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Abstract. The objective of this paper is to compare field data from a scanning lidar mounted on a turbine to
control-oriented wind turbine wake models. The measurements were taken from the turbine nacelle looking
downstream at the turbine wake. This field campaign was used to validate control-oriented tools used for wind
plant control and optimization. The National Wind Technology Center in Golden, CO, conducted a demon-
stration of wake steering on a utility-scale turbine. In this campaign, the turbine was operated at various yaw
misalignment set points, while a lidar mounted on the nacelle scanned five downstream distances. Primarily, this
paper examines measurements taken at 2.35 diameters downstream of the turbine. The lidar measurements were
combined with turbine data and measurements of the inflow made by a highly instrumented meteorological mast
on-site. This paper presents a quantitative analysis of the lidar data compared to the control-oriented wake mod-
els used under different atmospheric conditions and turbine operation. These results show that good agreement
is obtained between the lidar data and the models under these different conditions.

1 Introduction

Wind plant control can be used to maximize the power pro-
duction of a wind plant, reduce structural loads to increase
the lifetime of turbines in a wind plant, and better integrate
wind energy into the energy market (Johnson and Thomas,
2009; Boersma et al., 2017). Typically, wind turbines in a
wind plant operate individually to maximize their own per-
formance regardless of the impact of aerodynamic interac-
tions on neighboring turbines. There is the potential to in-
crease power and reduce overall structural loads by prop-
erly coordinating turbine control actions. Two common wind
plant control strategies in the literature include wake steer-
ing and axial induction control. There has been a signifi-
cant amount work done on wake steering, showing that this
method has the most potential to increase power production
(Annoni et al., 2015; Gebraad et al., 2016). Wake steering
typically uses the yaw misalignment of the turbines to redi-

rect the wake around downstream turbines. Various compu-
tational fluid dynamics simulations and wind tunnel experi-
ments have shown that this method can increase power with-
out substantially increasing turbine loads (Gebraad et al.,
2016; Fleming et al., 2014; Jiménez et al., 2010). Yaw-based
wake steering control has also been used in optimization
studies of turbine layouts to improve the annual energy pro-
duction of a wind plant (Fleming et al., 2016; Thomas et al.,
2015; Stanley et al., 2017). Recent computational fluid dy-
namics (CFD) studies have determined that the shape of the
wake and atmospheric stability are significant factors in wake
steering (Vollmer et al., 2016).

Control-oriented models are essential for developing and
deploying wake steering strategies in wind farms. In partic-
ular, control-oriented models can be used in an open loop
whereby a lookup table is generated a priori and used in
the field. Alternatively, due to its computational efficiency,
a control-oriented model can be used to perform online op-
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Figure 1. The FLORIS tool set is comprised of three main sections: (1) physics, (2) optimization, and (3) data.

timization with feedback to adjust to changing conditions in
the atmosphere or wind farm, e.g., turbine down for main-
tenance. Lastly, control-oriented models are also useful for
large-scale analysis and assessing the impact of controls and
optimization on annual energy production. Overall, these
models are critical to the success of wind farm controllers
and, as a result, full-scale validation of these control-oriented
models is essential and a high priority in this area of research.

A full-scale demonstration of wake steering is necessary
to understand the benefits of wake steering and to validate
the benefits predicted by simulations. Wind tunnel tests have
been conducted that show encouraging results that match
simulation results based on wake redirection (Campagnolo
et al., 2016; Schottler et al., 2016). In addition, there are pre-
liminary results of the benefits of wake steering from an off-
shore commercial wind plant (Fleming et al., 2017b). The
National Wind Technology Center also conducted a detailed
full-scale demonstration in which a utility-scale turbine op-
erated at various yaw offsets while the wake was measured
using a scanning lidar. In this paper, the lidar data collected
from this campaign are used to validate control-oriented tools
that are used for wind plant control. The main contributions
of this work include a review of control-oriented models used
for wake steering as well as a quantitative analysis of these
models with respect to full-scale lidar results. The results
between the wake models and lidar data show good agree-
ment under various atmospheric and turbine operating con-
ditions, as shown in Sect. 4. This is an encouraging result that
provides confidence in previously reported benefits of wake
steering. The wind plant control tools, including wake mod-

els, turbine models, and lidar models, used in wind plant con-
trols are introduced in Sect. 2. The field campaign is briefly
introduced in Sect. 3. Finally, Sect. 5 provides conclusions
and discusses future work.

