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Abstract. In this paper, we develop computationally efficient techniques to calculate statistics used in wind
farm optimization with the goal of enabling the use of higher-fidelity models and larger wind farm optimization
problems. We apply these techniques to maximize the annual energy production (AEP) of a wind farm by opti-
mizing the position of the individual wind turbines. The AEP (a statistic) is the expected power produced by the
wind farm over a period of 1 year subject to uncertainties in the wind conditions (wind direction and wind speed)
that are described with empirically determined probability distributions. To compute the AEP of the wind farm,
we use a wake model to simulate the power at different input conditions composed of wind direction and wind
speed pairs. We use polynomial chaos (PC), an uncertainty quantification method, to construct a polynomial
approximation of the power over the entire stochastic space and to efficiently (using as few simulations as possi-
ble) compute the expected power (AEP). We explore both regression and quadrature approaches to compute the
PC coefficients. PC based on regression is significantly more efficient than the rectangle rule (the method most
commonly used to compute the expected power). With PC based on regression, we have reduced on average by
a factor of 5 the number of simulations required to accurately compute the AEP when compared to the rectangle
rule for the different wind farm layouts considered. In the wind farm layout optimization problem, each optimiza-
tion step requires an AEP computation. Thus, the ability to compute the AEP accurately with fewer simulations
is beneficial as it reduces the cost to perform an optimization, which enables the use of more computationally
expensive higher-fidelity models or the consideration of larger or multiple wind farm optimization problems. We
perform a large suite of gradient-based optimizations to compare the optimal layouts obtained when computing
the AEP with polynomial chaos based on regression and the rectangle rule. We consider three different starting
layouts (Grid, Amalia, Random) and find that the optimization has many local optima and is sensitive to the
starting layout of the turbines. We observe that starting from a good layout (Grid, Amalia) will, in general, find
better optima than starting from a bad layout (Random) independent of the method used to compute the AEP.
For both PC based on regression and the rectangle rule, we consider both a coarse ( ~ 225) and a fine (~ 625)
number of simulations to compute the AEP. We find that for roughly one-third of the computational cost, the
optimizations with the coarse PC based on regression result in optimized layouts that produce comparable AEP
to the optimized layouts found with the fine rectangle rule. Furthermore, for the same computational cost, for
the different cases considered, polynomial chaos finds optimal layouts with 0.4 % higher AEP on average than
those found with the rectangle rule.
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1 Introduction

In 2015, wind energy growth accounted for almost half of
global electricity supply growth. In the United States, it ac-
counted for 41 % of new power capacity, raising the wind
energy supply to 4.7 % of the total electricity generated in
2015 and on target to reach 10% by 2020 (U.S. Depart-
ment of Energy, 2015; AWEA, 2016; GWEC, 2016). Most
of the current and upcoming wind energy comes from large
turbines (greater than 1 MW) situated in clusters — wind
farms. A problem with putting turbines together in confined
spaces is that they operate in the wakes of other turbines, i.e.,
in regions of reduced speed and increased turbulence. This
leads to an underproduction of power and decreased (10 %—
20 %) energy output for the farm (Barthelmie et al., 2007;
Barthelmie et al., 2009; Briggs, 2013) when compared to
ideal conditions. This loss in energy capture results in mil-
lions of dollars of loss for operators and investors and in-
creased economic uncertainty for new installations. Many
current wind farms have grid-like layouts, whereby wind tur-
bines are aligned in rows, which further exacerbate the wake
losses. By optimizing the layout of the wind farm, the wake
losses can be minimized, with a corresponding increase in
energy production and revenue.

Wind farm optimization is a complex, multidisciplinary,
and high-dimensional problem. The wind farm may contain
dozens or even hundreds of wind turbines, and each tur-
bine may be parametrically described using several design
variables. Furthermore, the wind conditions (wind direction,
wind speed, wind turbulence, etc.) are stochastic (uncertain),
and thus we need a statistic to evaluate the performance of the
wind farm. A common statistic is the expected power or the
annual energy production (AEP). Many model simulations
are needed to estimate the statistic (Padrén et al., 2016; Mur-
ciaetal., 2015). The statistic is usually the objective function
of the optimization (Herbert-Acero et al., 2014); thus, wind
farm optimization is a problem of optimization under uncer-
tainty (Fig. 1). Optimization under uncertainty (OUU) differs
from deterministic optimization in that it contains a nested
uncertainty quantification loop to compute statistics. In the
OUU problem, for every optimization step many model eval-
uations are needed to compute the relevant statistics. Thus,
even with a very small number of design variables per tur-
bine, the total number of variables and simulations required
by the wind farm optimization can grow very rapidly (Ge-
braad et al., 2017) and quickly make the problem infeasi-
ble, especially when using a high-fidelity model for the wind
farm simulation.

We see three approaches to improving wind farm opti-
mization capabilities. Each approach focuses on the different
blocks of the OUU problem (Fig. 1c). The first approach is to
improve the modeling quality of entire wind farms, i.e., im-
prove the models in all the disciplines (aerodynamics, struc-
tures, controls, electrical, acoustics, atmospheric physics,
policy, economics, etc.) that are relevant to building and op-
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erating a wind farm, as well as the interaction between the
different turbines. The second approach is to improve the op-
timization problem formulation and the algorithms to solve
the optimization. And the third approach is to improve the
treatment of the stochastic nature of the problem, i.e., de-
velop better uncertainty quantification methods to efficiently
compute the relevant wind farm statistics (and their gradients
with respect to the design variables of the problem) used in
the OUU problem.

The first approach increases the fidelity of the model,
whereas the second (optimization) and third (uncertainty
quantification) approaches seek to reduce the number of
model evaluations, as this enables the study of larger and
more realistic problems.

Here, we focus on the uncertainty quantification approach
(the third approach), as it has not been considered in detail
before. The most recent and thorough review of the wind
farm optimization literature (Herbert-Acero et al., 2014) does
not mention it. It only mentions the first two approaches. In
the existing work in the literature, the third approach typi-
cally focuses on simple integration methods to compute the
statistics, which quantify the effect of the stochastic inputs
(Kusiak and Song, 2010; Kwong et al., 2012; Chowdhury
et al., 2013; Fleming et al., 2016; Gebraad et al., 2017). Sim-
ple integration methods, such as the rectangle rule, are inef-
ficient in the number of samples (simulations of the model)
needed to accurately estimate a statistic, such as the AEP.
They are especially inefficient if multiple stochastic inputs
are considered simultaneously. Normally only the wind di-
rection and/or the wind speed are considered stochastic input
variables. Recent work (Padrén et al., 2016; Murcia et al.,
2015) is starting to move beyond these simple integration
techniques to compute the AEP and instead use the uncer-
tainty quantification method of polynomial chaos to compute
the AEP.

In this paper, which is meant as a comprehensive introduc-
tion to uncertainty quantification methods applied to wind
farm simulations, we describe in detail the polynomial chaos
(PC) method and show that, for the efficient (small num-
ber of model simulations) computation of the AEP, the PC
method based on regression should be used. An additional
benefit of the PC method is that it makes it feasible to con-
sider multiple uncertain variables (e.g., wind direction, wind
speed, wind turbulence, wake model parameter) that impact
the computation of the AEP. An example in which a wake
model parameter is considered an uncertain variable in ad-
dition to the wind speed and wind direction can be found
in Padrén (2017). In addition, the PC method can be used
to efficiently compute the gradient of statistics, such as the
AEP. Eldred (2011) describes how to compute the gradients
for PC based on quadrature. Here we show how to compute
the gradients for PC based on regression (Sect. 4.3). The use
of gradients allows us to efficiently tackle much larger op-
timization problems (Gebraad et al., 2017). To compute the
gradients of the wake model, we use the recently developed
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Figure 1. Examples of applications that require many model evaluations. In deterministic optimization (a), we evaluate the model at different
values of the design variables while searching for an optimum response. In uncertainty quantification (b), we query the model multiple times
at different instances of the uncertain variables to generate an ensemble of responses from which we can compute statistics and probabilities
of the model response. In optimization under uncertainty (OUU), we optimize a statistic. OUU is computationally expensive as it requires
many model evaluations because of the nested loop in the problem formulation (c).

