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Abstract. Wind turbines in a wind farm typically operate individually to maximize their own performance and
do not take into account information from nearby turbines. To enable cooperation to achieve farm-level objec-
tives, turbines will need to use information from nearby turbines to optimize performance, ensure resiliency
when other sensors fail, and adapt to changing local conditions. A key element of achieving a more efficient
wind farm is to develop algorithms that ensure reliable, robust, real-time, and efficient operation of wind tur-
bines in a wind farm using local sensor information that is already being collected, such as supervisory control
and data acquisition (SCADA) data, local meteorological stations, and nearby radars/sodars/lidars. This article
presents a framework for developing a cooperative wind farm that incorporates information from nearby turbines
in real time to better align turbines in a wind farm. SCADA data from multiple turbines can be used to make
better estimates of the local inflow conditions at each individual turbine. By incorporating measurements from
multiple nearby turbines, a more reliable estimate of the wind direction can be obtained at an individual turbine.
The consensus-based approach presented in this paper uses information from nearby turbines to estimate wind
direction in an iterative way rather than aggregating all the data in a wind farm at once. Results indicate that
this estimate of the wind direction can be used to improve the turbine’s knowledge of the wind direction. This
estimated wind direction signal has implications for potentially decreasing dynamic yaw misalignment, decreas-
ing the amount of time a turbine spends yawing due to a more reliable input to the yaw controller, increasing
resiliency to faulty wind-vane measurements, and increasing the potential for wind farm control strategies such
as wake steering.
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1 Introduction

The wind industry continues to seek methods to decrease
the levelized cost of energy (LCOE) by using advances in
science, engineering, and computation (Lindenberg, 2009).
Control systems have the potential to contribute to this LCOE
reduction by incorporating local measurements and optimiz-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



356 J. Annoni et al.: Wind direction estimation using SCADA data with consensus-based optimization

ing large wind farms in real time. Specifically, control sys-
tems can be used to achieve a cooperative wind farm, which
includes turbines that self-organize into groups, monitor their
status and the status of other turbines, and control their per-
formance to maximize the economic and reliable perfor-
mance of a large-scale wind farm. A framework for coopera-
tive wind farms can be achieved by representing a wind farm
as a network of wind turbines. The network topology can be
used to advance the state of the art in wind farm controls in
topics ranging from distributed optimization and control to
fault detection and short-term forecasting. In this sense, wind
farms can take advantage of the network topology to imple-
ment scalable, reconfigurable, and resilient control strategies
in real time. The approach presented in this article is an itera-
tive algorithm that takes advantage of the topology of a wind
farm and incorporates local measurements from nearby tur-
bines to determine the wind direction at an individual turbine.
Improving the wind direction measurement at the turbine can
reduce unnecessary yaw movements and minimize dynamic
yaw misalignments.

Currently, turbines typically rely on wind vanes and
anemometers mounted on the back of the nacelle to provide
measurements to their controllers. Some turbine manufactur-
ers have wind speed and wind direction estimators to correct
for these errors based on individual turbine measurements.
Individual measurements, on their own, can be unreliable due
to the complex flow created as the wind passes through the
rotor, preventing accurate inputs into the individual turbine
yaw controller. One way to address noisy wind direction in-
formation is to mount a forward-facing lidar on the nacelle
to detect the wind in front of the turbine (Fleming et al.,
2014b; Schlipf et al., 2013; Scholbrock et al., 2013; Simley
et al., 2014). In addition, meteorological (met) towers can
be used to characterize the inflow; however, most turbines
do not have dedicated met towers and the wind direction
can vary across a wind farm due to variable meteorological
conditions and topography. Other remote sensing techniques
have been proposed as well including radar, lidar, sodar, etc.
(Peña et al., 2010; Barthelmie et al., 2016). However, they
all require additional sensing equipment and integration into
turbine controllers.

This paper describes a distributed optimization-based
method to reliably estimate the wind direction across a wind
farm even when faults and/or biases are present. Distributed
optimization and control theory provide a framework for
efficient computation of large systems, especially systems
with network topologies. These types of optimization strate-
gies have been used for multi-agent systems, such as un-
manned aerial vehicles and robots, and can be used to co-
ordinate subsystems to interact with their larger environment
(Zhu and Martínez, 2015; Ferrari et al., 2016; Movric and
Lewis, 2014; Shamma, 2008). Distributed optimization has
also been considered in the wind farm controls literature
(Marden et al., 2012; Spudić et al., 2015). However, com-
plex aerodynamic interactions and large timescales make this

a challenging problem. For example, a distributed optimiza-
tion framework for wind farm controls has been presented
in Soleimanzadeh et al. (2013). However, solving this prob-
lem becomes computationally complex as the system grows
because of the number of turbines and larger flow domains.
A limited-communication distributed model predictive con-
troller designed to track a power reference signal is described
in Bay et al. (2018); this algorithm uses a simplified lin-
earized wake model to describe turbine interactions, allowing
for scalability. Because this method requires a linear model,
this method is difficult to extend to power maximization or
load minimizations where the objective functions are highly
nonlinear.

