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Abstract. The large amount of computational effort required for a full fatigue assessment of offshore wind
turbine support structures under operational conditions can make these analyses prohibitive, especially for ap-
plications like design optimization, for which the analysis would have to be repeated for each iteration of the
process. To combat this issue, we present a simple procedure for reducing the number of load cases required for
an accurate fatigue assessment. After training on one full fatigue analysis of a base design, the method can be
applied to establish a deterministic, reduced sampling set to be used for a family of related designs. The method
is based on sorting the load cases by their severity, measured as the product of fatigue damage and probability
of occurrence, and then calculating the relative error resulting from using only the most severe load cases to es-
timate the total fatigue damage. By assuming this error to be approximately constant, one can then estimate the
fatigue damage of other designs using just these load cases. The method yields a maximum error of about 6 %
when using around 30 load cases (out of 3647) and, for most cases, errors of less than 1 %–2 % can be expected
for sample sizes in the range 15–60. One of the main points in favor of the method is its simplicity when com-
pared to more advanced sampling-based approaches. Though there are possibilities for further improvements,
the presented version of the method can be used without further modifications and is especially useful for design
optimization and preliminary design. We end the paper by noting some possibilities for future work that extend
or improve upon the method.

1 Introduction

The large number of environmental states that need to be
considered for the design of offshore wind turbine support
structures is a significant challenge. A simulation is required
for each such state, often referred to as a load case, when
analyzing the response of these structures to the offshore en-
vironment. Each simulation of this kind, at least when car-
ried out with accurate aero-elastic software, is a nontrivial
task in terms of computational effort. Assessing the structural
performance in the fatigue limit states for operational condi-
tions alone typically means thousands of load cases when
following relevant standards (International Electrotechnical
Commission, 2009). Consequently, the computational effort

needed in total presents a challenge. The increasing avail-
ability of high-performance computing clusters in both the
industry and at academic institutions has alleviated this issue
somewhat for one-time assessments of single designs, but
there are other contexts in which the problem remains rel-
evant. Design optimization (Muskulus and Schafhirt, 2014;
Chew et al., 2016; Oest et al., 2017) in particular is such
a case, for which having to do repeated structural analyses
of evolving designs means that the inclusion of thousands
of load cases becomes highly prohibitive. Hence, there is a
need for methods that can reduce the computational effort of
these analyses, preferably without losing too much accuracy.
Motivated by this need, the present study concerns itself with
the development of a method that reduces the number of load
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cases that need to be analyzed down to a more manageable
level. Though other loading scenarios are in general relevant,
the present work will focus on sets of load cases encompass-
ing the fatigue assessment of operational conditions for the
wind turbine.

Several previous studies in the area of simplifying fatigue
assessment through load case reduction have been carried
out. Zwick and Muskulus (2016) looked at two different
methods, piece-wise linear approximation and multilinear re-
gression, to simplify fatigue analysis for a jacket subject to
21 operational load cases. Using varying wind speeds, with
a lumped sea state, the approach aimed to train the meth-
ods using fatigue data from several jacket designs and then
to use them to predict the fatigue damage of other designs.
With this approach, the authors obtained reduced load case
sets with sizes of three–six, with maximum prediction er-
rors for the total fatigue damage of about 6 % when using
three load cases. One limitation with this study was that ex-
tensive training of the methods, with substantial computa-
tional effort, was required in order to obtain these results.
The number of load cases studied was also small compared
to the complete set of operational conditions. Häfele et al.
(2017, 2018) used an approach in which reduced load case
sets were derived by sampling distributions for the probabil-
ity of occurrence of the various environmental states, taken
from a database of 2048 states. From a hierarchy of load case
subsets, the authors estimated the fatigue damage for several
different jacket designs. Though the errors were quite high
for the smallest subset sizes, this approach demonstrated a
clear potential for large reductions in computational effort.
Velarde and Bachynski (2017) used a fatigue design param-
eter in order to select only the most important sea states for
detailed fatigue assessment of a monopile.

Multiple studies of load case reduction have also been con-
ducted for floating support structures. Müller et al. (2017)
formulated an approach that combined a response surface
model with Latin hypercube sampling and an artificial neu-
ral network. Müller and Cheng (2018) studied an approach
making use of Sobol sequences in order to select the optimal
load cases to sample. This led to a more rapid convergence
than would have resulted from using just conventional Monte
Carlo methods. The approach achieved a maximum error of
about 10 % in the fatigue estimates when using reduced load
case sets of 200–500 out of a total of 5400. Finally, Kim et al.
(2018) used an artificial neural network to modify the stress
transfer function in order to simplify fatigue assessment in
the frequency domain.

While achieving various degrees of success in terms of ac-
curacy and ability to reduce the computational effort, a com-
mon trait in most of the cited studies above is that their aims
differ slightly from ours. These studies, the one by Zwick
and Muskulus (2016) exempted, tried to simplify the fatigue
assessments of single designs by making use of methods
that were based on considerations of the environmental states
alone, whereas we aim to also use information about the ac-

tual fatigue damage for each load case of a base design and
then use the combined information to develop a reduced sam-
ple set that can be used for designs that have been altered
compared to this base design. Since the latter approach is
highly relevant for applications like design optimization, we
think the present study addresses a gap in the literature.