2 Modeling

FLORIS is defined as a set of control and optimization tools
used for wind farm control developed at the National Re-
newable Energy Laboratory and TU Delft; see Fig. 1. This
tool models the turbine interactions in a wind plant and can
be used to perform real-time optimizations to improve wind
plant performance and integrate SCADA data collected at
wind plants. This section focuses on the wake models, tur-
bine models, and the lidar module used in this paper.

2.1 Wake model

The wake models available in FLORIS include the Jensen
model (Jensen, 1983), the FLORIS wake model (Gebraad
et al., 2016), and the self-similar wake model with contribu-
tions from Bastankhah and Porté-Agel (2014, 2016), Abkar
and Porté-Agel (2015), Niayifar and Porté-Agel (2015), and
Dilip and Porté-Agel (2017). Although only these three mod-
els are addressed, any wake model can be substituted into this
framework. This paper also demonstrates the modular frame-
work for FLORIS and will address the benefits of adding
complexity to wake models used to characterize the aerody-
namic interactions between turbines.
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2.1.1 Jensen model

The Jensen model has been used for numerous studies on
wind plant controls (Jensen, 1983; Johnson et al., 2006; Katic
et al., 1986). This model has a low computational cost due
to its simplicity and is based on assumptions that there is a
steady inflow, linear wake expansion, and the velocity in the
wake is uniform at a cross section downstream. The turbine
is modeled as an actuator disk with uniform axial loading in
a steady uniform flow.

Consider the example of a turbine operating in free-stream
velocity, U∞. The diameter of the turbine rotor plane is de-
noted by D and the turbine is assumed to be operating at an
induction factor, a. A cylindrical coordinate system is placed
at the rotor hub of the first turbine with the streamwise and
radial distances denoted by x and r , respectively. The veloc-
ity profile at a location (x,r) is computed as

u(x,r,a)= U∞(1− δu(x,r,a)), (1)

where the velocity deficit, δu, is given by

δu=

2a
(

D
D+2kx

)2
, if r ≤ D+2kx

2 .

0, otherwise.
(2)

In this model, the velocity, u, is defined in the axial (x) di-
rection and the remaining velocity components are neglected.
The wake is parameterized by a tuneable nondimensional
wake decay constant, k. Typical values of k range from 0.01
to 0.5 depending on ambient turbulence, topographical ef-
fects, and turbine operation. For example, if the ambient tur-
bulence is high, then the wakes within the wind farm will
recover faster due to the mixing of the wake. As a result, the
k value will be higher, indicating that the wake will recover
faster. There is no standard rule for how k varies with turbu-
lence intensity.

Limitations

The Park model can be used to compute the power produc-
tion and velocity deficit of a turbine array. This is useful in
determining the operating conditions of a wind farm to maxi-
mize power. However, it has no notion of added turbulence in
the downstream wake due to varying turbine operation. The
assumptions are based on a steady inflow acting on an actua-
tor disk with uniform axial loading and as noted in Frandsen
et al. (2006); the Jensen model does not conserve momen-
tum. Despite its limitations, the Jensen model can be com-
puted in fractions of a second and can provide some insight
into turbine interaction that can be used to understand the
results obtained from higher-fidelity models. In addition, if
uncertainty is included, the Jensen model performs well and
predicts wake interactions well under normal operating con-
ditions.

2.1.2 Multi-zone

The multi-zone model, developed in Gebraad and
Van Wingerden (2014), is a modification of the Jensen
model described in the previous section. Modifications were
made to better model the wake velocity profile and effects
of partial wake overlap, especially in yawed conditions. The
multi-zone model defines three wake zones, q: (1) near-wake
zone, (2) far-wake zone, and (3) mixing-wake zone. The
effective velocity at the downstream turbine i is found by
combining the effects of each of the wake zones of the
upstream turbine j :

ui = U∞

1− 2

√√√√√∑
j

ajσ 3
q=1cj,q

Ximin

Aoverlap
j,i,q

Ai
,1

2
 , (3)

where Xi is the x location of turbine i, Aoverlap
j,i,q is the overlap

area of a wake zone, q of a turbine i with the rotor of turbine
j , and ci,q (x) is a coefficient that defines the recovery of a
zone q to the free-stream conditions.

ci,q (x)=
(

Di

Di + 2kemU,q (γi)[x−Xi]

)2

, (4)

where mU,q is defined as

mU,q (γi)=
MU,q

cos(aU + bUγi)
(5)

for q = 1,2,3 corresponding to the three wake overlap zones,
where aU and bU represents tuned model parameters, Di is
the rotor diameter of turbine i, γi is the yaw offset of tur-
bine i, and MU,q are tuned scaling factors that ensure that
the velocity in the outer zones of the wake will recover to the
free-stream conditions faster than the inner zone. The param-
eters of the model were tuned to match the results from high-
fidelity wake simulations (Gebraad et al., 2016). The most
influential parameter is ke because it defines both wake ex-
pansion and wake recovery. Additional details can be found
in Gebraad et al. (2016).