Floris wake model with the modifications by Thomas et al.
(2017) that provide analytic and continuous gradients of the
wake model.

We first discuss the details of computing the power and the
AEP of a wind farm in Sect. 2. Then, we discuss uncertainty
quantification in Sect. 3 and the polynomial chaos method in
Sect. 4. Finally, we discuss the details of the problem formu-
lation in Sect. 5 and the results in Sect. 6.

2 Computing the power and the annual energy
production of a wind farm

We first describe the aerodynamic wake model we use
(Sect. 2.1). The wake model gives an estimate of the hub-
height velocity at each wind turbine, from which we can
compute the power produced by the wind farm (Sect. 2.2).
Then, to obtain the annual energy production (AEP) we need
to integrate the power over all wind conditions that occur in
a year (Sect. 2.3) and weigh the results proportionally to the
frequency with which such wind conditions manifest them-
selves.

2.1 Floris

The Floris (FLow Redirection and Induction in Steady-
state)! (Gebraad et al., 2016) wake model is an enhancement
of the Jensen wake model (Jensen, 1983) and the wake de-
flection model presented in Jiménez et al. (2009). The Floris
model builds on the Jensen model by defining three separate

IWe use the name Floris for the model, instead of FLORIS, the
name used in Gebraad et al. (2016).
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wake zones with differing expansion and decay rates (con-
trolled by tunable coefficients) to more accurately describe
the velocity deficit across the wake region. A simple overlap
ratio of the area of the rotor in each zone of each shadowing
wake to the full rotor area is used to determine the effective
hub velocity of a given turbine. A simple overview of the
Floris model, showing the zones and overlap areas, is shown
in Fig. 2. We use the Floris wake model with changes to re-
move discontinuities and add curvature to regions of non-
physical zero gradient to make the model more suitable for
gradient-based optimization (Thomas et al., 2017). In this
work, we use the parameter values recommended in Gebraad
et al. (2016) and Thomas et al. (2017) and set the yaw-offset
angle of each turbine to zero.

2.2 Computing the power of a wind farm

We will consider the power of the wind farm to be a function
of three classes of variables: uncertain variables &, design
variables x, and parameters 6:

P =P, x,0). (D

Uncertain variables are variables that follow a probability
distribution, design variables are variables that an optimizer
can vary, and parameters are important constants that gov-
ern the behavior of the system. The classification of the vari-
ables is problem dependent. For instance, the rotor yaw could
be considered a design variable, a parameter, or an uncertain
variable to account for yaw-offset measurement error. A tun-
able parameter of a wake model, such as the wake expansion
coefficient, could be considered a parameter or an uncertain
variable given by a particular distribution.

Wind Energ. Sci., 4, 211-231, 2019
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Figure 2. Schematic of the Floris wake model. The model has three zones with varying diameters, Dy, 4, that depend on tuning parameters
ke and m, q. The effective hub velocity is computed using the overlap ratio, AOL of the part of the rotor-swept area overlapping each wake

zone respective to the total rotor-swept area.

Table 1. The variables used for calculating the power.

Wind direction

Uncertain .
§ Freestream wind speed

x — the x location of each turbine

Desi ; i
esign X y — the y location of each turbine

Yaw angles, turbine characteristics,

Parameters 6
and wake model parameters

For the problems considered in this work, Table 1 lists the
categories into which we place each variable that influences
the power computation. The uncertain variables are the wind
direction and wind speed with probability distributions de-
scribed in Sect. 5.1.

The power of the wind farm for a given wind direction
and wind speed is equal to the sum of the power produced
by each turbine P = Z:"z‘”lb P;. The power of each turbine is
calculated from

1 3

P = EPCPAUi , 2)
where p is the air density, A is the rotor-swept area, Cp is
the power coefficient, and U; is the effective hub velocity for
each turbine, which is calculated by the wake model and is a
function of the three types of variables described above, U; =
f(&,x,0). The power coefficient captures both the aerody-
namic and electromechanical properties of the wind turbine.
It is a complex function of many variables (Herbert-Acero
et al., 2014) and is usually reported by wind turbine manu-
facturers as a function of the tip-speed ratio, which depends
on wind speed at hub height U;. A simple expression for Cp
can also be computed using the classical actuator disk the-
ory (Sanderse, 2009).
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2.3 Computing the annual energy production (AEP) of a
wind farm

The annual energy production (AEP) is an important metric
used to describe a wind farm. The AEP is a statistic. Specif-
ically, it is a mean, as it is a function of the expected power
multiplied by the number of hours in a year:

AEP = 8760hyr ' E[P(§)]. (3)

The expected power, E[P(£)], or the mean of the power, up,
is defined as

sp = E[P(E)] / P(&)p(&)dE, @)

Q

where & = (§1,&2,...,&,) is a vector of random variables,
which we refer to as the uncertain variables, p(&) is the joint
probability density function of the uncertain variables, 2 is
the domain of the uncertain variables, and P is the power
produced by the wind farm (Eq. 1). Common uncertain vari-
ables are the wind direction and the freestream wind speed.

The expected power, and hence the AEP, is normally com-
puted as a weighted average, which amounts to the rectan-
gle rule of integration (Sect. 3.1.1). Other uncertainty quan-
tification methods (Sect. 3) can be used to compute the ex-
pected value (AEP). Specifically, we can compute the AEP
efficiently by using polynomial chaos (Sect. 4).

3 Uncertainty quantification

Uncertainty quantification (UQ) is the process of (1) char-
acterizing input uncertainties and then (2) propagating these
input uncertainties through a computational model with the
goal of quantifying their effect on the model’s output. There
are many sources of uncertainty in the modeling of a prob-
lem, and different classifications of the uncertainties have
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been proposed (Kennedy and O’Hagan, 2001; Oberkampf
et al., 2001; Beyer and Sendhoff, 2007). A common classifi-
cation is to divide the uncertainty into aleatory and epistemic
uncertainties (Oberkampf et al., 2001).

In this work, we consider aleatory uncertainties that arise
from the variability in the inputs to our model caused by
changing environmental conditions. We describe this input
variability as random variables with associated probability
distributions. Thus, the first step of characterizing the input
uncertainties is concerned with finding the probability dis-
tributions that describe the model’s inputs. This process is
known as statistical inference, model calibration, and inverse
uncertainty quantification (Smith, 2014). Here, we assume
that this step has been completed; i.e., we have distributions
that characterize the uncertain inputs (Sect. 5.1). We focus
on the second step of propagating the input uncertainties to
find the statistics that describe the output.

3.1 Uncertainty propagation methods

The goal of uncertainty propagation methods is to compute
the statistics that describe the effect of the uncertain inputs
on the model output. There are several methods to propagate
the uncertainties and compute statistics (Le Maitre and Knio,
2010; Smith, 2014), and each method has its advantages and
disadvantages depending on the type and size of the problem.
The most common methods are sampling or Monte Carlo
methods (Caflisch, 1998). Other methods include direct in-
tegration methods and stochastic expansion methods. Direct
integration methods are currently used to compute the AEP
of a wind farm; we briefly describe them below (Sect. 3.1.1).
We describe the stochastic expansion method of polynomial
chaos in detail in Sect. 4 and compare the different meth-
ods to propagate the uncertainties to compute the AEP in
Sect. 6.2.