The method proposed in this study, like in many of the
cited studies above, is based on the idea that there is a large
amount of information about the total fatigue damage con-
tained in a small subset of load cases. Furthermore, a funda-
mental assumption for this method is that the relative fatigue
response to each load case remains approximately constant
for an extended family of related support structure designs.
This makes it possible to train the method on one full fa-
tigue analysis, using the complete set of load cases, and then
use the method to propose which load cases should be as-
sessed for future analyses of designs that have been modi-
fied. The method itself is based on sorting the load cases by
their contribution to the total fatigue damage and then ob-
taining the partial sum of their contributions, up to a cer-
tain, smaller number of load cases. The relative difference
between this partial sum and the total fatigue damage is as-
sumed to be constant when the underlying support structure
design is modified. From the corresponding partial sum of
any new design, multiplied by a scale factor derived from the
original relative difference, the total fatigue damage of that
design can then be obtained. Hence, using an approach re-
lying simply on sorting and summation, an estimate for the
total fatigue damage based on a significantly reduced set of
load cases is readily available.

2 Background and methodology

Even when restricting the area of study to operational load-
ing conditions and fatigue analysis for the support structure,
there is a substantial amount of work that has to be carried
out in order to verify that the structure satisfies design re-
quirements. Keeping in accordance with the standards means
covering a lot of different environmental conditions (Interna-
tional Electrotechnical Commission, 2009) and following a
specific procedure for calculating the fatigue damage (Det
Norske Veritas, 2016). Every realization of wind and wave
conditions corresponds to a single load case E, which has a
probability of occurrence P (E). After a time domain anal-
ysis of the support structure, subject to the loading condi-
tions encoded by E, the time series of normal stress is es-
timated at eight different points along the circumference of
each relevant location in the structure. The fatigue damage
can be found from the stress by performing rainflow count-
ing (Rychlik, 1987), applying SN curves (DNV GL, 2016)
for each stress range identified and then accumulating the
damage using the Palmgren–Miner rule. The maximum fa-
tigue damage value found among the eight points along the
circumference of a given location in the structure is chosen to
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represent the fatigue damage per load case,D(E), of that spe-
cific location. The total fatigue damage from all load cases,
Dtot, during a lifetime Tlt, at a specific location in the struc-
ture, is then given by

Dtot = Tlt ·
∑
E

P (E)D(E). (1)

A central fact to note here is that the contribution of each
load case E to the total fatigue damage is determined by
the product of the individual fatigue damage and the prob-
ability of occurrence. So the most severe load cases in the
sense of having the largest contribution to the sum are in fact
those for which there is a balance between these two factors.
Very small damage and high probability, or vice versa, tend
to give smaller contributions, whereas load cases incurring
intermediate fatigue damage, while also having reasonably
high probability of occurrence, tend to be the most severe.
This will be important below in determining which load cases
get sampled. Normally, a safety factor would be applied to
Eq. (1). However, since this only changes the result by a fixed
constant, it has been neglected here. By the same reasoning,
the lifetime scale factor Tlt will also be neglected from now
on.

2.1 Sampling based on the k most severe load cases

From Eq. (1), we can define the kth partial sums of the fatigue
damage as

Dk =

k∑
i=1

P (Ei)D(Ei). (2)

If we now let the set {Ei} of load cases be sorted in descend-
ing order based on the size of the corresponding product of
probability of occurrence and fatigue damage (from now on
called severity), then from experience, Dk should start to get
close to Dtot after values of k corresponding to only a few
percent of the total number of load cases. In fact, plotting
these partial sums as a function of k gives a curve like the
one shown in Fig. 1b, from which the previous statement can
be confirmed. This curve was calculated using data from the
tower bottom, but the corresponding curves at other locations
in the structure show exactly the same behavior. Furthermore,
we may define the relative difference between the sorted kth
partial sum and the actual total fatigue damage as

εk = 1−
Dtot

Dk
. (3)

As our fundamental approximation, we may assume that εk
is constant when the underlying support structure design is
modified. That is, suppose we want to estimate the total fa-
tigue damage Dnew

tot of some new designs of the same basic
support structure, with corresponding kth partial sumsDnew

k .
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Figure 1. Illustration of the model used in this study (a) and a plot
of the curve formed by the partial sums, Dk , as a function of the
number of load cases used, k, after sorting the load cases by their
severity (b).

If we assume that εk = εnew
k , then we can obtain an estimate

for the new total damage as

D̂new
tot =D

new
k −D

new
k · εk. (4)

The intuitive interpretation here is essentially that the new to-
tal damage is the kth partial sum plus (since εk is always neg-
ative) an error term that should make up the difference. Some
further clarity can be obtained by simplifying the above:

D̂new
tot =D

new
k · (1− εk)

=Dnew
k ·

Dtot

Dk

D̂new
tot =Dtot ·

Dnew
k

Dk
. (5)

Hence, in practice, the estimate for the new total fatigue dam-
age is the old total fatigue damage times the ratio of the new
kth partial sum to the old kth partial sum.

2.2 Sampling for multiple locations

If we only wanted to know the total fatigue damage at a sin-
gle location in the structure, Eq. (5) would suffice. However,
there is a slight complication when the fatigue damage at
multiple locations is needed. While for the most part we ex-
pect the order of the severity of the load cases to be about the
same at every location, there is no guarantee that it will be
exactly the same. Hence, using information from just a sin-
gle location to decide which load cases to sample could lead
to significant errors at the other locations. The simplest solu-
tion to this is to take the union of the most severe load case
sets from each location. Specifically, let V ik be the set of the
k most severe products P (E)D(E) at location i. We can then
define the sampling set, Ṽk , as

Ṽk =
⋃
i

V ik . (6)
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Figure 2. Step-by-step summary of the estimation method.

