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Abstract. Because wind resources vary from year to year, the intermonthly and interannual variability (IAV)
of wind speed is a key component of the overall uncertainty in the wind resource assessment process, thereby
creating challenges for wind farm operators and owners. We present a critical assessment of several common ap-
proaches for calculating variability by applying each of the methods to the same 37-year monthly wind-speed and
energy-production time series to highlight the differences between these methods. We then assess the accuracy of
the variability calculations by correlating the wind-speed variability estimates to the variabilities of actual wind
farm energy production. We recommend the robust coefficient of variation (RCoV) for systematically estimating
variability, and we underscore its advantages as well as the importance of using a statistically robust and resistant
method. Using normalized spread metrics, including RCoV, high variability of monthly mean wind speeds at a
location effectively denotes strong fluctuations of monthly total energy generation, and vice versa. Meanwhile,
the wind-speed IAVs computed with annual-mean data fail to adequately represent energy-production IAVs of
wind farms. Finally, we find that estimates of energy-generation variability require 10± 3 years of monthly
mean wind-speed records to achieve a 90 % statistical confidence. This paper also provides guidance on the
spatial distribution of wind-speed RCoV.

1 Introduction

The P50, a widely used parameter in the wind-energy indus-
try, is an estimate of the threshold of annual energy produc-
tion of a wind farm that the facility is expected to exceed
50 % of the time (Clifton et al., 2016). The P50 is usually
estimated to apply over the lifetime of a wind farm, typi-
cally 20 years. To estimate P50 in the wind resource assess-
ment process, a single percentage value is usually assigned
to represent the uncertainty for the desired time period at a
wind site (Brower, 2012). The interannual variability (IAV)
of wind resources, along with site measurements and wind-
power-plant performance, is an important component of the
overall uncertainty in power production (Clifton et al., 2016;
Klink, 2002; Lackner et al., 2008; Pryor et al., 2006). The
IAV is also incorporated in the measure–correlate–predict
process (Lackner et al., 2008), which usually considers wind
measurements spanning less than 2 years.

Analysts and researchers use numerous metrics to quantify
wind-speed variability, and the most common method is stan-
dard deviation (σ ). For instance, the variability in historical
or future wind resources is often represented as the σ from
the annual-mean wind speed of a certain location (Brower,
2012). As wind turbine power generation is a function of
wind speed, the variability of wind resources has important
implications for the resultant long-term energy production.
Financially, when the wind resource is projected to fluctuate
more from year to year (Hdidouan and Staffell, 2017), the
levelized cost of wind energy increases as well.

Because the profitability of wind farms depends on wind
variability, past research has explored the implications of in-
terannual and long-term variability in wind energy. Pryor
et al. (2009) analyze trends of annual wind speed and IAV,
without explicitly quantifying IAV values. Archer and Jacob-
son (2013) evaluate the seasonal variability of wind-energy
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capacity factor. Lee et al. (2018) assess the spatial discrep-
ancies between wind-speed variabilities of different tempo-
ral scales, from hourly mean to annual-mean data. Bett et
al. (2013) use σ and Weibull parameters to assess the wind
variability in Europe. Extreme event analysis also offers an-
other perspective to assess variability. For example, Cannon
et al. (2015) examine extreme wind-energy generation events
via reanalysis data and discuss the associated seasonal and
IAV qualitatively. Leahy and McKeogh (2013) also quantify
the return periods of multiweek wind droughts.

To quantify variability, the normalized σ or the coefficient
of variation (CoV), the σ divided by the mean of a time
series, is a commonly used tool. Justus et al. (1979) cal-
culate and compare the CoVs of monthly and annual wind
speeds at different sites across the United States. Baker et
al. (1990) quantify interannual and interseasonal variations
of both wind speed and energy production at three loca-
tions in the Pacific Northwest. They find the annual CoVs
ranged from 4 % to 10 %, matching the conclusions from
Justus et al. (1979). Recently, Li et al. (2010) calculate hub-
height wind-speed variance and σ over 30 years to spatially
evaluate seasonal and IAV in the Great Lakes region. Bo-
dini et al. (2016) estimate the IAV of wind resources with
a modified version of CoV, using observed meteorological
data in Canada. As the sample period increases, the IAVs of
most sites gradually increase, averaging 5 % to 6 % among
the chosen sites (Bodini et al., 2016). Krakauer and Co-
han (2017) correlate the CoVs of monthly mean wind speeds
with different climate oscillation indices and find the global
mean CoV at 8 %. In addition to characterizing wind speed,
the metric is also used to evaluate the benefits of grid inte-
gration. For example, Rose and Apt (2015) conclude that the
interannual CoV of aggregate wind-energy generation in the
central United States is 3± 0.1 %, much smaller than that
of individual wind plants, which varies between 5.4 % and
12 %, ±4.2 %.

Aside from CoV, other metrics representing the spread
of data have also been chosen to estimate variability in the
literature. For example, the robust coefficient of variation
(RCoV) normalizes the median absolute deviation (MAD)
with the median. Gunturu and Schlosser (2012) quantify the
spatial RCoV of wind-power density in the United States
and demonstrate that the regions east of the Rockies, es-
pecially the Plains, generally have weaker variability and
higher availability of wind resources. The seasonality index,
originally used in Walsh and Lawler (1981) for precipitation
purposes, is another measure to express variability. The sea-
sonality index is defined as the sum of the absolute deviations
of monthly averages from the annual mean, normalized with
the annual mean. Chen et al. (2013) use the seasonality in-
dex to assess the interannual trend and the variability of wind
speed in China, and they relate wind-speed IAVs to climate
oscillations.

Alternative variability metrics emphasize the long-term
trends via contrasting wind speeds of different periods. The

“wind index”, used in Pryor et al. (2006) and Pryor and
Barthelmie (2010), is a ratio of wind speeds of a reference
period and an analysis period. An entirely different wind in-
dex evaluated in Watson et al. (2015) is a ratio of spatially
averaged wind speeds during two different periods.

Despite the importance of long-term variability, the wind-
energy industry lacks a systematic method to quantify this
uncertainty. As various metrics to assess variability exist, a
comprehensive comparison of measures is necessary. There-
fore, the goal of this study is to evaluate various methods
of estimating intermonthly and IAV in a reliable way us-
ing a long-term, consistent database. Specifically, our objec-
tive is to determine an optimal metric or metrics for relat-
ing wind-speed variability to energy-production variability.
We describe the wind-speed and energy-generation data, the
methodology, and the chosen variability metrics in Sect. 2.
We evaluate different variability measures via two case stud-
ies in Sect. 3. We also contrast the results computed from
monthly mean and annual-mean data, and we illustrate the
spatial distribution of wind-speed variability in Sect. 3. We
then recommend the best practice in using the ideal method
in Sect. 4. We focus on the applicability of imposing such
metrics to quantify the variabilities of wind speeds and wind-
energy production.

2 Data and methodology

2.1 Wind and energy data

In this study, we use a 37-year time series of monthly mean
wind speed and monthly total wind-energy production in
the contiguous United States (CONUS). For wind speed, we
use hourly horizontal wind components in the National At-
mospheric and Space Administration’s Modern-Era Retro-
spective Analysis for Research and Applications, Version 2
(MERRA-2), reanalysis data set (Gelaro et al., 2017; GMAO,
2015) from 1980 to 2016. We use these components to de-
rive the monthly mean wind speed at 80 m above the surface,
which represents hub height in this study, via the power law
(Eq. 1) and the hypsometric equation (Eq. 2):

u (z2)
u (z1)

=

(
z2

z1

)α
, (1)

z2− z1 = RdT ln
(
p2

p1

)
. (2)

In Eq. (1), u (z1) and u (z2) are the horizontal wind speeds, at
heights z1 and z2, in which wind speeds are the square root
of the sum of squared horizontal wind components, and α is
the shear exponent. In Eq. (2), Rd is the dry air gas constant,
T is the average temperature between levels z1 and z2, and
p1 and p2 are the atmospheric pressures at z1 and z2. In most
grid cells, we use the MERRA-2 meteorological output at 10
and 50 m above the surface to calculate α, so as to extrapolate
the wind speed at 80 m. In mountainous regions, the heights
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at 850 or 500 hPa may be closer to 80 than 10 m above the
surface; in that case, we use data at the next available level
of 850 or 500 hPa to derive the heights of that level and thus
to extrapolate the wind speed at 80 m.

The horizontal resolution of the MERRA-2 is 0.5◦ in lat-
itude (about 56 km) and 0.625◦ in longitude (about 53 km).
The MERRA-2 reanalysis interpolates the data and the meta-
data at the exact output latitude and longitude; hence the
wind speed, air density, and elevation refer to the grid points
with the particular sets of latitude and longitude (Bosilovich
et al., 2016). Thus, the longest distance between a wind farm
and the closest MERRA-2 grid-cell center is about 39 km.