3.1.1 Direct numerical integration (rectangle rule)

As the name implies, this method numerically evaluates the
integrals in the definition of the statistics. The integrals to
evaluate the mean (or expected value) and the variance are

pr = E[R] = / R(&)p(&)dE, Q)
Q
o = Var[R] = E[(R(E) — E[R(&)])*], (©6)
= E[R(§)’1 — (E[R(§)])*, 7
_ / REp(&)dE — 13, ®)
Q

where R(£) is the model output and & the uncertain input
variables. The random vector & = (§1, &, ...,&,) with joint
probability distribution p(§) describes the input variability
over the domain 2. Each random input can follow a partic-
ular distribution p;(&;). For the case of independent random
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variables, the joint distribution is the product of each univari-
ate distribution p(&) = []7_, pi (&)

There are many quadrature methods to evaluate inte-
grals (Ascher and Greif, 2011). We describe the rectangle
rule, as this is currently used in the wind farm community to
compute the AEP.

Rectangle rule

The rectangle rule, or midpoint rule, is the simplest and
most straightforward quadrature method. To approximate the
mean or expected value,

ur =E[R]= /R(’g')p(&)df;‘, (Eq. 5 revisited)

Q

with the rectangle rule, we divide the domain of the uncer-
tain variable? Q = [a, b] into m equal subintervals of length
A& = (b—a)/m. Next, we construct rectangles with base
B = A£ and height equal to the product of the response
of the model and the density evaluated at the midpoint of
the subinterval H = R(§;)p(§;). Then, the rectangle rule ap-
proximates the expected value by adding up the areas of the
m rectangles:

b

E[R] =/R(§)p(§)dé ~ D R(E)P(EHAE. )

a j=1

A simple improvement is to integrate the density exactly
within each subinterval:

b m Ejv1/2
E[R] = / R(E)p(&)ds ~ D R(E)) /
j=1

a §i—-12

p(§)ds. (10)

This improvement is easily done as the density is known.
This modification is helpful for a small number of evalua-
tions m. We will use this modified rectangle rule and simply
refer to it as the rectangle rule.

4 Polynomial chaos

Polynomial chaos (PC) is the name of an uncertainty quan-
tification (UQ) method that approximates a function with a
polynomial expansion made up of orthogonal polynomials.
This function has random variables as inputs, and we are in-
terested in the effects of the random (uncertain) inputs on
the output of this function. Statistics of the output can de-
scribe the effects of the inputs. We use the polynomial chaos
method to efficiently compute these statistics and the gradi-
ents of these statistics.

2For simplicity, we describe the one-dimensional case, § = &.
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We first describe the polynomial chaos method in
Sect. 4.1. We then discuss two methods — quadrature and re-
gression — to compute the coefficients used in the PC expan-
sion (Sect. 4.2). In Sect. 4.3, we describe how to compute
the gradients of statistics from the polynomial chaos expan-
sion. And, in Sect. 4.4, we discuss how the PC method can
be extended to include correlated random inputs.

4.1 Polynomial chaos expansion

Let R(¢) be a function of interest that depends on the uncer-
tain variable £. We can approximate the function by using a
polynomial expansion:

R P
R(E)~ RE) =D aigi(®). an
i=0

The approximate response RE)isa polynomial of order p.
Usually, the larger the polynomial order, the closer the ap-
proximation is to the true response R(&).

The polynomial basis {¢;(£)} f:o is determined by the dis-
tribution of the uncertain variable — the polynomial basis is
orthogonal with a weight function that corresponds up to
a constant to the probability density function of the uncer-
tain variable. Common random (uncertain) variables (nor-
mal, uniform, exponential, beta) have corresponding classi-
cal orthogonal polynomials (Hermite, Legendre, Laguerre,
Jacobi) (Eldred et al., 2008). Empirically determined distri-
butions, such as those obtained from wind conditions, do not
have corresponding classical orthogonal polynomials. For
the distributions obtained from the wind conditions, we need
to numerically generate custom orthogonal polynomials in
order to preserve the optimal convergence property of the
polynomial chaos expansion (Oladyshkin and Nowak, 2012).
Details about the numerical generation of orthogonal poly-
nomials can be found in Gautschi (2004) and an example
of the generation of orthogonal polynomials for wind dis-
tributions in Padrén (2017). In addition to the optimal con-
vergence properties, the use of orthogonal polynomials al-
lows us to analytically compute statistics from the polyno-
mial chaos expansion (Sect. 4.1.1).

In addition to the orthogonal polynomials, the other com-
ponent of the expansion Eq. (11) is the coefficients «;. The
coefficients can be computed either by quadrature or regres-
sion as described in Sect. 4.2.

For the case of multiple uncertain variables & =

(&1,%,...,&,) and using a multi-index i = (i1, i2, ..., i), we

write the multidimensional polynomial approximation as

RE)~ RE) = D i Dif). (12)
ieZ,

The multidimensional basis functions ®;(&) are given by
products of the one-dimensional orthogonal polynomials:

@) =[] ¢, (13)
=1

J
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When the uncertain variables are independent, the multidi-
mensional basis functions are also orthogonal (Sect. 4.4).
The values of the elements i; of the multi-index depend on
how the expansion is truncated, i.e., on how the index set Z),
is defined. There are two common ways in which to define
the index set: total-order expansion and tensor-product ex-
pansion.

In total-order expansion a total polynomial-order bound p
is enforced:
Iy={i:lil<p}, lil=i1+ir2+...+in, (14)
which for an expansion of total-order p with n uncertain vari-
ables results in an expansion with Ntg = (':;L[f!)! terms.

In tensor-product expansion a per-dimension polynomial-
order bound p; is enforced:

T,={i:ij<pj, j=1,...n}, (15)

which results in an expansion with Ntp = H?:l( pi+1)
terms.

An example showing the multidimensional basis polyno-
mials, Eq. (13), for both the total-order expansion and tensor-
product expansion can be found in Padrén (2017).

Note that for both total-order expansion and tensor-
product expansion the number of terms exhibits an expo-
nential increase with an increase in the number of uncertain
dimensions n. This result is known as the curse of dimen-
sionality. The tensor-product expansion is the preferred ap-
proach when the coefficients are computed with quadrature
(Sect. 4.2.1) because of increased monomial coverage and
accuracy (Eldred and Burkardt, 2009). The total-order ex-
pansion is the preferred approach when the coefficients are
computed with regression (Sect. 4.2.2) because it keeps the
sampling requirements lower (Eldred and Burkardt, 2009).

4.1.1 Mean and variance from the polynomial chaos

expansion

The mean and variance of the function of interest R(&) are
a function of the coefficients ¢; of the polynomial chaos ex-
pansion. The statistics are obtained by substituting the poly-
nomial chaos expansion Eq. (12) into the definitions of the
mean Eq. (5) and variance Eq. (8), and by integrating the ex-
pansion and simplifying using the orthogonality of the poly-
nomials.
The mean is the zeroth coefficient,

IR = oo, (16)

and the variance is the sum of the product of the square of
the coefficients — excluding the zeroth coefficient — with the
inner product (CD%(E )):

or= D (), (17)

i€, ~{0}
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where the inner product is defined as (d>$(§ )) =
Jo@i(®)Pi(€)p(E)dE and 0 is the first multi-index —
the one with all zero elements.