Limitations

The multi-zone model was developed, in comparison with
high-fidelity models, to characterize turbine interactions
when turbines were operating in partial wake or yawed con-
ditions. The multi-zone model is a computationally inexpen-
sive model that is suitable for control and optimization stud-
ies to improve wind plant performance. However, there are
13 free parameters that can be tuned in this model and the
tuning can be sensitive depending on the parameters chosen
to tune. Like the Jensen model, this model does not have any
sensitivity to turbulence intensity or added turbulence gener-
ated by an upstream turbine and does not explicitly conserve
momentum.
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2.1.3 Gaussian model

Lastly, a Gaussian model is incorporated in the overall
FLORIS wake modeling and control tools. This model was
introduced by several recent papers including Abkar and
Porté-Agel (2015), Bastankhah and Porté-Agel (2014, 2016),
Niayifar and Porté-Agel (2015), and Dilip and Porté-Agel
(2017). This model includes a Gaussian wake to describe the
velocity deficit, added turbulence based on turbine operation,
and atmospheric stability.

Velocity deficit

The velocity deficit of a wake is computed by assuming a
Gaussian wake, which is based on self-similarity theory of-
ten used in free shear flows, (Pope, 2000). An analytical ex-
pression for the three-dimensional velocity deficit behind a
turbine in the far wake can be derived from the simplified
Navier–Stokes equations as

u(x,y,z)
U∞

= 1−Ce−(y−δ)2/2σ 2
y e−(z−zh)2/2σ 2

z (6)

C = 1−

√
1−

(σy0σz0)M0

σyσz

M0 = C0(2−C0)

C0 = 1−
√

1−CT,

where C is the velocity deficit at the wake center, δ is the
wake deflection (see Sect. 2.2), zh is the hub height of the
turbine, σy defines the wake width in the y direction, and σz
defines the wake width in the z direction. Each of these pa-
rameters are defined with respect to turbine i; subscripts are
excluded for brevity. The subscript “0” refers to the initial
values at the start of the far wake, which is dependent on am-
bient turbulence intensity, I0, and the thrust coefficient, CT.
For additional details on near-wake calculations, the reader
is referred to Bastankhah and Porté-Agel (2016). Abkar and
Porté-Agel (2015) demonstrate that σy and σz grow at differ-
ent rates based on lateral wake meandering (y direction) and
vertical wake meandering (z direction). The velocity distri-
butions σz and σy are defined as

σz

d
= kz

(x− x0)
d

+
σz0

d
, where

σz0

d
=

1
2

√
uR

u∞+ u0
, (7)

σy

d
= ky

(x− x0)
d

+
σy0

d
, where

σy0

d
=
σz0

d
cosγ, (8)

where ky defines the wake expansion in the lateral direction
and kz defines the wake expansion in the vertical direction.
For this study, ky and kz are set to be equal and the wake
expands at the same rate in the lateral and vertical directions.
The wakes are combined using the traditional sum of squares
method (Katic et al., 1986), although alternate methods are
proposed in Niayifar and Porté-Agel (2015).

Atmospheric stability

This model also accounts for physical atmospheric quanti-
ties such as shear, veer, and changes in turbulence inten-
sity (Abkar and Porté-Agel, 2015; Niayifar and Porté-Agel,
2015). Shear, veer, and turbulence intensity measurements
are typically available in field measurements and will be used
to characterize atmospheric stability in this particular model.
It should be noted that these three parameters do not suffi-
ciently characterize atmospheric stability as defined in Stull
(2012). Other parameters such as vertical flux and tempera-
ture profiles are necessary to fully capture atmospheric sta-
bility.

This model is a three-dimensional wake model that in-
cludes shear by using the power log law of wind:

Uinit

U∞
=

(
z

zhub

)αs

, (9)

where αs is the shear coefficient and Uinit indicates the ini-
tial flow field. A high shear coefficient, αs > 0.2, is typi-
cally used for stable conditions and a low shear coefficient,
αs < 0.2, is typically used for unstable conditions (Stull,
2012).