For energy-production data, we use the net monthly energy
production of wind farms in megawatt hours (MWh) from the
US Energy Information Administration (EIA) between 2003
and 2016. Each of the wind farms has a unique EIA identifi-
cation number. After we leave out about 300 wind sites with
incomplete or substantially zero production data, a total of
607 wind farms in the CONUS are selected for this analy-
sis. For simplicity, the CONUS in this analysis is defined as
the area bounded by 127◦W, 65◦W, 24◦ N, and 50◦ N, and
geographically includes the 48 states in CONUS and Wash-
ington, D.C. (Fig. 1).

2.2 Methodology

2.2.1 Linear regression and data post-processing

We focus on the direct relationship between wind speed and
energy production to investigate approaches for calculating
long-term variability. Therefore, we must minimize the in-
fluence from other determinants of energy production, such
as curtailment and maintenance. First, we eliminate data with
zero values for monthly energy production, which is typical
in the first months of a new wind farm. Next, we linearly
regress the monthly total energy production on the monthly
mean MERRA-2 80 m wind speed at the closest grid point
to each wind farm from 2003 to 2016. In other words, each
wind site is assigned its own regression equation. We then re-
move any production data below the 90 % prediction interval
to exclude underproduction for reasons other than low wind
speeds, and omit the data above the 99 % prediction interval,
or potentially erroneous overproduction. Prediction intervals
are calculated via the t values and the standard error of pre-
diction (Montgomery and Runger, 2014). In other words, we
define the outliers of energy production using the threshold
of 1.64 times below the standard error and 2.58 times above
the standard error of the site-specific regression. We also ap-
ply a third-order polynomial fit (Archer and Jacobson, 2013),
and it leads to very similar results to the linear model. Hence,
we focus on presenting the results from the linear fit in this
study.

After regressing the outlier-free energy data on wind
speed, we then filter the wind farms based on the coefficient
of determination (R2), which indicates the confidence of the

Figure 1. Wind farm locations in the CONUS: nonfiltered 607 sites
in dark red, R2-filtered 349 sites in orange, and r-filtered 195 sites
in yellow. The yellow square represents the Oregon site and the yel-
low star indicates the Texas site (Table 2). The grey box illustrates
the boundary of the CONUS used in this study.

linear regression. We select the R2 threshold of 0.75: 349 of
the original 607 wind farms pass this filter. Through this fil-
ter, we ensure that wind speed is the primary driver of energy
production in the wind farms with high R2 values. Lunacek
et al. (2018) also use a similar R2-filtering method with a
threshold of 0.7. Considering some farms lack years of com-
plete generation data, we extend the monthly energy produc-
tion to 37 years using the same site-specific linear models
with the monthly MERRA-2 wind speed. In other words, we
compute any missing energy-production data from 1980 to
2016 based on the linear fit from the years that do exist in the
data set. Herein, we refer to this long-term extension of data
as the predicted energy production. Of the 349 wind farms,
7.5 years is the median of the energy data that are derived via
the linear fit, given the available EIA records between 2003
and 2016.

We then further apply a second filter using the Pearson’s
correlation coefficient (r) between the predicted and actual
monthly energy production, and we only choose the 195
wind farms with r larger than 0.8. As a result, of the r-filtered
wind sites, we ensure wind speed is the primary driver of
wind-power production, and we confirm the energy predic-
tions match well with those observed.

The nonfiltered, R2-filtered, and r-filtered wind farms car-
pet most of the popular wind farm regions across the CONUS
(Fig. 1), even with the high r threshold of 0.8. Thus, the
r-filtered samples provide a sufficient representation of the
wind farms across the United States. To illustrate our anal-
ysis with examples, we select one site in Oregon (OR) and
another site in Texas (TX) that demonstrate distinct wind-
speed distributions. We choose the two sites to contrast the
results of different variability metrics throughout the paper;
both sites pass the r filter (Fig. 1).

Recognizing that the horizontal resolution of the MERRA-
2 data could be perceived as undermining the linear regres-
sions, we explore any possible role of the distance between
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the closest MERRA-2 grid point and the actual wind farm,
but we find no statistical relationship. In particular, horizon-
tal and vertical discrepancies between the model and the ob-
servations do not affect the resultant R2 in the linear regres-
sions. More than half of the 607 wind farms pass the R2 fil-
ter, and more than half of those pass the r filter (Fig. 2a).
Additionally, the correlation between R2 and the horizontal
distance between the closest MERRA-2 grid point and the
actual wind farm is close to zero (Fig. 2b); the correlation
between R2 and the vertical difference between the modeled
grid point and the actual wind site is also weak (Fig. 2c).
In other words, the horizontal and vertical distances between
the MERRA-2 grid points and the wind farms have no appar-
ent impact on the representativeness of the wind farms in the
linear regression.

Additionally, we analyze the uncertainty of the linear-
regression method. We first test the influence of the error
term in the regression, to account for the uncertainty asso-
ciated with the input data. After a wind farm passes the R2

threshold of 0.75, we add a random value within 1 standard
error to the predicted energy production of each month. This
random error term introduces uncertainty to the regression
process but does not affect the R2 of the site-specific regres-
sion. Furthermore, we also test the sensitivity of the R2 and
r thresholds by analyzing the results after modifying those
limits. Specifically, we loosen the R2 and r thresholds to 0.6
and 0.7, and we tighten the R2 and r thresholds to 0.85 and
0.9. Loosening these thresholds increases the sample sizes of
the wind farms that pass the filters and tightening the thresh-
olds results in the opposite.

We test other factors that could undermine these regres-
sions. We considered the hub-height air density extrapolated
from MERRA-2 as another regressor in the regressions, but
air density is a statistically insignificant predictor and thus is
not discussed in the rest of this study. When we replace the
prediction interval with the confidence interval, the sample
sizes increase from 349 and 195 sites to 555 and 209 wind
farms. However, at least 7 years of energy data are derived
from the regression for 99 % of the samples, because confi-
dence intervals are smaller than prediction intervals by def-
inition. We also considered removing the long-term means
and the impacts of annual cycles, yet the sample sizes de-
crease to 121 and 69 locations, and the regression fills at
least some of the energy data for more than 99 % of the
sites. Finally, to ensure these results were not specific to the
MERRA-2 data set, we perform the same analysis on the
ERA-Interim reanalysis data set (Dee et al., 2011). The re-
sults of the key variability parameters such as σ , CoV, and
RCoV resemble the findings using MERRA-2; hence we fo-
cus on the MERRA-2 findings in this study.

Our analysis, although comprehensive, is constrained by
the quality of our data. On the one hand, reanalysis data
sets have errors and biases in wind-speed predictions from
complexities in elevation and surface roughness (Rose and
Apt, 2016). Reanalysis data sets also demonstrate long-term

trends of surface wind speeds (Torralba et al., 2017). The
MERRA-2 data set can also depict different meteorologi-
cal environments than those at the wind farm locations, es-
pecially in complex terrain. The MERRA-2 data of coarse
temporal and spatial resolutions may also represent a lower
intermonthly or IAV than the wind sites actually experi-
ence. Thus, regressing actual energy production on reanaly-
sis wind speed adds uncertainty to our analysis. On the other
hand, constrained by the monthly total energy-production
data from the EIA, our analysis ignores the signals finer than
monthly cycles. The quality of the EIA data also varies across
wind sites; therefore the filtering process via linear regression
is necessary.

2.2.2 Variability metrics relating wind speeds and
energy production

To evaluate the variabilities of both the wind speeds and the
predicted energy generation from the filtered wind farms, we
investigate a total of 27 combinations and variations of ex-
isting methods describing the spread of data. We categorize
different variability metrics according to statistical robust-
ness (insensitivity to assumptions about the data; for exam-
ple, Gaussian distribution) and statistical resistance (insensi-
tivity to outliers) (Wilks, 2011). Of the 27 variability meth-
ods tested, we select four representative measures to perform
a comparison and discuss in detail, according to their robust-
ness, resistance, and the nature of normalization by an aver-
age metric:

1. RCoV, defined as the MAD divided by the median
(Gunturu and Schlosser, 2012; Watson, 2014), is a
spread metric divided by an average metric and is both
statistically robust and resistant.

2. Range (maximum minus minimum) divided by trimean
(weighted average among quartiles) is a spread metric
normalized by an average metric, and the numerator is
not resistant.

3. CoV (Baker et al., 1990; Bodini et al., 2016; Hdidouan
and Staffell, 2017; Krakauer and Cohan, 2017; Rose and
Apt, 2015; Wan, 2004), defined as the σ divided by the
mean, is a spread metric normalized by an average met-
ric, and neither the denominator nor the numerator are
robust or resistant.

4. σ is simply a spread metric that is not robust or resistant.

Among the four measures, only RCoV is completely statis-
tically robust and resistant, and the first three methods are
all normalized spread metrics. We further describe all the
tested variability methods comprehensively in Table B1 in
Appendix B. Each of these metrics is easy to implement via
basic Python packages such as NumPy and SciPy with no
more than a few lines of code. In addition, based on the ex-
ponential scaling relationship between power and wind speed
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Figure 2. (a) Histogram of R2 of all nonfiltered sites (dark red), R2-filtered sites (orange), and r-filtered sites (yellow); (b) scatterplot of
the R2 and the horizontal distance between the closest MERRA-2 grid cell and the actual locations of the sites using the same color scheme
in (a); (c) scatterplot of the R2 and the elevation difference between the closest MERRA-2 grid cell and the actual locations of the wind sites
using the same color scheme in (a). The r in (b) and (c) represents the Pearson’s r using all nonfiltered sites.

developed by Bandi and Apt (2016), we also analyze the re-
sults from the exponential CoV and the exponential RCoV in
this paper (Table B1).