4.2 Calculating polynomial chaos coefficients

The coefficients of the polynomial chaos expansion Eq. (12)
can be calculated via quadrature or by linear regression.
4.21 Quadrature

To obtain the coefficients of the polynomial chaos expansion,

R(E) =D a;®;(&), (18)

ieZ,

via quadrature, we take the inner product of both sides of
Eq. (18) with respect to ® ;(§) to yield

(R, ®)) =D ai{®i, ®,). (19)
ieZ,

Making use of the orthogonality of the polynomials and solv-
ing for the coefficients in Eq. (19), we obtain

_ (R, ®i(§) _
' (D2(8)) (D7(8))

/ RE)®:(E)pE)dE.  (20)

Q

where the domain €2 is the Cartesian product of 1D do-
mains €2; for each dimension, Q = x---x,,and p(§) =
H}}:po (&) is the joint probability density of the stochas-
tic parameters. The inner product (CD%(é )) is known analyt-
ically or inexpensively computed. Thus, most of the com-
putational expense in solving for the coefficients resides in
evaluating the model R(&) in the multidimensional integral
fQR(§)¢i(E)p(§)d§. This integral is solved with quadra-
ture (numerical integration). Note that the zero coefficient in
Eq. (20) reduces to the definition of the mean:

KR = o= /R(’;')p(é)d’é, 2y

Q

which the direct numerical integration methods attempt to
compute directly (Sect. 3.1.1).

4.2.2 Regression

To obtain the coefficients of the polynomial chaos expansion
Eq. (12) via regression, we construct a linear system,

®o =R, (22)

and solve for the coefficients « that best represent a set of
responses R. The set of responses is generated by evaluating
the model at m realizations of the uncertain vector &. The m
uncertain vectors are most commonly obtained by sampling
the density of the uncertain variables (Hosder et al., 2007).

www.wind-energ-sci.net/4/211/2019/

Each row of the matrix ® contains the orthogonal polyno-
mials @ ; evaluated at a sample &;:
Dy(§:) Dp-1(81) Qo Ry
: : : =| | (23)

CDO(gm) cbn—l(gm) Upn—1 Ry

The size of the m x n matrix is determined by the number
of samples m and by how the polynomial chaos expansion is
truncated (Sect. 4.1), which results in n terms. It is common
to specify a total-order expansion along with a collocation
ratio ¢y = m/n to determine the number of samples m. The
collocation ratio determines if the system is overdetermined
¢ > 1 or underdetermined ¢; < 1.

For overdetermined systems, the most popular method
(and the one we use) to estimate the coefficients is least

squares, in which we pick coefficients « = (g, @1, ..., 0¢y—1)
that minimize the residual sum of squares:
@ = arg min||®a — R||3. (24)

For underdetermined systems, solving a regularized least-
squares problem is preferred (Doostan and Owhadi, 2011).

For a given number of samples m in the linear system
Eq. (23) we can use cross-validation (Hastie et al., 2009)
to pick the best polynomial-order n to approximate the re-
sponse.

4.3 Gradients of statistics with polynomial chaos

Let R(&,x) be a function of interest that depends on uncer-
tain variables & and also on design variables x. We assume
independence between the design and uncertain variables?.
Now the polynomial chaos expansion — over the uncertain
variables — becomes

RE.x)~ RE.x) = D ai(x)@;(8). (25)

ieZ,

This expansion is only valid for a particular design vector —
the coefficients «;(x) are a function of the design variables.
Therefore, the statistics are also a function of the design vari-
ables. Specifically, the mean and the variance are

HR(X) = ap(x), (26)
oRX)= D of(x)(PF(E)). 7)
ieZ,~0

4.3.1 Gradients of the statistics with polynomial chaos

We want to know the gradients of the statistics with respect
to the design variables, and we proceed to derive them below.

3For most applications, the design and uncertain variables are
independent. For instance, the design variables are the wind turbine
locations and the uncertain variables are the wind conditions.
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For simplicity, we drop the subscript from the statistics g =
u, the explicit variable dependence R(&,x) = R, the bolded
notation, and we use the following notation for the gradient
d f —Vf.

The gradient of the mean from Eq. (26) is

d d
dau  dog (28)
dx  dx’
and the gradient of the variance from Eq. (27) is
o> ep¥ioa 3 e )
dx B

ieZ,~0 ieZ,~0
Both the mean and the variance gradients depend on the gra-
dient of the coefficients %&

4.3.2 Gradients of the coefficients

The gradient of the coefficients can be computed with
quadrature or regression, similarly to how the coefficients
can be calculated with quadrature (Sect. 4.2.1) or regression
(Sect. 4.2.2).

Quadrature

We start from the equation for the coefficients Eq. (20) and
take the gradient to obtain

dy 1 fdR ()
a_@éaqug_v). (30)

Replacing this equation into the gradient of the mean Eq. (28)
we obtain

du d_R
o _(ok) -

And replacing Eq. (30) into the gradient of the variance
Eq. (29) we obtain

do? dR
E:z Z ai<a,¢',~>. (32)

i€Z,~0

To obtain the gradients of the statistics with respect to each
design variable we need to evaluate the multidimensional in-
tegral containing dx The integral is evaluated with quadra-
ture (Sect. 4.2.1) and requires the computation of the gradi-
ent of the response at each of the quadrature points. Ideally,
one would use adjoint methods (Giles and Pierce, 2000) or
algorithmic dlfferentlatlon (Griewank and Walther, 2008) to

compute the gradlents, o - efficiently.
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Regression

We start from the linear system Eq. (22) and take the gradient
to obtain the following.

do dR
i (33)
dx dx
de dR
o (34)
dx dx
d d
Do) Puc1ED] | T T
qDO(Em) q)n—l(Em) (L:;'TII] dg;—;l
ARy dRy
dx dxy
= (35)
dR,, dR,,

To solve for the gradient of the coefﬁcients we solve the lin-
ear system one column at a time of the o matrix w1th the
corresponding column of the matrix of the gradlents . The
linear system for the multiple right-hand sides can be solved
with the methods described in Sect. 4.2.2.

Again, the gradient of the mean Eq. (28) and the gradient
of the variance Eq. (29) are a function of the gradient of the
coefficients. Thus to obtain the gradient of the mean, take the
first row of the 4% 3¢ matrix, and for the gradient of the variance
use the gradient of the coefficients from all the other rows.

4.3.3 Gradients of the statistics by direct numerical
integration

Similarly to computing the mean and variance with direct
numerical integration (Sect. 3.1.1), we can also compute the
gradients of the mean and variance directly with numeri-
cal integration by differentiating the definitions of the mean,
Eqg. (5), and the variance, Eq. (8).

4.4 Correlated random variables

As described, the polynomial chaos method assumes that
the uncertain variables are statistically independent. In wind
farm layout optimization, the uncertain variables of wind
speed and wind direction are usually correlated. There are
different approaches to use polynomial chaos for problems
with inputs made up of correlated (dependent) random vari-
ables. One approach is to perform a (linear or nonlinear)
variable transformation (Feinberg and Langtangen, 2015) to
uncorrelate the variables before applying polynomial chaos.
Another approach is to construct polynomials that are or-
thogonal to the multivariate distribution instead of orthog-
onal polynomials for each dimension (Navarro et al., 2014).
A third approach, which is the most applicable for the wind
farm layout optimization problem, consists of breaking up
the domain of the uncertain variables into smaller domains
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(elements) and then constructing a polynomial chaos expan-
sion for each of the small domains and combining them in a
piecewise manner to cover the whole domain. This approach
of breaking up the domain is known as multielement poly-
nomial chaos (Wan and Karniadakis, 2006). In the context of
the wind farm layout optimization problem, the new distribu-
tions for the uncertain variables in the small elements can be
considered independent. For example, the wind direction and
wind speed at a particular wind farm site are usually corre-
lated, but if the wind direction domain is broken into sectors,
it can be assumed that within each sector the wind direction
and wind speed are independent (Herbert-Acero et al., 2014;
Murcia et al., 2015).

5 Problem details

Here, we describe the details of computing AEP in the
wind farm. We first describe and discuss the inputs, which
are the wind direction and wind speed (uncertain variables)
(Sect. 5.1), as well as the wind turbine positions (design vari-
ables) (Sect. 5.2). Then, we describe details about the out-
put, the average AEP error (Sect. 5.3), that we use to com-
pare the different methods we consider to compute the AEP
(Sect. 5.4).