Specifically, we combine the k most severe load cases from
each location into an expanded set (removing any dupli-
cates), from which we then calculate the partial sums to be
used in Eq. (5). It would also be possible to define the sam-
pling set in such a way that it would have an already given
size, filling up with as many load cases from the individual
location sets as possible, motivated by, for example, having
certain restrictions on how many load cases one can afford
to sample given the computational resources and the task at
hand. However, this would result in an unbalanced set, bi-
ased towards one or more of the locations. Hence, it would
be preferable to let the sizes of the individual sets determine
the size of the sampling set and then simply choose a value
of k such that the resulting sampling set size is acceptable.

2.3 Fatigue damage estimation procedure

By using one full fatigue assessment of a base design, we can
then train our method on these data. Sorting the load cases by
the severity at each location and then taking the union of the
resulting sets, we obtain the sampling set Ṽk for a given num-
ber of k load cases from each location. If we denote the size
of the sampling set by n, the nth partial sums at each location
i of the base design, Dbase,i

n , combined with the correspond-
ing total fatigue damage, Dbase,i

tot , are then used to define εin.
The total fatigue damage estimate at location i for any new
design, D̂new,i

tot , is then obtained by performing simulations
and fatigue assessments for the n load cases in the sampling
set, estimating the new nth partial sums as

Dnew,i
n =

n∑
j=1

Ṽ new
k,j , (7)

where Ṽ new
k,j is the set of n severity values obtained for the

new design, and finally scaling the base total fatigue damage
as prescribed in Eq. (5):

D̂
new,i
tot =D

base,i
tot ·

D
new,i
n

D
base,i
n

. (8)

The procedure is summarized in Fig. 2.

2.4 Simulation setup and testing framework

For the simulations used in this study we have used the
fully integrated aero-elastic software tool FEDEM Wind-
power (Fedem Technology, 2016). Our model is comprised
of the NREL 5-MW turbine (Jonkman et al., 2009) sit-
ting atop the OC3 monopile support structure (Jonkman and
Musial, 2010). The structural model was built using three-
dimensional Euler–Bernoulli beam elements connected by
nodes, one at each end of the elements. At each node there
are 6 degrees of freedom and the internal forces and mo-
ments can be automatically estimated and exported for fur-
ther post-processing. The monopile model was clamped at
the seabed. The external wind loads were estimated from
turbulent wind field time series given as input. The wave
loads were calculated within the software itself by explicit
generation of waves from a JONSWAP spectrum according
to specified wave parameters and using the Morison equa-
tion with drag and added mass coefficients equal to 1.0. Ma-
rine growth was included in the model, but current was not.
The load cases used in the study have been derived from the
Ijmuiden Shallow Water Site wind and wave data reported
by Fischer et al. (2010), giving probabilities of occurrence
for different wind speeds, sea state parameters and wind and
wave misalignment. The selected environmental states rep-
resent wind speeds between 4 and 24 m s−1 with bin sizes of
2 m s−1 (giving 11 different speeds) with a given turbulence
intensity for each wind speed, significant wave height and
peak period values depending on wind speed (between 21
and 42 different realizations for each speed) and incoming
wave directions varying between 0 and 330◦ in steps of 30◦

(giving a total of 12 directions for each sea state and wind
speed). In total, 3647 load cases were used. One simulation
of length 10 min (after removing initial transient data) was
used for each load case, including different random seeds
for each realization of wind and wave input. To make the
study more tractable, only one random seed per 10 min sim-
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Figure 3. Normalized severity per load case at the tower bottom, with load cases separated into different wind speed bins, with the 25 most
severe load cases specially marked (a) and the size of the total sampling set as a function of the number of load cases included from each of
the three locations (b).

ulation was used, rather than the six seeds (or alternately us-
ing a single 60 min simulation) usually required by standards.
However, the reason for this requirement is that the fatigue
damage per load case becomes more stable, i.e., less subject
to statistical fluctuations, when additional seeds (or simula-
tion time) are added. Hence, if the method can be shown to
work for fatigue damage values calculated based on a single
10 min simulation per load case, the method would certainly
also work when using six random seeds or more. In order
to test the method, three different locations along the height
of the support structure, thought to be representative of dif-
ferent response behaviors, were selected. These include the
tower top, the tower bottom and the mudline. A drawing of
the model, which includes identification of the selected loca-
tions, is shown in Fig. 1.

As noted previously, one of the main motivations for this
study has been applications to design optimization. Hence,
we have found it pertinent to test our method in a setting that
would resemble situations likely to be encountered during an
optimization loop. Starting with an initial support structure
design on which the method is trained, how well would the
method perform in predicting the fatigue damage of the mod-
ified designs encountered during the optimization? In other
words, we want to see how the method performs for designs
that correspond to configurations that might represent inter-
mediate steps, or even something close to a solution, of a
design optimization problem. This prompts a few different
strategies for how to obtain these modified designs. First of
all, the type of optimization framework we want to inves-
tigate here is mass (or weight) optimization. In this frame-
work, the diameters and thicknesses of various elements are
changed until the design is as light as possible, while satis-
fying certain constraints on structural performance. To see
how the method would perform during an optimization pro-
cedure of this type, we chose designs for which the element
diameters and thicknesses had been scaled either up or down

Table 1. The modified designs used in this study, with names and
how they have been modified (scaled).

