a central task in the
present study as such a database can serve several purposes:

1. be directly used as a site assessment tool by probability
weighting the relative contribution of each point to the
design loads;

2. serve as an input for calibrating simplified models, i.e.,
surrogate models and response surfaces.

Characterizing the load behavior of a wind turbine over
a range of input conditions requires an experimental design
covering the range of variation in all variables with sufficient
resolution. In the case of having more than 3–4 dimensions,
a full factorial design with multiple levels quickly becomes
impractical due to the exponential increase in the number of
design points as a function of the number of dimensions.
Therefore, in the present study we resort to a MC simula-
tion as the main approach for covering the joint distribu-
tion of wind conditions. For assuring better and faster con-
vergence, we use the low-discrepancy Halton sequence in a
quasi-MC approach (Caflisch, 1998). While a crude MC inte-
gration has a convergence rate proportional to the square root
of the number of samples N , i.e., the mean error ε ∝N−0.5,
the convergence rate for a quasi-MC with a low-discrepancy
sequence results in ε ∝N−λ, 0.5≤ λ≤ 1. For a low num-
ber of dimensions and smooth functions, the quasi-MC se-
quences show a significantly improved performance over the
MC sequences, e.g., λ→ 1; however, for multiple dimen-
sions and discontinuous functions, the advantage over crude
MC is reduced (Morokoff and Caflisch, 1995). Neverthe-
less, even for the full 9-dimensional problem discussed here,
it is expected that λ≈ 0.6 (Morokoff and Caflisch, 1995),
which still means about an order of magnitude advantage,
e.g., 104 quasi-MC samples should result in about the same
error as 105 crude MC samples. A disadvantage of the quasi-
random sequences is that their properties typically deteri-
orate in high-dimensional problems, where periodicity and
correlation between points in different dimensions may ap-
pear (Morokoff and Caflisch, 1995). However, such behav-
ior typically occurs when more than 20–25 dimensions are
used. In the present problem the dimensionality is limited
by the computational requirements of the surrogate models
and the aeroelastic simulations used to train them. Therefore
the behavior of quasi-random sequences in high dimensions
does not have implications for the present study. The Halton
sequence is applied by consequentially taking all points in
the quasi-random series without omission and without rep-
etitions, starting from the second point. The first point in
the sequence is discarded as it contains zeros (i.e., the lower

bounds of the interval [0,1]) in all dimensions, which corre-
sponds to zero joint probability for the input variables X.

2.5 Database specification

A large-scale generic load database is generated in order to
serve as a training data set for the load mapping functions.
The point sampling is done using a Halton low-discrepancy
sequence within the 9-dimensional variable space defined in
Sect. 2.4 (Fig. 2 shows the bounds for the first six variables).
The database setup is the following:

– Up to 104 quasi-random MC sample points in the in-
terval [0,1) are generated, following a low-discrepancy
sequence for obtaining evenly distributed points within
the parametric space.

– The physical values of the stochastic variables for all
quasi-MC samples are obtained by applying a Rosen-
blatt transformation using the conditional distribution
bounds given in Table 1 and using uniform distribution
density, except for the wind speed for which a beta dis-
tribution is used.

– For each sample point, eight simulations, with 3800 s
duration each, are carried out. The first 200 s of the sim-
ulations are discarded in order to eliminate simulation
run-in time transients, and the output is 3600 s (1 h) of
load time series from each simulation.

– The Mann model simulation parameters (L, 0, αε2/3)
that determine the turbulence intensity are tuned to
match the required 10 min turbulence statistics (1 h
statistics are slightly different due to longer sampling
time).

– Each 1 h time series is split into six 10 min series, which
on average will have the required statistics. This leads
to a total of 48 10 min time series for each quasi-MC
sample point.

– Simulation conditions are kept stationary over each 1 h
simulation period.

– The DTU 10 MW reference wind turbine model (Bak
et al., 2013), with the basic DTU Wind Energy con-
troller (Hansen and Henriksen, 2013), is used in the
Hawc2 aeroelastic software (Larsen and Hansen, 2012).

By choosing to run 1 h simulations followed by splitting
up of the time series instead of directly simulating 10 min
periods, we want to capture some of the low-frequency fluc-
tuations generated by the Mann model turbulence, especially
at larger turbulence length scales. When we generate a longer
turbulence box, it includes more of these low-frequency vari-
ations, which in fact introduce some degree of nonstationar-
ity when looking at 10 min windows.
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Figure 2. Sample distributions obtained using 1024 low-discrepancy points within a 6-dimensional variable space {U,Iu,α,1φh,L,0}.
Here U is beta-distributed, while the other variables are uniformly distributed within their ranges. Solid lines show the sampling space
bounds, which are curved due to conditional dependencies. Blue shading shows the site-specific variable distribution for the Nørrekær Enge
(NKE) reference site (site 0, cf. Table 5 and Sect. 6.1).

3 Post-processing and analysis

3.1 Time series postprocessing and cycle counting

The main quantities of interest from the load simulation out-
put are the short-term (10 min) fatigue damage-equivalent
loads (DELs), and the 10 min extremes (minimum or max-
imum, depending on the load type). For each load simula-
tion, four statistics (mean, standard deviation, minimum, and
maximum values) are calculated for each load channel. For
several selected load channels, the 1 Hz DEL for a reference
period Tref are estimated using the expression

Seq =

[∑ niS
m
i

Nref

]1/m

, (3)

where Nref = f ·Tref is a reference number of cycles (Nref =

600 for obtaining 1 Hz equivalent DEL over a 10 min period),
Si are load range cycles estimated using a rain-flow counting
algorithm (Rychlik, 1987), and ni are the number of cycles
observed in a given range. For a specific material with fatigue
properties characterized by an S–N curve of the form K =

N · Sm (where K is the material-specific Wöhler constant),
the fatigue damageD accumulated over one reference period
equals

D(Tref)=
Nref

K
Smeq. (4)

3.2 Definition of lifetime damage-equivalent loads

Obtaining site-specific lifetime fatigue loads from a discrete
set of simulations requires integrating the short-term damage
contributions over the long-term joint distribution of input
conditions. The lifetime damage-equivalent fatigue load is
defined as

Seq,lifetime =

 ∫
X∈R9

[
Seq(X)

]m
f (X)dX


1/m

, (5)

where f (X) is the joint distribution of the multidimen-
sional vector of input variables X. With the above defini-
tion, Seq,lifetime is a function of the expected value of the
short-term equivalent loads conditional on the distribution of
environmental variables. The integration in Eq. (5) is typi-
cally performed numerically over a finite number of realiza-
tions drawn from the joint distribution of the input variables,
e.g., by setting up a look-up table or carrying out a MC sim-
ulation. Thus the continuous problem is transformed into a
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discrete one:

Seq,lifetime =

[
N∑
i=1
[Seq(xi)]mp(xi)

]1/m

, (6)

where xi, i = 1. . .N , is the ith realization of X out of N total
realizations, and p(xi) is the relative, discretized probability
of xi , which is derived by weighting the joint pdf values of
X so that they satisfy the condition

∑N
i=1p(xi)= 1. For a

standard MC simulation, each realization is considered to be
equally likely, and p(xi)= 1/N .

3.3 Uncertainty estimation and confidence intervals

With the present problem of evaluating the uncertainty in
aeroelastic simulations – for any specific combination of en-
vironmental conditions, xi – there will be uncertainty in the
resulting DELs, Seq(xi). Part of this uncertainty is statistical
by nature and is caused by realization-to-realization varia-
tions in the turbulent wind fields used as input to the load
simulations. This uncertainty is normally taken into account
by carrying out load simulations with multiple realizations
(seeds) of turbulence inputs.

Confidence intervals (CIs) reflecting such an uncertainty
can be determined in a straightforward way using the boot-
strapping technique (Efron, 1979). Its main advantage is ro-
bustness and no necessity for assuming a statistical distri-
bution of the uncertain variable. With this approach, each
function realization is given an integer index, e.g., from 1
to N for N function realizations. Then, a “bootstrap” sample
is created by generating random integers from 1 to N , and,
for each random integer, assigning the original sample point
with the corresponding index, as part of the new bootstrap
sample. Since the generation of random integers allows for
number repetitions, the bootstrap sample will in most cases
differ from the original sample. To obtain a measure of the
uncertainty in the original sample, a large number of boot-
strap samples are drawn, and the resultant quantity of inter-
est (e.g., the lifetime fatigue load) is computed for each of
them. Then, the empirical distribution of the set of outcomes
is used to define the CIs. If M bootstrap samples have been
drawn, and R is the set of outcomes ranked by value in as-
cending order, then the (CI) bounds for a confidence level c`
are{

CI−Seq,lifetime
(c`), CI+Seq,lifetime

(c`)
}

=
{
R[c`M/2], R[(1−c`/2)M]

}
, (7)

where the square brackets [x] indicate the integer part of x,
and R[x] means the value in R with rank equal to [x]. In
the present study, bootstrapping is applied by generating in-
dependent bootstrap samples each with a size equal to the
entire data set. Both the sample points and the turbulence
seed numbers are shuffled, meaning that the resulting CIs
should account for both the statistical uncertainty due to a

finite number of samples, and the uncertainty due to seed-to-
seed variation. Note that these two uncertainty types are the
only ones assumed for the CIs; reducing the CI by creating a
large number of model realizations does not eliminate other
model uncertainties, nor does it remove uncertainties in the
input variables.

