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Abstract. Ten years of ERA5 reanalysis data are combined with met-mast and lidar observations from 10
offshore platforms to investigate low-level jet characteristics over the Dutch North Sea. The objective of this
study is to combine the best of two worlds: (1) ERA5 data with a large spatiotemporal extent but inherent
accuracy limitations due to a relatively coarse grid and an incomplete representation of physical processes and
(2) observations that provide more reliable estimates of the measured quantity but are limited in both space and
time. We demonstrate the effect of time and range limitations on the reconstructed wind climate, with special
attention paid to the impact on low-level jets.

For both measurement and model data, the representation of wind speed is biased. The limited temporal extent
of observations leads to a wind speed bias on the order of ±1 m s−1 as compared to the long-term mean. In part
due to data-assimilation strategies that cause abrupt discontinuities in the diurnal cycle, ERA5 also exhibits a
wind speed bias of approximately 0.5 m s−1. The representation of low-level jets in ERA5 is poor in terms of
a one-to-one correspondence, and the jets appear vertically displaced (“smeared out”). However, climatological
characteristics such as the shape of the seasonal cycle and the affinity with certain circulation patterns are repre-
sented quite well, albeit with different magnitudes. We therefore experiment with various methods to adjust the
modelled low-level jet rate to the observations or, vice versa, to correct for the erratic nature of the short observa-
tion periods using long-term ERA5 information. While quantitative uncertainty is still quite large, the presented
results provide valuable insight into North Sea low-level jet characteristics. These jets occur predominantly for
circulation types with an easterly component, with a clear peak in spring, and are concentrated along the coasts
at heights between 50 and 200 m. Further, it is demonstrated that these characteristics can be used as predictors
to infer the observed low-level jet rate from ERA5 data with reasonable accuracy.

1 Introduction

On average, wind speed increases with height above the sur-
face and the rate of increase can be described using simple
formulas (e.g. power-law or logarithmic profile; see Sede-
fian, 1980). Due to their simplicity and ease of use, these
wind profile parameterisations have been widely adopted in
the wind energy community. However, in some situations
these formulas cannot adequately capture the observed wind
profile. During these situations, the application of a simpli-
fied wind profile parameterisation can introduce error or “un-

certainty” into the reconstructed wind climatology. This is
clearly the case for low-level jets (LLJs), for which wind
speed reaches a maximum not far (i.e. roughly less than
500 m) from the surface (Fig. 1a).1 Wind shear and turbu-
lence intensity associated with low-level jets also differ sub-
stantially from those assumed under “standard” conditions.

1In line with one of the core messages of the paper, i.e. that the
climatological characteristics of low-level jets are to be seen with
some uncertainty, all figures in this paper have been rendered in a
less formal style.
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Figure 1. (a) Example low-level jet profile as compared to the “standard” logarithmic wind profile. (b) Preliminary spatial distribution of
annual low-level jet occurrence based on 10 years of ERA5 data up to 500 m. Overlaid are the location of the 10 measurement platforms
used in this analysis: Met Mast IJmuiden (MMIJ), Hollandse Kust Noord A (HKNA) and B (HKNB), Hollandse Kust Zuid A (HKZA) and
B (HKZB), Lichteiland Goeree (LEG), Borssele Wind Farm Lots 1 (BWF1) and 2 (BWF2), Europlatform (EPL), and K13. Colour coding is
consistent across all figures.

Low-level jets modify wind power performance and load-
ing by impacting wake recovery rates and vertical pro-
files of wind speed, direction, and turbulence (Wharton and
Lundquist, 2012; Bhaganagar and Debnath, 2014; Park et al.,
2014; Gutierrez et al., 2017). Thus, for a complete assess-
ment of loads and power, it is important to have a broad
understanding of the site-specific low-level jet characteris-
tics: how often do they occur, under which circumstances, at
what height and with what strength, and what mechanisms
are responsible for their formation? A large body of liter-
ature exists on low-level jets, the majority focusing on the
onshore phenomenon. We refer to Rife et al. (2010) for a
global climatology and to Shapiro et al. (2016) for a syn-
thesis of the underlying mechanisms. In coastal areas, the
occurrence of low-level jets has been attributed to the ther-
mal contrast and differences in surface roughness between
land and sea (e.g. Mahrt et al., 2014; Nunalee and Basu,
2014). Dörenkämper et al. (2015) linked the occurrence of
coastal jets to their onshore counterpart. In certain areas,
other mechanisms like orographic forcing may play an im-
portant role (e.g. Moore and Renfrew, 2005). Concerning the
spatial and temporal variability of the coastal jets, we refer
to Ranjha et al. (2013) and Lima et al. (2018), who presented
global maps based on reanalysis data. Their analyses high-
light a number of large-scale global “hotspots” that, in effect,
overshadow more regional phenomena. Consequently, a sys-
tematic long-term characterisation of coastal jets is lacking
for the North Sea.

In a previous publication (Kalverla et al., 2017), we re-
ported on low-level jet characteristics at a prospective wind
power site 85 km off the Dutch coast (MMIJ, a.k.a “IJmuiden
ver”), using 4 years of mast and lidar observations. The cli-

matology consisted of the diurnal and seasonal variability in
low-level jet occurrence, jet speed, jet height, jet direction,
etc. Inherently, this low-level jet climatology is only valid
for the single observation site examined. In order to gener-
alise the results from this study and to improve our overall
understanding of low-level jets across the North Sea, we now
present a spatial climatology of low-level jets based on ERA5
reanalysis data (Sect. 2; Copernicus Climate Change Service,
2017) and an extended set of observations.

Preliminary results based on 10 years of data in the lower
500 m of the atmosphere (Fig. 1b) show that ERA5 provides
interesting information about the spatial distribution of low-
level jets. However, without observational support, this in-
formation is of little value. Therefore, we incorporate addi-
tional lidar observations to provide this support, but knowl-
edge gained of the Dutch offshore wind climate from these
measurements is inhibited by the relatively short duration
of measurement collection (i.e. typically ∼ 1 year) and the
limited vertical measurement range (i.e. typically less than
300 m; see Fig. 2 and Appendix A for details on measure-
ment time and range). Consequently, the aim of this study
appears twofold: (1) observations will be used to validate the
ERA5 climatology of wind and low-level jets, and (2) ERA5
will be leveraged to infer long-term low-level jet character-
istics based on a limited set of observations. Absolute agree-
ment in low-level jet characteristics between the two data
sources would enable perfect execution of these objectives;
however, that is unlikely. Therefore, we formulated the fol-
lowing research question to serve/blend both perspectives:

How can observations and reanalysis data be com-
bined to obtain a spatial climatology of low-level
jets that is both rich (in its spatial and temporal ex-
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tent) and reliable (in terms of its correspondence
with available in situ observations)?