Design name Design description

MD5 Element sizes scaled down by 5 %
MI5 Element sizes scaled up by 5 %
MR5 Element sizes randomly scaled up or down by

5 %
MD10 Element sizes scaled down by 10 %
MI10 Element sizes scaled up by 10 %
MR10 Element sizes randomly scaled up or down by

10 %
MRU10 Element sizes randomly scaled up or down by

up to 10 %, using a uniform probability distri-
bution

compared to an original design. To represent different types
of scenarios, the scaling was done both systematically across
the entire structure and randomly from element to element.
For each of these strategies and for two different magnitudes
of scaling, the elements of the structure were scaled once
according to the given strategy, and a new design was thus
obtained. In total, seven new designs were generated. Their
names (for easy reference later) and quick summaries of how
each design was scaled are given in Table 1.

3 Results

As an initial point of entry, we may ask which of the load
cases are in fact the most severe for the base design and hence
which ones will be sampled by the method. From the distri-
bution shown in Fig. 3a, it is clear that the most severe load
cases are clustered among just a few wind speeds. In partic-
ular, these speeds are (in order of which speed has the high-
est number of severe load cases) 12, 14, 16 and 10 m s−1.
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Figure 4. Relative errors, δ, of fatigue estimates for models MD5 (a), MI5 (b), MD10 (c) and MI10 (d).

Though less clear from the plot, these load cases otherwise
represent the wind and wave misalignment angles and sea
state parameter values with the highest probability of occur-
rence. In other words, while the severity of the wind speeds
is a result of a balance between incurred fatigue damage
and probability of occurrence (at the particular site used in
this study, 6 m s−1 has the highest probability of occurrence
among the wind speeds), the severity of particular wind and
wave misalignment angles and sea state parameter values
within a given wind speed bin is dominated by the probability
of occurrence. The analysis here is based on data taken from
the tower bottom, but completely analogous conclusions can
be drawn from the two other locations.

For each support structure design listed in Table 1 and the
unaltered base design, a full fatigue analysis was performed
(that is, not just for the load cases selected by the method) in
order to be able to quantify the performance of the method.
Specifically, the performance of the method has been quanti-
fied in a way similar to Eq. (3), now using the relative differ-
ence, δ, of the estimate and the true value for the total fatigue
damage of each design:

δ = 1−
D̂new

tot
Dnew

tot
. (9)

One concern might be that there are large differences in the
order of the severity for the load cases in each of the three

locations. This would in principle lead to sampling sets that
are very large compared to the number of load cases selected
per location. However, our results indicate that this is not the
case. A plot of the size of the total sampling set as a func-
tion of the number of load cases selected from each location
is shown in Fig. 3b. It is reasonably linear, varying between
n= 7 for k = 5 and n= 181 for k = 150. Hence, as an ap-
proximation, k can be said to be fairly close to the actual
number of sampled load cases, at least for smaller sample
sizes. Finally, for the sake of not showing data that yield little
additional insight, the results shown below are in each case
taken from a single location only. Specifically, for each de-
sign, the location with the maximum error was chosen to rep-
resent the behavior of all three locations within a given plot.
In practice, the chosen location is usually either the tower
bottom or the mudline, since the behavior at the tower top
seems generally more favorable.

3.1 Uniformly scaled designs

In Fig. 4, the relative errors, δ, for various sampling set sizes,
n, are shown for the four uniformly scaled designs (MD5,
MI5, MD10, MI10). Except for in the case of MI10, the esti-
mates fairly quickly converge to a level of roughly 2 % error
or less. For MD5 and MI5 this level of accuracy requires 20–
30 samples (a reduction in the load case set by more than
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Figure 5. Relative errors, δ, of fatigue estimates for larger sets of load cases: models MD5 (a), MI5 (b), MD10 (c) and MI10 (d).

a factor of 100), whereas for MD10 it takes about 50 sam-
ples to reach this level (though at 30 samples the error is no
more than 3 %). For MI10, the convergence is slower and the
error is generally a bit higher. In this case, the error level
is at around 6 % or less after 30 samples, goes below 5 %
at around 100 samples and then slowly tends toward 4 % or
less for the larger samples sizes. The maximum error encoun-
tered is at about 13 % for MI10 and is otherwise less than
10 % for the other designs. In other words, for the first three
designs, errors of about 4 %–8.5 % are attainable using only
seven load cases. We observe that the method seems to con-
sistently overpredict the fatigue damage (giving negative er-
rors; see Eq. 9) when the design has been consistently scaled
down and underpredicts (giving positive errors) when the de-
sign has been scaled up. Inspecting Eq. (5) we may surmise
that this means that for downscaled designs the proportion
of the fatigue damage in the kth partial sum has increased
compared to the base design, whereas for the upscaled de-
signs this proportion has decreased. The overall convergence
is not quite smooth, presenting some occasional jumps in the
estimation error. These jumps are ultimately quite small (usu-
ally at no more than a single percentage point) and are likely
signs of small instabilities in the method for reduced sample
sizes. In these cases, the sudden inclusion of certain addi-
tional load cases (with the effect of either improving or de-
creasing performance) can have a visible effect on the over-

all estimate. As for why MI10 seems to under-perform when
compared to the others, this is likely because the changes to
the global eigenfrequency induced by scaling all elements by
10 % can lead to dynamic amplification for lower wind speed
load cases when the frequency increases (corresponding to
the structure being scaled up). In this particular situation,
there is a significant shift towards the 3P frequency of the
turbine, defined as the rotation speed-dependent frequency
at which any of the three blades passes by a fixed point, as
seen from the Campbell diagram of the NREL 5-MW turbine
(Jonkman and Jonkman, 2016). The result is a significant in-
crease in the severity of lower wind speed load cases, which
means that the error in including only the most severe load
cases in the fatigue estimation changes more drastically for
this design. This in turn makes the method less accurate than
for the other designs, for which the changes in fatigue dam-
age are more uniformly distributed among the load cases.