4 Load mapping functions

In this section we present five different approaches that can
be used to map loads from a high-fidelity database to inte-
grated site-specific design loads:

1. importance sampling,

2. nearest-neighbor interpolation,

3. polynomial chaos expansion,

4. universal Kriging, and

5. quadratic response surface.

The first two methodologies carry out a direct numeri-
cal integration over the high-fidelity database presented in
Sect. 2.5, while the latter three are machine learning models
that are trained using the same database. Despite the different
nature of the functions, they serve the same purpose and for
brevity we will refer to all of them as “surrogate models”.

4.1 Importance sampling

Figure 2 shows the distributions of the first six input variables
from our high-fidelity database (Sect. 2.5), along with the
site-specific distributions for reference site 0 (see Table 5 for
site list).

One of the simplest and most straightforward (but not nec-
essarily most precise) ways of carrying out the integrations
needed to obtain predicted statistics is to use importance
sampling (IS), where probability weights are applied on each
of the database sample points (Ditlevsen and Madsen, 1996).
The IS method and various modifications of it are commonly
used in wind-energy-related applications (e.g., Choe et al.,
2015; Graf et al., 2018). In the classical definition of IS, the
integration (importance sampling) function for determining
the expected value of a function g(X) is given by

E[g(X)] =
1
N

N∑
i=1

g(X)
f (Xi)
h(Xi)

, (8)

where in our application

– i = 1. . .N is the sample point number;

– Xi = [x1,i,x2,i, . . .,x9,i] is a 9-component vector array
specifying the values of the nine environmental vari-
ables considered at sample point i;
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– f (Xi)= f (x1,i)·f (x2,i |x1,i)·. . .·f (x9,i |x8,i, . . .,x1,i) is
the joint pdf of sample point i according to the site-
specific probability distribution; and

– h(Xi)= h(x1,i) ·h(x2,i |h1,i) · . . . ·h(x9,i |x8,i, . . .,x1,i) is
the joint pdf of sample point i according to the generic
probability distribution used to generate the database for
the nine variables.

Based on the above, it is clear that only points in the database
that also have a high probability of occurrence in the site-
specific distribution will have a significant contribution to
the lifetime load estimate. This could be considered as a non-
standard application of the IS approach, because typically the
IS sample distribution is chosen to maximize the probability
density of the integrand. In the present case, this objective
can be satisfied only approximately, and only in cases where
the number of IS samples is smaller than the total number
of database samples (NIS <N ). Under these conditions, the
importance sampling weights (f (Xi)/h(Xi) from Eq. 8) can
be evaluated for all points in the database. However, the ap-
proach adopted in the present paper is to include only theNIS
points with the highest weights (as shown in Sect. 6.2).

4.2 Multi-dimensional interpolation

Estimating an expected function value with a true mul-
tidimensional interpolation from the high-fidelity database
would require finding a set of neighboring points that form
a convex polygon. For problem dimensions higher than 3,
this is quite challenging due to the nonstructured sample dis-
tribution. However, it is much easier to find a more crude
approximation by simply finding the database point closest
to the function evaluation point in a nearest-neighbor ap-
proach. This is similar to the table look-up technique of-
ten used with structured grids; the denser the distribution of
the sample points is, the closer will the results be to an ac-
tual MC simulation. Finding the nearest neighbor to a func-
tion evaluation point requires determining the distances be-
tween this point and the rest of the points in the sample
space. This is done most consistently in a normalized space,
i.e., where the input variables have equal scaling. The cu-
mulative distribution function (CDF) of the variables is an
example of such a space, as all CDFs have the same range of
(0,1). Thus, the normalized distance between a new evalua-
tion point and an existing sample is computed as the vector
norm of the (e.g., 9-dimensional vector) differences between
the marginal CDF for the two points:

|x| =
√

DTD, (9)

where D= Y− Ŷ is the difference between the
current evaluation point Y and the existing sam-
ple points in the reference database, Ŷ. The vector
YT
= [F1(X1),F2(X2|X1), . . .,Fn(Xn|X1, . . .,Xn−1)] con-

sists of the marginal CDFs of the input variables X as
obtained using a Rosenblatt transformation.

Since some of the input variables may have significantly
bigger influence on the result than other variables, it may be
useful to weight the CDF of different variables according to
their importance (e.g., by making the weights proportional to
the variable sensitivity indices; see Sect. 4.6).

4.3 Polynomial chaos expansion

Polynomial chaos expansion (PCE) is a popular method for
approximating a stochastic function of multiple random vari-
ables using an orthogonal polynomial basis. For the present
problem, using a Wiener–Askey generalized PCE (Xiu and
Karniadakis, 2002) employing Legendre polynomials is con-
sidered most suitable for any (scaled) variable ξ ∈ [−1,1].
Because Legendre polynomials Pn(ξ ) are orthogonal with re-
spect to a uniform probability measure, the PCE can conve-
niently be applied to the CDFs of the variables X that are
defined in the interval [0,1]. Then

ξi = 2F (Xi)− 1, (10)

where F (Xi) is the cumulative distribution function of a vari-
able Xi ∈ X, i = 1, . . .,M . The Legendre polynomial coeffi-
cients can be generated using the recurrence relation

(n+ 1)Pn+1(ξ )= (2n+ 1)ξPn(ξ )− nPn−1(ξ ), (11)

where the first two entries, P0(ξ )= 1 and P1(ξ )= ξ , serve
for initialization. The aim of using PCE is to represent a
scalar quantity S = g(X) in terms of a truncated sequence
S̃(X)+ ε, where ε is a zero-mean residual term. With this
definition, the multivariate generalized PCE of dimensionM
and maximum degree p is given by

S̃(ξ )=
Np−1∑
j=0

Sj9γ ,j (ξ ); (12)

here 9γ are multivariate orthogonal polynomials composed
of the product of univariate polynomials having (nonnegative
integer) orders defined by the vector γ = [γ1, . . .,γM ], with
the total of orders being constrained by the degree:

∑M
i=1γi ≤

p. The unknown coefficients Sj ∈ S= [S1, . . .,SNp] need to
be determined, and ξ = [ξ1, . . .ξM ] are functions of X as de-
fined in Eq. (10). Training the PCE model amounts to de-
termining the vector of coefficients, S. For a more detailed
explanation of the training process, as well as the basic PCE
theory, the reader is referred to Appendix A (and further to
Xiu and Karniadakis, 2002; Sudret, 2008, for yet more de-
tail).

4.4 Universal Kriging with polynomial chaos
basis functions

Kriging (Sacks et al., 1989; Santher et al., 2003) is a stochas-
tic interpolation technique that assumes the interpolated vari-
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able follows a Gaussian process. A Kriging model is de-
scribed (Sacks et al., 1989) by

Y (X)= f(X)Tβ +Z(X), (13)

where forN evaluation samples and anM-dimensional prob-
lem, X represents an M ×N matrix of input variables and
Y (X) is the output vector. The term f(X)Tβ is the mean value
of the Gaussian process (a.k.a. the “trend”) represented as a
set of basis functions f(X)= [f1(X), . . .,fP (X)] and regres-
sion coefficients β = [β1, . . .,βP ], whereas Z(X) is a zero-
mean stationary Gaussian process. The (joint) probability
distribution of the Gaussian process is characterized by its
covariance; for two distinct “points” X and W in the sample
domain the covariance is defined as

V (W,X)= σ 2R(W,X,θ ), (14)

where σ 2 is the overall process variance that is assumed to
be constant, and R(W,X,θ ) is the correlation between Z(X)
and Z(W). The hyperparameters θ define the correlation be-
havior, in terms of correlation length scale(s) for example.
Since the mean and variance of the Gaussian field can be
expressed as functions of θ (this is shown in details in Ap-
pendix A), the calibration of the Kriging model amounts to
determining the trend coefficients and obtaining an optimal
solution for θ .

The functional form of the mean field f(X)Tβ is identical
to the generalized PCE defined in Eq. (A8), meaning that the
PCE is a possible candidate model for the mean in a Kriging
interpolation. We adopt this approach and define the Kriging
mean as a PCE with properties as described in Sect. 4.3. A
suitable approach for tuning the Gaussian field statistics is to
find the values of β, σ 2 and θ that maximize the likelihood
of the training set variables Y, i.e., minimize the model er-
ror in a least-squares sense (Lataniotis et al., 2015). This is
described in Appendix A.