The paper is structured as follows. A brief description of
the data and an elementary evaluation of wind speed itself
is provided to illustrate how both datasets are biased. There-
after, low-level jet representation within both datasets is dis-
cussed, starting with jet detection and morphology (e.g. jet
height). A common thread throughout the paper is how these
characteristics are impacted by time and (vertical measure-
ment) range limitations. Using the seasonal cycle of low-
level jets as an illustrative example, we experiment with var-
ious methods to post-process the ERA5 data and extend the
observations based on identified correspondence and/or dif-
ferences. This exercise is repeated for the diurnal cycle, at-
mospheric stability and various circulation patterns. Finally,
all of these characteristics are combined to demonstrate that
the “true” low-level jet rate can be reconstructed with rea-
sonable accuracy if sufficient observations are available. The
paper ends with a comprehensive discussion of the implica-
tions and future research directions.

The focus of this paper is to obtain a reliable spatial repre-
sentation of the low-level jets. This provides clues as to the
physical mechanisms that govern them, but a detailed treat-
ment of these processes is outside the scope of the current
work.

To facilitate transparency and reproducibility, a series of
Jupyter notebooks is available as a Supplement to this paper.
Consequently, some technical details are left out of the main
text, which is intended as a readable and coherent treatment
of the most important results.

2 A brief description of both datasets and their
shortcomings

Observations are available from seven sites (Fig. 1b). Three
of these sites had two lidars operating simultaneously and
one site (MMIJ) also featured a 90 m met mast. The tem-
poral span of measurements ranges from 6 months to over
4 years (Fig. 2). Some of the lidars were placed in the vicin-
ity of existing wind farms and are appropriately filtered to
remove any potential wind farm wake effects. More informa-
tion on quality control and post-processing of the lidar data
can be found in Appendix A. The observations are available
as 10 min averages, but to facilitate comparison with ERA5,
the data were converted to hourly averages.

ERA5 (Copernicus Climate Change Service, 2017) is
the latest reanalysis dataset from the European Cen-
tre for Medium-range Weather Forecasts (ECMWF).
Re(trospective) analysis is the procedure of fitting a state-
of-the-art weather model to historical measurements (satel-
lites, weather stations, etc.) to obtain a long-term dataset that
is both spatially and physically consistent and depicts the
state of the atmosphere as it evolved through time. ERA5
is the successor of ERA-interim, and similarly ERA5 is ex-

pected to be widely used for wind resource assessment stud-
ies (Olauson, 2018). Compared to its predecessor, ERA5 has
a finer horizontal grid of about 30 km and also enhanced ver-
tical resolution (for this study, data were retrieved on a 0.3◦

by 0.3◦ latitude–longitude grid). ERA5 is based on a newer
model version and, moreover, provides output at hourly in-
tervals, enabling a comprehensive analysis of sporadic fea-
tures such as low-level jets. ERA5 data from the North Sea
domain between 2008 and (the end of) 2017 in the lowest
500 m demonstrates the ability of the model to resolve low-
level jets (Fig. 1b).

Before analysing the morphology of these jets, we illus-
trate the limitations of both datasets concerning the represen-
tation of wind speed. Figure 3a shows averaged wind profiles
for the grid points closest to each of the measurement loca-
tions (we verified that this approach is comparable to spa-
tial interpolation between multiple neighbouring grid points).
The full lines represent all 10 years of ERA5 data,2 whereas
the dashed lines indicate averaged wind profiles derived from
data subsets, which only incorporate ERA5 data when ob-
servations are available. The full lines are all quite close to-
gether, while the data subsets exhibit a much larger spread.
Variability between the full lines can be related to physical
differences between sites (e.g. distance to coast). Dissimilar-
ity between the ERA5 10-year datasets and the ERA5 data
subsets indicates that, due to the limited time extent of the
observations, the data subsets are not representative of the
site climatology. For some sites, this representativity bias
almost reaches 2 m s−1, and even for MMIJ, wherein mea-
surements occurred for the longest period, it still amounts to
∼ 0.5 m s−1. The primary reason for this bias at MMIJ is that
the data contain more winter than summer months, and the
wind is generally stronger in winter. Because the MMIJ data
span more than 4 years, some of them can be discarded in
order to ensure an equal representation of the seasons within
the data. However, at the other stations, the temporal period
of observation is limited, and using a similar seasonality filter
would result in almost half of the data being removed, which
is not desirable. Worse still, Hollandse Kust Noord (HKN)
observations do not encompass a complete year, and even if
they did, inter-annual variability can be substantial. Available
observations therefore cannot be used to derive the long-term
wind climatology directly. However, by correlating a short-
term dataset with long-term observations at a nearby site, the
long-term wind characteristics at the target site can be in-
ferred with reasonable accuracy. This procedure is known as
measure–correlate–predict (MCP; Carta et al., 2013). While
not discussed here, the application of similar techniques to
the low-level jet phenomena will be examined later in this
document.

2Some lines are exactly on top of each other because they are
in the same grid point. Both are plotted, though, to preserve colour
coding.

www.wind-energ-sci.net/4/193/2019/ Wind Energ. Sci., 4, 193–209, 2019



196 P. C. Kalverla et al.: Characterising low-level jets

Figure 2. (a) Time–height plots of wind speed for each platform, illustrating the data collection periods, temporal overlap between plat-
forms and episodes of missing data. (b) Site-specific measurement heights. Reference elevation for the ERA5 data have been included for
comparison. The colour coding in (a) highlights episodes of high (yellow/green) and low (blue) wind speed.

ERA5 also demonstrates bias in its representation of site
winds. An error diagram of the wind speed in ERA5 (sub-
sets) versus observations is provided in Fig. 3c. In this di-
agram (co-opted from Kalverla et al., 2019), the mean er-
ror (BIAS) is plotted on the x axis, the standard deviation of
the error distribution (STDE) is plotted on the y axis and, by
virtue of the relation BIAS2

+STDE2
= RMSE2, the distance

to the origin represents the root mean square error (RMSE).
Wind speed data from all observation levels were aggregated
in this figure to evaluate the overall performance of ERA5
at each measurement site. For example, the Hollandse Kust
Zuid (HKZ) lidars show a strong bias (i.e. systematic error)
but have a relatively small standard deviation (i.e. random er-
ror). ERA5 site-specific RMSE values, ranging from 1.25 to
1.5 m s−1, can be caused by multiple model aspects such as
the limited grid resolution and the incomplete representation
of physical processes. Uncertainties in the observations can
also contribute to overall error statistics. Based on the man-
ufacturer information and previous validation (Poveda and
Wouters, 2015), the uncertainty in the observations can only
account for about 2 % of the errors. Finally, displacement in
space or time as well as discrepancies between point-based
measurements and modelled control volumes can contribute
to errors, although we did our best to minimise these effects,
e.g. by using appropriate time averaging of the observations
(see the Supplement).