In Fig. 5 the same results are shown for some selected
larger sets of load cases, also including some smaller sets of
load cases for reference. The accuracy of the method keeps
increasing as the number of load cases used increases, but the
gain in accuracy for each additional load case (as indicated
by the slope of the curve) decreases drastically after a certain
point. After 183 load cases, corresponding to a reduction of
the number of load cases by a factor of 20 and correspond-
ing to the smallest error shown in Fig. 4, the benefit is fairly

www.wind-energ-sci.net/3/805/2018/ Wind Energ. Sci., 3, 805–818, 2018



812 L. E. S. Stieng and M. Muskulus: Reducing load cases for fatigue assessment using a simple sampling method

20 40 60 80 100 120 140 160 180

Sampling set size (n)

0

5×10−3

10−2

1.5×10−2

2×10−2

2.5×10−2

3×10−2

R
e
la

ti
v
e
 e

rr
o
r 

(δ
)

MR5
Estimates
True value

20 40 60 80 100 120 140 160 180

Sampling set size (n)

−4×10−2

−3×10−2

−2×10−2

−1×10−2

0

10−2

R
e
la

ti
v
e
 e

rr
o
r 

(δ
)

MR10
Estimates
True value

20 40 60 80 100 120 140 160 180

Sampling set size (n)

0

5×10−3

10−2

1.5×10−2

2×10−2

2.5×10−2

R
e
la

ti
v
e
 e

rr
o
r 

(δ
)

MRU10
Estimates
True value

Figure 6. Relative errors, δ, of fatigue estimates for models MR5 (a), MR10 (b) and MRU10 (c).

minor. While a further reduction in error by 1 order of mag-
nitude can be achieved through the use of 730 or 911 load
cases, the error at 183 load cases is already small enough
that the cost in additional computational effort is likely pro-
hibitive. The exception is again model MI10, for which the
convergence is much slower and the errors generally higher.
Going from 183 load cases to 730 (a reduction factor of 5
compared to the full set of load cases) takes the error from
around 4 % to around 1.5 %.

3.2 Randomly scaled designs

The relative errors, δ, in the estimates for the randomly mod-
ified designs (MR5, MR10 and MRU10) are shown in Fig. 6.
These all generally show improved performance compared to
the uniformly modified designs. Except for the smallest sam-
ple estimate for each model, every estimate has an error of
less than 2 %. For MR5 and MRU10, errors of no more than
1 % occur with sample sizes of no more than 35–40 (a re-
duction of the load case set by a factor of about 100). MR10
crosses this same error threshold at around 50–60 samples.
There is in general a reasonable convergence behavior for all
three models. MR10 exhibits marginally higher errors than
the two other models. This could be because element scaling
of ±10 % could lead to a higher degree of overall uniform
changes than in the other cases. Since each element in the
structure has a different size, one would expect a certain bias

towards either overall decrease or increase when the scaling
is done randomly from a uniform distribution. The larger the
scaling, the larger the resulting bias. In fact, inspecting the
changes to the overall mass for these models, MR10 has a
bias twice as large as MR5. However, this bias does not con-
sistently lead to over- or underprediction of the fatigue dam-
age like it did for the uniformly scaled models. While the
results shown here make it look like the behavior is the same
as before, this is not the case for all the points in the structure.

In Fig. 7 results for larger number of load cases for the
randomized models are shown. As was similarly noted for
Fig. 5, the benefit of increasing the number of load cases be-
yond what was shown in Fig. 6 is small when considering
the speed of convergence of the error and its overall order of
magnitude at that point.

3.3 Real behavior of εk

When we initially defined the method, it was based on a ba-
sic assumption: that the relative error when using only the
k most severe load cases would remain approximately con-
stant under modification of the support structure design. The
results shown so far indicate that this is indeed the case, but
this should be verified explicitly in order to have confidence
in the theoretical basis of the utilized methodology. To inves-
tigate this, we have calculated the absolute value of the rela-
tive difference between the value of εk (as defined in Eq. 3)
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Figure 7. Relative errors, δ, of fatigue estimates for larger sets of load cases: models MR5 (a), MR10 (b) and MRU10 (c).

for the base design, εbase
k , and the actual value of εk for each

modified design, εnew
k . This is shown, together with the re-

spective values of εk as heatmaps in Fig. 8, for which the
color of each cell indicates the absolute value of the rela-
tive difference. There is generally very good agreement be-
tween the values of εk for each design, though again there is
some more deviation for design MI10. This is presumably for
reasons similar to why the estimation method had larger er-
rors in this case. The attentive reader might notice that unlike
above, the relative differences do not decrease for increasing
values of k. If anything they seems to either fluctuate or in-
crease. However, as can be seen by inspecting the numerical
values, the absolute differences do decrease. Hence, while
the relative differences increase, the actual numerical values
of these differences become quite small and therefore less
relevant in practice. Furthermore, it is not hard to show from
Eqs. (3) and (5) that