The main practical difference between regression- or
expansion-type models such as regular PCE and the Kriging
approach is how the training sample is used in the model: in
pure regression-based approaches the training sample is used
to only calibrate the regression coefficients, while in Kriging
(and in other interpolation techniques) the training sample is
retained and used in every new model evaluation. As a result
the Kriging model may have an advantage in accuracy, since
the model error tends to zero in the vicinity of the training
points; however, this comes at the expense of an increase in
the computational demands for new model evaluations. For a
Kriging model, a gain in accuracy over the model represented
by the trend function will only materialize in problems where
there is a noticeable correlation between the residual values
at different training points. In a situation where the model er-
ror is independent from point to point (e.g., in the case when
the error is only due to seed-to-seed variations in turbulence)
the inferred correlation length will tend to zero and the Krig-
ing estimator will be represented by the trend function alone.

4.5 Quadratic response surface

A quadratic-polynomial response surface (RS) method based
on central composite design (CCD) is a reduced-order model
which, among other applications, has been used for wind tur-
bine load prediction (Toft et al., 2016). The procedure in-
volves fitting a quadratic polynomial regression (“response
surface”) to a normalized space of i.i.d. variables, which are
derived from the physical variables using an isoprobabilis-
tic transformation – such as the Rosenblatt transformation
given in Eqs. (1) and (2). The design points used for cali-
brating the response surface in k dimensions form a com-
bination of a central point, axial points a distance of

√
k in

each dimension, and a 2k “factorial design” set where there
are two levels (points) per variable dimension located at unit
distance from the origin; this is shown in Fig. 3 for the case
of k = 2 variables (dimensions). Due to the structured de-
sign grid required, it is not possible to use this approach with
the sample points from the high-fidelity database described
in Sect. 2; therefore, we implement the procedure using an
additional set of simulations. The low order of the response
surface also prohibits full characterization of the highly non-
linear turbine response as a function of mean wind speed us-
ing a single response surface. Therefore, multiple response
surfaces are calibrated for wind speeds from 4 to 25 m s−1

in 1 m s−1 steps. This approach may in principle be extended
to include additional variables such as turbulence (σu), but
doing so will reduce the practicality of the procedure as it
will require multidimensional interpolation between a large
number of models and the uncertainty may increase. How-
ever, due to the exponential increase in the number of design
points with increasing problem dimension, it is not practi-
cal to fit a response surface covering all nine variables con-
sidered. Instead, we choose to replace three of the variables
with relatively low importance (yaw, tilt, and air density)
with their mean values. The result is a 6-dimensional prob-
lem consisting of 22 different 5-dimensional response sur-
faces, which require 22 · (1+ 2 · 5+ 25)= 946 design points
in total. Analogous to the high-fidelity database, 8 h of sim-
ulations are carried out for characterizing each design point.
The polynomial coefficients of the response surface are then
defined using least-squares regression with the same closed-
form solution defined by Eq. (A8). For any sample point p
in the CCD, the corresponding row in the design matrix is
defined as

9p =
[
{1}, {U1, . . .Un}, {U

2
1 , . . .U

2
n },{

Ui ·Uj , i=1. . .n, j=1. . .(i−1)
}]
, (15)

where U are standard normal variables derived from the
physical variables X by an isoprobabilistic transformation.
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Figure 3. Example of a rotatable central composite design (CCD)
in a 2-dimensional standard normal space [u1,u2]. The CCD con-
sists of a central point, a 2k “factorial design” with 2 levels and
k = 2 dimensions, and axial points at distance u=

√
2, meaning

that all the outer points lie on a circle.

4.6 Sensitivity indices

We use the global Sobol indices, Sobol (2001), for evaluating
the sensitivity of the response with respect to input variables.
Having trained a surrogate model, the total Sobol indices can
be computed efficiently by carrying out a MC simulation on
the surrogate. For number of dimensions equal to M (e.g.,
M = 9 in the present study) and for N (quasi) MC samples
the required experimental design represents an N × 2M ma-
trix. This is divided into twoN×M matrices, A and B. Then,
for each dimension i, i = 1. . .M , a third matrix ABi is cre-
ated by taking the ith column of ABi equal to the ith column
from B, and all other columns taken from A. The load sur-
rogate is then evaluated for all three matrices, resulting in
three model estimates: f (A), f (B), and f (ABi). By repeat-
ing this for i = 1. . .M , simulation-based Sobol’ sensitivity
indices can be estimated as

SUi =
1
N

N∑
j=1

f (B)j
(
f (ABi)j − f (B)j

)
, (16)

where j = 1. . .N is the row index in the design matrices A,
B, and ABi (Saltelli et al., 2008). For the problem discussed
in the present study, it was sufficient to use approximately
500 MC samples per variable dimension in order to compute
the total Sobol indices.

4.7 Model reduction

For any polynomial-based regression model that includes de-
pendence between variables, the problem grows steeply in
size when the number of dimensions, M , and the maximum
polynomial order, p, increase. In such situations, it may be

desirable to limit the number of active coefficients by car-
rying out a least absolute shrinkage and selection operator
(LASSO) regression (Tibshirani, 1996), which regularizes
the regression by penalizing the sum of the absolute value
of regression coefficients. For a PCE model, the objective
function using a LASSO regularization is

S=min


∣∣∣∣∣∣∣

1
2Ne

Ne∑
i=1

g(ξ (i))−
Np−1∑
j=0

Sj9γ ,j (ξ (i))

2

+λ

Np−1∑
j=0
|Sj |

∣∣∣∣∣∣
 , (17)

where λ is a positive regularization parameter; larger values
of λ increase the penalty and reduce the absolute sum of the
regression coefficients, while λ= 0 is equivalent to ordinary
least-squares regression. In the present study, the LASSO
regularization is used on the PCE-based models to reduce
the number of coefficients.

One useful corollary of the orthogonality in the PCE poly-
nomial basis is that the contribution of each individual term
to the total variance of the expansion (i.e., the individual
Sobol indices) can be easily computed based on the coeffi-
cient values (see Appendix A). This property can be used for
eliminating polynomials that do not significantly contribute
to the variance of the output, thus achieving a sparse, more
computationally efficient, reduced model. By combining the
variance truncation and the LASSO regression technique in
Eq. (17), a model reduction of an order of magnitude or more
can be achieved. For example, for the 9-dimensional PCE of
order 6 discussed in Sect. 5.3, using LASSO regularization
parameter λ= 1 and retaining the polynomials that have a
total variance contribution of 99.5 % resulted in a reduction
of the number of polynomials from 5005 to about 200.

5 Model training and performance

5.1 Model convergence

We assess the convergence of PCE by calculating the nor-
malized root-mean-square error (NRMSE) between a set
of observed quantities (i.e., DELs from simulations) y=
g(X(i)), i = 1. . .N , and the PCE predictions, ỹ= S̃(X(i)), i =
1. . .N , over the same set of N sample points X(i) from the
training sample defined in Sect. 2:

εNRMS =
1

E[y]

√√√√√ N∑
i=1

(̃yi − yi)2

N
, (18)

where E[y] is the expected value of the observed variable.
Figure 4 shows the NRMSE for a non-truncated PCE of or-
der 6 and with six dimensions as a function of the number of

Wind Energ. Sci., 3, 767–790, 2018 www.wind-energ-sci.net/3/767/2018/



N. Dimitrov et al.: From wind to loads 777

8

Hours simulation per sample
6

Convergence of site-specific DEL
estimated with PCE, order 6, 6 dimensions

4

2

04000

Number of training samples

3000

2000

1000
0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 ro
ot

 m
ea

n 
sq

ua
re

 e
rro

r

Figure 4. Convergence of a PCE of dimension 6 and order 6, as
a function of number of collocation points and hours of simulation
per collocation point. The z axis represents the NRMSE obtained
from the difference between 500 site-specific quasi-MC samples of
blade root flapwise DEL for reference site 0, and the corresponding
predictions from PCE.

samples used to train the PCE, and the hours of load simula-
tions (i.e., number of seeds) used for each sample point. The
NRMSE shown in Fig. 4 is calculated based on a set of 500
quasi-MC points sampled from the joint pdf of reference site
0, and represents the difference in blade root flapwise DEL
observed in each of the 500 points vs. the DEL predicted by a
PC expansion trained on a selection of points from the high-
fidelity database described in Sect. 2. Each of the quasi-MC
samples is the mean from 48 turbulent 10 min simulations. To
mimic the seed-to-seed uncertainty, each of the PCE predic-
tions is also evaluated as the mean of 48 normally distributed
random realizations, with mean and standard deviation pre-
scribed by the PCE model for mean and standard deviation
of the blade flapwise DEL, respectively.