In addition to calculating variabilities with the spread mea-
sures, we evaluate other diagnostics that describe distribution
characteristics. These diagnostics include averaging metrics,
such as the arithmetic mean (not resistant) and median (the
50th percentile, which is resistant); symmetry metrics, such
as skewness (involving the third moment, not robust or resis-
tant) and the Yule–Kendall Index (YKI, robust and resistant);
a tailedness metric, namely kurtosis (involving the fourth
moment, not robust or resistant); the Weibull scale and shape
parameters (not robust); and the autocorrelation with a 1-year
lag to dissect the interannual cycles. We summarize the diag-
nostics evaluated in this analysis in Table B2. Along with the
regression results, results from the four representative vari-
ability metrics and other distribution diagnostics demonstrate
differences between the two selected sites (Table 2).

Herein, we quantify the variabilities of the 37-year ex-
tended time series of wind speed and energy production via
different methods, using a range of time frames: 1 year,
2 years, and up to 37 years for each wind farm. A metric
is considered useful when the resultant wind-speed variabil-
ity correlates well with the resultant energy-production vari-
ability across wind farms, even when random errors are im-

plemented and the thresholds R2 and r are changed. In this
analysis, we compare results with three correlation metrics:
Pearson’s r , Spearman’s rank correlation coefficient (rs), and
Kendall’s rank correlation coefficient (τ ) (Table 1).

To assess the applicable time frames of various variability
metrics, we evaluate the asymptote period of correlations for
each method. In most cases, the correlation coefficients ap-
proach the 37-year value after a certain analysis time frame.
Using RCoV as an example, the Pearson’s r’s of shorter anal-
ysis periods (1-year, 2-year, etc.) gradually converge to the
37-year value at 0.856 as the RCoV-calculation time frame
expands (Fig. 5a). Hence, for each metric, assuming the 37-
year correlation coefficient represents the long-term corre-
lation, we calculate the normalized differences between the
correlation coefficients and the 37-year value in each time
frame, starting from 1 year. When the absolute mean of the
normalized differences drops below 0.05 in a particular year,
we determine that year as the length of data required for re-
liable results via that variability method. In other words, the
asymptote year of a certain metric illustrates that the error
of the resultant correlation between wind-speed and energy-
production variability via that data length is less than 5 %
from the long-term value. For example, the asymptote period
of RCoV correlations is 3 years according to Pearson’s r (Ta-
ble 3).
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Table 1. Details of the three correlation metrics applied, adapted from Wilks (2011). All three metrics yield values between −1 and 1.

Correlation metrics Robust and resistant Description

Pearson’s correlation coefficient (r) No Calculate the covariance of x and y, divided by the product of
σ ’s of x and y.

Spearman’s rho, or Spearman’s rank
correlation coefficient (rs)

Yes Transform x and y values into ranks within x and y themselves,
then calculate the covariance of ranks in x and y, divided by the
product of σ ’s of ranks in x and y.

Kendall’s tau, or Kendall’s rank corre-
lation coefficient (τ )

Yes Match all data pairs between x and y, with n(n−1)
2 matches pos-

sible with a sample size of n. Define concordant pair as both x1
larger than x2 and y1 larger than y2, or both x1 smaller than x2
and y1 smaller than y2. Define discordant pair as either x1 larger
than x2 and y1 smaller than y2, or x1 smaller than x2 and y1
larger than y2. Calculate τ = 2(Concordant pairs−Discordant pairs)

n(n−1) .

To relate the IAVs between wind speed and energy pro-
duction, we also perform the same analysis for annual-mean
data. Strictly speaking, calculating the variabilities using
monthly mean data yields intermonthly variabilities, because
the results account for monthly, seasonal, and annual signals.
To isolate the signals from interannual variations, we also ex-
amine the metrics and their correlations between the annual
means of hub-height wind speeds and energy production, af-
ter linear regressing and filtering via monthly data. However,
the samples from each site are then limited to 37 data points
of annual wind speed and energy production. Besides, select-
ing de-trended data from long-term means to calculate vari-
abilities and their correlations leads to trivial results because
of the small sample sizes and hence is omitted in this study.

2.2.3 Investigation of wind-speed RCoV

After we demonstrate that RCoV is the most systematic ap-
proach in linking wind-speed and energy-generation vari-
abilities in Sect. 3.2, we further examine the details of us-
ing RCoV, specifically determining the minimum length of
wind-speed data necessary to quantify variability effectively.
We use 37 years of wind speed in every MERRA-2 grid cell
in the CONUS (a total of 5049 grid points), and we calcu-
late the RCoVs with 1 to 37 years of data for each grid cell.
Because the RCoVs calculated using data between 1980 and
2016 are only samples of the true long-term wind-speed vari-
ability and hence the results involve uncertainty, we select a
confidence interval approach.

We assume that the distribution of RCoV is Gaussian with
infinite years of wind speed. Hence, we use a chi-square (χ2)
distribution to set bounds for the σ ’s from samples of RCoV.
In other words, because the derived RCoVs differ with the
years of wind speeds sampled, we use the χ2 distribution to
quantify the confidence intervals of RCoV for each sample
size. To determine the minimum data required for RCoV cal-
culation, we use the following criterion (Montgomery and

Runger, 2014):

σ37 ≥

∣∣∣∣∣∣
√√√√ (ni − 1)σ 2

i

χ2
α/2,ni−1

∣∣∣∣∣∣ , (3)

where σ37 is the predetermined 37-year σ of RCoV; ni is
the sample size of n years in year i, which is between 1 and
36 years; σ 2

i is the variance of the sample of RCoVs in year i;
and χ2

α/2,ni−1 is the percentage point of the χ2 distribution
given the confidence level of α and the degrees of freedom
of ni − 1. We select a pair of α levels, 90 % and 95 %; hence
we use four percentage points of the χ2 distribution at 0.025,
0.05, 0.95, and 0.975 to construct the respective confidence
intervals. Because the 37-year RCoV is an estimate of the
truth, which is the wind-speed RCoV of infinite years, its
singular value does not yield any variance or possess any dis-
tribution shape. Thus, to construct the confidence interval of
the σ of the truth, we set the predetermined σ37 as a fraction
of the 37-year RCoV. Particularly, the σ37’s are 10 % and 5 %
of the 37-year RCoV for the 90 % and 95 % confidence lev-
els, respectively.

In summary, for each grid point, we first determine an
uncertainty bound based on the 37-year wind-speed RCoV
of the location: we assign a 37-year σ , which is either 5 %
or 10 % of the 37-year RCoV and, depending on the confi-
dence level, has either a 95 % or 90 % confidence level. For
each year i, from 1 to 37 years, we calculate the pairs of
χ2-derived σ ’s of year i, which represent the lower and up-
per bounds of the confidence interval. When both of the χ2-
derived σ ’s become smaller than the predetermined 37-year
σ , year i becomes the minimum length of data required to
calculate RCoV effectively at the specific confidence level.
We analyze the wind-speed RCoV via both monthly mean
and annual-mean wind speeds. We label the resultant min-
imum length of wind-speed data based on the χ2 method
as the convergence year, in contrast to the asymptote period
which determines the asymptote year of correlation coeffi-
cients.
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Table 2. Site details, monthly means, and annual means of various metrics at the two selected sites based on 37 years of monthly and annual
wind speeds, and 37 years of predicted and actual energy production; and the CONUS medians of wind-speed metrics using 37 years of
monthly and annual-mean data.

Site specifics OR site TX site CONUS median

Location, region, and state Condon, Columbia Bryson, northwest of 5049 MERRA-2
Gorge, OR Fort Worth, TX grid points

Nominal capacity (MW) 24.6 120 –
Elevation at closest MERRA-2 grid point – elevation of actual
wind farm (m)

−501.4 −67.4 –

Horizontal distance between MERRA-2 location and actual lo-
cation (km)

33.07 21.22 –

R2 of final linear regression 0.868 0.794 –
Root mean square error of final linear regression (MWh) 1140.5 4185.0 –
Pearson’s r between predicted and actual energy 0.906 0.809 –

Variability metrics Monthly Annual Monthly Annual Monthly Annual
mean mean mean mean mean mean

37-year wind-speed RCoV 0.082 0.029 0.094 0.023 0.102 0.021
37-year energy-production RCoV 0.226 0.059 0.166 0.041 – –
Actual energy-production RCoV 0.233 0.067 0.212 0.055 – –
37-year wind-speed range

trimean 0.893 0.129 0.596 0.122 2.066 1.316
37-year energy-production range

trimean 2.050 0.288 1.059 0.218 – –
Actual energy-production range

trimean 1.768 0.307 1.303 0.305 – –
37-year wind-speed CoV 0.134 0.036 0.127 0.031 0.143 0.031
37-year energy-production CoV 0.333 0.081 0.225 0.055 – –
Actual energy-production CoV 0.341 0.088 0.279 0.089 – –
37-year wind-speed σ 0.909 0.242 0.964 0.234 0.895 0.203
37-year energy-production σ 2.599 0.632 5.828 1.421 – –
Actual energy-production σ 2.663 0.687 6.964 2.228 – –