∣∣∣∣∣1− εnew
k

εbase
k

∣∣∣∣∣=Dbase
tot ·

∣∣∣∣∣1− Dnew
tot

D̂new
tot

∣∣∣∣∣
Dbase

tot −D
base
k

, (10)

where Dtot refers to the real total fatigue damage, Dk is the
kth partial sum of severity products as defined in Eq. (2),
the ˆ refers to an estimate made using the method introduced
in this study and the superscripts “base” and “new” refer to
the initial design and any modification of this design, respec-

tively, as above. Both the numerator and the denominator
tend to zero as k tends to the total number of load cases,
so the actual behavior depends on the convergence of the
method (controlling the numerator) compared to the propor-
tion of the total fatigue damage in a given partial sum Dk
(controlling the denominator). Essentially, one can roughly
compare the convergence shown in Figs. 5 and 7 to that
shown in Fig. 1b. In other words, since the denominator con-
verges faster than the numerator, the relative difference in
Eq. (10) will tend to increase for increasing values of k. A
practical consequence of this, which was also noted previ-
ously, is that the benefit of increasing k, i.e., including more
load cases in the estimate, becomes very small after a cer-
tain point. Additionally, since the convergence of the fatigue
estimates for MI10 was particularly slow, the behavior seen
in the heatmaps for this design at both the tower bottom and
the mudline (a significant increase for increasing k) seems
reasonable.

4 Further discussion

4.1 Viability of the method

As seen above, the proposed method is able to predict the
total fatigue damage of the modified designs with a high
degree of accuracy. With the exception of design MI10, all
estimates eventually converge towards errors of 2 % or less
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Figure 8. Values of εk for the base design and each additional design, for selected values of k. The colors of each cell are set by the magnitude
of the relative difference between the base design value and the value in the given cell: at the tower bottom (a), the tower top (b) and the
mudline (c).

(in some cases much less) and with drastic reductions in the
load case set (factors of 50–200 in most cases). Even for the
case of MI10, for which the error is about 4 %–6 % for all
but the smallest sample sizes, this result is quite convinc-
ing in terms of the level of accuracy that can be expected
for such an approach given the extent of the modifications to
the structural models. In fact, higher accuracy than that re-
ported for design MI10 might not even be required. A 5 %
error in the prediction of total fatigue damage represents a
change in the lifetime of a support structure by 1 year if the
real expected lifetime is 20 years. This is certainly within
the range of other types of errors one might expect in terms
of uncertainties in the modeling or the environmental con-
ditions, both of which are usually accounted for by multi-
plying the total fatigue damage by partial safety factors of
2–3. In such a framework, errors on the order of 10 % might
even be acceptable, in which case a very large load case re-
duction is possible for all models. Additionally, there seems
to be a clear connection between consistent changes to the
size (mass) of the structural elements and whether the es-

timates for the fatigue over- or underpredict the true value.
In fact, the two properties are directly correlated. Though in
practice the consequence of underpredicted fatigue damage
is much more severe than overpredicted fatigue damage, the
fact that the correlation is as visible as indicated in Figs. 4 and
5 means that it is possible to correct for this effect. Keeping
track of systematic changes in the structure hence makes it
possible to account for the errors in the estimates in corre-
spondingly systematic ways. For instance, if the estimate is
known to be an overprediction, then it may be deemed “safe”
in a conservative sense, and in the opposite case one might
want to add in a small safety factor. However, the results for
the randomly modified designs indicate that overall changes
to the structural mass are not enough to account for this be-
havior. Correspondence between the overall changes and the
changes to the elements for which the fatigue damage is cal-
culated is also important. Hence, some care must be taken
when attempting to correct for consistent over- or underpre-
diction of the fatigue damage.

Wind Energ. Sci., 3, 805–818, 2018 www.wind-energ-sci.net/3/805/2018/



L. E. S. Stieng and M. Muskulus: Reducing load cases for fatigue assessment using a simple sampling method 815

One of the reasons the method is as efficient as it is when
analyzing more than one location in the structure is the be-
havior seen in Fig. 3b: that the number of load cases in the
sampling set does not increase significantly when consider-
ing all three locations. Since the three locations chosen are so
far away from each other, located at each end of the support
structure and around the middle of the structure, respectively,
we do not expect that the addition of even more locations
should make a significant difference. However, we do note
that in the worst case scenario for which there is no over-
lap between the set of the k most severe load cases at each
of the l locations with that of any of the other locations, the
size of the sampling set would be k · l, drastically reducing
the efficiency of the method. Though our results indicate that
anything close to this behavior is unlikely, at least for any
monopile support structure, some attention should be paid to
ensure similar performance if applying the method to other
types of support structures.

The methodology has been shown to be quite effective for
a range of different support structure designs, but there is one
limitation that should be noted: the presented results were
all obtained while using the same turbine model. The turbine
model will have a very important impact on global dynamics,
e.g., 1P and 3P frequencies and the total system mass, damp-
ing and stiffness, and it is hence likely that changing turbines
would induce changes in the fatigue distribution that could
be challenging for the method to handle, for example, if se-
vere resonance effects are encountered. On the other hand,
a support structure design is usually constructed with a spe-
cific turbine model in mind and the results have shown that
the method can handle significant changes to global dynam-
ics to a certain extent (as seen for model MI10 in Fig. 4).
Furthermore, severe resonance is hardly desirable in any case
and such designs would likely be ruled out by other means.
Hence, while we recommend that the method be trained for
use with only a single turbine model at a time, as long as the
impact on global dynamics is not too significant, the method
could still be viable for related turbine models within some-
what relaxed error criteria.