5.1 Probability distributions of the uncertain wind
conditions

We consider the wind direction and the wind speed as uncer-
tain variables with probability distributions shown in Fig. 3.
The distributions show the likelihood of a particular wind di-
rection or wind speed occurring during a year. For simplicity,
we assume that the wind direction and wind speed distribu-
tions are independent (Sect. 4.4). We construct the indepen-
dent distributions starting from the wind measurements taken
near the Princess Amalia wind farm (Sect. 5.2) by the No-
ordZeeWind meteorological mast during a year (Brand et al.,
2012). For a wind rose of the measurements, see Gebraad
et al. (2017). The wind rose has a wind direction bin width
of 5° and a wind speed bin width of 1 ms~! throughout the
operational range of the turbine.

We construct the wind direction distribution (Fig. 3a) by
linearly interpolating the wind measurements of the likeli-
hood of the wind coming from a particular binned wind di-
rection for all wind speeds. The zero degree direction is set
at north and increases clockwise.
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For the wind speed, instead of linearly interpolating the
data, we fit a Weibull distribution* and then truncate it>
(Fig. 3b). We truncate the distribution to correspond to the
operational range of the turbine from the cut-in speed of
3ms~! to the cut-out speed of 25ms~!.

The probability distributions are the weight functions of
the orthogonal polynomials used in the polynomial chaos
method (Sect. 4.1). For both of the distributions (weight
functions), we use a histogram of 50 equal width bins to de-
scribe each distribution. Using these weight functions, we
then numerically generate their corresponding orthogonal
polynomials.

5.2 The wind farm layouts

To showcase the results, we will focus on four representa-
tive layouts: Grid, Amalia, Optimized, and Random (Fig. 4).
Each layout has 60 turbines, and in the figures each turbine
is represented by a dot to scale — the diameter of the dot rep-
resents the rotor diameter. The Grid layout fits in a box of
equivalent area to that of the Amalia layout. The Amalia lay-
out, which is grid-like, is that of the Princess Amalia wind
farm located 23 km off the coast of the Netherlands. The Op-
timized layout is a representative optimal layout obtained by
running the optimization problem (Sect. 6.3.1); specifically,
it is the layout shown in Fig. 11a. When we refer to this par-
ticular optimized layout, we will capitalize the word opti-
mized. The Random layout was generated by random sam-
pling and keeping the turbines that are contained within the
convex hull of the Amalia wind farm while also satisfying a
minimum inter-turbine spacing of three diameters. We will
refer to the Grid and Amalia as grid-like layouts and the Op-
timized and Random as non-grid-like layouts.

In reality, the 60 turbines in the Princess Amalia wind farm
are the Vestas V80 model. For each of the layouts in our
study, we use the NREL 5 MW reference turbine (Jonkman
et al., 2009), as this turbine has an open-source design.

5.3 Convergence metric — the average AEP error

We use an ensemble of 10 AEP results to compute the av-
erage AEP error. The average AEP error allows us to bet-
ter illustrate the differences between the different methods
used to compute the AEP and to avoid drawing conclusions
from one-off solutions. We found that averaging over 10 AEP
results is enough to illustrate the difference between meth-
ods and to smooth out the convergence of the AEP error

+The fitted Weibull - p(&; o, ) = % (§)” o €p s
has shape parameter o = 1.8 and scale parameter 8 = 12.55. The
Weibull distribution is the preferred distribution to model the wind
speed distribution (Belu and Koracin, 2013; Herbert-Acero et al.,
2014).

5The truncated distribution is no longer a full Weibull distribu-
tion and needs to be scaled to ensure it is a valid probability density
function (it integrates to 1).
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Figure 3. The uncertain variable probability distributions. The vertical lines show the cut-in and cut-out speed of a single wind turbine.
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Figure 4. Representative wind farm layouts used in the results. Each dot represents a wind turbine to scale — the dot represents the swept

area of the rotor.

(Fig. 8). The ensemble of results accounts for the fact that
the zero (starting) position for the wind direction is arbi-
trary (it could be north, south, east, west, etc.). Also, aver-
aging the AEP errors helps smooth out the AEP convergence
curves by reducing the sensitivity of the AEP to the quadra-
ture (sample) points used to compute the AEP. We gener-
ate the ensemble of AEP results by selecting 10 different in-
put sets. For example, for the rectangle rule, if we consider
36 wind directions the 10 sets are {[0, 10, 20, ..., 340, 350°];
[1,11,21,...,341,351]; ...; [9,19,29,349,359]}. For the
polynomial chaos based on quadrature, the quadrature points
are the numerically generated Gaussian quadrature points for
the interval. Thus, to create 10 different sets, we pick 10
different intervals; i.e., we pick different starting positions.
We set the starting positions for the intervals at i x 360/10°
for i =0...9. For both the rectangle and polynomial chaos
based on quadrature, the wind speed points for each set are
the same. For the polynomial chaos based on regression and
for Monte Carlo, the wind directions and wind speed pairs
are generated by sampling the distribution. Thus, to obtain
10 different sets, 10 different samplings are performed. We
use the average AEP error as the convergence metric:

average AEP error =

1 i AEP; — baseline AEP
10

- x 100 %.
baseline AEP

(36)

i=1
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5.3.1 Baseline AEP

We take as the baseline or true AEP the AEP computed with
200000 Monte Carlo samples. We picked 200000 Monte
Carlo samples to ensure that the 99 % confidence interval for
the true AEP was smaller than 1% of the computed AEP
value for all layouts. We consider an AEP within 1 % of the
baseline AEP to be accurate, and we will use it as a reference
for the results. AEP predictions of real wind farms usually
have an error of 10 %-20 % (Barthelmie et al., 2007; Briggs,
2013) due to uncertainty in wind conditions and the errors of
wake models, and thus resolving the AEP to less than 1 % is
unnecessary.

5.4 Methods to compute the AEP

Here, we provide the details of the methods used to compute
the AEP and the abbreviations for the methods.

rect rectangle rule (Sect. 3.1.1)

PC-Q polynomial chaos based on quadrature (Sect. 4.2.1)
PC-R polynomial chaos based on regression (Sect. 4.2.2)
MC Monte Carlo (Caflisch, 1998)

For the quadrature-based methods (rect, PC-Q), we use
tensor-product quadrature to compute multidimensional in-
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tegrals. We use the same number of points for each dimen-
sion because we did not see any benefit in favoring a partic-
ular dimension. For PC-Q, we use Gaussian quadrature. For
Monte Carlo, we use the traditional Monte Carlo method, i.e.,
random samples. For PC-R, we use Latin hypercube sam-
pling (McKay et al., 1979) to generate the samples needed to
construct the linear system. We solve the linear system with
least squares. For a given number of samples, given by the
total polynomial order p, we use 10-fold cross-validation to
find the least-squares best fit from polynomials of total order
1 up to total order p. The sampling methods and the poly-
nomial chaos methods we use are implemented in the open-
source DAKOTA toolkit (Adams et al., 2017).

6 Results

We first characterize the power output of the wake model
for different input conditions (Sect. 6.1). Next, we focus
on the convergence of the AEP (Sect. 6.2) and then on the
wind farm layout optimization problem to maximize the AEP
(Sect. 6.3).