Figure 4 illustrates a general tendency that using a few
thousand training samples leads to convergence of the val-
ues of the PC coefficients, and the remaining uncertainty is
due to seed-to-seed variations and due to the order of the
PCE being lower than what is required for providing an ex-
act solution at each sample point. Using longer simulations
per sample point does not lead to further reduction in the
statistical uncertainty due to seed-to-seed variations – with
4000 training samples, the NRMSE for 1 h simulation per
sample is almost identical to the error with 8 h simulation
per sample. The explanation for this observation is that the
seed-to-seed variation introduces an uncertainty not only be-
tween different simulations within the same sampling point
but also between different sampling points. This uncertainty
materializes as an additional variance which is not explained
by the smooth PCE surface. Further increase in the number
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Figure 5. Convergence of an importance sampling (IS) calculation
of the blade root moment from the high-fidelity database towards
site-specific lifetime fatigue loads for reference site 0 (Table 5).

of training points or simulation length will only reduce this
statistical uncertainty, but will not contribute significantly
to changes in the model predictions as the flexibility of the
model is limited by the maximum polynomial order. There-
fore, the model performance achieved under these conditions
can be considered near to the best possible for the given PCE
order and number of dimensions. However, it should be noted
that the number of training points required for such conver-
gence will differ according to the order and dimension of
the PCE, and higher order and more dimensions will require
more than the approximately 3000 points that seem sufficient
for a PCE of order 6 with six dimensions, as shown in Fig. 4.

The IS procedure has relatively slow convergence com-
pared to, for example, a quasi-MC simulation. Figure 5
shows an example of the convergence of an IS integration for
reference site 0, based on computing the target (site-specific)
distribution weights for all 104 points in a reference high-
fidelity database. The CIs are obtained by bootstrapping.

5.2 One-to-one comparison and mean squared error

Since the prediction of lifetime fatigue loads is the main pur-
pose of the present study, the performance of the load predic-
tion methods with respect to estimating the lifetime DEL is
the main criterion for evaluation. However, the lifetime DEL
as an integrated quantity will efficiently identify model bias
but may not reveal the magnitude of some uncertainties that
result in zero-mean error. As an additional means of compar-
ison we calculate the NRMSE, defined in Eq. (18), resulting
from a point-by-point comparison of load predictions from a
reduced-order model against actual reference values. The ref-
erence values are the results from the site-specific aeroelastic
load simulations for reference site 0. At each sample point,
the reference value yi represents the mean DEL from all tur-
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Table 2. Normalized root mean square error characterizing the difference between aeroelastic simulations and reduced-order models. Load
channel abbreviations are the following: TB: tower base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist of Mx :
fore-aft (flapwise) bending, My : side-side (edgewise) bending, and Mz: torsion.

Normalized rms error – site 0

Prediction model Load channels

TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Quadratic RS 0.0452 0.1404 0.1981 0.2612 0.0644 0.2280 0.1504 0.0098
PC expansion 0.0362 0.0955 0.1019 0.2089 0.0362 0.1530 0.0620 0.0084
Kriging 0.0334 0.0706 0.0837 0.1761 0.0368 0.1072 0.0519 0.0083

Table 3. PCE-based Sobol sensitivity indices for the high-fidelity load database variable ranges.

Fatigue load sensitivity indices

Load channel Variables

U σu α L 0 1ϕh ϕh ϕv ρ

Tower base fore-aft moment Mx 0.42 0.65 0.01 0.03 0.02 0.01 0.00 0.00 0.01
Tower base side-side moment My 0.62 0.42 0.05 0.04 0.04 0.02 0.02 0.02 0.02
Blade root flapwise moment Mx 0.20 0.64 0.19 0.02 0.01 0.00 0.01 0.00 0.02
Blade root edgewise moment My 0.22 0.54 0.25 0.05 0.03 0.01 0.01 0.03 0.01
Tower top yaw moment Mz 0.14 0.85 0.00 0.02 0.01 0.00 0.00 0.00 0.01
Main shaft torsion Mz 0.48 0.53 0.01 0.06 0.01 0.01 0.01 0.01 0.01

bulence seeds simulated with these conditions. The values of
the NRMSE for site 0 for Kriging, RS, and PCE-based load
predictions are listed in Table 2. In addition, Fig. 6 presents a
one-to-one comparison where for a set of 200 sample points,
the load estimates from the site-specific MC simulations are
compared against the corresponding surrogate model predic-
tions in terms of y− y plots.

The RMS error analysis reveals a slightly different picture.
In contrast to the lifetime DEL where the Kriging, PCE, and
RS methods showed very similar results, the RMS error of
the quadratic RS is for some channels about twice the RMS
error of the other two approaches.

5.3 Variable sensitivities

As described earlier in Sect. 4.6, we consider variable sensi-
tivities (i.e., the influence of input variables on the variance
of the outcome) in terms of Sobol indices. By definition the
Sobol indices will be dependent on the variance of input vari-
ables, meaning that for one and the same model, the Sobol
indices will be varying under different (site-specific) input
variable distributions. Taking this into account, we evaluate
the Sobol indices for the two types of joint variable distri-
butions used in this study – (1) a site-specific distribution,
and (2) the joint distribution used to generate the database
with high-fidelity load simulations. The total Sobol indices
for the high-fidelity load database variable range are com-
puted directly from the PCE fitted to the database by eval-

uating the variance contributions from the expansion coeffi-
cients (see Appendix A) and are listed in Table 3. The in-
dices for the site-specific distribution corresponding to ref-
erence site 0 are computed using the method based on MC
simulations described in Sect. 4.6, as direct PCE indices are
not available for this sample distribution. The resulting to-
tal Sobol indices for the six variables available at site 0 are
listed in Table 4. The two tables show similar results – the
mean wind speed and the turbulence are the most important
factors affecting both fatigue and extreme loads. Two other
variables that show a smaller but still noticeable influence
are the wind shear, α, and the Mann model turbulence length
scale, L. The effect of wind shear is pronounced mainly for
blade root loads that can be explained by the rotation of the
blades, which, if subjected to wind shear, will experience
cyclic changes in wind velocity. The effect of Mann model
0, veer, yaw, tilt, and air density within the chosen variable
ranges seems to be minimal, especially for fatigue loads.

6 Site-specific calculations

6.1 Reference sites

The low-fidelity site-specific load calculation methods pre-
sented in this study are validated against a set of reference
site-specific load calculations on a number of different vir-
tual sites, based on real-world measurement data that cover
most of the variable domain included within the high-fidelity
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Figure 6. y− y plots comparing the blade root flapwise 1 Hz damage-equivalent load (DEL) predictions for three load surrogate models –
quadratic Response Surface, Polynomial Chaos expansion, and Kriging model, compared against site-specific Monte Carlo (MC) simulation.
The x axis represents the loads obtained using site-specific MC simulations for reference site 0, and the y axis represents the mean 1 Hz-
equivalent load estimated for the same sample points using a surrogate model. All values are normalized with the maximum equivalent load
attained from the site-specific Monte Carlo (MC) simulation.

Table 4. Site-specific Sobol sensitivity indices derived for site 0
using MC simulation from a PCE.

Fatigue load sensitivity indices

Load channel Variables

U σu α L 0

Tower base fore-aft moment Mx 0.08 1.32 0.07 0.18 0.09
Tower base side-side moment My 0.90 0.09 0.07 0.23 0.13
Blade root flapwise moment Mx 0.42 0.38 0.05 0.01 0.01
Blade root edgewise moment My 0.43 0.18 0.26 0.22 0.11
Tower top yaw moment Mz 0.23 0.53 0.01 0.08 0.01
Main shaft torsion Mz 0.47 0.36 0.06 0.03 0.07

database. In order to show a realistic example of situations
where a site-specific load estimation is necessary, the major-
ity of the virtual sites chosen are characterized with condi-
tions that slightly exceed the standard conditions specified
by a certain type-certification class. Exceptions are site 0,
which has the most measured variables available and is there-
fore chosen as a primary reference site, and the virtual “sites”
representing standard IEC class conditions. The IEC classes
are included as test sites as they are described by only one in-
dependent variable (mean wind speed). They are useful test
conditions as it may be challenging to correctly predict loads
as a function of only one variable using a model based on
up to nine random variables. The list of test sites is given in
Table 5.

Site 0 (also referred to as the reference site) is located at
the Nørrekær Enge wind farm in northern Denmark (Borrac-
cino et al., 2017), over flat, open agricultural terrain. Site 1 is
a flat-terrain near-coastal site at the National Centre for Wind
Turbines at Høvsøre, Denmark (Peña et al., 2016). Sites 2 to
4 are based on the wind conditions measured at the Østerild
Wind Turbine Test Field, which is located in a large forest
plantation in northwestern Denmark (Hansen et al., 2014).

Due to the forested surroundings of the site, the flow con-
ditions are more complex than those in Nørrekær Enge and
Høvsøre. By applying different filtering according to wind
direction, three virtual site climates are generated and con-
sidered as sites 2–4.