The observed biases exhibit a strong diurnal variation.
During the night (Fig. 3b), the bias is roughly between
0 and −0.5 m s−1, depending on the location. However,
at 10:00 UTC, there is a sharp decrease in the bias of ∼
−0.5 m s−1 for most stations. The reason for this disconti-
nuity can be found in the IFS (Integrated Forecasting Sys-
tem) documentation (ECMWF, 2016). ERA5 is produced
with a 4D-VAR data-assimilation algorithm that uses two 12-
hourly windows running between 09:00–21:00 and 21:00–
09:00 UTC. This means that all hourly fields up to the

09:00 UTC analysis are based on the nighttime observations,
while data from 10:00 UTC onwards are based on the day-
time observations. We hypothesise that the impact of the data
assimilation is magnified during the nighttime because night-
time boundary layers are generally shallower; the difficulty
of appropriately assimilating observational data within the
(stable) boundary layer is discussed in Reen and Stauffer
(2010) and Tran et al. (2018). Discontinuity in the diurnal
cycle is present at each model level up to 300 m, irrespective
of the season and platform; however, it seems to be slightly
stronger for those stations closer to the coast.

3 Jet detection: a precarious procedure

Low-level jets are identified by seeking local maxima in the
wind profiles. Having identified a local maximum, the jet
strength, height, and fall-off are analysed. Fall-off, as indi-
cated in Fig. 1a, is defined as the difference between the max-
imum and the subsequent (moving upwards) local minimum
or, if no local minimum is present, the top of the wind profile.
Most results in this study are based on an absolute fall-off
threshold of 2 m s−1. Figure 4 demonstrates how this thresh-
old influences the low-level jet detection rate and further how
the detection of low-level jets is influenced by both time and
(vertical measurement) range limitations. The figure consists
of five scatter plots, each depicting the fall-off versus the jet
height for each wind profile that was detected with a local
maximum. The differences between the panels are the under-
lying data analysed – i.e. observations and varying subsets of
ERA5 data.

The first panel (Fig. 4a) is based on 10 years of ERA5 data
and the model levels contained within the lower 500 m of the
atmosphere. The two dashed lines represent limiting factors:
(1) the fall-off threshold of 2 m s−1 (horizontal dashed line)
and (2) limitations due to observation height (vertical dashed
line). The model data extend up to 500 m, but the observa-
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Figure 3. (a) Averaged wind speed profiles for each measurement location, based on 10 years of ERA5 data (full lines) and data subsets
(dashed lines). (b) Mean (full lines) and standard deviation (dashed lines) of the error between ERA5 (subsets) and the observations, for each
measurement site, as a function of the time of the day. (c) Error diagram of wind speed in ERA5 (subsets) versus observations for all lidar
datasets. Colour coding is the same in all subplots, so (c) can serve as a legend.

tions only reach up to about 300 m (depending on the plat-
form). All platforms are overlaid (shorter datasets on top).
Only points above the horizontal dashed line are included in
the low-level jet climatology that is presented in the next sec-
tions. The numbers in the top left corner of each panel give
the number of jets above the fall-off threshold and the total
number of jets plotted.

Figure 4b–d are based on subsets of the ERA5 dataset. In
panel (b), ERA5 data are incorporated only if observations
are available; as expected, this substantially limits the total
number of low-level jets (85 % reduction). In panel (c), we
have retained all 10 years of data, but only at observation
heights (i.e. data above 300 m were discarded and the remain-
ing data were vertically interpolated – using a cubic spline
– between the remaining model levels to obtain the ERA5
wind speeds at the exact observation height). The effect of
this step is that 93 % of the meaningful jet events (i.e. those
exceeding the fall-off threshold) vanish, and not just those
above 300 m. In order to classify a wind profile as a jet, fall-
off above must be properly resolved. This explains why a jet
at 100 m can also vanish from the climatology if data from
above 300 m are removed. The pronounced impact of this
vertical range limitation on the ERA5 data raises the ques-
tion of whether the observed low-level jet climatology would
be much different if we could observe higher-altitude winds.
An increased measurement range might reveal not only low-
level jets above hub height, but also new low-level jets at hub
height that are currently not identified as such.

Height and time limitations are combined in panel (d) in
order to develop an ERA5 dataset that is fair to compare
with observations (panel e). Judging from the figure, it seems
that ERA5 does not perform well. Much fewer jets are found
above the fall-off threshold in the ERA5 data as compared to
the observations. Indeed, a more quantitative comparison in
the form of a contingency table, based on one-to-one (1 : 1)
jet correspondence between the two datasets, shows a very

low critical success index (∼ 0.2) and probability of detec-
tion (∼ 0.2; see the Supplement). In other words, only 20 %
of low-level jets are correctly represented by ERA5. Does
that imply that ERA5 is useless? No! Figure 4a indicates
that potentially relevant information was filtered out. Even
though the fall-off is typically much smaller (to the extent
that it falls below the fall-off threshold), the height distri-
bution of the ERA5 jets seems similar to the observations
(also see Sect. 4). Perhaps the ERA5 jets appear vertically
displaced or just not strong enough? This would not come as
a surprise: weather models have long been known to generate
excessive vertical mixing under stable conditions, effectively
“smearing out” low-level jets (Holtslag et al., 2013). If the
height thresholds for the ERA5 data are modified to 500 m,
the 1 : 1 correspondence is still quite poor (critical success
index ∼ 0.2; probability of detection ∼ 0.5), but despite an
inability to accurately denote the total number of low-level
jets, other characteristics appear to be captured quite well –
e.g. the average monthly low-level jet rate. Therefore, the re-
mainder of this paper is devoted to the analysis of such low-
level jet characteristics and methods to consolidate ERA5
and measurement data.

4 Vertical range affects perceived jet morphology

Jet height and jet strength are of paramount importance for
wind energy applications. Small variations in height can re-
sult in either symmetric or asymmetric loads on the turbine,
and typical strengths in the rated part of the power curve are
probably less critical than typical strengths in the cubic part.
It turns out, though, that the concepts of “typical” height and
strength are not self-evident.

Figure 5 displays probability distributions of jet strengths
(panel a) and jet heights (panel b) for various representations
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Figure 4. Scatter plots of fall-off versus jet height for various representations of model data and observations. In (a) and (b), the jet height is
represented by discrete model levels. Since these are specified in terms of pressure rather than height, they can exhibit small height variations
in time. In (c), (d), and (e), jet height is represented by fixed measurement heights, and to improve the readability of the graph we added
small random perturbations to these heights. See text for further explanation of the figure.

of the ERA5 data and observations.3 It shows that the jet
height and strength distributions are sensitive to the range
limitation. The median observed jet strength is about 8 m s−1.
This is quite well reflected in the ERA5 data if we consider
all levels up to 500 m, but after imposing the range limitation,
the jet strength is underestimated by about 3 m s−1. The ob-
served median jet height is around 80 m. The ERA5 jet height
distribution is broader with greater jet heights for the data
up to 500 m, while it is narrower with lower jet heights for
the range-limited data. To obtain a robust result, this figure
is based on the aggregated data from all platforms. Separate
figures for each individual platform show similar character-
istics, although the jets near the coast seem to be somewhat
closer to the surface than jets further offshore (not shown).