6.1 Power response as a function of the uncertain
variables

The power production, computed with the Floris wake
model, for the four wind farm layouts (Sect. 5.2) as a func-
tion of both the wind direction and the wind speed is shown
in Fig. 5. The wind direction is measured from north and
increases clockwise. The power response as a function of
the wind direction is highly oscillatory, and for layouts with
structure®, it is periodic. The peaks in the contour lines iden-
tify wind directions for which there is a poor performance
(low power). The grid-like layouts (top row of Fig. 5) have
larger peaks due to wind turbines being aligned along partic-
ular directions and thus experiencing full-wake conditions.
The worst wind direction for the Grid layout is directly from
north (0°) or south (180°) when rows of 10 turbines are
aligned.

The power response as a function of the wind direction
has similar shapes for different wind speeds until the speed
is high enough (larger than the rated speed of the layout)
that the response gets clipped at 300 MW (all 60 turbines
are operating at their rated power 5 MW). As a function of
the wind speed, for each wind direction, the power response
starts after the cut-in speed of 3ms~! and is cubic (concave
up) until individual turbines start reaching rated power. After
that, the power increases more slowly (concave down) until
the farm reaches its rated power. The less grid-like layouts
show a smoother transition to the maximum power because
each turbine reaches its rated speed (11.4m s~1) at different
freestream speeds.

5Wind turbines are aligned in particular directions. The layouts
are grid-like and have symmetry planes.
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The power response as a function of the uncertain vari-
ables (wind direction and wind speed) is a complicated func-
tion, which needs to be integrated weighted by the likelihood
of the wind conditions, to obtain the AEP of the wind farm.
Next, we show that using polynomial chaos instead of the
rectangle rule results in better estimates of the AEP.

6.2 AEP convergence: polynomial chaos vs. rectangle
rule

We consider the AEP as a function of two uncertain vari-
ables: the wind speed and the wind direction. The AEP
is usually considered a function of these two variables.
We compare the convergence of the AEP for the different
methods to compute the AEP: polynomial chaos (based on
quadrature and regression), the rectangle rule, and Monte
Carlo (Fig. 6). The polynomial chaos based on regression
(PC-R) performs the best for all layouts. It is followed by the
polynomial chaos based on quadrature (PC-Q) and the rect-
angle rule, which perform similarly. The worst performer is
Monte Carlo. The slow convergence of statistics with Monte
Carlo is well known. Monte Carlo will start to outperform the
other methods when the AEP is a function of a large number
(5-10) of uncertain variables, as it does not suffer from the
curse of dimensionality.

The superior performance of the polynomial chaos based
on regression, especially for the grid-like layouts (Grid and
Amalia), is due to the following: the polynomial chaos fit
based on regression does not chase all the high-frequency
oscillations in the power response (Fig. 5); i.e., it smooths
out the response. The PC-R fit is usually not higher than
an 8 total-order polynomial (Sect. 4.1), whereas the PC-Q-
order fit is higher, as it is directly proportional to the number
of samples per dimension’. A downside of the PC-R being
able to predict the mean (AEP) accurately is that it can un-
derpredict the true variance (standard deviation) of the re-
sponse (Fig. 7). Usually, the standard deviation of the power
response (energy) over a year is not considered as a function
to optimize. A common objective in wind farm optimization
is to maximize the total amount of energy produced over a
year independent of the variability in the power production
over the year. For a wind farm, the variability of the energy
produced over a year is less important than the variability
caused by the changing wind conditions during the day.

In what follows we will compare the PC-R (the best-
performing method) with the rectangle rule (the method most
commonly used in practice) to quantify the reduction of
samples needed to compute the AEP accurately. Also, we
will sometimes use polynomial chaos to refer to polynomial
chaos based on regression. Figure 8 only keeps PC-R and
the rectangle rule results from Fig. 6, and, in addition, the
figure shows the average AEP error computed with 10 and

7For the two-dimensional problem at 625 samples (25 x 25 grid)
the polynomial order in each dimension is 24.
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Figure 5. Power contours as a function of wind direction and wind speed for the Grid, Amalia, Optimized, and Random layouts. The grid-like
layouts (a, b) have larger peaks due to wind turbines being aligned along particular directions and thus experiencing full-wake conditions.
For all layouts, as the speed increases the power increases until the wind farm reaches its rated power of 300 MW.

100 sets of samples for each method. For the rectangle rule,
there is hardly any difference between the average AEP er-
ror computed with 10 or 100 sets. For the PC-R method, the
average error with 100 sets shows a smoother convergence.
In general, averaging the AEP error over 10 sets of samples
is enough to minimize the AEP’s sample location sensitivity
and to clearly see the differences between the methods used
for computing the AEP (Sect. 5.3).

In Fig. 8, we see that the PC-R convergence curve is con-
sistently below the rectangle rule curve; i.e., PC-R has a
smaller error for the same number of samples or the same er-
ror for a smaller number of samples. Using the 1 % average
AEP error as a metric, we see that PC-R achieves this error
with fewer samples than the rectangle rule. The reduction in
the number of samples is on the order of 4 times for the Grid
layout, 8 times for the Amalia, 4 times for the Optimized,
and no significant improvement for the Random. These re-
ductions in the number of samples are considerable. In ad-
dition to providing faster convergence of the AEP, the poly-
nomial chaos based on regression method converges the AEP
more smoothly, with less oscillatory, more monotone conver-
gence. Smooth convergence is always a desired property, and
it is especially useful when performing an optimization. Both
methods, PC-R and the rectangle rule, perform better for the
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less grid-like layouts because there is less variability in the
power responses as a function of wind direction (see Fig. 5).
This is beneficial, as in the first few iterations of an optimiza-
tion the starting grid-like layouts become non-grid-like and
start to resemble the Optimized layout.

The polynomial chaos based on regression is not only bet-
ter on average, as we have seen in Fig. 8, but it is also better in
general, as shown in Fig. 9. The shaded area in Fig. 9 shows
the spread between the maximum and minimum AEP for 10
realizations of each of the number of samples (Sect. 5.3). The
solid line shows the average of those 10 realizations and the
dashed lines the =1 % of the baseline AEP. We see that the
spread is significantly smaller for the polynomial chaos based
on regression and that by around 300 samples the predictions
are almost always within 1% of the true AEP for the grid-
like layouts (Grid and Amalia) and around 100 samples for
the non-grid-like layouts (Optimized and Random). In con-
trast, for the rectangle rule, the error in the AEP is still larger
than 1 % at 400 samples for the Grid layout and 600 samples
for the Amalia layout.
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Figure 6. The average AEP error as a function of the number of samples for polynomial chaos (based on regression and quadrature), the
rectangle rule, and Monte Carlo. The AEP is a function of two uncertain variables: the wind direction and wind speed. The polynomial chaos

based on regression performs best for all layouts.

6.3 Wind farm layout optimization
6.3.1 Optimization problem

The objective of the wind farm layout optimization is to max-
imize the AEP (Sect. 2.3) by changing the position of the
wind turbines. We assume a fixed number of turbines, 60,
of the same type (NREL 5 MW; Jonkman et al., 2009) and
constrain the turbines to stay within a given area and with
a minimum separation between them. This objective and the
constraints result in a problem of nonlinear optimization un-
der uncertainty with deterministic constraints:

maximize AEP(x,y,§)
X,y

subjectto  §;; >2D i, J = l...ATurbines,
i#j (37
Ni,b >0 i = 1...nTurbines>
b = 1.. .nBoundaries>
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where S; ; is the distance between each pair of turbines i
and j, and D is the turbine diameter. The normal distance,
Ni p, from each turbine i to each boundary b is defined as
positive when a turbine is inside the boundary and nega-
tive when it is outside of the boundary. The boundary is
the convex hull of the Princess Amalia layout — a 14-sided
convex polygon (dashed-line boundary in the upper left of
Fig. 10). The design variables are the x, y coordinates of the
60 wind turbines, resulting in 120 design variables. The un-
certain variables & in the objective are the wind direction and

wind speed.
We solve the optimization problem with the gradient-
based sequential quadratic programming optimizer

SNOPT (Gill et al., 2005). We use OpenMDAO (Gray
et al., 2010) and its wrapper for pyOptSparse (Perez et al.,
2012) to call SNOPT from Python. We scale the variables,
constraints, and the objective to make them of order 1 and set
the tolerances to 1 x 10~ per the function (AEP) precision.
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Figure 7. The average standard deviation of the energy (SD) error as a function of the number of samples for polynomial chaos (based on
regression and quadrature), the rectangle rule, and Monte Carlo. The SD is a function of two uncertain variables: the wind direction and
wind speed. Note that the PC-R response is biased for the Grid and Amalia layouts. The PC-R underpredicts the true SD at the expense of

computing the mean (AEP) more accurately (see Fig. 6).