Other 37-year wind-speed diagnostics Monthly Annual Monthly Annual Monthly Annual
mean mean mean mean mean mean

Mean (m s−1) 6.79 6.79 7.59 7.59 6.45 6.45
Median (m s−1) 6.64 6.79 7.63 7.57 6.51 6.45
Kurtosis 0.886 −0.962 −0.663 −0.872 −0.482 −0.373
Skewness 0.811 −0.129 −0.074 0.172 0.045 0.061
YKI 0.153 0.101 −0.072 0.041 −0.024 0.023
12-month-lag autocorrelation 0.324 0.039 0.525 −0.052 0.578 0.023

3 Results

3.1 Case studies: Oregon and Texas sites

We select two sites from two different geographical re-
gions with considerable wind-energy deployment, the south-
ern Plains and the Pacific Northwest in the United States, to
contrast the results of various variability metrics. Based on
the site-specific regressions, we extend the monthly energy-
production time series to 37 years (Fig. 3a and b) for the two
sites. Both sites pass theR2 filter at 0.75 and the r filter at 0.8.
Although the OR site is farther from the closest MERRA-2
grid point in a region with more complex terrain, the resultant
R2 (0.87) and predicted–actual-energy Pearson’s r (0.91)
are larger than those of the TX site (0.79 and 0.81, respec-
tively) (Table 2). The 37-year-average wind speed of about

7.6 m s−1 at the TX site is larger than that of the OR site at
about 6.8 m s−1 (Table 2). Additionally, the 12-month-lag au-
tocorrelations demonstrate that the annual cycle of monthly
wind speeds of the TX site is stronger than that of the OR
site, yet the autocorrelations of the sites, 0.53 and 0.32, are
still lower than the CONUS median of 0.58 (Table 2).

None of the monthly and annual wind-speed distributions
of the sites are perfectly Gaussian. According to the kurto-
sis, skewness, and YKI values of the monthly mean wind
speeds (Table 2), the monthly wind-speed distribution at the
OR site skews towards lower wind speeds with more and
stronger extremes (Fig. 3c). The skewed distribution at the
OR site leads to 71.2 % of the monthly wind speeds located
within 1σ from the mean, compared to the classic Gaussian
of 68.3 %. Nevertheless, although the TX site monthly wind-
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Figure 3. (a) Time series of MERRA-2 monthly mean 80 m wind speed (black), actual monthly net EIA energy production (lime), and
extended monthly energy production from 1980 to 2016 based on linear regression (green) at the OR site; (b) time series at the TX site with
the same annotations as in (a); (c) histograms of MERRA-2 monthly mean wind-speed distribution (black) and yearly mean wind-speed
distribution (grey) at the OR site from 1980 to 2016. The blue curve indicates the Gaussian fit of the monthly mean wind speeds via the
mean and the σ , and the cyan curve represents the Gaussian fit of the annual-mean data; (d) histograms and curves of the Gaussian fit of
wind-speed distributions at the TX site with the same annotations as in (c).

speed distribution is very close to symmetric with fewer out-
liers (Fig. 3d), which is supported by near-zero skewness and
YKI (Table 2), only 64.6 % of monthly data fall within 1σ
from its mean. For annual-mean wind speeds, the averaging
with a 12-month time span at both sites reduces the ranges
and thus leads to kurtosis close to −1 (Table 2). Although
the skewness and YKI are close to 0 (Table 2), only 59.5 %
and 56.8 % of the annual-mean wind speeds fall within 1σ
from the means of the OR and TX sites, respectively.

The four selected variability methods yield similar re-
sultant monthly variabilities that are close to the respec-
tive CONUS medians based on the 37-year monthly data.
For variabilities of monthly wind speeds, the differences be-
tween the two sites are slight because the comparison among
the results of the four metrics is inconclusive (Table 2): the
monthly variabilities are not far from the national medians
(Table 2). However, results from the normalized spread met-
rics (RCoVs, range divided by trimean, and CoV) using the
37-year and the observed energy production illustrate that the
OR site generates more variable wind power than the TX site
(Table 2). The magnitudes of the variabilities between the
37-year and the actual monthly energy production are also
comparable, and the discrepancies between them are larger
at the TX site than the OR site. Nonetheless, the predicted
and the observed monthly energy production of the two sites
demonstrate similar variability characteristics overall.

Moreover, when we apply the four selected methods to the
annual-mean data, the metrics describe IAV exactly. For both
variables, wind speed and energy generation, nearly all met-

rics illustrate that the OR site has stronger IAV than the TX
site, except for using σ to quantify energy-production IAV
(Table 2). Echoing the results of the monthly data mentioned
previously, the use of normalized metrics suggests the energy
production at the OR site varies more than that at the TX site,
intermonthly and interannually. Note that all the IAVs are
smaller than the variabilities calculated using monthly data
(Table 2), because the annual averaging collapses variations
in the data.

Additionally, the magnitudes of energy variabilities and
IAVs are also nearly or more than twice as large as those of
wind speed (Table 2). The reason is the nature of the power
curve: wind-power generation is a function of wind speed
cubed at wind speeds below rated. Therefore, small wind-
speed variations propagate into large energy-production fluc-
tuations that are discernible in monthly and yearly data.

3.2 Variability metrics comparisons

Matching the wind-speed and energy variabilities over
37 years at each r-filtered site, RCoV, as a statistically ro-
bust and resistant metric, yields the highest Pearson’s r (0.86)
among the four highlighted methods as well as all the vari-
ability metrics evaluated (Fig. 4 and Table B1). A perfect
variability measure would link wind-speed and wind-power
variations closely together with a correlation of unity, and so
RCoV, with the highest Pearson’s r , is the best of all. On the
one hand, a strong correlation between the wind-speed RCoV
and the energy-production RCoV implies that the high wind-
speed variability at a wind farm translates to high energy-
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Figure 4. Scatterplots of 37-year wind-speed variability and energy variability via four metrics: (a) RCoV, (b) range
trimean , (c) CoV, and (d) σ ,

based on monthly data from the 195 r-filtered wind sites. Each black dot represents each filtered site, and the r value at the corner of each
panel indicates the Pearson’s r between each pair of wind-speed and energy-production spread metrics. The yellow square and the yellow
star denote the OR and the TX sites, respectively.

generation variability, and vice versa (Fig. 4a). For instance,
the moderate 37-year wind-speed RCoVs of the OR and TX
sites indicate modest fluctuations in energy production be-
tween months (Fig. 4a). On the other hand, a nonresistant
method, range divided by trimean, leads to a lower r (0.64)
and suggests the OR site has variable wind speed and energy
production (Fig. 4b). For the other two nonrobust and non-
resistant methods, the CoV results in a modest r (0.70) with
a similar scatter as the RCoV (Fig. 4c); the σ , not normal-
ized by an average metric, does not relate wind-speed and
energy variabilities effectively (Fig. 4d). The positions of the
two wind farms relative to the rest of the sites in Fig. 4 il-
lustrate that the TX site experiences average variabilities in
wind resource and energy production, whereas the OR site
has above-average energy-generation variability. Overall, the
four methods lead to different representations of energy vari-
ability at the OR site.

By increasing the years included in the variability cal-
culations using monthly data, the resultant correlations of
most metrics vary less, the correlations gradually converge
to their 37-year values, and their asymptote periods vary.
The 37-year Pearson’s r values from the four selected met-
rics between wind-speed and energy-production variabilities
in Fig. 4 transform into the 37-year marks in Fig. 5, and we
use a 5 % threshold of normalized deviation to determine the
asymptote periods. Particularly, the r’s from RCoV and CoV

(Fig. 5a and c) reach their respective asymptotes steadily
with longer length of data, whereas the r’s from range di-
vided by trimean do not (Fig. 5b). The 37-year correlation
using σ is weak and thus the method is not actually useful:
while the r’s approach the 37-year benchmark (Fig. 5d), this
correlation value is so low (0.2) as to be ineffective. Paired
with a high long-term r , the asymptote period of a metric
indicates the appropriate time span of wind-speed data re-
quired to represent the variability of wind-energy production.
For example, the resultant r’s using RCoV approach a high
value after just 3 years, meaning one needs 3 years of wind-
speed data to estimate the wind-speed variability so as to ad-
equately infer the energy-production variability of a certain
or potential wind farm via RCoV.