Three different representations of the observations are in-
cluded in Fig. 5. The first one is based on the 10 min data. The
second is based solely on the data of each full hour; in other
words, we discarded five-sixth of the data. With this strat-
egy, (small) discrepancies in low-level jet timing can have
a disproportionate impact on the results. A more permissive

3Obviously, it is physically impossible to have a jet strength
or height below zero. This is an artefact of the visualisation – it
has a smoothing effect. We experimented with other visualisations
(smaller bandwidth or histograms) but found that this visualisation
best represented the underlying data.

evaluation (the third representation) is based on hourly aver-
ages obtained with a sliding window, where each full hour is
an average including the 10 min data from the preceding two
and the following three time stamps. This last version of the
observations is used throughout the remainder of the paper.
This figure demonstrates that the differences between various
resampling methods in terms of jet height and jet strength are
small.

5 Datasets agree: most jets in spring and summer

Figure 6 displays the seasonal cycle of low-level jets and, in
a similar fashion as Fig. 4, how this cycle is subject to time
and range limitations. Over 10 years’ time and 500 m height
(panel a), the seasonal cycle is smooth and differences be-
tween the individual platforms are small. Ideally, we would
compare this to 10 years of observations up to 500 m, but
since those data are not available we take spatial and tempo-
ral subsets of the ERA5 data instead. By investigating how
this affects the seasonal cycle, we identify methods to extend
upon the limited observations. Over the shorter measurement
periods (panel b) the seasonal cycle appears much more er-
ratic than the 10-year climatology. Some years are not very
representative, and some datasets do not even cover a com-
plete cycle. As we will see later on, a favourable weather
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Figure 5. Kernel density estimates of the probability distribution of jet strength (a) and jet height (b) for various representations of the ERA5
data (full lines) and the observations (dashed lines), aggregated over all stations.

pattern for low-level jets is a weak large-scale forcing typi-
cally associated with high-pressure systems. Such “blocked”
weather patterns can last for several weeks, and their occur-
rence can thus cause large differences in monthly low-level
jet rates. In other words, the seasonal cycle based on only 1 or
a few years is very sensitive to inter-annual variability. Upon
vertical subsetting or interpolation to measurement heights
(panel c), the seasonal cycle is still visible, albeit with a much
smaller amplitude. The combined effect (panel d) leads to
a very uninformative climatology because the monthly low-
level jet rates are all (close to) zero except for some unrep-
resentative spikes. Based on panel (b), we expect that the
observations are similarly affected by the limited time win-
dow of the observations. Indeed, panel (e) shows an erratic
seasonal cycle with an amplitude somewhere between pan-
els (b) and (d).

Thus, both datasets agree on the presence of an annual cy-
cle, but the amplitude differs between (various representa-
tions of) ERA5 and the observations. Moreover, the observa-
tion periods are too short to obtain a reliable climatology. To
distill a more robust signal from the observations, we com-
bined the data from all sites before computing the monthly
means and smoothed the resulting signal with a moving av-
erage of 3 months. The result is the dashed black line in
panel (e). We then repeated these steps for the ERA5 data
(panels a–d), but before plotting these lines, we scaled them
with the observations, using a fixed scaling factor that is sim-
ply the ratio between the mean low-level jet rate in the re-
spective representation of ERA5 (panels a–d) and the mean
of the observations (panel e). The result is promising: the sea-
sonal cycle is similar for all datasets, peaking at about 5 % in
June. The crude manipulation of the data leads to a large er-
ror margin, though, and we wonder whether we can find a
more sophisticated approach to achieve a similar result. Fur-
thermore, because valuable information is lost if we discard
the ERA5 data above observation heights, we will continue

to work with the ERA5 data up to 500 m in the remainder of
this paper.

6 Simple scalings for the seasonal cycle

In the previous section we learned that 10 years of ERA5 data
leads to a smooth seasonal cycle, but shorter observation pe-
riods lead to an erratic seasonal cycle because the months
in the subset are not representative of the long-term monthly
means. We also saw that upon aggregation and smoothing,
both ERA5 and observations show similar seasonal cycles
that differ mostly in their amplitudes. In this section we seek
to combine the information from both data sources to re-
construct the “true” seasonal cycle of low-level jets over the
North Sea. We considered two different approaches.

The first method applies a correction to the observations,
based on information about their representativity. For each
month and each platform, we calculated the ratio between
the low-level jet occurrence in the full and subsets of the
ERA5 data. Months for which this factor is much smaller
(or larger) than 1 are characterised by above- (below-) av-
erage low-level jet occurrence. We then applied these ratios
as correction factors to the observed monthly means to ad-
just the outliers and obtain a more representative seasonal
cycle. However, this method did not lead to satisfactory re-
sults because the correction factors were not robust: if only
1 year of data was available, and a month was very unrepre-
sentative, the correction factor would become very high/low
and the adjustment would overcompensate. Consequently,
the reconstructed long-term seasonal cycles still appeared
erratic and were deemed unreliable (this result is therefore
not shown here, but is available in Supplement 4/6). For
MMIJ the measurement period spanned more than 4 years
and consequently, the monthly low-level jet occurrence al-
ready started converging on the climatological seasonal cy-
cle. For this platform, the correction factors were closer to
1 and we obtained a reasonably smooth seasonal cycle. This
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Figure 6. Seasonal cycle for various representations of model data and observations. Shading is the sensitivity to ±0.5 m s−1 for the LLJ
fall-off threshold. The dashed lines represents an aggregated seasonal cycle of all platforms, smoothed with a rolling average of 3 months (2
at the edges) and scaled with the ratio of the mean jet frequency in the respective representations of ERA5 and the mean jet frequency in the
observations.

emphasises that for this correction method, at least several
years of measurement data are required to obtain a reliable
estimate of the long-term low-level jet climatology.

Whereas the first method was aimed at correcting the ob-
servations (using ERA5 as a “vehicle” to assess their repre-
sentativity), with the second method we aim to correct the
long-term ERA5 data based on prior evaluation of its perfor-
mance during the short-term period for which we have obser-
vations. This can be readily understood from Fig. 6. We com-
pare panels (b) and (e), and seek a fixed scaling factor that
minimises the difference between each pair of monthly ob-
served and simulated LLJ frequencies. Denoting the monthly
mean low-level jet frequency in ERA5 and collocated ob-
servations with x and y, respectively, an optimised scaling
factor can be found by solving for a in y = ax (using lin-
ear least squares regression). We do this for each platform
individually and also for their combined signal.