This wake model also takes into account veer associated
with wind direction change across the rotor. A rotation factor
is added to the Gaussian wake (Eq. 6) such that

u(x,y,z)
Uinit

= 1−Ce−(a(y−δ)2
−2b(y−δ)(z−zhub)+c(z−zhub)2)

a =
cos2φ

2σ 2
y

+
sin2φ

2σ 2
z

b =−
sin2φ
4σ 2
y

+
sin2φ
4σ 2
z

c =
sin2φ

2σ 2
y

+
cos2φ

2σ 2
z

, (10)

where φ is the amount of veer across the rotor when this
equation represents a standard Gaussian rotation.

Lastly, turbulence intensity is accounted for in the model
by linking ambient turbulence intensity to wake expansion.
An empirical relationship is provided in Niayifar and Porté-
Agel (2015):

ky = 0.38371I + 0.003678, (11)

where I represents the turbulence intensity, and ka and kb are
tuning parameters where ka = 0.38371 and kb = 0.003678 in
Niayifar and Porté-Agel (2015). As stated previously, ky and
kz will be set equal in this study.

Added turbulence

This wake model also computes added turbulence generated
by turbine operation and ambient turbulence conditions. For
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example, if a turbine is operating at a higher thrust, this will
cause the wake to recover faster. Conversely, if a turbine is
operating at a lower thrust, this will cause the wake to re-
cover slower. Conventional linear flow models have a single
wake expansion parameter that does not change under var-
ious turbine operating conditions. Niayifar and Porté-Agel
(2015) provided a model that incorporated added turbulence
due to turbine operation:

I =

√√√√ N∑
j=0

(I+j )2+ I 2
0 , (12)

where N is the number of turbines influencing the down-
stream turbines, I0 is the ambient turbulence intensity, and
the added turbulence due to turbine i, I+i , is computed as

I+ = Aoverlap

(
0.8a0.73

i I 0.35
0 (x/Di)−0.32

)
, (13)

where I0 is the ambient turbulence intensity and a is the ax-
ial induction factor of the turbine, which can be defined in
terms of CT based on Burton et al. (2001) and Bastankhah
and Porté-Agel (2016):

a ≈
1

2cosγ

(
1−

√
1−CT cosγ

)
.

In Niayifar and Porté-Agel (2015), the number of turbines,
N , used to determine the added turbulence is N = 1. In this
formulation, N is determined based on a predefined distance
to the downstream turbine rather than only including the in-
fluence of one turbine. For example, this model considers
contributions to the added turbulence intensity from turbines
within 15D. This has been shown to be beneficial, especially
with closely spaced turbines. Studies have shown that the
added turbulence intensity has reached an equilibrium point
between two and three turbines downstream (Chamorro and
Porté-Agel, 2011).

Limitations

This wake model is an analytical model with approximations
made from the steady-state Navier–Stokes equations based
on free shear flows. In addition, unlike the previous two mod-
els, this model conserves momentum. However, it relies on
a linear wake expansion model and has six tuning parame-
ters based on empirical relationships for wake expansion and
turbulence intensity (Eqs. 11 and 13). The main benefits of
this model come from the ties to physical measurements in
the field such as shear, veer, and turbulence intensity and its
roots in free shear flow theory.

2.2 Wake deflection

The wake models defined above include wake deflection
models that approximate the amount of lateral movement

based on the yaw misalignment of the turbine. Two wake de-
flection models are defined in the FLORIS wind plant mod-
eling and control framework and are briefly described in this
section.

2.2.1 Jimenez model

An empirical formulation was presented in Jiménez et al.
(2010) and used in the multi-zone formulation (Gebraad
et al., 2016). When a turbine is yawed, it exerts a force on
the flow that causes the wake to deflect and deform in a par-
ticular direction. The angle at the wake centerline is defined
as

ξ (x)≈
ξ2

init
1+ 2kd

x
D

ξinit(a,γ )=
1
2

cos2γ sinγCT, (14)

where ξinit is the initial skew angle from the wake centerline
and kd is a tuneable deflection parameter. In Gebraad et al.
(2016), the wake deflection angle is integrated to determine
the amount of deflection, δ, achieved by yaw misalignment
in the spanwise (y) direction:

δ(x)=

x∫
0

tanξ (x)dx (15)

δ(x)≈
ξinit

(
15
(

2kdx
D
+ 1

)4
+ ξ2

init

)
30kd
D

(
2kdx
D
+ 1

)5 −
ξinitD

(
15+ ξ2

init
)

30kd
.