The three correlation coefficients (Pearson’s r , Spearman’s
rs, and Kendall’s τ ) yield consistent results among all vari-
ability metrics tested; hence we primarily present the results
using Pearson’s r here. Table 3 summarizes the 37-year cor-
relations (r , rs, and τ ), between the wind-speed variabilities
and the energy-production variabilities using the r-filtered
data, and the respective asymptote periods of the methods.
The r and τ of RCoV are the largest (0.86 and 0.67, re-
spectively) among all variability metrics, and the associate
asymptote periods are also relatively short (2 to 3 years) (Ta-
ble 3). Another normalized, robust, and resistant spread met-
ric, interquartile range (IQR) divided by median, results in
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Figure 5. Box plots of Pearson’s r between wind-speed variability and energy variability for different analysis time frames, from 1 to
37 years: (a) RCoV, (b) range

trimean , (c) CoV, and (d) σ , based on the monthly data from the 195 r-filtered wind sites. Each r represents the
correlation using all the filtered sites of a particular time frame. The 37-year correlations are equal to the r values listed in Fig. 4. The box
and whiskers represent the third quartile plus the 1.5 times of interquartile range (IQR), the third quartile, the median, the first quartile, and
the first quartile minus the 1.5 times of IQR.

the highest rs, and the rs of RCoV is the second largest (Ta-
ble 3). More importantly, the asymptote periods of RCoV
are the smallest of all, regardless of the choice of correlation
coefficient. In other words, fewer years of data are neces-
sary to calculate RCoV to effectively relate wind-speed and
energy variabilities than any other metric. Overall, when a
spread metric yields strong correlations between variabilities
of wind speed and energy generation, the correlation metrics
agree with each other (Table 3). Therefore, the results in this
paper focus on Pearson’s r , which is a commonly used cor-
relation coefficient.

In addition to the spread metrics, other distribution diag-
nostics also yield strong correlations between the 37-year
monthly wind speed and energy production. For example,
kurtosis and skewness result in r and rs above 0.9. Because
we determine the asymptote periods based on normalized de-
viations, when the 37-year correlation benchmark of a metric
is high, the respective asymptote period tends to be shorter.
Therefore, only 1 year of monthly data is required to com-
pute kurtosis and skewness adequately, except for using rs
in kurtosis, where those rs’s of the smaller number of years
are low (Table 3). Moreover, the symmetry and the shape of
the energy-production distribution can be characterized using
wind-speed data, given the moderately strong correlations of
YKI and the Weibull shape parameter (Table 3).

Additionally, we also perform the same correlation and
asymptote analyses on the data from changing the R2 and

r filter thresholds as well as the data with random error,
and RCoV again yields the strongest correlations and the
shortest asymptote periods among all methods. We adjust
the R2 and r requirements in the linear-regression process,
thus changing the filtered sample sizes. On the one hand,
reducing the R2 threshold to 0.6 and the r threshold to 0.7
increases the respective sample sizes to 461 and 306 wind
farms, but weakens the correlations between wind-speed and
energy variabilities for all methods (Table B3). On the other
hand, increasing the R2 threshold to 0.85 and the r thresh-
old to 0.9 strengthens the wind-speed–energy correlations of
all the metrics and shrinks the sample sizes to 212 and 83
wind farms, respectively (Table B3). Modifying the filtering
thresholds leads to different r’s yet similar asymptote peri-
ods among all metrics. Moreover, we also test the vigorous-
ness of our findings by introducing an error term, random-
ized based on the standard error, in predicting the 37-year en-
ergy production. The error term adds uncertainty to resemble
the reality of noisy wind-speed and power-production data.
We introduce the error term to the predicted energy produc-
tion for each of the 349 wind farms that pass the original
R2 threshold of 0.75. This approach weakens the correla-
tions and lengthens the asymptote periods for most metrics
(Table B3). Overall, according to the results from the R2–
r threshold and the random error tests, RCoV yields the high-
est r’s among all methods, and its asymptote periods remain
reasonably short.
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Table 3. Correlations and the associated asymptote periods of wind-speed variability and energy variability using various spread methods
and distribution diagnostics with different correlation metrics, based on the monthly data of the 195 r-filtered wind sites.

Spread metrics 37-year Asymptote years 37-year Asymptote years 37-year Asymptote years
r from r rs from rs τ from τ

CoV 0.704 5 0.754 4 0.565 9
σ

median 0.743 4 0.781 3 0.595 4
σ

trimean 0.728 4 0.770 3 0.583 6
IQR
mean 0.818 4 0.821 3 0.636 6

IQR
median 0.845 3 0.843 3 0.662 6

IQR
trimean 0.834 3 0.834 3 0.650 6

RCoV 0.856 3 0.836 2 0.663 3
MAD
mean 0.834 3 0.822 3 0.648 5
MAD

trimean 0.848 3 0.832 3 0.660 5
Range
mean 0.609 30 0.711 28 0.516 31
Trimmedσ

median 0.806 3 0.807 3 0.631 5
Trimmedσ

trimean 0.794 4 0.801 4 0.622 6

Seasonality index, modified from
Walsh and Lawler (1981)

0.744 5 0.766 4 0.584 7

Other diagnostics

Kurtosis 0.936 1 0.934 14 0.785 24

Skewness 0.943 1 0.938 1 0.798 18

YKI 0.778 23 0.712 33 0.538 34

Weibull shape parameter 0.721 4 0.741 5 0.559 7

Further, normalized and simple spread metrics yield differ-
ent relative wind-speed variabilities between wind sites. On
the one hand, the correlations coefficients between 37-year
monthly mean wind-speed RCoV and CoV, two spread met-
rics that are normalized by average metrics, are nearly unity
(Fig. 6a). The comparison between two simple spread met-
rics, MAD and σ , results in correlation coefficients close to 1
also (Fig. 6d). The relative positions of the OR site highlight
the differences between Fig. 6a and d: compared to other
wind farms, the OR site has moderate wind-speed RCoV and
CoV, but small MAD and σ . Compared to Fig. 6a, the lower
rs and τ in Fig. 6d illustrate that MAD and σ can misrepre-
sent the relative wind-speed variabilities of a wind site. On
the other hand, the results between a normalized spread met-
ric (RCoV and CoV) and the respective simple spread metric
(MAD and σ ), which is also the numerator of the normal-
ized spread metric, lead to weaker correlations (Fig. 6b and
c). The r , rs, and τ between 37-year monthly wind-speed
RCoV and σ are 0.684, 0.738, and 0.579, respectively (not
shown). The wind sites with slower average wind speeds
and thus disproportionately larger normalized spread results
cause the deviations from perfect correlations in Fig. 6b and

c. Therefore, normalized spread metrics, which account for
the differences in wind-speed magnitude, become advanta-
geous over simple spread metrics in comparing variabilities
of wind sites. Note that we demonstrate similar comparisons
between wind-speed spread metrics via annual-mean data in
Fig. A2 (Appendix A).

Meanwhile, using annual-mean data to compute IAVs can
lead to misleading interpretations. Scatterplots of the 37-year
wind-speed and energy IAVs similar to Fig. 4 are illustrated
in Fig. A1, via the same 195 r-filtered sites. The correla-
tions via yearly averages are generally weaker except for a
few metrics, including range divided by mean, which yields
the largest r of all (Table B4). However, the 37-year corre-
lations do not adequately represent the long-term values (Ta-
ble B4), so even though the resultant asymptote periods are
longer than those using monthly data, the asymptote anal-
ysis method is unsuitable for annual data. Moreover, using
annual averages greatly limits the sample size at each site
even with 37 years of hourly wind-speed data. Statistically, a
smaller sample leads to a smaller spread of that distribution.
Accordingly, with few years of data, small spreads in annual-
mean wind speeds result in a tight cluster of IAVs among all
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Figure 6. Similar to Fig. 4, but for scatterplots to compare 37-year wind-speed variability metrics: (a) RCoV and CoV, (b) RCoV and MAD,
(c) σ and CoV, and (d) σ and MAD, based on monthly data from the 195 r-filtered wind sites. Each black dot represents each filtered site,
and the r , rs, and τ at the corner of each panel indicate the Pearson’s r , the Spearman’s rank correlation coefficient, and the Kendall’s rank
correlation coefficient between each pair of wind-speed spread metrics. The yellow square and the yellow star denote the OR and the TX
sites, respectively.

the wind farms. Therefore, the compact collection of wind-
speed and energy-production IAVs causes strong correla-
tions, solely because of the small number of annual averages
used in the IAV calculation. Thus, the correlations via annual
means demonstrate a downward trend with increasing length
of data, regardless of the variability metrics chosen (Fig. 7).
Although the correlations approach the 37-year values, the
weakening correlations with more years included in the IAV
calculations imply that using less data is preferred in con-
necting the two IAVs. Note that the spread cannot be com-
puted with one data point and hence the correlations between
wind-speed IAVs and energy IAVs do not exist with a single
year of data (Fig. 7). Overall, the asymptote analysis causes
deceptive results, and, given the nature of the annual data,
we cannot determine the sufficient length of data to effec-
tively link the IAVs of wind speed and energy production. In
other words, relating wind-speed IAV and energy-generation
IAV with annual-mean data is flawed.