The results are illustrated in Fig. 7a. The lighter colours
represent the individual platforms, while the black line and
scatter points represent the combined monthly means. The
overall fit, based on all available data, has a slope of 0.44, but
there are substantial differences between the individual plat-
forms, with slopes between 0.15 and 0.73 and relatively large
scatter. The difference between platforms could be random,
due to the limited availability of measurement data, or sys-
tematic, in which case different sites need different scaling

parameters. If the difference is random, the global optimum
indicated by the black line in Fig. 7a could do justice to all
individual platforms because it incorporates a much larger
body of measurement data than any single-site regression.
Applying this factor of 0.44 to the full ERA5 data provides us
with a smooth seasonal cycle with reduced amplitude (simi-
lar to the black dashed line in Fig. 6a, but now based on an
optimised scaling factor). In other words, the seasonal cy-
cle of low-level jets based on ERA5 data up to 500 m over-
estimates the observed cycle (based on measurement up to
300 m) by a factor of ∼ 2. However, as shown in Fig. 7b,
there seems to be a spatial dependence in the scaling fac-
tors with larger slopes away from the coast, implying that
the different sites need different scaling parameters. In order
to cross-validate the single-platform regressions, we need to
split the measurement data in train and test datasets, but this
poses a challenge. Like before, the data record at MMIJ is
long enough to obtain a reasonable prediction of the test data,
but some of the other data records are very short and splitting
them would, for example, leave only 3 months of training
data, which obviously leads to very poor statistics, especially
since there are hardly any low-level jets in winter. Without
cross-validation, more data are available for regression, but
this introduces the risk of overfitting and therefore quanti-
tative evaluation will be biased. Qualitatively, the resulting
seasonal cycles still appear erratic (Supplement 4/6).
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Thus, despite similarities between the datasets, it is not
straightforward to either correct the observations using
ERA5 representativity factors or to correct the ERA5 data
using a scaling factor derived from collocated observations.
In this section, we used the seasonal cycle to obtain aggre-
gated low-level jet characteristics (i.e. monthly means), but
perhaps we can identify other characteristics that lead to bet-
ter results.

7 Other jet characteristics and their scaling
potential

7.1 Diurnal cycle and stability

After analysing the seasonal cycle of low-level jets in-depth,
we now briefly consider some other variables that describe
relevant characteristics of the low-level jet climatology, start-
ing with the diurnal cycle. Figure 8a–c are again similar
to Fig. 6, now only including the ERA5 data up to 500 m.
From the observations, it appears that the low-level jets occur
throughout the day, but with a small dip around 11:00 UTC.
Panels (b) and (c), based on short temporal subsets, are so
erratic that it is difficult to distinguish this diurnal cycle by
eye. After aggregating all platforms and smoothing the data
(black dashed lines), we find that the observations and ERA5
agree on the general shape, but again we needed to scale the
ERA5 signals because they differed in magnitude: the diurnal
cycle in ERA5 is much more pronounced. At this point, we
think it is good to stress that several mechanisms can lead to
low-level jets in coastal areas (see Sects. 1 and 9), and the re-
sulting diurnal signature should not be confused with that of
the typical onshore nocturnal jet that is often found over land.
As in the previous section, we performed linear regression to
identify optimal scaling parameters for the dashed black lines
in panels (a and b). The difference with the previous section
is that the regression is now based on pairs of hourly instead
of monthly observed and simulated low-level jet frequencies.
The scatter in this data is larger than for the seasonal cycle,
but the spatial distribution of the fitting parameters is similar
(not shown).

The second row in Fig. 8 shows the relation between low-
level jet occurrence and atmospheric stability (expressed by
the bulk Richardson number based on the ERA5 surface data:
2 m temperature, skin temperature, and 10 m wind). Scatter
points represent mean aggregated low-level jet frequencies
over 50 stability bins. Both ERA5 and the observations agree
that low-level jets are typically associated with stable strat-
ification, although for some platforms in panels (d) and (e),
there seems to be a substantial number of jets for unstable
conditions as well. In the subsets (panel e) this distinctive
behaviour is not as clear, and in the observations it seems
mostly absent. Without going into detail, we note that low-
level jets can be formed by different mechanisms, and it is
possible that ERA5 represents one mechanism better than an-
other or perhaps one mechanism is actually over-represented.

Also note that in panels (e) and (f) there are (positive) values
of the Richardson number for which no low-level jets are ob-
served. In panel (d), this is not the case, which indicates that
the measurement periods are too short to adequately sample
the full range of stability conditions. Finally, we note that
in panel (d), the low-level jet rate seems to decrease again
for very stable situations. This could be an artefact of the
bulk Richardson number or a physical limit: a stable atmo-
sphere leads to a low-level jet, but the low-level jet produces
wind shear, and consequently, the bulk Richardson number
decreases. The fact that this behaviour is not reflected in the
observations suggests that the true stability (that would have
been observed) was actually smaller than what ERA5 pre-
dicted. Again, we tried to scale the amplitude of the stabil-
ity signature by performing linear regression between pairs
of low-level jet frequencies in ERA5 and observations (now
based on stability bins instead of monthly or hourly group-
ings). The slopes are larger than those based on the seasonal
and diurnal cycle (∼ 1.0), but qualitatively they seem to be
less robust (not shown).

7.2 Weather types and the spatial distribution of
low-level jets

We also investigated the relation between low-level jet fre-
quency and typical circulation patterns. We used Lamb
weather types (LWTs; Jones et al., 2013) to perform this
analysis. To derive these weather types we used the ERA5
mean sea level pressure on a 5◦ latitude–longitude grid of 16
points as laid out in the appendix of Jones et al. (2013) but
centred over the area of interest. The method distinguishes
three main groups: those with a dominant cyclonic (anti-
clockwise, low-pressure area) circulation, those with a domi-
nant anticyclonic (clockwise, high-pressure area) circulation,
and those with a “pure directional” flow. These three groups
are further subdivided based on the main direction of the flow
over the North Sea (north, northeast, east, etc.). If there is no
dominant direction, the LWT is “pure (anti)cyclonic”. Pres-
sure fields characterised by the absence of a dominant forcing
are “undefined”. In total, this yields 27 different circulation
patterns. We computed average low-level jet rates for each
group.

To illustrate the association between the circulation type
and the low-level jet occurrence, Fig. 9 shows the average
low-level jet rate per weather type in the North Sea domain,
based on 10 years of ERA5 data up to 500 m. The streamlines
show the dominant flow pattern for each weather type: the
columns represent different wind directions over the North
Sea, while the full rows represent different rotation types.
In the first full row, the rotation is predominantly clockwise,
in the bottom full row, the rotation is mostly anticlockwise,
and the middle full row is characterised by the absence of
rotation. Notice how the same wind direction can be asso-
ciated with different large-scale flows – and how this can
impact the low-level jet rate. Like before, we will not go
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Figure 7. (a) Illustration of linear regression between monthly low-level jet rates in the ERA5 data (subset, up to 500 m) and the observations.
Black line and scatter points represent aggregated data of all platforms, while the other colours correspond to fits for individual platforms.
Dashed black line indicates a 1 : 1 correspondence. (b) Spatial distribution of the obtained fit parameters for each individual platform. Like
the colour coding, marker size is scaled with the slope of the regression.