The deflection, δ, is achieved by integrating a second-order
Taylor series approximation as shown in Gebraad et al.
(2016).

2.2.2 Bastankhah model

In Bastankhah and Porté-Agel (2016), wake deflection due to
the yaw misalignment of turbines is defined by performing
a budget analysis on the Reynolds-averaged Navier–Stokes
equations. The wake deflection angle at the rotor is defined
by

θ ≈
0.3γ
cosγ

(
1−

√
1−CT cosγ

)
, (16)

and the initial wake deflection, δ0, is defined as

δ0 = x0 tanθ, (17)

where x0 is the length of the near wake as defined in Bas-
tankhah and Porté-Agel (2016). The total deflection of the
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wake due to wake steering is defined as

δ = δ0+
θE0

5.2

√
σy0σz0

kykzM0

ln

 (1.6+
√
M0)

(
1.6
√

σyσz
σy0σz0

−
√
M0

)
(1.6−

√
M0)

(
1.6
√

σyσz
σy0σz0

+
√
M0

)
 , (18)

whereE0 = C
2
0−3e1/12C0+3e1/3. Expressions for the other

symbols in the above equation are provided in Sect. 2.1.3.
See Bastankhah and Porté-Agel (2016) for details on the
derivation.

2.2.3 Wake asymmetry

Wake deflection is known to be asymmetric based on the sign
of the yaw misalignment. In particular, positive yaw angles
are more effective than negative yaw angles (Fleming et al.,
2018). Previously, it was speculated that there was a rotation-
induced lateral offset that is caused by the interaction of the
wake rotation with the shear layer (Gebraad et al., 2016). An
empirical correction used to account for asymmetry is pre-
sented in Gebraad et al. (2016).

Fleming et al. (2018) propose that there is an asymmetry in
the wake that can be described by counter-rotating vortices,
turbine rotation, and shear rather than actual deflection. Up-
dates to the FLORIS wake modeling framework to reflect the
asymmetry will be done in future work.

2.3 Turbine model

In addition to wake modeling tools, a turbine model is used
in the wind plant tools to provide a realistic description of
turbine interactions in a wind plant. The turbine model con-
sists of a CP/CT table based on wind speed and constant
blade pitch angle generated by FAST (Jonkman, 2010). The
coupling between CP and CT is critical in understanding the
benefits of wind plant controls. CP and CT can also be cou-
pled using actuator disk theory, which is based on the turbine
operation defined by an axial induction factor, a:

CP = 4a(1− a)2 (19)
CT = 4a(1− a).

It is important to note that CP and CT values are used that
correspond to the local conditions each turbine is operating
in. For example, a turbine operating in a wake has a different
CP/CT than a turbine operating in free-stream conditions.

The steady-state power of each turbine under yaw mis-
alignment conditions is given by Gebraad et al. (2016):

P =
1
2
ρACP cosγ pu3, (20)

where p is a tuneable parameter that matches the power loss
due to yaw misalignment seen in simulations. In actuator disk

theory (Burton et al., 2001), p = 3. However, based on large-
eddy simulations, the turbine power in yaw misalignment has
been shown to match the output when p = 1.88 for the NREL
5 MW. Field observations run from p = 1.4 (Fleming et al.,
2017b) to p = 2.2.

2.4 Lidar model

Finally, in this work a lidar model has been added to the
FLORIS wind plant tools. This lidar model is based on the
scanning lidar at the University of Stuttgart used in this study.
This allows for direct comparison between lidar data col-
lected by the scanning lidar and the wake model used. In
particular, the scanning lidar used in the field campaign takes
a weighted average of nine points along the line-of-sight tra-
jectory. A lidar model is necessary to ensure this direct com-
parison. If any of the nine points are outside of the wake, the
weighted average may lead to a more conservative estimate
of the flow in the wake. More details on the lidar used in the
wake steering campaign can be found in Raach et al. (2016,
2017) and Fleming et al. (2017a).

The velocity computed by the scanning lidar is based on
a line-of-sight velocity. The lidar model used in the FLORIS
framework computes the line-of-sight velocity, vLOS, in the
same way that the lidar model computes the line-of-sight ve-
locity so that each point scanned by the lidar can be com-
pared directly to points computed by the wake model. The li-
dar computes a line-of-sight velocity for each point scanned.
In particular, one scan point consists of Nweights weighted
points that provide a robust velocity measurement at that lo-
cation. In other words, Nweights points are used in a weighted
sum to provide a robust velocity measurement at that scan
point. The velocity at a single point can be computed as

ui =

Nweights∑
j=0

aj ũpj , (21)

where aj represents the weights assigned to each point, i in-
dicates the scan point, and u= [ui,vi,wi]

T is the weighted
sum of the measured velocity points ũp. Typically the
weights are assigned in a Gaussian manner.