6.3.2 Optimization results

We solve the optimization-under-uncertainty problem,
Eq. (37), using the rectangle rule and polynomial chaos based
on regression methods to compute the AEP. For each method,
we consider a coarse and fine number of samples to compute
the AEP. Also, for each method, we run 10 optimizations,
and each optimization uses different sample points to com-
pute the AEP (see Sect. 5.3). The 10 optimizations enable
us to get a better understanding of which method is better at
finding layouts with high AEP and to avoid drawing conclu-
sions from one-off local optima. Furthermore, we consider
three different starting layouts for the optimization: Amalia,
Grid, and Random (Sect. 5.2). The results of the optimiza-
tions are reported in Table 2.

The optimum layouts obtained with polynomial chaos
based on regression are better than those obtained with the
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rectangle rule. For a similar number of samples to compute
the AEP, the optimizations with polynomial chaos produce
on average optimal layouts with 0.4 % higher AEP than the
optimizations with the rectangle rule. Also, using about one-
third of the samples, the optima obtained with polynomial
chaos are comparable to those obtained with the rectangle
rule. Furthermore, polynomial chaos finds better local op-
tima than the rectangle rule for all the different starting lay-
outs considered (Table 2).

The optimal layouts with the maximum AEP for each
method and starting layout are shown in Fig. 10. As can be
seen in that figure, the wind farm layout optimization prob-
lem contains many local optima. In general, the turbines —
in the local optima — position themselves in non-grid-like
patterns to minimize wake losses. Also, to minimize wake
losses, the turbines try to spread out as much as possible and
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Figure 8. The average AEP error as a function of the number of samples for both the rectangle rule and polynomial chaos based on regression
(this is the same as Fig. 6, with only keeping the PC-R and the rectangle rule results). In addition, we show the average AEP error computed
with 10 (solid line) and 100 (dashed line) sets of samples (Sect. 5.3). The AEP is a function of two uncertain variables: the wind direction
and wind speed. The polynomial chaos method computes the AEP more accurately with fewer samples.

Table 2. The AEP of the optimized layouts. We generate the AEP statistics for each method from a set of 10 different optimizations. For a
similar number of samples, both coarse and fine, polynomial chaos based on regression produces better optimal layouts than the rectangle
rule. Furthermore, using about one-third of the samples, PC-R optima are comparable with the optima obtained with the rectangle rule that
used 625 samples to compute the AEP. The values of the AEP reported are computed with 200 000 Monte Carlo samples.

Starting layout: Amalia | Starting layout: Grid | Starting layout: Random

AEP (GWh) AEP (GWh) AEP (GWh)
Method No. of samples Mean &+ SD Max ‘ Mean + SD Max ‘ Mean + SD Max
PC-R-coarse 231  1359+1.5 1362 | 13624+2.0 1365 | 1357+£2.0 1360
PC-R-fine 630 1362+1.8 1367 | 1367+1.2 1369 | 1363+£1.8 1367
Rect-coarse 225 1356+ 1.1 1358 | 1354+22 1357 | 1349+1.4 1351
Rect-fine 625 1360+ 1.0 1361 1365+1.3 1367 | 1358+1.0 1360
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Figure 9. Variability in the convergence of the AEP. Panels (a)—(d) are for polynomial chaos based on regression and panels (e)—(h) for the
rectangle rule. The shaded area shows the spread between the maximum and minimum AEP for 10 realizations of each of the number of
samples. The range in the plots corresponds to £5 % of the true AEP for each layout. The variability is significantly smaller for polynomial
chaos, which shows that in general it outperforms the rectangle rule. The PC-R method obtains smaller variability by smoothing out the

high-frequency oscillations present in the power response (Fig. 5).

position themselves at the boundary of the layout (Fig. 11).
For the optima obtained starting from the Amalia layout, we
see that the distribution of the turbines is somewhat similar
to the starting layout. As the Amalia layout is already a good
layout®, it is not surprising that the local optima somewhat
resemble the Amalia layout. The optima found starting from
the Grid layout have on average the highest AEP (Table 2
and Fig. 10). When considering all methods, on average, the
optimal layouts found starting from the Grid layout are 0.2 %
higher than the optimal layouts starting from the Amalia lay-
out and 0.4 % higher than the optimal layouts starting from
the Random layout. The Grid layout is infeasible, as many of

8The Amalia layout is an optimal layout for a different optimiza-
tion problem: the designers of the Princess Amalia wind farm likely
considered different optimization constraints and objectives, used a
different wake model in the analysis, and, as mentioned in Sect. 5.2,
used a different wind turbine.

Wind Energ. Sci., 4, 211-231, 2019

the turbines do not satisfy the boundary constraint (Fig. 11).
However, starting from the infeasible layout is beneficial as it
nudges the turbines to position themselves on the boundary.
The optima found starting from the Random layout have on
average the lowest AEP, but they have the most improvement
in AEP over the starting layout, showing that we can find
a good layout even from a poor starting position (Fig. 12).
Due to the presence of many local optima, starting from a
good layout will usually find layouts that are better than those
starting from a bad layout, such as the Random.

To properly compare the results obtained by the different
methods used to compute the AEP in the optimization, we
should compute the AEP of the optimal layout with a method
that was not used in the optimization. The values of the AEP
reported in Table 2 and Fig. 10 are computed with 200 000
Monte Carlo samples. For consistency, and to avoid poten-
tial uncertainty in the results introduced by the sample lo-
cations, we use the same 200 000 samples — wind direction,
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Figure 10. Optimal wind farm layouts achieved for each method to compute the AEP. The layouts in the first column show the turbine
starting positions for the optimization along with the boundary constraint (dashed line). The optimal layouts correspond to those with the

maximum AEP from Table 2.
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Figure 11. The initial and optimized position of the turbines for the layouts obtained with the PC-R-fine method from Fig. 10. To minimize
wake losses, the turbines try to spread out as much as possible and position themselves at the boundary of the layout.

wind speed pairs — to evaluate the optimal layouts obtained
by each method. Using the AEP computed with Monte Carlo,
the improvement of the optimal layout over the starting lay-
out will in general be lower than the improvement in AEP
as measured by the method used in the optimization (Ta-
ble 3). For example, for the optimal layouts in Fig. 10, with
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the Amalia starting layout, the average improvement in AEP
over the starting layout for all the methods is 0.36 % when
measured with the Monte Carlo samples and 1.50 % when
measured by using the method used in the optimization. For
the optimizations starting from the Random layout, the av-
erage AEP improvements are 2.06 % for Monte Carlo and
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No. of AEP cc

Figure 12. Convergence history of the optimization for the differ-
ent starting layouts. The convergence history is for the layouts in
Fig. 11.

3.20 % for the method used in the optimization. As the opti-
mizations starting from the Grid layout are infeasible, we do
not include the improvement in AEP for the Grid layout in
Table 3. The improvements we have found starting from the
Amalia layout are similar to those found by Gebraad et al.
(2017) for turbine position optimization.