3.3 Wind-speed RCoV calculation and spatial
distribution

Now that we have established that RCoV is a powerful and
accurate way to relate wind-speed and energy-generation
variations, we assess the required amount of data to calcu-

late the RCoV of wind speed. We compute the site-specific
RCoVs using different spans of monthly mean wind speeds,
including the OR and the TX sites (Fig. 8). The variations
of RCoVs decrease as more years are included in the calcu-
lations, and for each location we use the 37-year wind-speed
RCoV as the long-term benchmark. For example, the 37-year
wind-speed RCoV of 0.082 at the OR site means that the me-
dian among the absolute deviations from the median is 8.2 %
of the median monthly mean wind speed (Fig. 8a and Ta-
ble 2). We determine the 37-year σ ’s as 10 % and 5 % of the
37-year RCoV, and we apply the χ2 approach at 90 % and
95 % confidence levels, respectively, to derive the conver-
gence years, or the minimum length of wind-speed data re-
quired to calculate RCoV effectively. The convergence years
of the OR and TX sites are 12 and 25 years with a 90 % con-
fidence, and 20 and 31 years with a 95 % confidence, respec-
tively (Table B5). In other words, for the OR site, one needs
12 years of monthly mean wind speeds to compute RCoV
with a 90 % confidence that the resultant RCoV is within a
10 % deviation from the 37-year RCoV.

To quantify the intermonthly variability of wind speed at a
wind farm, RCoV requires 10 years of monthly wind-speed
records with a 90 % confidence. In general, the σ ’s of wind-
speed RCoVs across the CONUS decrease with more years
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Figure 7. As in Fig. 5, but for annual-mean data.
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Figure 8. Box plots of wind-speed RCoV using monthly MERRA-2 data for different time frames from 1 year to 37 years at (a) the OR site
and (b) the TX site.

included in the RCoV calculation (Fig. 9a). For each grid
point, the sample size of RCoV also becomes smaller, from
37 RCoVs of 1 year of data to 1 RCoV of 37 years of data,
and hence the σ of RCoV decreases as the length of the anal-
ysis period of wind speed increases (Fig. 9a). With the σ ’s of
RCoVs across 37 years, we determine the convergence years
via the χ2 method. For a certain confidence level, the cumu-
lative fraction of the CONUS grid cells that exceed the asso-
ciated threshold of χ2-derived confidence intervals increases
with the length of data (Fig. 9b). Among all of the MERRA-
2 grid cells in the CONUS, the median convergence year is
10 years and the associated MAD is 3 years at a 90 % con-
fidence level (Fig. 9b and Table B5). In other words, to as-
sess the wind-speed variability via RCoV with a maximum of
10 % error from the long-term value and a 90 % confidence,
one needs 10±3 years of monthly mean wind-speed records.

Moreover, raising the confidence level extends the min-
imum length of wind-speed data to compute RCoV. At
the 95 % confidence level, the median convergence year is
20 years, and 2.5 % of grid points in the CONUS require
more than 37 years of monthly mean data to calculate RCoV
(Fig. 9b and Table B5). Additionally, using yearly mean wind
speeds instead of monthly data to calculate RCoV requires
much longer time to reach convergence. At a 95 % confi-
dence, 33 years of annual-mean data is the average required
length, and half of the CONUS grid points have convergence
years of more than 37 years (Fig. 9b and Table B5). We also
perform the same analysis on CoV and σ of wind speeds
(Table B5). Although CoV and σ need fewer years to at-
tain convergence, these nonrobust and nonresistant methods
yield worse correlations between wind-speed and energy-
production variabilities than RCoV, and hence we focus on
demonstrating the RCoV results.
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Figure 9. (a) Box plots of σ ’s of wind-speed RCoVs, where the RCoVs are calculated using monthly mean MERRA-2 data of 1 to 37 years.
For each year, each box summarizes the σ from each MERRA-2 grid cell in the CONUS; (b) the time series of the cumulative fraction of
grid cells in the CONUS that satisfies the threshold: when the pair of the χ2-derived σ ’s from the grid cell, calculated using the particular
amount of data, become smaller than the 37-year σ . The solid black, dash black, solid orange, and dash orange lines, respectively, indicate the
minimum length of data: when the wind-speed RCoV using monthly mean data yields a 10 % deviation at maximum from the 37-year value
at a 90 % confidence level, when the wind-speed RCoV using monthly mean data yields a 5 % deviation at maximum from the 37-year value
at a 95 % confidence level, when the wind-speed RCoV using yearly mean data yields a 10 % deviation at maximum from the 37-year value
at a 90 % confidence level, and when the wind-speed RCoV using yearly mean data yields a 5 % deviation at maximum from the 37-year
value at a 95 % confidence level.

Spatial distributions of wind-speed RCoVs across the
CONUS identify locations with reliable wind resources.
Based on the site-specific convergence years at a 90 % confi-
dence level (Fig. 10a), we calculate the RCoVs with monthly
mean wind speeds of the particular time spans at each grid
point and normalize with the CONUS median (Fig. 10b). Re-
gions requiring long wind-speed records are irregularly scat-
tered across the continent, such as the Northeast, the Dakotas,
and Texas. The mountainous states generally illustrate high
RCoVs, including the Appalachians and the Rockies. Given
the strong correlations between the wind-speed RCoV and
energy-production RCoV, Fig. 10b offers a realistic estima-
tion of the general spatial pattern of the variability in wind-
energy production as well. Note that, qualitatively, Fig. 10b
is similar to the maps of wind-speed variability in Fig. 13a
of Gunturu and Schlosser (2012) and in Fig. 3 in Hamling-
ton et al. (2015), which also illustrate the variability of wind
resources in the CONUS. In addition, using a 10-year fixed

length of wind-speed data for all CONUS grid points to com-
pute RCoV results in a nearly identical spatial distribution to
the pattern in Fig. 10b.

Further, an ideal location for wind farms should exhibit
ample wind speeds with low variability. We combine the spa-
tial variations of the normalized RCoV and the long-term
wind resource (Fig. 10b and c), and we differentiate regions
according to the CONUS median RCoV and wind speed
(Fig. 10d). Favorable candidates for wind farm developments
have above-average wind speeds and below-average variabil-
ities, such as the Plains, parts of the upper Midwest, spots in
the Columbia River region, and pockets nears the coasts of
the Carolinas; poor places for wind power with weak winds
and strong variabilities include the Appalachians and most of
the Northeast.

The convergence years in some CONUS grid points are
beyond 37 years when we increase the confidence level from
90 % to 95 % (Fig. 9b and Table B5), and those grid points
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Figure 10. (a) Map of the convergence years, or years of monthly mean wind-speed data required to derive a maximum of 10 % deviation
from the 37-year RCoV at each grid point, at a 90 % confidence level. The CONUS median is 10 years with the MAD of 3 years; (b) map
of RCoV of monthly mean wind speed using the grid-cell-specific convergence years in (a), normalized using the CONUS RCoV median at
0.100. The RCoVs illustrated are averaged over (37− convergence year+ 1) available year blocks. The MAD of the normalized RCoV in the
CONUS is 0.224; (c) map of the mean monthly wind speed at 80 m of 37 years from 1980 to 2016. The CONUS median is 6.45 m s−1 with
the MAD of 1.03 m s−1; (d) map of wind resource and its variability, by summarizing (b) and (c) into four categories: regions with below-
median wind speed and above-median RCoV (grey), regions with below-median wind speed and below-median RCoV (orange), regions
with above-median wind speed and above-median RCoV (orange red), and regions with above-median wind speed and below-median RCoV
(dark red), based on the CONUS median wind speed and RCoV.

do not demonstrate any geographical pattern as in Fig. 10a.
Additionally, when using RCoV to represent IAV, the spatial
patterns of required data lengths and the resultant normal-
ized RCoVs for annual data are notably different from the
monthly mean results, and geographical features seem to be
irrelevant (Fig. A3). Furthermore, the categorical features of
CoV resemble those of RCoV for onshore wind resources in
the CONUS, whereas using σ results in notably distinct clas-
sifications of CONUS wind resources (Figs. 10d and A4).

4 Discussion

When using statistically robust and resistant variability met-
rics, higher correlations between variabilities of wind speed
and energy production emerge. Statistically robust methods
do not assume or require any underlying wind-speed distri-
butions, and statistically resistant methods are insensitive to
wind-speed extremes. Of all methods, three robust and re-

sistant metrics, RCoV, MAD divided by trimean, and IQR
divided by median, result in the largest three r’s in Tables 3
and B1, which suggests that they are the most useful met-
rics to quantify long-term variability. Depending on the me-
teorological data availability, wind-speed characteristics, and
terrain complexity, different methods are appropriate in dif-
ferent conditions. Nevertheless, robust and resistant meth-
ods are best able to relate wind-speed variability and energy-
generation variability, and RCoV is the most effective of all
the metrics.

Overall, of all the methods we considered, RCoV consis-
tently yields the strongest correlations between wind-speed
and energy variabilities and exhibits reasonable asymptote
periods (Tables 3 and B1), even after accounting for ran-
dom standard errors and modifying the R2 and r thresholds
(Table B3). In addition, assessing wind-speed RCoV with a
90 % confidence requires 10± 3 years of wind-speed data
(Fig. 9 and Table B5), which exceeds the asymptote peri-
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ods of 2 to 6 years to yield strong wind-speed and energy-
production correlations (Table 3). Even though different lo-
cations require various spans of data (Fig. 10a), the average
of the resultant RCoVs using 10 years of wind speeds leads
to nearly identical spatial distributions (Fig. 10b). Therefore,
to effectively quantify wind-speed variability and thus ade-
quately derive energy-generation variability, we recommend
using the RCoV with 10 years of monthly mean wind-speed
data.