Another possible limitation, at least for some applications
of the method, is that the results here have been derived using
only normal stress. On the one hand, this is standard practice
in the industry and therefore also for many research applica-
tions. Furthermore, the methodology has for some time been
seen to give fairly accurate (often conservative) fatigue esti-
mates for applications in the oil and gas industry (see, e.g.,
Lotsberg, 2016). On the other hand, there are certainly cases
for which multiaxial stress is important to consider. How-
ever, the procedure required to account for this is quite in-
volved. Calculating multiaxial stress requires the use of shell
elements rather than beam elements. This makes the model-
ing and time-domain analysis much more complicated than
what has been done in this study. Additionally, the estimation
of fatigue damage from multiaxial stress is also more compli-
cated and less standardized, in particular the cycle counting

(see e.g., Stephens, 2001). Hence, we consider the effect of
multiaxial stress to be outside the scope of this study and
would therefore advise caution when using the method for
such applications.

4.2 Applications to design optimization and
preliminary design

One of the most discernible outcomes of the testing frame-
work is the indication that the method works best for designs
that have been randomly modified, as seen when comparing
Fig. 6 with Fig. 4. As noted previously, and especially evident
for design MI10, systematic changes in the structure will to a
larger extent cause changes in global dynamics that decrease
the performance of the method. Specifically, the method re-
lies on proportional changes in the fatigue damage across
all load cases. As we have seen, this property is sensitive
to, e.g., changes in eigenfrequency. Random changes to the
structure have a much smaller impact on the eigenfrequen-
cies and other global phenomena that are expected to skew
the fatigue damage distribution across all load cases. Since
random changes more closely resemble the configurations
most relevant for design optimization, the method seems very
promising for this application. While it can occur that large
systematic changes result from an optimization loop, e.g., if
the original structure is significantly over- or under-designed
with respect to fatigue resistance, most of the computational
work in most cases will occur in stages for which the overall
changes to the structure are small. One can certainly also en-
vision applications of this method to preliminary design, for
which perhaps a larger extent of the work is in rough scal-
ing of the design. In most cases, the errors reported here are
also small enough for these design situations. Even the larger
errors reported (in the case of 10 % up-scaling) might be ac-
ceptable in the early phases of design.

The various design configurations that were used to test the
method were chosen in an attempt to cover as many scenar-
ios of interest as possible. However, not all types of scenarios
could be accommodated and hence there are some configu-
rations about which we cannot make strong conclusions. The
most obvious of these is the fact that we have scaled both di-
ameters and thicknesses by the same factor. Even for the ran-
domized designs, the scale factor was only randomly sam-
pled on an element-wise basis. A situation in which either
diameters are increased and thicknesses decreased or vice
versa could easily occur in practice during design optimiza-
tion. On the other hand, based on our result, it seems that the
most significant factor in determining the effectiveness of the
method is whether or not there are global changes in eigen-
frequency. Hence, though we are unable to explicitly confirm
this based on our results, we expect that even in configura-
tions like that described above (or other potential untested
ones), the method should be viable under the same criteria:
as long as there are no global changes that induce nonpropor-
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tional changes in fatigue damage for only a certain subset of
load cases, the method performs well.

4.3 Comparison with previous work

Comparing the approach taken in this study with most pre-
vious work on load case reduction, in particular the studies
cited in the introduction of this paper, one of the main ad-
vantages is the simplicity of the method. Because most of the
other studies (e.g., Häfele et al., 2018, and Müller and Cheng,
2018) have slightly different aims, i.e., reducing the number
of load cases for single design situations, it is not necessar-
ily sensible to compare the achieved accuracy for a given
amount of load case reduction directly (though if one were
to do so, it would be a reasonably favorable comparison).
Something similar could be argued in terms of the methodol-
ogy, that such a simple approach is only possible in the cur-
rent setting, but we would still stress the overall simplicity
as a major reason why this method would be useful. Espe-
cially the avoidance of more advanced statistical and com-
putational procedures (like in Müller and Cheng, 2018, and
Kim et al., 2018) will likely make this approach more appeal-
ing for industrial applications. There is also little reliance on
software, requiring only the ability to sort the fatigue data and
then create sampling sets for which duplicate load cases have
been removed. Furthermore, we note that since the method
is completely deterministic (as opposed to many sampling-
based approaches), there is little or no uncertainty in the re-
sults reported here. In other words, while the specific results
(say whether k samples gives an error of exactly x%) are tied
to specific background details of the study (the models used,
the load case data, etc.), if the method gives a certain accu-
racy for a certain set of data, it will always give this accuracy
for those data.