Sites 5 and 6 are located at NREL’s National Wind Tech-
nology Center (NWTC), near the base of the Rocky Moun-
tain foothills just south of Boulder, Colorado (Clifton et al.,
2013). Similar to Østerild, directional filtering is applied to
the NTWC data to split it into two virtual sites – accounting
for the different conditions and wind climates from the two
ranges of directions considered.

For each site, the joint distributions of all variables are de-
fined in terms of conditional dependencies, and generating
simulations of site-specific conditions is carried out using the
Rosenblatt transformation, Eq. (1). The conditional depen-
dencies are described in terms of functional relationships be-
tween the governing variable and the distribution parameters
of the dependent variable, e.g., the mean and standard devi-
ation of the turbulence are modeled as linearly dependent on
the wind speed as recommended by the IEC 61400-1 (ed. 3,
2005) standard. The wind shear exponent is dependent on the
mean wind speed and on the turbulence, and the distribution
parameters of α are defined by the relationship (Kelly et al.,
2014; Dimitrov et al., 2015)

µα|Ic,u = αref+
Ic,ref− Ic(U )
Ic(U ) · cα

, (19)

σα = 1/U,

where µα and σα are the mean and standard deviation of
α, respectively; Ic(U )= (σu/U |F (σu)=Q) is a character-
istic turbulence intensity based on a turbulence quantile Q,
as a function of the wind speed U . Here Ic,ref = Ic(U =
15m s−1) is the reference characteristic turbulence intensity
at U = 15m s−1 and αref = α|(Ic = Ic,ref,U = 15m s−1) is a
reference wind shear exponent, with αc being an empirically
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Table 5. Reference virtual sites used for validation of the site-specific load estimation methods.

Site no. Location Terrain Specific condition Variables included MC sample size

0 Denmark Flat agricultural – U,σu,α,L,0,1ϕ 492
1 Denmark Flat agricultural IIIC exceedance U,σu,α 823
2 Denmark Forested IIIB exceedance U,σu,α 884
3 Denmark Forested IA exceedance U,σu,α 949
4 Denmark Forested IIA exceedance U,σu,α 871
5 Colorado, USA Mountain foothills Low-wind U,σu,α 657
6 Colorado, USA Mountain foothills Low-wind U,σu,α 853
IEC IA, NTM – – Standard reference class U 22
IEC IIB, NTM – – Standard reference class U 22
IEC IIIC, NTM – – Standard reference class U 22
IEC IIB, ETM – – Standard reference class U 22

determined constant. Since the turbulence quantities Ic(u)
and Ic,ref are defined by the conditional relationship between
wind speed and turbulence, the only site-specific parameters
required for characterizing the wind shear are αref and cα .
For each of the physical sites, the wind speed, turbulence
and wind shear distribution parameters are defined based on
anemometer measurements at the sites. The results are listed
in Table 6. In addition, high-frequency 3-D sonic measure-
ments were available at site 0 for the entire measurement pe-
riod, which allowed for estimating Mann turbulence model
parameters using the approach described in Dimitrov et al.
(2017).

With this procedure, 1000 quasi-MC samples of the en-
vironmental conditions at each site are generated from the
respective joint distribution. All realizations where the wind
speed is between the DTU 10 MW wind turbine cut-in and
cut-out wind speed are fed as input to load simulations. The
actual number of load simulations for each site are given in
Table 6. Similarly to the load database simulations, eight sim-
ulations with 1 h duration are carried out at each site-specific
MC sample point. The resulting reference lifetime equivalent
loads are then defined by applying Eq. (6) on the MC simu-
lations using equal weights p(Xi)= 1/N , while the uncer-
tainty in the lifetime loads is estimated using bootstrapping
on the entire MC sample.

6.2 Lifetime fatigue loads

The lifetime damage-equivalent loads (DELs) are computed
for all reference sites in Table 5, using the five load surro-
gate models defined above: (1) quadratic response surface;
(2) polynomial chaos expansion, (3) importance sampling,
(4) nearest-neighbor interpolation, and (5) Kriging with the
mean defined by polynomial chaos basis functions. Methods
2–5 are based on data from the high-fidelity load database
described in Sect. 2. In addition to the surrogate model com-
putations, a full MC reference simulation is carried out for
each validation site. The load predictions with the MC ap-
proach are obtained by carrying out Hawc2 aeroelastic sim-
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Figure 7. Comparison of predictions of the lifetime damage-
equivalent loads (DELs) for six different estimation approaches. All
values are normalized with respect to the mean estimate from a site-
specific Monte Carlo (MC) simulation, and the error bars represent
the bounds of the 95 % confidence intervals (CIs). Results from two
PCEs are shown: the blue bar corresponds to the output of a fourth-
order PCE, while the black bar corresponds to a sixth-order PCE.

ulations on the same DTU 10 MW reference wind turbine
model used for training the load surrogate models. A to-
tal of NMC = 1000 quasi-MC samples are drawn from the
joint distribution of environmental input variables character-
izing each site, and 8 h of aeroelastic simulations are car-
ried out for each of the quasi-MC samples where the wind
speed is between cut-in and cut-out. An exception is the IEC-
based sites, where the standard IEC procedure is followed
and loads are evaluated for 22 wind speeds from cut-in to cut-
out in 1 m s−1 steps. For each site, the full MC simulation is
then used as a reference to test the performance of the other
five methods. The load predictions from the PCE, Kriging,
quadratic RS, and the nearest-neighbor interpolation proce-
dures all use a quasi-MC simulation of the respective model
with the same sample set of environmental inputs used in the
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Table 6. Parameters defining the conditional distribution relationships used in computing joint distributions of the environmental conditions
for the test sites/conditions.

Site Weibull A Weibull K µσu relationship σσu relationship αref cα

0 9.44 3.36 0.106U − 0.0973 0.0041U + 0.194 0.142 4
1 8.24 1.78 0.109U + 0.0624 0.021U + 0.154 0.188 4
2 8.51 2.35 0.148U − 0.248 0.0061U + 0.330 0.294 4
3 10.25 2.47 0.149U − 0.185 0.0021U + 0.329 0.230 4
4 9.03 2.43 0.175U − 0.497 0.009U + 0.298 0.407 4
5 6.12 1.46 0.0637U + 0.915 −0.0113U + 0.807 0.108 4
6 9.03 1.80 0.0972U + 0.437 0.0014U + 0.377 0.121 4
7 (IEC IA, NTM) 11.28 2 0.12U + 0.608 0U + 0.224 0.2 0
8 (IEC IIB, NTM) 9.59 2 0.105U + 0.532 0U + 0.196 0.2 0
9 (IEC IIIC, NTM) 8.46 2 0.09U + 0.456 0U + 0.168 0.2 0
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Figure 8. Comparison of predictions of the lifetime damage-equivalent loads (DELs) for six different estimation approaches. All values are
normalized with respect to the mean estimate from a site-specific Monte Carlo simulation.

reference MC simulations. The load predictions with impor-
tance sampling are based on the probability-weighted con-
tributions from the samples in a high-fidelity load database.
For each site-specific distribution, the database samples are
ordered according to their weights, and only a number of
points, NIS, with the highest weights are used in the esti-

mation. For the sake of easier comparison between different
methods, it is chosen that NIS =NMC. Based on computa-
tions from PCE with a different number of dimensions and
different maximum order, it was observed that expansions of
order 4 or 5 may not be sufficiently accurate for some re-
sponse channels. This is illustrated in Fig. 7 where the pre-
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Figure 9. Comparison of predictions of the lifetime damage-equivalent loads (DELs) for six different estimation approaches. All values are
normalized with respect to the mean estimate from a site-specific Monte Carlo simulation.

diction of main shaft torsion loads using order 4 and order 6
PC expansion are compared against other methods, and the
order 4 calculation shows a significant bias. Therefore, the
PC expansion used for reporting the results in this section
is based on the same 6-dimensional variable input used with
the quadratic response surface, and has a maximum order of
6. For evaluating CIs from the reduced-order models (Krig-
ing, PCE, and quadratic response surface), two reduced-order
models of each type are calibrated – one for the mean val-
ues, and the other for the standard deviations. This allows for
generating a number of realizations for each sampled com-
bination of input variables, and subsequently computing CIs
by bootstrapping (Eq. 7). In this way, the bootstrapping is
done simultaneously for a random sample of the input vari-
ables and the random seed-to-seed variations within each
sample. As a result, the obtained CI reflects the combina-
tion of seed-to-seed uncertainty and the uncertainty due to
a finite number of samples from the distribution of the in-
put variables. This approach also allows for consistency with
the importance sampling and nearest-neighbor interpolation
techniques, where the same bootstrapping approach is used.