Annual-mean data are inadequate to relate wind-speed and
energy-production IAVs or to represent wind-speed IAVs.
We cannot determine the minimum years of data to relate an-
nual wind-speed and energy IAVs because their correlations
decline with the length of data (Fig. 7). Moreover, the coarse
time resolution of annual averages smooths out the fluctua-
tions of smaller timescales. Yearly mean wind speeds also
possess different distribution characteristics, such as skew-
ness and kurtosis, compared to those of finer temporal res-
olutions (Lee et al., 2018). The nonzero kurtosis and skew-
ness in Table 2 and in Lee et al. (2018) illustrate that most of
the distributions of annual-mean wind speeds in the CONUS
are non-Gaussian. Hence, using nonrobust metrics, such as
σ , to evaluate IAV with samples of annual means from non-
Gaussian distributions can lead to incorrect representations
of variability.

Additionally, extended years of wind-speed data are also
necessary to compute RCoV and represent IAV (Fig. A3a),
and the resultant IAVs (Fig. A3b) differ from the variabili-
ties calculated via monthly wind speeds (Fig. 10b). For in-
stance, the low IAVs in the Appalachians (Fig. A3b) calcu-
lated with yearly mean wind speeds contradict the pattern
of high monthly mean wind-speed RCoVs in mountainous
areas (Fig. 10b) as well as the findings in past research (Gun-
turu and Schlosser, 2012; Hamlington et al., 2015). Further-
more, some of the grid points require more than 37 years of
yearly mean data to calculate wind-speed RCoV with statis-
tical confidence (Fig. 9 and Table B5). Although RCoV does
not yield the strongest 37-year r in relating wind-speed and
energy IAVs, readers should be cautious when using a lim-
ited number of annual-mean data to derive IAVs. In short, to
effectively assess the long-term variability of wind farm pro-
ductivity, one should use wind speeds finer than yearly mean
data.

Regions with ample wind resources and low variability
favor wind-energy developments, coinciding with the loca-
tions of many existing wind farms in the CONUS (Fig. 10d).
Wind farms in the Plains and parts of the upper Midwest
benefit from the above-average wind speeds and the below-
average wind-speed RCoVs. Other regions, such as parts of
the Columbia River region and the Carolinas, also experience
strong, consistent winds. The Northeast and the Appalachi-
ans are relatively unfavorable for producing a stable, onshore
wind-energy supply, whereas the area east of Cape Cod in
Massachusetts and the sections along the West Coast exhibit
a promising offshore wind resource. Wind farm developers

should account for wind resource as well as its long-term
variability in repowering existing turbines and building new
wind farms.

Furthermore, mathematically, a normalized spread metric,
namely a spread statistic divided by an average metric, is
more useful than solely a spread metric in assessing variabil-
ity, and a normalized spread metric should always be pre-
sented with the corresponding averaging metric. For exam-
ple, RCoV and CoV between wind speed and energy yield
larger r’s than MAD and σ (Table 3 and Fig. A1), and the
r’s between wind-speed RCoV and CoV are also higher than
those comparisons involving MAD and σ (Fig. 6). For σ , the
root mean square of the deviation from the mean is not sta-
tistically robust or resistant, and 1σ means the uncertainty is
18.3 % from the mean. Hence, CoV, or the σ divided by the
mean, is the respective normalized uncertainty metric to σ .
For instance, the wind-speed CoVs of both the OR and TX
sites are about 0.13 (Table 2), implying the σ is 13 % from
the mean. In contrast, using RCoV, or the MAD divided by
the median, is a robust and outlier-resistant metric of normal-
ized uncertainty. For example, the wind-speed RCoVs of the
OR and TX sites are 0.08 and 0.09, respectively (Table 2), in-
dicating the MADs are 8 % and 9 % from their median wind
speeds. Even though RCoV is not as commonly used and not
as intuitive as σ or CoV, RCoV is unrestricted by any un-
derlying distribution assumptions. Overall, to correctly and
effectively use the normalized spread metrics, both the nor-
malized spread metric and the average value need to be stated
clearly in pairs. In other words, the interpretation of “the
variability is 2 %” oversimplifies the statistics of uncertainty
quantification. Therefore, we recommend presenting both the
RCoV and the median of a time series together in estimating
variability.

Distribution diagnostics, other than the variability metrics,
are also effective in identifying the characteristics of wind-
energy production. We examine distribution parameters re-
sulting in strong wind-speed–energy correlations, including
kurtosis and YKI (Tables 3 and B2), which assess the de-
gree of deviations from a Gaussian distribution. For example,
we confirm that the monthly and annual wind-speed distri-
butions for our case studies in OR and TX are not perfectly
Gaussian because of their nonzero kurtosis and skewness val-
ues (Table 2), as well as their portions of data within 1σ .
Moreover, a multimodal or an asymmetric wind-speed distri-
bution (Fig. 3c and d) also implies a non-Gaussian energy-
production distribution. Gaussian distribution is invalid for
wind speeds across averaging timescales in general (Lee et
al., 2018). Hence, understanding the underlying distribution
of wind resources can validate the applications and the le-
gitimacy of Gaussian statistics, especially in quantifying P50
and the associated losses and uncertainties.
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5 Conclusions

Wind-speed variability is a crucial component in assessing
the overall uncertainty of P50, which is the estimated aver-
age energy production of a wind farm. This study highlights
the importance of using rigorous methods to estimate inter-
monthly and interannual variability. To search for suitable
ways to quantify this uncertainty under different conditions,
we investigate 27 combinations of spread metrics over 607
wind farms in the United States, with closer examination
of two geographically distinct sites. We evaluate the meth-
ods for robustness to non-Gaussian distributions and resis-
tance to extreme values, in contrast to the common practice
of using only standard deviation (σ ). We calculate variabil-
ities using monthly and annual mean wind speeds from the
MERRA-2 reanalysis data set and wind farm monthly net en-
ergy production from the EIA. We find that within the con-
tiguous United States (CONUS), statistically robust and re-
sistant methods predict variabilities more accurately, partic-
ularly in that wind-speed variabilities strongly correlate with
observed energy-production variabilities.

We recommend using the robust coefficient of variation
(RCoV) to quantify variabilities of wind resource and en-
ergy production. RCoV, defined as the median of absolute
deviation from the median wind speed divided by the me-
dian of the wind speed, is a robust and resistant spread met-
ric, in contrast to σ . RCoV yields strong correlations consis-
tently (a Pearson’s correlation coefficient, or a Pearson’s r ,
of 0.856 with 37 years of monthly means) in various sensi-
tivity tests via different correlation coefficients, whereas σ
does not. In other words, using RCoV, a wind farm with
high wind-speed fluctuations also possesses high variations
in wind-energy generations and vice versa, whereas other
metrics do not reflect that relationship as effectively. RCoV,
as a normalized spread metric, also leads to a more accurate
depiction of wind-speed variabilities than σ , a simple spread
metric. Contrary to the custom of displaying uncertainty in
one percentage value, we advise users to assess both the
RCoV and the median in estimating intermonthly variability.
Moreover, depending on the location, on average 10±3 years
of monthly wind-speed data are necessary to compute wind-
speed RCoV with a 90 % statistical confidence, such that the
resultant RCoV deviates within 10 % of the long-term RCoV.

RCoV characterizes the spreads of the distributions of
wind resources and wind-energy production. The relatively
low monthly mean wind-speed RCoVs in the central United
States indicate stable long-term wind resources, and the
RCoV overall spatial distribution in the CONUS agrees with
the findings from past research. Other distribution diagnos-
tics, such as kurtosis and skewness, also result in strong
correlations between monthly mean wind speed and en-
ergy generation, and thus they adequately represent energy-
production characteristics.

Because the long-term correlations between the wind-
speed and energy-production interannual variabilities (IAVs)
are weak (a Pearson’s r of 0.668 for RCoV with 37 years of
data) and decrease with the length of data, we cannot deter-
mine the minimum length of annual mean data required for
skillful assessment of IAV. Hence, we do not recommend cal-
culating IAVs with annual-mean data. Although the concept
of IAV has been essential in determining the annual energy
production in the wind resource assessment process, annual-
mean wind speeds mask signals of finer temporal scales and
thus lead to unreliable representations of long-term variabil-
ity. Overall, uncertainty arises in the process of calculat-
ing IAVs based on limited samples, whereas RCoV yields
credible intermonthly variabilities considering the adequate
amount of monthly mean data.

Now that we have highlighted the preferred structure
of using RCoV, we can assess finer-scale variations us-
ing high-resolution wind-speed and energy-production data.
With data of different temporal scales, the autocorrelation of
wind resources and its relationship with long-term energy-
production variations can also be quantified. The influence
of climatic cycles on energy production can be explored. Fur-
thermore, applying the concept of RCoV to reduce the uncer-
tainty of P50 and assist financial decisions can be beneficial
to the industry.