Furthermore, the wind vector u= [ui,vi,wi]
T is pro-

jected onto the normalized laser vector point [xi,yi,zi]T

with a focus distance of fi =
√
x2
i,I + y

2
i,I + z

2
i,I and the re-

sulting vLOS,i is

vlos,i =
xi,I

fi
ui,I +

yi,I

fi
vi,I +

zi,I

fi
wi,I . (22)

Additional details are provided in Raach et al. (2016). This
model can be used in conjunction with the field data to per-
form closed-loop wind plant controls as is done in Raach
et al. (2016). In addition, future work could use the simu-
lated vLOS computed using this lidar model to fill gaps that
are inevitably present in real-time lidar data.
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Figure 2. Lidar scan pattern used at the five locations downstream of the turbine.

Table 1. Test turbine details.

Rated power (kW) 1500
Hub height (m) 80
Nominal rotor diameter (m) 77
Rated wind speed (m s−1) 14

3 Field campaign

A wake steering demonstration was conducted at the Na-
tional Wind Technology Center using a utility-scale tur-
bine. The utility-scale turbine operated at various yaw mis-
alignment conditions and the resulting wake was continually
recorded by a nacelle-mounted lidar. The campaign started
in September 2016 and concluded in April 2017. This sec-
tion describes the turbine, the meteorological tower used to
record local conditions, and the lidar system mounted on the
nacelle of the turbine. Details were first reported on the lidar
field campaign in Fleming et al. (2017a). This paper expands
the analysis and provides a quantitative comparison between
the control-oriented models presented and the lidar data col-
lected in this campaign.

3.1 Setup of the field campaign

The turbine used in this wake steering demonstration was
the Department of Energy (DOE) 1.5 MW GE SLE turbine
owned by the U.S. DOE and operated by the National Re-
newable Energy Laboratory. Details on the turbine are pro-
vided in Table 1.

The met tower is located 161 m upstream of the turbine in
the predominant wind direction. The met tower was instru-
mented in accordance with IEC 61400-12-1. Table 2 lists the
instrumentation used on the met tower. The turbine nacelle

Table 2. Meteorological tower instrumentation details.

Instrument Elevations (m)

Precipitation 1
Wind speed 38, 55, 80, 87, 90, 92
Wind direction 38, 87
Humidity 90
Temperature 38, 90
Barometric pressure 90

wind speed and wind direction are measured, recorded, and
synchronized with the met tower data.

The lidar data are limited to a region in which the met
tower is upstream of the turbine. The hub-height wind speed
and wind direction measurements from the met tower are
used to described the mean wind speed, wind direction, and
turbulence intensity. The wind direction recorded at 38 and
87 m on the met tower is used to compute veer.

3.2 Lidar specifications

The University of Stuttgart scanning lidar system consists of
two parts: (1) a WINDCUBE V1 from Leosphere and (2) a
scanner unit developed at the University of Stuttgart. A two-
degrees-of-freedom mirror is used for redirecting the beam
to any position within the physical limitations of the mirror.
The lidar can scan an area of 0.75D× 0.75D using up to 49
measurement points and five scan distances. The scan rate
is dependent on the number of pulses used for each mea-
surement position. The lidar system has been used for lidar-
assisted control using inflow and wake measurements; see
Raach et al. (2016).

The lidar scans a grid pattern seen in Fig. 2. The lidar is set
to record a measurement point every 1 s and it scans five dis-
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Figure 3. Lidar data at 180.95 m downstream at different turbulence intensities ranging from 2.0 % to 14.0 %. The title of each plot indicates
the turbulence intensity and the number of scans used to produce each time-averaged figure.

tances from 1D to 2.8D simultaneously. Each scan consists
of 49 points and one scan takes 48 s on average. At each mea-
surement point the lidar uses 10 000 laser pulses to measure
the line-of-sight wind speed, vLOS, described in Sect. 2.4.
Scans of similar atmospheric conditions and turbine opera-
tion are aggregated to produce a mean or median scan.