Since the lifetime fatigue load is in essence an integrated
quantity subject to the law of large numbers, the uncertainty
in computations based on a random sample of size N will be
proportional to 1/

√
N . Comparing uncertainties and CIs as

defined in Sect. 3.3 will therefore only be meaningful when
approximately the same number of samples is used for all
calculation methods. This approach is used for generating
Figs. 8 and 9, where the performance of all site-specific load
estimation methods is compared for reference site 0, for eight
load channels in total, with the number of samples as listed in
Table 8. Figure 8 shows results for tower base and tower top
fore-aft and side-side bending moments, and Fig. 9 displays
the tower top yaw moment, the main shaft torsion, and blade
root flapwise and edgewise bending moments.

The results for site 0 show that for all methods the pre-
diction of blade root and tower top loads is more accurate
than the prediction of tower base loads. Also, overall the pre-
dictions from the reduced models – the quadratic RS and
the PCE, as well as from the Kriging model – are more
robust than the IS and nearest-neighbor (NN) interpolation
techniques. Similar performance is observed for most other
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Table 7. Lifetime-equivalent load predictions normalized with respect to MC simulations and averaged over 10 reference sites. Load channel
abbreviations are the following: TB: tower base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist of Mx : fore-aft
(flapwise) bending; My : side-side (edgewise) bending; and Mz: torsion.

Load channels

TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Polynomial chaos expansion

Mean 0.966 0.934 0.978 1.000 0.991 1.018 1.003 0.999
SD 0.030 0.014 0.019 0.019 0.018 0.026 0.014 0.002

Universal Kriging

Mean 0.972 0.965 0.989 0.998 0.992 0.993 1.008 1.000
SD 0.033 0.028 0.018 0.019 0.020 0.027 0.015 0.002

Quadratic response surface

Mean 1.034 0.980 0.966 1.032 1.014 1.075 1.021 0.996
SD 0.029 0.027 0.017 0.015 0.012 0.028 0.012 0.003

Importance sampling

Mean 0.859 0.878 0.862 1.102 0.932 1.251 1.100 0.992
SD 0.101 0.088 0.067 0.075 0.063 0.088 0.086 0.007

Nearest-neighbor interpolation

Mean 0.951 0.993 0.951 0.989 0.972 1.066 1.001 0.994
SD 0.081 0.057 0.045 0.064 0.052 0.070 0.044 0.005

Table 8. Model execution times for the lifetime damage-equivalent
fatigue load computations for site 0.

Surrogate Training Evaluation Evaluation
model set size set size time

MC – 492 22.7 s
PCE 10 000 492 8.2 s
RS 946 492 2.2 s
IS 10 000 492 4.6 s
NN 10 000 492 4.4 s
Kriging 2048 492 217.6 s

validation sites. The summarized site-specific results for all
surrogate-based load estimation methods are shown in Ta-
ble 7. In order to compute these values, the load estimates
for each site and load channel are normalized to the results
obtained with the direct site-specific MC simulations. The
values given in Table 7 are averaged over all reference sites.
The results for individual sites and load channels are depicted
as bar plots in Figs. 10 and 11 for tower load and rotor load
channels, respectively. The largest observed errors amount
to ≈ 9 % with Kriging, ≈ 10 % for the PCE, ≈ 10 % for the
quadratic RS, ≈ 24 % for IS, and ∼ 15–17 % for NN inter-
polation. Noticeably, the low wind speed, high turbulence
site 5 seems to be the most difficult for prediction – for most
load prediction methods this is the site where the largest er-

ror is found. All models except the Kriging also show rel-
atively large errors for the IEC class-based sites. That can
be attributed to the significantly smaller number of samples
used for the IEC-based sites (22 samples where only the wind
speed is varied in 1 m s−1 steps from 4 to 25 m s−1). As men-
tioned above, the statistical uncertainty in the estimation of
the lifetime DEL will diminish with increasing number of
samples. In addition to this effect, as discussed in Sect. 4.1,
the uncertainty in the IS model can increase when the site-
specific distribution has fewer dimensions than the model be-
cause fewer points from the high-fidelity database will have
high probabilities with respect to the site-specific distribu-
tion. It can be expected that this effect is strongest for the
IEC class-based sites, as for them only a single variable – the
wind speed – is considered stochastic.

Another important aspect to consider when comparing the
performance of the surrogate models is the model execution
speed, and whether there is a tradeoff between speed and ac-
curacy. A comparison of the model evaluation times for the
site-specific lifetime load computation for site 0 is given in
Table 8. Noticeably, the Kriging model requires significantly
longer execution time than other approaches, which is mainly
due to the requirement of populating a cross-correlation ma-
trix.
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Figure 10. Predictions of lifetime damage-equivalent tower loads
for five different estimation approaches and four load channels for
the different sites (0–6) and IEC conditions (virtual sites 7–9). All
values are normalized with respect to the mean estimate from a site-
specific Monte Carlo (MC) simulation. The abbreviations refer to
PCE: polynomial chaos expansion; RS: quadratic response surface;
IS: importance sampling; NN: nearest-neighbor interpolation; and
KM: universal Kriging model.

7 Discussion and conclusions

7.1 Discussion

The previous sections of this paper described a procedure
for estimating site-specific lifetime damage-equivalent loads
(DELs), using several simplified model techniques applied to
10 different sites and conditions. Based on the site-specific
lifetime DEL comparisons, for quick site-specific load esti-
mation, the three models based on machine learning were
most viable (sufficiently accurate over the majority of the
sampling space): polynomial chaos expansion, Kriging, and
the quadratic response surface (RS). When estimating life-
time DEL, these methods showed approximately equal lev-
els of uncertainty. However, in the one-to-one comparisons,
the quadratic RS model showed larger error, especially for
sample points corresponding to more extreme combinations
of environmental conditions. This is due to the lower or-
der and the relatively small number of calibration points
of the quadratic RS, which means that the model accuracy
decreases in the sampling space away from the calibration
points, especially if there is any extrapolation. This inaccu-
racy is reflected in the NRMSE from one-to-one compar-
isons, but is less obvious in the lifetime fatigue load com-
putations that average out errors with zero mean. The univer-
sal Kriging model demonstrated the smallest overall uncer-
tainty, both in sample-to-sample comparisons and in lifetime
DEL computations. This is to be expected since the Kriging
employs a well-performing model (the PCE) and combines
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Figure 11. Predictions of lifetime damage-equivalent loads (yaw,
shaft torsion, blade-root) for five different estimation approaches
and four load channels. All values are normalized with respect to the
mean estimate from a site-specific Monte Carlo (MC) simulation.
The abbreviations refer to PCE: polynomial chaos expansion; RS:
quadratic response surface; IS: importance sampling; NN: nearest-
neighbor interpolation; and KM: universal Kriging model.

it with an interpolation scheme that subsequently reduces
the uncertainty even further. However, in most cases the ob-
served improvement over a pure PCE is not significant. This
indicates that the sources of the remaining uncertainty are
outside the models – e.g., the seed-to-seed turbulence vari-
ations: the models being calibrated with turbulence realiza-
tions different from the ones used to compute the reference
site-specific loads. As a result, the trend function (the β term
in Eq. 13) is the primary contribution to the Kriging esti-
mator, and the influence of the Gaussian-field interpolation
is minimal. A drawback of the Kriging model with respect to
the other techniques is the larger computational demands due
to the need of computing correlation matrices and the use of
the training sample for each new evaluation.

For all site-specific load assessment methods discussed,
the estimations are trustworthy only within the bounds of the
variable space used for model calibration – extrapolation is
either not possible or may lead to unpredictable results. It is
therefore important to ensure that the site-specific distribu-
tions used for load assessment are not outside the bounds of
validity of the load estimation model.

The variable bounds presented in this paper are based on
a certain degree of consideration of atmospheric physics em-
ployed in the relationships between wind speed, turbulence,
wind shear, wind veer, and turbulence length scale. The pri-
mary scope is to encompass the ranges of conditions relevant
for fatigue load analysis, and the currently suggested variable
bounds include all normal-turbulence (NTM) classes. How-
ever, for some other calculations it may be more practical to
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choose other bound definitions; for example, for the extreme
turbulence models prescribed by the IEC 61400-1, the cur-
rently suggested bounds do not include ETM class A.

For the more advanced methods like PCE and Kriging,
there is a practical limitation on the number of training points
to be used in a single-computer setup. For a PCE the practical
limit is mainly subject to memory availability when assem-
bling and inverting the information matrix, and for a PCE of
order 6 and with nine dimensions, this limit is on the order of
1–2×104 points on a typical desktop computer (as of 2018).
For Kriging, the computing time also plays a role: although a
similar number of training points could be stored in memory
as for the PCE, the computational time is much longer, and
the practical limit of training points for most applications is
less than for the PCE. However, as it was shown in Sects. 4.3
and 6, a training sample of 104 points or even half of that
should be sufficient for most applications in site-specific load
prediction.