Data availability. The MERRA-2 data and the EIA data used in
this study are publicly available at http://disc.sci.gsfc.nasa.gov/ (last
access: 31 October 2017; Gelaro et al., 2017) and http://www.eia.
gov/renewable (last access: 31 October 2017).
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Appendix A
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Figure A1. As in Fig. 4, but the metrics are calculated using annual-mean wind speed and energy production.
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Figure A2. As in Fig. 6, but the metrics are calculated using yearly mean wind speed.
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Figure A3. As in Fig. 10a and b, but the data plotted are annual-mean wind speeds: (a) map of the convergence years, or years of wind-speed
data required to derive a maximum of 10 % deviation from the 37-year RCoV at each grid point at a 90 % confidence level. Because 12.6 % of
the CONUS grid points yield convergence years beyond 37 years using annual data (solid orange line in Fig. 9 and first column in Table B5),
we assign 37 years as the convergence years for those grid points. After excluding the non-numeric values, the CONUS median is 27 years
and the MAD is 4 years; (b) map of RCoV of annual-mean wind speed using the grid-cell-specific convergence years in (a), normalized
using the CONUS RCoV median at 0.020. The RCoVs illustrated are averaged over (37− convergence year+ 1) available year blocks. The
MAD of the normalized RCoV in the CONUS is 0.205.

(a)
Below-median wind speed, above-median variability
Below-median wind speed, below-median variability
Above-median wind speed, above-median variability
Above-median wind speed, below-median variability

(b)

CoV

Figure A4. As in Fig. 10d, but the spread metrics are (a) σ and (b) CoV, calculated using monthly mean wind speeds of 37 years.
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Appendix B

Table B1. Description of the 26 spread metrics tested, adapted from Wilks (2011), and the 37-year r’s from the r-filtered monthly data.
q0.25 is the 25th percentile (first quartile), q0.5 is the 50th percentile (median), and q0.75 is the 75th percentile (third quartile). Trimean=
1
4 (q0.25+2×q0.5+q0.75), range(x)=max(x)−min(x), and an overbar (x) indicates the arithmetic mean. Reason I: the metric is not robust
because the metric possesses distribution constraints, for example, assuming a Gaussian distribution, and the metric is not resistant because
outliers influence it; Reason II: the metric is not resistant because outliers influence it; Reason III: the numerator of the metric is not robust
or resistant; Reason IV: the denominator of the metric is not robust or resistant; Reason V: the numerator of the metric is not resistant.

Spread metrics 37-year Robust and Why not robust
r resistant and resistant

Interquartile range(IQR)= q0.75− q0.25 0.214 Yes –
IQR

median 0.845 Yes –
IQR

trimean 0.834 Yes –

Median deviation from median=median[x−median(x)] −0.048 Yes –

Median absolute deviation (MAD)=median|x−median(x) | 0.196 Yes –

Robust coefficient of variation(RCoV)= MAD
median 0.856 Yes –

Exponential RCoV= ln(MAD)
ln(median) 0.595 Yes –

MAD
trimean 0.848 Yes –

Standard deviation (σ )=

√
1
n−1

n∑
i=1

(xi − x)2 0.184 No Reason I

Variance (σ 2)= 1
n−1

n∑
i=1

(xi − x)2 0.136 No Reason I

Coefficient of variation(CoV)= σ
mean 0.704 No Reason I

Exponential CoV= ln(σ )
ln(mean) 0.466 No Reason I

Mean deviation from mean= (x− x) −0.043 No Reason I

Mean absolute deviation= |x− x| 0.187 No Reason I

Trimmed standard deviation (σ )= standard deviation without values below Q10 and

Q90, or =

√
1

n−2k

n−k∑
i=k+1

(
x(i)− xa

)2
, k as the nearest integer to a× n

0.206 No Reason I

Trimmed σ
x

0.775 No Reason I

Range 0.177 No Reason II
Range
x

0.609 No Reason I

Seasonality index=
∑
|x−x|
n×x

(modified from Walsh and Lawler, 1981) 0.744 No Reason I
σ

median 0.743 Partially Reason III
σ

trimean 0.728 Partially Reason III
IQR
x

0.818 Partially Reason IV
MAD
x

0.834 Partially Reason IV
Trimmed σ

median 0.806 Partially Reason III
Trimmed σ

trimean 0.794 Partially Reason III
Range
median 0.650 Partially Reason V
Range

trimean 0.635 Partially Reason V
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Table B2. Description of the distribution diagnostics tested, adapted from Wilks (2011) and the 37-year r’s from the r-filtered monthly data.
Reason I: the metric is not robust because the metric possesses distribution constraints, for example, assuming a Gaussian distribution, and
the metric is not resistant because outliers influence it; Reason II: the metric is not robust because it assumes a Weibull distribution.

Other diagnostics Description 37-year Robust and Why not robust
r resistant and resistant

Kurtosis (tailedness)= 1
n

n∑
i=1

(xi−x)4

( 1
n

n∑
i=1

(xi−x)2)2

− 3

Positive value means the distribution
is tail heavy with more and more ex-
treme outliers compared to Gaussian;
vice versa

0.936 No Reason I

Skewness=

1
n

n∑
i=1

(xi−x)3

( 1
n

n∑
i=1

(xi−x)2)
3
2

Positive value means long right tails, or
right skewed; vice versa

0.943 No Reason I

Yule–Kendall Index (YKI)=
q0.25−2×q0.5+q0.75

IQR

Positive value means long right tails, or
right skewed; vice versa

0.778 Yes –

Weibull scale parameter Determine the peak and the stretch 0.379 No Reason II

Weibull shape parameter Determine the average, the symmetry,
and the shape

0.721 No Reason II

Autocorrelation Pearson’s r with its own past and future
values

Not applicable Not applicable –

Table B3. As in Table 3, but with the calculated metrics, the associated correlations, and asymptote periods using different R2 and r filters
and adding the randomized standard error to predicted monthly total energy production. The sample sizes of the 0.7-r threshold test, the
0.9-r threshold test, and the random error test are 306, 83, and 195 wind farms, respectively.

Sensitivity test R2
= 0.6 R2

= 0.85 Random error
r = 0.7 r = 0.9

Spread metrics 37-year r Asymptote years 37-year r Asymptote years 37-year r Asymptote years

CoV 0.650 6 0.787 3 0.675 6
σ

median 0.682 5 0.820 2 0.708 4
σ

trimean 0.671 5 0.804 3 0.695 5
IQR
mean 0.786 4 0.837 3 0.774 7

IQR
median 0.811 3 0.865 2 0.799 6

IQR
trimean 0.801 4 0.851 3 0.789 7

RCoV 0.815 3 0.879 2 0.808 6
MAD
mean 0.793 3 0.859 3 0.786 7
MAD

trimean 0.807 3 0.870 3 0.800 6
Range
mean 0.524 31 0.767 26 0.567 29
Trimmed σ

median 0.736 5 0.816 3 0.741 6
Trimmed σ

trimean 0.753 4 0.831 3 0.758 5

Seasonality index, modified from
Walsh and Lawler (1981)

0.695 5 0.804 3 0.710 5

Other diagnostics

Kurtosis 0.896 5 0.927 1 0.886 14

Skewness 0.931 1 0.951 1 0.918 8

YKI 0.756 23 0.833 19 0.669 25

Weibull shape parameter 0.656 5 0.802 3 0.706 4
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Table B4. As in Table 3, but with the calculated metrics, the associated correlations, and asymptote periods using annual-mean wind speed
and energy production using the 195 r-filtered sites.

Spread metrics 37-year r Asymptote years

CoV 0.573 27
σ

median 0.567 27
σ

trimean 0.569 27
IQR
mean 0.699 24

IQR
median 0.697 24

IQR
trimean 0.699 24

RCoV 0.668 27
MAD
mean 0.670 25
MAD

trimean 0.670 25
Range
mean 0.723 27
Trimmed σ

median 0.567 27
Trimmed σ

trimean 0.569 27

Seasonality index, modified from Walsh and Lawler (1981) 0.547 29

Other diagnostics

Kurtosis 0.985 5

Skewness 0.980 4

YKI 0.853 12

Weibull shape parameter 0.649 28

Table B5. Convergence years based on the χ2 approach of wind-speed RCoV (as in Figs. 8 and 9), wind-speed CoV, and wind-speed σ ,
using monthly and yearly wind speeds. The calculations of median and MAD exclude the data with convergence years beyond 37 years in
the CONUS.

Monthly mean wind speed RCoV CoV σ

Confidence level 90 % 95 % 90 % 95 % 90 % 95 %
37-year sample size (of 5049 grid points) 5049 4923 5049 5039 5049 5048
Convergence years – CONUS median 10 20 4 12 4 12
Convergence years – CONUS MAD 3 4 2 5 2 5
Convergence years – OR site 12 20 6 15 6 15
Convergence years – TX site 25 31 7 24 5 24

Yearly mean wind speed RCoV CoV σ

Confidence level 90 % 95 % 90 % 95 % 90 % 95 %
37-year sample size (of 5049 grid points) 4414 2565 5034 4292 5034 4301
Convergence years – CONUS median 27 33 20 28 19 28
Convergence years – CONUS MAD 4 2 4.5 3 4 3
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