4 Results

The results presented in this section show the comparison
between the wake models described in Sect. 2 and the lidar
data collected in the field campaign described Sect. 3. The re-
sults focus on comparisons of the velocity deficit behind the
turbine, the wake deflection achieved in yaw misalignment
conditions, and varying atmospheric conditions.

4.1 Data processing

It is important to note how the lidar data were processed for
this study. The lidar data were first processed to filter out im-
plausible data. Specifically, several methods were applied to
check for hard-target measurements, filter out lidar data with
a bad carrier-to-noise ratio, and check for plausibility of the
measurement data. The data are also reduced through certain
considerations, including (1) periods when the met tower is
upstream of the turbine, (2) periods when the turbine is pro-
ducing at least 100 kW, and (3) periods when the difference
between the target and realized yaw misalignment is small.
In particular, the instruments on the met tower that are used
to measure wind speed and direction are more reliable when
they are not operating in the wake of nearby turbines or in
the wake of their own tower due to blockage effects. We also
chose to only include data for which the turbine is operat-
ing normally. In this case, we define that as producing more
than 100 kW. The turbine operation affects the wake proper-
ties and we need to ensure that we are comparing times when
the turbine is performing as expected. Similarly, we only in-
clude times when the turbine yaw controller is tracking the
specified offset within a few degrees to make a direct com-
parison with models.

4.2 Atmospheric conditions

First, the lidar data collected in the field campaign were an-
alyzed based on atmospheric conditions. In particular, tur-
bulence intensity was examined to understand the behavior
of each model under varying turbulence intensity conditions.
Figure 3 shows the lidar scans at 180.95 m downstream (ap-
proximately 2.5D downstream). The turbulence intensity was
computed for each lidar scan and separated into four bins
with centers of 2 %, 6 %, 10 %, and 14 % with a wind speed
of 8 m s−1. Figure 3 shows that the wake is strongest in low
turbulence conditions and dissipates quickly in high turbu-
lence conditions. This is consistent with previous work in-
vestigating the effects of atmospheric conditions on wakes
(Smalikho et al., 2013). It is important to note that each im-
age was generated with the maximum number of scans avail-
able after processing the data. More scans lead to a more
robust measurement of the wake. A statistical analysis is pre-
sented in Fig. 4, which indicates the effects of the limited
number of scans processed.

Figure 4 shows how the control-oriented engineering mod-
els presented in this paper compare with the lidar data. The
velocity deficit behind the turbine was computed by averag-
ing the velocity across a “virtual” rotor and moving this ro-
tor across the domain in the spanwise direction (shown in
Vollmer et al., 2016). The bands indicate a 95 % confidence
interval. A larger band indicates that fewer scans were pro-
cessed. Each model was tuned to a subset of the lidar data,
which included primarily low turbulence intensity data with
a mean turbulence intensity of approximately 5 %. The val-
ues of each of the model parameters are shown in the Ap-
pendix. It is important to note that these values are tuned for
the near wake due to the close proximity of the lidar scans to
the turbine (2.35D). Although these measurements are near
the turbine, the effects of turbulence intensity can still be ob-
served along with wake deflection. Tuning the models appro-
priately with training data from this proximity, the models are
able to perform reasonably well under varying atmospheric
conditions and varying turbine operations even at these close
proximities.

The Jensen and multi-zone wake models are shown to have
good agreement in low turbulence scenarios; i.e., they fall
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Figure 4. Velocity deficit at 180.95 m downstream computed using lidar data, the Gaussian wake model, multi-zone wake model, and the
Jensen wake model under different turbulence intensity conditions.

Figure 5. Lidar data at 180.95 m downstream at different yaw misalignments ranging from 0 to 25◦. The title of each plot indicates the yaw
angle and the number of scans used to produce each time-averaged figure.

within the confidence interval. This is expected as these mod-
els were tuned to low turbulence scenarios. However, when
going to high turbulence intensity scenarios, they underpre-
dict the velocity deficit significantly. This is because neither
the Jensen nor the multi-zone model has turbulence intensity
as an input to the model. The Gaussian model, however, is
able to capture both low and high turbulence intensity scenar-
ios; i.e., the model lies within the confidence interval bands
under each turbulence scenario examined. This highlights
the fact that, even under varying atmospheric conditions, the
Gaussian model is able to accurately capture scenarios that it
was not explicitly tuned for. The Jensen and multi-zone mod-
els can be retuned to fit high turbulence intensity data as well.
Those values are also indicated in the Appendix.