Most optimizations required on the order of 100 AEP com-
putations. The optimization history for the layouts in Fig. 11
is shown in Fig. 12. Note that each AEP computation requires
hundreds (the number of samples specified for each method
in Table 2) of calls to the wake model, resulting in tens of
thousands of calls to the wind farm wake model per opti-
mization. If the gradients of the AEP are computed with a
first-order finite difference, 120 (the number of design vari-
ables) times as many wind farm wake model calls would be
needed per optimization. We showed that using polynomial
chaos finds comparable optima to the rectangle rule but using
only about one-third of the samples per AEP computation.
Thus, polynomial chaos finds comparable optima for roughly
one-third of the optimization computational cost. And, for
the same computational cost, polynomial chaos produces op-
timal layouts with 0.4 % higher AEP on average.

7 Discussion and conclusions

A single wind farm layout optimization requires tens to hun-
dreds of thousands of model evaluations. During the design
phase of a new wind farm, designers need to perform many
optimizations. The designers may explore scenarios with dif-
ferent turbine types, different sites, larger farms with a differ-
ent number of turbines, and possibly even systems of wind
farms. Also, the presence of local optima would require many
optimizations with different restarts to find the best layout.
And, furthermore, there is a desire to increase the fidelity
of the models used to simulate the wind farm, which will in-
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crease the time and computational cost of the optimizations®.

Thus, to facilitate the design phase of new wind farms and to
incorporate the use of higher-fidelity models in the design
phase requires significant improvements to reduce the sim-
ulation requirements (computational cost) of performing the
wind farm problem of optimization under uncertainty (OUU)
(Fig. 1c).

We proposed the use of polynomial chaos (PC) to improve
the uncertainty quantification step of the OUU problem. We
computed AEP convergence plots and showed that polyno-
mial chaos based on regression (PC-R) could compute the
AEP accurately using on average one-fifth of the simulations
required using the rectangle rule, the method currently used
in practice in the wind industry. PC-R computes the AEP ac-
curately (error less than 1 %), usually with only 200 simula-
tions or fewer depending on the wind farm layout — a signifi-
cant improvement over the current industry practice of using
more than 1000 model evaluations to compute the AEP.

The layout of the wind farm influences the convergence
of the AEP because the layout has a significant effect on
the power output of the farm as the wind conditions vary
(Fig. 5). We considered four representative layouts: Grid,
Amalia, Optimized, and Random. The power response of
the grid-like layouts (Grid and Amalia) has large oscillations
caused by the large drops in power that occur when rows
of wind turbines are aligned with particular wind directions.
Because of the larger variability in the power response, the
grid-like layouts require more simulations than the non-grid-
like layouts (Optimized and Random) to converge the AEP.
An extension of this work that could potentially further im-
prove the convergence of the AEP, especially for the grid-like
layouts, would be to build an approximation to the power out-
put that takes into consideration the oscillatory and periodic
behavior of the wind farm response with respect to the wind
direction (Fig. 5): for instance, by using Fourier series to ap-
proximate the wind direction response and polynomials for
the wind speed response.

In addition to computing the AEP efficiently, a benefit of
using polynomial chaos is that it can also compute the gra-
dient of the AEP efficiently. The use of gradients is essential
to enable large-scale wind farm optimization. We described
how to compute the gradients of the AEP in Sect. 4.3. A ben-
efit of using the rectangle rule is that no special considera-
tion is necessary for correlated uncertain variables, whereas
for polynomial chaos, some extra considerations are neces-
sary as discussed in Sect. 4.4. Another benefit of using PC is
that it can easily incorporate multiple-fidelity models to ac-
celerate the convergence of statistics (Ng and Eldred, 2012;

OIf instead of using the Floris wake model in the optimization,
we had used a high-fidelity fully resolved large eddy simulation to
model the wind farm, a back-of-the-envelope calculation shows that
the optimization would require the total annual energy production
(AEP) of the wind farm to power the computers used in the simula-
tion.
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Table 3. The improvement in AEP of the optimized layouts from Fig. 10 over their starting layouts. The improvements are smaller when
measured by 200 000 Monte Carlo samples rather than directly by the method used to compute the AEP in the optimization.

Starting layout: Amalia Starting layout: Random

AEP % improvement as measured | AEP % improvement as measured
Method by Monte Carlo by method | by Monte Carlo by method
PC-R-coarse 0.36 0.75 2.08 2.86
PC-R-fine 0.73 1.19 2.62 2.93
Rect-coarse 0.07 2.45 1.46 3.93
Rect-fine 0.30 1.62 2.09 3.07
Average 0.36 1.50 ‘ 2.06 3.20

Palar et al., 2016), such as the AEP (Padr6n, 2017). Further-
more, the effect of other uncertain variables (such as wake
model parameters) on the AEP can easily be incorporated in
the polynomial chaos framework. As the number of uncertain
variables increases, polynomial chaos based on regression
will continue to outperform the rectangle rule (see Padrén,
2017, for an example with three uncertain variables — wind
speed, wind direction, and wake model parameter). For a
large number (5-10) of uncertain variables, the Monte Carlo
method will start to outperform polynomial chaos because
it does not suffer from the curse of dimensionality (Smith,
2014).

We performed multiple gradient-based wind farm layout
optimizations to compare the optimization results obtained
with the different methods to compute the AEP: polynomial
chaos based on regression and the rectangle rule. The goal
of the optimization was to maximize the annual energy pro-
duction (AEP) of the wind farm. The layout optimization is
an OUU problem (Fig. 1c) with the wind speed and wind di-
rection as uncertain variables and the positions of the wind
turbines as design variables. In the resulting optimal layouts,
the turbines position themselves in non-grid-like patterns and
spread toward the boundary to minimize wake losses. For
the optimization problem posed, there are many local optima
with different patterns and similar AEP (Fig. 10). To search
for the best optimum, we considered different starting lay-
outs (Grid, Amalia, and Random). We observed that starting
from a good layout (Grid, Amalia) will, in general, find bet-
ter optima than starting from a bad layout (Random) inde-
pendent of the method used to compute the AEP.

An ensemble of optimizations should be used to prop-
erly compare the optimal layouts obtained using the different
methods to compute the AEP. Also, for proper comparison,
the AEP of the optimized layouts should be evaluated in the
same way and with a method different from the one used in
the optimization. To be confident about the differences be-
tween the optimal layouts, we evaluated the AEP of each op-
timized layout using the same 200 000 Monte Carlo samples.
We found that the benefits of being able to efficiently com-
pute the AEP with PC-R translate to being able to find better
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optima than those obtained when computing the AEP with
the rectangle rule when using the same number of simula-
tions. For the cases considered, on average, with PC-R we
find optima that are 0.4 % better than those found with the
rectangle rule. This is a significant improvement, as a 1 % in-
crease in the AEP for a modern large wind farm can increase
its annual revenue by millions of dollars. Also, using about
one-third of the simulations, coarse PC-R finds comparable
optima to those found by using the fine rectangle rule for the
optimization cases considered.

An interesting extension of this work that could further
improve the AEP would be to allow yaw-based control in
the optimization problem to take advantage of wake deflec-
tion. Gebraad et al. (2017) found that including yaw for each
wind direction in a secondary layout optimization, after lay-
out optimization without yaw, resulted in an additional 3.7 %
increase in AEP. Including wake deflection in the wind farm
layout optimization increases the complexity of the problem
in terms of the number of design variables because every
wind direction (and, to a lesser extent, wind speed) calls for
different yaw values for each turbine. The increased number
of design variables makes the problem much more difficult
for gradient-free optimization methods and can slow down
gradient-based optimization methods as well (Thomas et al.,
2017). As we have seen, polynomial chaos reduces the num-
ber of simulations (wind directions and wind speeds consid-
ered). Thus, it could also greatly reduce the number of simu-
lations in optimization with yaw control.
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