Consensus-based algorithms are a specific class of opti-
mization algorithms that have the potential to accommodate
sensor errors caused by failure, miscalibration, and noise
by assuming that turbines experience wind inflow directions
that share similar characteristics with those of their neigh-
bors. Although consensus optimization is an active area of
research for many applications, especially in multi-agent sys-
tems, its use in wind farm applications is relatively new. A
few studies have used consensus-based approaches for vari-
ous problems in wind energy. In one such study, a dynamic
average consensus estimator is used in Ebegbulem and Guay
(2017) to estimate an overall cost function for turbines com-
municating via an undirected network where the goal is to
maximize total wind farm power production. Similar power
maximization approaches using consensus-based approaches
for an undirected graph can be found in Wang et al. (2017)
and Gionfra et al. (2017). Finally, the research of Baros and
Ilic (2017) allows turbines to self-organize using torque con-
trol and storage to regulate total wind farm power output.

This article presents a consensus-based distributed opti-
mization algorithm for reliably calculating wind direction at
a wind turbine using only supervisory control and data acqui-
sition (SCADA) data from the turbines in the wind farm. This
wind direction estimate can be used as an input to a turbine
yaw controller, facilitate wake steering wind farm control
(Fleming et al., 2014a) and other forms of wind farm con-
trol, inform operations management, and provide condition
monitoring. It is important to note that this approach requires
no additional sensing information. This algorithm is based on
the work presented in Hallac et al. (2015) and is solved using
an alternating direction method of multipliers (Boyd et al.,
2011). Details of this algorithm are found in Sect. 3.1. This
method is also compared to alternative approaches to esti-
mating wind direction such as averaging. The results are dis-
cussed in Sect. 5. A key contribution of this article is demon-
strating this algorithm on wind farm SCADA data where the
wind direction varies across the wind farm. For proprietary
reasons, all the data have been normalized and only a subsec-
tion of the wind farm is shown (see Sect. 5.2). Results of this
approach are compared with a sodar on site and are shown
in Sect. 6. The results indicate that this approach provides a
robust measurement of the wind direction at each turbine. Fi-
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nally, Sect. 7 provides some conclusions and suggestions for
future work.

2 Wind farm as a network

In this framework, turbines can take advantage of data from
nearby turbines to make more informed decisions about in-
dividual or farm-level operation. This framework is scalable
and reconfigurable, and can be extended to include addi-
tional sensors incorporating relevant nearby measurements
from other turbines, meteorological instruments, and mobile
sensors. Identifying a graph or network topology is important
for incorporating local information and taking advantage of
the structure of the wind farm to perform real-time optimiza-
tion. The network connections can be based on proximity or
based on physical interactions, i.e., aerodynamic interactions
(wakes). This study uses proximity to define the connections
between turbines. Finally, this approach can solve local op-
timization problems and allows for local variations experi-
enced in a wind farm. The wind farm can be modeled as an
undirected or a directed network where turbines communi-
cate with nearby turbines. Turbines in a wind farm can be
considered the nodes, and the edges are established commu-
nication between nearby turbines. Information is communi-
cated across these edges to determine local atmospheric con-
ditions – such as wind direction or wind speed – at a particu-
lar turbine.

It is important to note that although turbines typically com-
municate with a central computer to record SCADA data, an
undirected network is used to determine which turbines to
include while computing a local optimization at a particu-
lar turbine. This topology is designed to take advantage of
temporal and spatial structures in a wind farm. For example,
a turbine on the westernmost edge of the wind farm can be
experiencing a different wind speed/direction than a turbine
on the eastern edge of the wind farm that is several kilome-
ters away. This study uses a nearest-neighbor approach to
define the network topology. Additional ways to characterize
the network topologies will be explored in future work.