4.3 Wake deflection

Wake deflection was also analyzed using the lidar data from
this campaign. Figure 5 shows the wake deflection under tur-
bine yaw misalignment observed by the scanning lidar at
180.95 m downstream. Under larger yaw angles, the wake
deflects and deforms as has been reported in Howland et al.
(2016) and Fleming et al. (2017b).

Figure 6 shows the comparison of each control-oriented
engineering model with the lidar data when the turbine is op-
erating with no misalignment (left) and operating with 25◦

of yaw misalignment (right) at 180.95 m downstream, or ap-

proximately 2.5D downstream. Similar to Fig. 4, a “virtual”
rotor is used to compute the effective wind speed at several
spanwise locations. The data used in Fig. 6 include all tur-
bulence intensity levels with wind speeds of 7–9 m s−1 when
the turbine was operating with no misalignment and a yaw
misalignment of 25◦. The average turbulence intensity is ap-
proximately 7 %. The data were aggregated and normalized
over this range of wind speeds to include more scans and pro-
vide more robust statistics. The bands indicate a 95 % confi-
dence interval.

Again, the Gaussian model is better able to predict the
conditions at no misalignment (predicts velocities within the
confidence intervals) since the multi-zone and Jensen mod-
els were both tuned to data with a lower turbulence intensity.
When the turbine is operating in misaligned conditions, the
turbine generates a cross-flow velocity component that is not
captured by the lidar. This is because the lidar is operating on
a rotating platform and does not reliably measure the wake on
the left side due to this large cross-flow velocity component.
As a result, only lidar data from −10 to 30 m are considered
in the misaligned conditions. Under yaw-misaligned condi-
tions, the Jensen, multi-zone, and Gaussian models all have
good agreement with lidar data. In this case, the Jensen and
multi-zone wake models have better agreement under yawed
conditions than under normal conditions. One potential rea-
son for this is that the “depth” of the wake is modified by
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Figure 6. Velocity deficit at 180.95 m downstream computed using lidar data, the Gaussian wake model, the multi-zone wake model, and
the Jensen wake model under different yaw misalignment conditions.

the changing yaw angle; i.e., the thrust generated by the tur-
bine is modified. This modified thrust is able to accommo-
date the underpredictions in the normal operating case. With
more data, the analysis could be split into yaw misalignment
conditions and turbulence intensity levels.

5 Conclusions and future work

This paper compared field data from a scanning lidar mea-
suring the wake of a turbine in normal operating condi-
tions and yaw-misaligned conditions with control-oriented
models. Validating these control models with field data in
a variety of conditions is a critical step to implementing
wind farm controls in the field. A quantitative analysis was
done comparing the models in the FLORIS framework to
these data. The data were processed to look at the effects of
varying turbulence intensity levels as well as different yaw-
misaligned conditions. The wake models used in the com-
parison included the Jensen model, the multi-zone model,
and the Gaussian wake mode. Future work will incorporate
additional wake models that may be used in the context of
wind farm controls. The Gaussian model provided the best
representation of wake characteristics under different atmo-
spheric conditions and different turbine operating conditions.
Good agreement was also seen with the Jensen and multi-
zone wake models on a smaller subset of data that matched
the conditions of the tuning data.

Based on these results, this provides more confidence in
wind farm controllers designed using these models. This
study provided a first step towards validating these models
in the field. In particular, this study focused on the wake of
a single turbine. An increased understanding of these models
at the wind farm level is needed to determine the potential
performance of wind farm control solutions in the field.

Data availability. The underlying research was collected as part of
a project funded by the Department of Energy to investigate wake
steering. Please contact the corresponding author for questions re-
garding the data used in this paper.
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Appendix A: FLORIS tuning values for near-wake
lidar comparisons

Due to the limitations of the field data presented in this pa-
per, FLORIS had to be tuned to capture the near wake be-
hind the turbine. The wake was evaluated primarily at 2.35D
(180.95 m) downstream. These parameters were tuned for
5 % turbulence intensity as indicated in the analysis. Below
are the FLORIS tuning values for the near-wake lidar com-
parisons shown in this paper.

– Jensen wake model

– ke = 0.055

– kd = 0.17

– For high turbulence cases (> 10 % turbulence in-
tensity), ke = 0.1.

– Multi-zone wake model

– ke = 0.1

– kd = 0.17

– me =−0.5,0.3,1.0

– MU = 0.47,1.28,5.5

– aU = 11.7

– bU = 0.72

– For high turbulence cases (> 10 % turbulence in-
tensity), ke = 0.13.

– Gaussian wake model

– ka = 0.17

– kb = 0.06
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