4.4 Possible continuations

The simplicity of the method might also suggest the pos-
sibility of improvements, at least in some of the scenarios
shown. While some attempts at applying sequence accelera-
tion techniques were made, with little or no positive effects
(hence why this was not shown), it is certainly possible that
such approaches, or similar ideas, might decrease the error
of the estimates or at least decrease the number of samples
needed to reach a certain level. We additionally note that fur-
ther ideas of how to apply the method for specific applica-
tions could also be developed. For example, since systematic
design modifications of a certain size can impact the accu-
racy of the method, as seen especially for design MI10 in
Fig. 4, it would be possible to apply the method in an adap-
tive way for, e.g., optimization. One could argue that such
adaptive strategies are not necessary, since it is often possible
to avoid such inaccuracies by enforcing eigenfrequency con-
straints. However, if it is known a priori that certain changes
in the eigenfrequencies can decrease the performance of the

method due to dynamic amplification for some wind speeds,
then one possible adaptive strategy would be to implement a
check for this situation which when triggered would have an
effect on how the method was utilized. If such large global
changes to the structure were to be detected, one could, for
example, either increase the number of samples used or per-
haps require a new full analysis to update the data used to
train the method. In other words, such an adaptive strategy
would define a kind of safe region of design configurations
in which the method could be applied very accurately (some-
what analogous to trust region methods in mathematical op-
timization; see, e.g., Nocedal and Wright, 2006) and would
change the way the method was applied whenever the de-
sign was no longer in this region. One can also envision other
types of applications, for which something other than (or at
least not exclusively) the design is modified, for example,
probabilistic design/reliability analysis, in which the statisti-
cal behavior under the variation of a set of input parameters
is investigated. While this would have to be verified in a sep-
arate, future study, one can envision the method being em-
ployed in a similar fashion as here: training the method on a
base parameter configuration and then reducing the number
of load cases needed for fatigue assessment when the param-
eters are allowed to vary.

One limitation of the results obtained in this study is the
fact that only operational loading conditions (power produc-
tion) were analyzed. Since many other conditions are rel-
evant for design, it would be pertinent to ask whether the
method could be extended to these cases as well. Based on
the results obtained here, it seems clear that the effective-
ness of the method in these other scenarios would depend
on whether or not the fatigue damage also changes propor-
tionally in these cases when the design is modified. If this
property still holds, then most likely the error level when us-
ing only the k most severe load cases would still be approx-
imately invariant and the method should work fairly well. If
this property does not hold, the accuracy of the method could
be significantly reduced. Investigating the performance of the
method for other types of load cases would be an interesting
continuation of the present study.

5 Conclusions and outlook

In this study we have presented a simple approach for reduc-
ing the number of load cases required for accurate fatigue
assessment of an offshore wind turbine support structure un-
der operational conditions. By making a simple assumption
about the relative error incurred by only using the most se-
vere load cases in the total fatigue sum, specifically that this
error remains approximately constant as the design is modi-
fied, we are able to make accurate predictions for the fatigue
damage of a set of seven modified designs. One key part of
the method is that the ordering of the severity of each load
case is slightly different from location to location. Hence, we
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have used the union of the reduced sets at each location to
form a total sampling set that is used in the method. While
slightly increasing the number of samples needed, this has
a significant impact on the overall performance in terms of
balancing the accuracy at each location in the structure. The
overall results of the method are very promising, achieving
errors of a few percent or less for sample sizes of 15–60,
depending on how the designs have been modified. Only in
one case, for which the increased dimensions of the design
caused significant changes in the eigenfrequency and subse-
quent dynamic amplification for some wind speeds, were the
errors a bit higher, though they were still less than 6 % in
this case for comparable sample sizes. Considering that even
a sample size of 100 means a reduction of the load case set
(initially numbering 3647) of about a factor of 36, the method
generally allows for very large savings in computational ef-
fort for fatigue assessment. The method is particularly ef-
fective for designs for which modifications have been made
randomly from element to element, achieving errors of less
than 1 % for reasonably small sample sizes. This, in particu-
lar, though also the overall performance, makes the method
useful for applications to design optimization. The fact that
the method seems to consistently under- or overpredict the
fatigue damage based on whether the design has been con-
sistently scaled up or down even makes it possible in some
situations to further correct the estimates in order to ensure
that the method is always conservative.

One clear advantage compared to state-of-the-art ap-
proaches for load case reduction, aside from the overall ac-
curacy, is the simplicity of the method. Whereas the most
common approaches rely on various types of sampling tech-
niques that require some amount of statistical and computa-
tional complexity, our approach relies entirely on sorting, the
union of small sets (combining and then discarding dupli-
cates) and basic arithmetic. Aside from the overall attractive-
ness of such simplicity, this makes the method more useful
for applications in industry for which complex methodolo-
gies can lead to unacceptable bottlenecks in the work flow.
The simplicity of the method presented in this study (on both
a conceptual and implementation level) could also be attrac-
tive for other scientists, who may not be as comfortable with
advanced sampling methods.

While the method as is can readily be applied in many set-
tings, some future developments can be envisioned. For ex-
ample, one could study possibilities for improving the con-
vergence of the estimates or investigate specific ways of
applying the method to design optimization that adapts to
regimes for which the estimates are expected to lose ac-
curacy. A future study might also look into whether, or to
what extent, the method could be extended for use within
a probabilistic design or reliability framework. In practice,
this would mean seeing whether the fundamental assumption
of the method, the invariance of the relative fatigue estima-
tion error when sampling only the most severe load cases,
also holds when parameters other than those related to the

structural dimensions are altered. Finally, the performances
of the method for other support structure types (jackets, float-
ing support structures, etc.), other turbine models and other
loading scenarios (other than power production) are all open
questions for future work.
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