Figure 8. Average low-level jet rate for each hour of the day (a–c) and as function of the bulk Richardson number (d–f), for the full (10 years)
of ERA5 data up to 500 m (a, d), a subset of this data collocated with the observations (b, e), and the observed data (c, f). Like in Fig. 6, the
black dashed lines represented a scaled and smoothed aggregated signal based on all platforms.

into each individual feature in this figure in detail, but we
will focus on overall characteristics. In general, we see that
low-level jets are concentrated along the coastlines. This ex-
tends and refines the global findings of Ranjha et al. (2013)
and Lima et al. (2018) for the North Sea domain. Low-level
jets are much more dominant for certain Lamb weather types.
Most notably, the weather type “undefined” often gives rise
to the formation of jets. This makes sense, as low-level jets
are subtle phenomena, and the absence of a strong large-
scale flow eases their development. Furthermore, we observe
that low-level jets occur frequently during large-scale flows

with a pronounced easterly component. Note that easterly
flows bring in continental air, while westerly flows originate
from the Atlantic. Low-level jets are uncommon for westerly
flows. Closer inspection reveals that the differences in spatial
distribution of the low-level jets (e.g. comparing the Dutch
and Norwegian coastlines) seems to be related to whether
the large-scale flow is directed offshore. The British Isles are
different in this respect, since for westerly flows we do not
observe an increased low-level jet rate off the eastern coast
of Great Britain.
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Like with the previous characteristics, we performed lin-
ear regression between ERA5 and observed low-level jet fre-
quency, this time aggregated over the various Lamb weather
types. We found similar patterns in ERA5 and the obser-
vations (not shown), but the spatial distribution of the scal-
ing parameters is different. Most slopes are around 0.4, but
Lichteiland Goeree (LEG) stands out with a slope of 0.65.
This is not a huge difference, but it implies that our earlier
hypothesis – that the slope increases with distance to coast –
does not hold for all predictors. Indeed, one could argue that
with Lamb weather types as a predictor, the scaling param-
eters are spatially more robust. Thus, while we believe that
the spatial distribution in Fig. 9 is actually meaningful, the
absolute low-level jet rate (as indicated by the colour bar) is
still off by a factor of ∼ 2.

8 Combining multiple predictors to extend
observations

So far, we have tried to scale the low-level jet climatol-
ogy with simple linear factors applied to individual charac-
teristics (e.g. seasonal cycle). Perhaps, we can find a more
sophisticated transformation function by combining multi-
ple predictors? In this section we use the MMIJ data to il-
lustrate how this could be applied in practice. In contrast
to the previous sections, which focused on aggregated low-
level jet frequencies, here we consider individual wind pro-
files. The procedure resembles the Model Output Statis-
tics (MOS) forecasts that are widely used for weather fore-
casts (e.g. Glahn and Lowry, 1972; Carter et al., 1989; Wilks,
2006, chap. 6.5.2) and is similar to the measure–correlate–
predict methods mentioned in Sect. 2 (Carta et al., 2013).
We use a machine learning package to perform this task, and
for readability, we will not highlight all the technical details
here. However, Jupyter notebooks are available as a Supple-
ment to facilitate reproducibility.

The general idea is illustrated in Fig. 10a: we have a short
time series with observations and a long reanalysis dataset.
Based on the overlapping part of the data, we determine the
optimal parameters of a statistical model (depicted by the red
box). We then use this model to predict the value of the ob-
servations, given the available long-term reanalysis data. In
the illustration, it seems as though one reanalysis variable is
used for this purpose, but in fact, we can use as many vari-
ables as we want. In our case, the variable we want to predict
is the probability that a low-level jet will be observed, given
various predictor variables from the ERA5 data. Because this
is a binary outcome (a jet either occurs or not), our model
of choice is a logistic regression model, which predicts the
probability of a positive outcome as function of one or sev-
eral predictor variables. The general form of this model is

p =
1

1+ e−(β0+β1x1+β2x2+...)
,

where βi represents the coefficients of the corresponding pre-
dictor variables xi . In a short exploratory phase, we experi-
mented with various combinations of predictor variables. We
found the best performance for a small set of predictor vari-
ables consisting of time of the year, atmospheric stability,
and Lamb weather type. This makes sense, as together these
variables encompass information about wind speed, direc-
tion, and history of the flow, as well as the probability of sta-
ble stratification and baroclinic conditions. Indeed, each of
these variables alone already provided valuable information
in the previous sections. For optimal performance, these vari-
ables were preprocessed as follows: to truthfully represent its
cyclic nature, date was encoded by splitting the day of year
into a sine and cosine contribution. The Lamb weather type is
a categorical variable, and to make it suitable for regression
it was encoded by converting it to the binary representation
of the numbers up to 27 (the total number of weather types)
and treating each digit as an individual binary variable. Sta-
bility was represented by the difference between the 2 m tem-
perature and sea-surface temperature, which provided better
results than the bulk Richardson number. We also experi-
mented with various training algorithms to determine the co-
efficients βi of the logistic model (intermediate results can be
found in the Supplement). In the end, we settled on a stochas-
tic gradient descent algorithm.

First, we took only half of the MMIJ dataset (a bit more
than 2 years) to train the model (in other words: we fitted
the parameters of our logistic regression model to the first
half of the data). The light blue line in Fig. 10b shows the
seasonal cycle of low-level jets in those first 2 years of ob-
servations. Note that this seasonal cycle is very erratic. This
can be expected for such a short period, but the question is
whether the additional information contained in the predic-
tor variables enables us to predict the other 2 years, despite
the unrepresentative training data. Thus, in the next step, we
used our trained model to predict the other half of the dataset.
In fact, the model predicts the probability that a low-level jet
occurs. An individual jet is predicted only if the probability is
higher than 50 %, but this happens only occasionally. There-
fore, rather than predicting individual jet events, we used the
predicted probabilities directly and computed the monthly
mean predicted probability (Fig. 10b, orange line). To evalu-
ate the performance, we compared the predicted seasonal cy-
cle with that based on the true observations during the second
part of the dataset (Fig. 10b, light green line). The true sea-
sonal cycle was indeed smoother than in the first 2 years, but
it peaked a bit higher and earlier than predicted. To quantify
this result, we computed the root mean square error between
the monthly means of the predicted and test data and found
it to be about 1 % point. This result confirms that the model
generalises well to new input data.

We then used the full MMIJ dataset to train the same
model. With twice as much training data as before, we were
confident that the model would achieve at least a similar per-
formance and thus predict the seasonal cycle to within 1 %
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Figure 9. Spatial distribution of the low-level jet rate in ERA5 data. As explained in the text, the values shown here overestimate available
observations and should be interpreted with caution. A: anticyclonic; C: cyclonic; U: undefined; N, NE, E, etc., are eight wind direction
sectors; combinations of a direction and a rotation type are “hybrid” weather types, while weather types without a dominant rotational
component are “pure directional”. Streamlines illustrate the dominant large-scale flow pattern (averaged over each LWT). The relative
occurrence of each weather type is indicated as well. The figure can be enlarged for more detail or downloaded separately from the article
web page.

point RMSE (but probably better). The observed seasonal cy-
cle averaged over these 4 years of training data (Fig. 10b, red
line) was still clearly affected by the unrepresentative months
in the first half of the dataset. Apparently, 4 years of data is
still not enough for the climatology to converge. Therefore,
in the final step, we used the trained model to predict the
10-year seasonal cycle. The result (Fig. 10b, purple line) is
a smooth seasonal cycle which peaks in May at about 9 %.
This is our best estimate of the low-level jet seasonal cycle,
based on the coalescence of reliable measurements and ex-
tensive reanalysis data. Compared to the results presented in
Sect. 6, we can conclude that we have adjusted the erratic
nature of the short-term observations (Fig. 6e), resulting in
a seasonal cycle similar to that shown in Fig. 6a, but with
reduced amplitude. Compared to this final result, the crude
amplitude adjustment with which we started in Sect. 6 now
appears far too strong.