Considering the overall merits of the load prediction meth-
ods analyzed, the PCE provided an accurate and robust per-
formance. The Kriging approach showed slightly better accu-
racy but at the expense of increased computational demands.
Taking this together with the other useful properties of the
PCE, such as orthogonality facilitating creation of sparse
models through variance-based sensitivity analysis, we con-
sider the PCE as the most useful method overall.

In addition to the load-mapping approaches presented in
this paper, artificial neural networks (ANNs) are interest-
ing alternative candidates. ANNs (see Goodfellow et al.,
2016) are machine learning models that have gained popu-
larity due to their flexibility and history of successful appli-
cation to many different problems. It is very likely that a suf-
ficiently large neural network model can provide similar out-
put quality and performance as the methods described in the
present study. This is therefore a matter that is worth future
research. However, the PCE-based models may sometimes
have a practical advantage over ANNs, due to the “white-
box” features – such as being able to track separate contribu-
tions to variance (and uncertainty), as well as the possibility
of obtaining analytical derivatives, which is important for ap-
plications to optimization problems.

The results from the site validations showed that for the
majority of sites and load channels, the simplified load as-
sessment techniques can predict the site-specific lifetime fa-
tigue loads to within about 5 % accuracy. However, it should
be noted that this accuracy is relative to full-fidelity load sim-
ulations, and not necessarily to the actual site conditions,
where additional uncertainties (e.g., uncertainty in the site
conditions or the turbine operating strategy) can lead to even
larger errors. The procedures demonstrated in this study are
thus very suitable for carrying out quick site feasibility as-
sessments; the latter can help to decide in a timely fashion
whether to discard a given site as unfeasible, or to make
additional high-fidelity computations or more measurements
of site conditions. The same procedure, but with additional

variables (e.g., three variables for wake-induced effects as in
Galinos et al., 2016) may also be useful as objective function
or constraint in farm optimization problems.

7.2 Summary and conclusions

In the present work we defined and demonstrated a proce-
dure for quick assessment of site-specific lifetime fatigue
loads using load surrogate models calibrated by means of
a database with high-fidelity load simulations. The per-
formance of polynomial chaos expansion, quadratic re-
sponse surface, universal Kriging, importance sampling, and
nearest-neighbor interpolation in predicting site-specific life-
time fatigue loads was assessed by training the surrogate
models on a database with aeroelastic load simulations of
the DTU 10 MW reference wind turbine. Practical bounds
of variation were defined for nine environmental variables
and their effect on the lifetime fatigue loads was studied. The
study led to the following main conclusions.

– The variable sensitivity analysis showed that mean wind
speed and turbulence (standard deviation of wind speed
fluctuations) are the factors having the highest influ-
ence on fatigue loads. The wind shear and the Mann
turbulence length scale were also found to have an ap-
preciable influence, with the effect of wind shear be-
ing more pronounced for rotating components such as
blades. Within the studied ranges of variation, the Mann
turbulence parameter 0, wind veer, yaw angle, tilt angle,
and air density were found to have a small or negligible
effect on the loads.

– The best performing models had errors of less than 5 %
for most sites and load channels, which is in the same
order of magnitude as the variations due to realization-
to-realization uncertainty.

– A universal Kriging model employing polynomial
chaos expansion as a trend function achieved the most
accurate predictions, but also required the longest com-
puting times.

– A polynomial chaos expansion with Legendre basis
polynomials was concluded to be the approach with best
overall performance.

– The procedures demonstrated in this study are well
suited for carrying out quick site feasibility assessments
conditional on a specific wind turbine model.

Data availability. Due to storage limitations, only 10 min statistics
are stored, as well as the scripts that can be used to regenerate the
full data sets. Model training and evaluation was done entirely based
on the 10 min statistics. These data are available upon request.
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Appendix A: Reduced-order models – background
and theory

A1 Polynomial chaos expansion

Polynomial chaos expansion (PCE) is a popular method for
approximating stochastic functions of multiple random vari-
ables, using an orthogonal polynomial basis. In the classi-
cal definition of PCE (Ghanem and Spanos, 1991) the in-
put random variables X are defined in (−∞,∞), with Her-
mite polynomials typically used as the polynomial basis1.
Choosing a polynomial basis that is orthogonal to a non-
Gaussian probability measure turns the PCE problem into the
so-called Wiener–Askey or generalized chaos (Xiu and Kar-
niadakis, 2002). For the present problem, a generalized PCE
using Legendre polynomials is considered most suitable as
the Legendre polynomials Pn(ξ ) are orthogonal with respect
to a uniform probability measure in the interval ξ = [−1,1],
which means that the PCE can conveniently be applied on
the cumulative distribution functions of the variables X that
are defined in the interval [0,1] so that

ξi = 2F (Xi)− 1, (A1)

where F (Xi) is the CDF of a variable Xi ∈ X, i = 1, . . .,M .
With this definition, the PCE represents a model applied to a
set of transformed variables, which, due to the applied trans-
formation, are independent and identically distributed (i.i.d.).
Note that Eq. (10) and the evaluation of the cumulative distri-
bution in general does not account for dependence between
variables – this has to be addressed by applying an appro-
priate transformation. In the present case where the joint
probability distribution of input variables is defined in terms
of conditional dependencies, it is convenient to apply the
Rosenblatt transformation as defined in Eq. (1). For the cur-
rent implementation of PCE, only Eq. (1) is required since
the expansion is based on the Legendre polynomials; how-
ever, the transformation to standard normal space in Eq. (2)
is used for other procedures, e.g., the quadratic response sur-
face model discussed later.

Using the notation defined by Sudret (2008), we consider
the family of univariate Legendre polynomials Pn(ξ ). A mul-
tivariate, generalized PCE withM dimensions and maximum
polynomial degree p is defined as the product of univari-
ate Legendre polynomials where the maximum degree is less
than or equal to p. The univariate polynomial family for di-

1In the classical definition of the PC decomposition used in, for
example, spectral stochastic finite element methods (Ghanem and
Spanos, 1991), the input random variables are normally distributed
(Gaussian), which means that the Hermite polynomials are a suit-
able Hilbertian basis – since the Hermite polynomials are orthogo-
nal with respect to the Gaussian probability measure. In this case,
the properties of the Hermite polynomials dictate that the random
variables X are defined on (−∞,∞).

mension i can be defined as

Pαi (ξ ), where i = 1, . . .,M, αi ∈ N,
M∑
i=1

αi ≤ p. (A2)

The multivariate polynomial of dimension M is then defined
as

9α =

M∏
i=1
Pαi (ξi). (A3)

With the above, each multivariate polynomial is built as
the product of M univariate polynomial terms, and α vector
stores the orders for each univariate polynomial term. The
total number of polynomials of this type is (Sudret, 2008):

Np =

(
(M +p)
p

)
(M +p)!
M!p!

. (A4)

The aim of using PCE is to represent a scalar quantity
S = g(ξ (X)) in terms of a truncated sequence S̃(ξ (X))+ ε
where ε is a zero-mean residual term. With this definition,
the multivariate generalized PCE of dimension M and maxi-
mum degree p is given by

S̃(ξ )=
Np−1∑
j=0

Sj9α,j (ξ ), (A5)

where Sj ∈ S= [S1, . . .,SNp] are unknown coefficients that
need to be determined, and ξ = [ξ1, . . .ξM ] are functions of
X as defined in Eq. (10). The most straightforward way of
determining S is minimizing the variance of the residual ε
using a least-squares regression approach:

S=min

 1
Ne

∣∣∣∣∣∣∣
Ne∑
i=1

g(ξ (i))−
Np−1∑
j=0

Sj9α,j (ξ (i))

2
∣∣∣∣∣∣∣
, (A6)

where Np is the number of polynomial coefficients in the
PCE and Ne is the number of sampling points in the experi-
mental design. For this purpose, a design experiment has to
be set up and the so-called design matrix 9 needs to be con-
structed:

9ij =9α,j (ξ (i)); i = 1, . . .,Ne, j = 1, . . .,Np. (A7)

Plugging the definition of 9 in Eq. (A5), the PCE can be
expressed as y=9S. Under the condition that the residuals
ε are (approximately) normally distributed, the solution for
S that minimizes the sum of residuals is given by

S= (9T9)−1
·9T
· y, (A8)

with y= g(ξ (i)) being a vector with the outcomes of the
functional realizations obtained from the design experiment,
where i = 1. . .Ne.
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The solution of Eq. (A8) requires that the so-called infor-
mation matrix (9T9) is well conditioned, which normally
requires that the number of collocation points Ne is signifi-
cantly larger than the number of expansion coefficients Np.
Subsequently, the problem grows steeply in size whenM and
p increase. In such situations, it may be desirable to limit the
number of active coefficients by carrying out a least absolute
shrinkage and selection operator (LASSO) regression (Tib-
shirani, 1996), which regularizes the model by penalizing the
sum of the absolute value of model coefficients:

S=min


∣∣∣∣∣∣∣

1
2Ne

Ne∑
i=1

g(ξ (i))−
Np−1∑
j=0

Sj9α,j (ξ (i))

2

+λ

Np−1∑
j=0
|Sj |

∣∣∣∣∣∣
 , (A9)

where λ is a positive regularization parameter; larger val-
ues of λ increase the penalty and reduce the absolute sum of
the model coefficients, while λ= 0 is equivalent to ordinary
least-squares regression.