The results presented in this section are intended as proof
of principle, and for the purpose of illustration we tried to
keep things conceptually simple. With respect to the selec-
tion of predictor variables, choice of model, and method of

cross-validation, we realise that the possibilities are endless.
The availability of sufficient measurement data is key to an
exhaustive follow-up study.

9 Discussion

This paper has demonstrated our efforts to infer reliable low-
level jet characteristics by combining observations and re-
analysis data. We have deliberately chosen to illustrate how
the results are impacted by limitations of the data and choices
in the analysis. In this section we summarise our work, dis-
cuss the implications and offer an outlook for future research
directions.

We started with a general validation of the ERA5 data for
the observed wind speed at measurement locations in the
North Sea. We found that the overall root mean square er-
ror is between 1.25 and 1.5 m s−1. The bias shows a clear
discontinuity at 10:00 UTC, which is related to the data-
assimilation strategy that was used to produce ERA5. Users
of the ERA5 data should consider a suitable bias correc-
tion (e.g. Staffell and Pfenninger, 2016), but we strongly sug-
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Figure 10. (a) Illustration of the MCP, MOS, or machine learning (ML) procedure in which a (logistic) model is trained with observation
data and then used to predict long-term characteristics. (b) Illustration of the MMIJ seasonal cycle of low-level jets based on 2 years of
observed data (train), 2 years of predicted (pred) and observed data (test), 4 years of observed data (train), and 10 years of predicted data
(pred).

gest that future reanalysis products use sliding or at least
partly overlapping observation windows. We also demon-
strated that the observations alone can also not be relied upon
because the limited temporal extent of the measurement data
leads to biased climatologies. Thus, in the remainder of the
paper we focused on finding a suitable way of combining
the two datasets: a procedure similar to measure–correlate–
predict methods but tailored to low-level jets instead.

Low-level jet detection is very sensitive to the vertical ex-
tent of the data, and this has important implications for the
interpretation of all results. Typical jet characteristics like
jet height and jet strength cannot be reliably inferred from
range-limited observations. With this restriction in mind, we
can say that many of the observed jets occurred at heights
fully or partly in the range spanned by contemporary wind
turbine blades. Moreover, the typical observed jet strength
is about 8 m s−1, which is in the cubic part of the power
curves of these turbines. We therefore expect that the low-
level jet impact on loads and power can be substantial. ERA5
is not able to reliably reproduce these characteristics. There
are some indications that the jets are “smeared out”: they
appear higher and weaker than observed. Given this verti-
cal displacement, a fair comparison between ERA5 and the
observations is difficult. Considering the lower 300 m only,
ERA5 drastically underestimates the amount of jets, but in-
cluding heights up to 500 m, ERA5 shows more low-level
jets than observed. We decided to include the data up to
500 m because they give a stronger climatological signature.

Even though 1 : 1 correspondence between ERA5 and the
observations is poor, both datasets agree on the following
climatological characteristics: most jets occur in spring and
summer; the diurnal cycle is weak and only around noon are
the chances for low-level jets slightly lower; low-level jets
are typically associated with stably stratified conditions; the
absence of strong large-scale forcing or flow regimes with
a pronounced easterly or offshore component are favourable
for their formation. From the ERA5 data, we learned that
low-level jets are concentrated along the coasts. We then

compared the frequency of low-level jets between ERA5 and
the observations. In the most general terms, we can state that
the mean low-level jet rates based on ERA5 up to 500 m typ-
ically overestimate the amount of low-level jets that would
have been observed with lidars up to 300 m by a factor of
about 2. To improve upon this result we illustrated how a lo-
gistic regression model was able to predict the seasonal cycle
of low-level jets at MMIJ to within 1 % point RMSE. This is
a promising result, and we expect that our results can still be
improved upon. Longer measurement datasets would form a
major contribution to further advancement as well.

The characteristics identified in this paper provide some
clues as to the processes that govern these jets. The aca-
demic literature recognises two dominant formation mech-
anisms, both of which are supported by our results. The first
is frictional decoupling (Blackadar, 1957; Van de Wiel et al.,
2010). This theory describes a perturbed system attempting
to re-establish equilibrium. As the accelerating wind field
in the lower atmosphere is deflected by the Coriolis ef-
fect, it moves around its new equilibrium in a circular fash-
ion. Over land, frictional decoupling has been linked to the
decay of turbulent mixing around sunset, and it has been
suggested that a similar situation applies in coastal areas
upon the abrupt surface (temperature and roughness) tran-
sition (Smedman et al., 1993). This mechanism is supported
by our results, which show that low-level jets are frequent
for winds directed offshore and in stable conditions. The sec-
ond mechanism relates low-level jets to horizontal tempera-
ture gradients (baroclinity; see Holton, 1967). According to
this theory, the tilt of isobaric surfaces leads to a thermal
wind component that under certain conditions can manifest
itself as a low-level jet. This mechanism has been coupled
to low-level jets over gently sloping terrain but equally ap-
plies to coastal areas where large horizontal temperature dif-
ferences can occur due to differential heating between the
land and sea surface (Mahrt et al., 2014). The fact that most
low-level jets occur in spring and summer supports a baro-
clinic contribution and possibly an interplay with the evo-
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lution of sea breezes, which show a similar seasonal cy-
cle (e.g. Steele et al., 2015). In the end, we expect that both
processes are likely to contribute to the low-level jet clima-
tology. Finally, we note that we also spotted a low-level jet
with a clear frontal structure in the ERA5 data. It is unlikely
that such events contribute significantly to the low-level jet
climatology, but the characteristics of such jets may be very
different and potentially much more harmful for (offshore)
wind turbines. Other causes have been described in the lit-
erature, such as orographic blocking. We do not expect this
to play a major role along the Dutch coast, but for some of
the low-level jets that are present in ERA5 along the British
and especially the Norwegian coast it may play an impor-
tant role (Christakos et al., 2014). A more detailed investiga-
tion of the ERA5 data may allow us to separate these mech-
anisms. This is an interesting direction for further research.