A2 Kriging

Kriging (Sacks et al., 1989; Santher et al., 2003) is a stochas-
tic interpolation technique which assumes the interpolated
variable follows a Gaussian process. A Kriging metamodel
is described (Sacks et al., 1989) by

Y (X)= f(X)Tβ +Z(X), (A10)

where X represents the input variables, and Y (X) is the out-
put. The term f(X)Tβ is the mean value of the Gaussian
process (a.k.a. the trend) represented as a set of basis func-
tions f(X)= [f1(X), . . .,fP (X)] and regression coefficients
β = [β1, . . .,βP ]; Z(X) is a stationary, zero-mean Gaussian
process. The probability distribution of the Gaussian pro-
cess is characterized by its covariance, which for two distinct
points in the domain, x and w is

V (w,x)= σ 2R(w,x,θ ), (A11)

where σ 2 is the overall process variance that is assumed to be
constant, and R(w,x,θ ) is the correlation between Z(x) and
Z(w). The hyperparameters θ define the correlation behavior,
in terms of a correlation length for example. Given a set of
points X= [x1,x2, . . .xN ] where the true function values y=
Y (X) are known, the aim is to obtain a model prediction at a
new point, x′. Based on Gaussian theory, theN known values
Y (X) and the Kriging predictor Ŷ (x′) will be jointly Gaussian
distributed:{
Y (x′)
Y (X)

}
∼NN+1

([
f(x′)Tβ

9β

]
,

σ 2
[

1 rT(x′)
r(x′) R

])
(A12)

Here

9 is the design matrix collecting the terms constituting
the basis functions f(X),

9ij = fj (xi) for i = 1. . .N and j = 1. . .P , where N is
the number of samples and P is the total number of
terms output from the basis functions – which may be
different than the number of dimensions M as a ba-
sis function (e.g., a higher-order polynomial) can return
more than one term per variable;

r(x′) is the vector of cross-correlations between the pre-
diction point x′ and the known points X; and

R is the correlation matrix of the known points, Rij =
R(xi,xj ,θ ) for i,j = 1, . . .,N .

It follows that the model prediction Ŷ (x′) will have the
following mean and variance (Santher et al., 2003):

µ
Ŷ

(x′)= f(x′)Tβ + r(x′)TR−1(y−9β),

σ 2
Ŷ

(x′)= σ 2(1− r(x′)TR−1r(x′)

+ u(x′)T
[9TR−19)−1u(x′)]. (A13)

where u(x′)=9TR−1r(x′)− f(x′). Using the predictor func-
tions above requires determining the regression coeffi-
cients (β), the field variance (σ 2), and the correlation hyper-
parameters (θ ). A suitable approach is to find the values of
β, σ 2, and θ which maximize the likelihood of y, (Lataniotis
et al., 2015):

L(y|β,σ 2,θ )=

det(R)−1/2

(2πσ 2)N/2
exp

[
−

1
2σ 2 (y−9β)TR−1(y−9β)

]
. (A14)

Here the hyperparameters, θ , appear within the correlation
matrix R. Having set up the design matrix 9, the expansion
coefficients β can be determined with the least-squares ap-
proach, by solving the equation d(− logL)/dβ = 0 for β:

β = β(θ )= (9TR−19)−19TR−1y. (A15)

Similarly, by solving d(− logL)/dσ 2
= 0 for σ 2, the field

variance is obtained as

σ 2
= σ 2(θ )=

1
N

(y−9β)TR−1(y−9β). (A16)

From Eqs. (A15) and (A16) it follows that β and σ 2 can be
expressed as functions of θ . Therefore, calibrating the Krig-
ing model amounts to finding the values of θ that maximize
the likelihood. By combining Eqs. (A14)–(A16) this leads to
the optimization problem

θ = argmin
θ

(
1
2

log(det(R))+
N

2
log(2πσ 2)+

N

2

)
. (A17)

For a problem with M dimensions, we assume that the
correlation between sample points can be modeled using an
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anisotropic separable correlation function (Sacks et al., 1989;
Lataniotis et al., 2015), which assumes a different correla-
tion parameter for each dimension. The total correlation is
expressed as the product of the individual one-dimensional
correlation functions,

R(x,x′,θ )=
M∏
i=1
R(xi,x′i,θi). (A18)

The one-dimensional correlation functions are assumed to
follow an exponential relation to the distance h= (xi − x′i)
between points,

R(h,θ )= exp
(
−
|h|

θ

)
. (A19)

One of the possibilities for tuning the performance of a Krig-
ing model is selecting different trend functions. If the trend
function is replaced by a constant (i.e., the mean of the field)
the resulting model is referred to as simple Kriging. A linear
trend is denoted as ordinary Kriging, while with any other
more advanced function the model is called universal Krig-
ing. In universal Kriging, the functional form of the mean
field f(x)Tβ is identical to the generalized PCE defined in
Eq. (A8), meaning that the PCE is a possible candidate model
for the mean in a Kriging interpolation. We adopt this ap-
proach and define the Kriging mean as a PCE with properties
as described in Sect. 4.3.

The main practical difference between regression- or
expansion-type models such as regular PCE and the Krig-
ing approach is in the way the training sample is used in
the model: in the pure regression-based approaches the train-
ing sample is only used to calibrate the regression coeffi-
cients, while in Kriging as in other interpolation techniques
the training sample is retained and used in every new model
evaluation. As a result, the Kriging model may have an ad-
vantage in accuracy since the model error tends to zero in the
vicinity of the training points; however, this comes at the ex-
pense of an increase in the computational demands for new
model evaluations. The extra computational burden is mainly
the time necessary to assemble r(x′), the matrix of cross-
correlations between the prediction points and the training
sample, and the time to multiply r(x′) with other equation
terms. Thus, while for a PCE the model evaluation time t(N )
for a sample of size N would follow t(N )=O(N ), for a
Kriging model t(N )=O(N2). For a Kriging model, a gain
in accuracy over the model represented by the trend function
will only materialize in problems where there is a noticeable
correlation between the residual values at different training
points. In a situation where the model error is independent
from point to point (e.g., in the case when the error is only
due to seed-to-seed variations in turbulence) the inferred cor-
relation length will tend to zero and the Kriging estimator
will be represented by the trend function alone.

A3 Sobol indices from the PCE

One useful corollary of the orthogonality in the PCE poly-
nomial basis is that the total variance of the expansion can
be expressed as the sum of the contributions from individual
terms (Sudret, 2008),

Var
[
S̃(ξ )

]
= Var

Np−1∑
j=0

Sj9γ ,j (ξ )


=

Np−1∑
j=1

S2
jE
[
92
γ ,j (ξ )

]
. (A20)

Each of the terms in the sum in Eq. (A20) represents the
contribution of the variables contained in the respective
multivariate polynomials 9γ ,j where j = 0. . .Np − 1. This
property can be used for eliminating polynomials that do
not significantly contribute to the variance of the output,
thus achieving a sparse, more computationally efficient re-
duced model. By combining the variance truncation and the
LASSO regression technique in Eq. (17), a model reduction
of an order of magnitude or more can be achieved. For ex-
ample, for a 9-dimensional PCE of order 6, using LASSO
regularization parameter λ= 1 and retaining the polynomi-
als that have a total variance contribution of 99.5 %, resulted
in a reduction of the number of polynomials from 5005 to
about 200.

Denoting Fi1,...,is as the set of all polynomials dependent
upon a specific combination of input variables {i1, . . ., is}
(and only on them), the sum of variance contributions over
Fi1,...,is normalized by the total variance represents the PCE-
based Sobol index with respect to variable set Fi1,...,is (Su-
dret, 2008):

SUi1,...,is =

 ∑
j∈Fi1,...,is

S2
jE
[
92
j (ξ )

] · (Var
[
S̃(ξ )

])−1
. (A21)

Based on Eq. (A21) it is also straightforward to obtain the
total Sobol indices for a given variable γ by summing all
SUi1,...,is where γ ∈ (i1, . . ., is). Note that since each variable
appears in multiple cross-terms in the expansion, the contri-
butions of some polynomial coefficients are included multi-
ple times in the total Sobol indices, meaning that the sum of
the total indices will typically exceed 1.

The Sobol indices estimated using the above procedure
represent the relative contribution to the model variance from
variables following the joint input distribution used to cal-
ibrate the PCE. In the present case, this distribution would
span the uniform variable space of the high-fidelity database
defined in Sect. 2, and the indices will correspond to the load
variation within the entire variable ranges as defined in Ta-
ble 1.
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