With respect to future work, it would also be interesting
to look at other datasets. In this paper, we have used ERA5
data to analyse the spatial characteristics of low-level jets di-
rectly. However, ERA5 is currently being used to develop
higher-resolution, down-scaled reanalysis datasets (e.g. the
New European Wind Atlas (Petersen et al., 2013) and the
Dutch Offshore Wind Atlas), and it would be worthwhile
to see if they improve upon ERA5. Another interesting al-
ternative is COSMO-REA6 (Bollmeyer et al., 2015), which
is down-scaled from ERA-interim, but with its resolution
of 6 km it might outperform ERA5. The current paper can
serve as a guideline for the investigation of other reanalysis
datasets.

Finally, a note on dealing with low-level jets in practice.
It would be worthwhile to include a low-level jet case as
standard inflow field for wake and load simulations. Re-
cent papers have developed affordable methods to provide
realistic inflow fields (Gebraad et al., 2014; Englberger and
Dörnbrack, 2018). Expensive computational fluid dynamics
(CFD) simulations have been used to derive parameterisa-
tions to generate realistic inflow fields for wind farm simula-
tions. The second cited paper also includes low-level jet pro-
files in the early morning. These profiles can be compared
with the morphology and frequency distributions detailed in
the current paper to optimise yield and lifetime. Since the
presence of the coastline turns out to have an important effect
on the formation of low-level jets, it would be interesting to
perform an additional precursor large-eddy simulation (LES)
for such a heterogeneous terrain. This could also shed light
on the mechanisms involved in jet formation.

Code and data availability. The ERA5 data were generated by
ECMWF as part of the Copernicus Climate Change Service and
will in the future be available through the Climate Data Store
at https://cds.climate.copernicus.eu/cdsapp\T1\textbackslash#!/
dataset/reanalysis-era5-pressure-levels?tab=overview (last access:
25 March 2019) (Copernicus Climate Change Service, 2017).
Observations were distributed by ECN, part of TNO, by order of
the Dutch Ministry of Economic Affairs. They can be accessed at
https://windopzee.net/en/home/ (last access: 18 March 2019) (ECN,
2019). A series of Jupyter notebooks to facilitate reproducibility is
available in the Supplement.

Wind Energ. Sci., 4, 193–209, 2019 www.wind-energ-sci.net/4/193/2019/

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://windopzee.net/en/home/


P. C. Kalverla et al.: Characterising low-level jets 207

Appendix A: Lidar data

Vertically pointing lidar provides efficient and non-intrusive
measurement of boundary-layer winds. Compared to tra-
ditional meteorological masts, lidars typically expand the
height and vertical sampling frequency of offshore wind
measurements. Lidar data from seven measurement sites
were used in this study to analyse North Sea LLJ spa-
tiotemporal behaviour. Lidar types used included the WIND-
CUBE v2 pulsed lidar (only at LEG) and the Zephir 300s
continuous-wave (CW) lidar (all other platforms). The lidars
were typically platform mounted, except within the Borssele
wind farm and Hollandse Kust wind zones (Noord and Zuid)
where the lidar was instrumented atop a floating met ocean
buoy. At these locations, two lidar-equipped met ocean buoys
were positioned simultaneously.

CW and pulsed wind lidar are coherent systems, meaning
they both analyse Doppler shift frequencies to determine an
estimate of the radial wind speed (Peña and Hasager, 2015).
However, radial velocity and vertical wind profile extrac-
tion techniques differ between the two lidar types. Whereas
pulsed wind lidars use range gates to near-simultaneously ex-
tract radial velocity estimates at multiple points in space, CW
wind lidar can only extract a radial velocity estimate at the
beam focus length. This beam focus length must be modified
in time in order to measure the wind field at varying eleva-
tion levels. The radial wind speed is defined as the motion
of the wind towards or away from the remote-sensing sys-
tem, and therefore unless the wind is moving along one of
these radials, then the wind speed will not be fully resolved.
Consequently, CW and pulsed wind lidar use varying adapta-
tions of conical scanning techniques (Banakh et al., 1995) to
resolve the horizontal wind field at varying elevation levels.
For brevity, these differences are not detailed here. However,
because of these differences, the vertical wind profile was
resolved at 17 s intervals for the CW wind lidar and at 4 s
intervals for the pulsed wind lidar. These wind profiles are
then analysed by the lidar software and output as a 10 min
average vertical wind profile. A summary of the lidar mea-
surement heights and data collection periods for all sites is
provided in Fig. 2.

Data quality control is imperative to ensure an accurate de-
piction of the offshore LLJ. The implementation of data qual-
ity control varied depending upon the lidar type (i.e. ZephIR
300s versus WINDCUBE v2), although considerations were
made to ensure that data quality control was employed rel-
atively uniformly between measurement sites. Wind lidar
data from both the Borssele wind farm and Hollandse Kust
(Noord and Zuid) wind zones have additionally had qual-
ity control measures implemented by Fugro Oceanor. An
overview of these quality control procedures can be found
online (https://offshorewind.rvo.nl/data-borssele, last access:
22 March 2019). The data quality control procedures imple-
mented are as follows. First, plausible value checks were im-

plemented in the wind data. Any 10 min observation that met
the following criteria was removed from the data record.

1. The mean wind speed was either greater than the period
maximum wind speed or less than the period minimum
wind speed.

2. The mean wind speed was less than 0.05 m s−1.

3. Turbulence intensity (TI) for the period fell below
0.10 % (i.e. 0.001).

4. At the measurement height, the value of TI was 10
standard deviations (σTI) greater than the mean (µTI)
TI value (i.e. TI≥ µTI+ 10σTI); µTI and σTI were de-
fined as the height-respective value for the entire data
collection period. Because TI typically decreases with
mean wind speed, this threshold was only imposed if
the 10 min mean wind speed exceeded 4 m s−1.

Specific quality control measures were also applied to the
lidar wind data. Any 10 min observation that satisfied the fol-
lowing criteria was removed from the data record.

1. A lidar error code (e.g. 9998 or 9999) was reported.

2. The carrier-to-noise ratio (CNR) was less than−22 (the
value of CNR provides a measure of signal strength, i.e.
quality). CNR was only outputted by the WINDCUBE
v2 wind lidar.

3. Backscatter magnitude was less than 10−5 or greater
than 100 – backscatter served as a proxy for CNR for
data reported by the ZephIR 300s lidar.

Prior analyses (e.g. Poveda and Wouters, 2015) demon-
strate that the ZephIR 300s lidar can incorrectly measure
wind direction by 180◦. Analyses of wind data at MMIJ
from 1 January 2012 through 1 January 2014 indicated that
approximately 3.6 % of the measured wind data exhibited
this flow reversal. Although mitigation (i.e. removal) of this
data is possible, it requires independent wind direction mea-
surements from a collocated meteorological mast. Because
mast data were not available at each site, these wind direc-
tion errors were not removed. However, ZephIR 300s lidar
wind direction errors did not appear to impact the measured
wind speed, which is the main focus of this paper. In order
to account for the wake effect of neighbouring wind farms
on wind speed measurements, wind direction sectors were
filtered and corresponding data (wind speed and direction)
were removed. A generous estimate of 20 km was used to
denote the maximum wind farm wake length.
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