There are a few important things to note when determining
the network topology in a wind farm. First, the local condi-
tions can vary across a wind farm. The number of connec-
tions between each turbine can determine the variability ob-
tained across the wind farm. For example, if every turbine
is connected to every other turbine, the variability across the
wind farm will be small and the turbines will all agree on
one set of atmospheric conditions based on a consensus ap-
proach. In addition, the computation time will be high due
to the number of communication exchanges per iteration of
the consensus algorithm. However, if the turbine has no con-
nections, the variation of the output of the consensus algo-
rithm across the wind farm will be high and possibly unreli-
able due to sensor noise and miscalibration. Smaller groups
of turbines can agree on local conditions and provide a re-

liable measurement that more accurately captures the varia-
tions across the wind farm.

3 Distributed optimization for real-time operation

A distributed approach can be used to solve an optimization
problem that takes advantage of a system’s network topol-
ogy. In this particular case, a distributed optimization prob-
lem will be used to agree on wind direction across turbines.
The problem can be decomposed such that each turbine can
solve its own optimization problem, which incorporates in-
formation from connected turbines in the network topology.
In other words, a few measurements from nearby turbines
are used to solve the optimization problem rather than solv-
ing a centralized optimization problem that includes all mea-
surements from all turbines. Trying to incorporate all mea-
surements from all turbines can be problematic in terms of
communication limits and computational complexity, poten-
tially taking hours to solve. However, grouping the turbines
in a wind farm based on distance provides a computation-
ally efficient algorithm for optimizing a particular objective
function. The approach used in this article is based on Hallac
et al. (2015), where the objective function can be written as

minimize
xi

∑
i∈V
fi(xi)︸ ︷︷ ︸

node objective

+

∑
(j,k)∈E

gjk(xj ,xk)︸ ︷︷ ︸
edge objective

i = 1, . . .,Nturbs j ∈N (i), (1)

where fi(xi) is the objective function at turbine i, i.e., the
node objective; N (i) indicates the turbines connected to tur-
bine i; V is a set of all nodes and E is a set of all edges in
the graph; xi is the wind direction estimate at turbine i; and
gjk(xj ,xk) compares wind direction measurements between
turbines j and k inN in the wind farm network, i.e., the edge
objective. Each turbine is a node in V and the nearest turbines
are connected by edges in E . This is a generalized framework
for estimating many different quantities throughout the wind
farm such as power, wind speed, or wind direction. The next
section describes a wind direction consensus example to il-
lustrate the utility of this framework.

3.1 Wind direction consensus

This study uses a consensus-based approach to reliably de-
termine the wind direction at every turbine considering both
the individual turbine measurements and those of its near-
est X neighbors. The SCADA data measurements recorded
at each turbine are used to determine a reliable measurement
of wind direction at every turbine. This approach allows the
wind direction and wind speed to vary across a wind farm. It
is assumed that the wind directions recorded at the turbines
are with reference to true north and that the wind direction
varies smoothly across the wind farm.
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For this problem, each turbine uses its own wind direction
measurement, x̃i,measure, as well as the wind direction mea-
surement from the connected turbines to determine the local
wind direction. First, the objective of the individual turbine
i, i.e., the node objective, is to minimize the error between
the wind direction measurement measured at turbine i and
the estimated wind direction, xi , or

fi(xi)=
(̃
xi,measure− xi − bi

)2
+α|bi |, (2)

where bi is the measurement bias in the wind direction with
respect to true north, and α enforces sparsity of these biases
in the wind farm. A large α allows for very few biases to be
identified among turbine measurements in the wind direction
consensus algorithm. A small α allows for many biases to
be identified. These biases can help identify faults in wind
direction measurements. This approach allows the biases to
be incorporated into the optimization, rather than be ignored,
which can contribute to the overall wind direction consensus.
In addition to the node objective, the edge objective incorpo-
rates information from nearby turbines to ensure a reliable
measurement of the wind direction at an individual turbine.
The edge objective can be written as

gij
(
xi,xj

)
= wij |xi − xj |, (3)

where wij is a weight placed on the connection between tur-
bines i and j , xi is the estimated wind direction at turbine i,
and xj is the estimated wind direction at turbine j . The edge
objective, gij (xi,xj ), minimizes the differences in estimated
wind direction between neighboring turbines. In this paper,
the weights, wij , in each cluster are weighted based on dis-
tance using a normal distribution; i.e., the information from
turbines that are closer is weighted more than turbines that
are farther away. Equations (2) and (3) are used by the opti-
mization problem (Eq. 1) for this wind direction consensus
problem. Using clustering allows each subset optimization
to be performed in parallel, further reducing computational
time. An iterative approach is needed to solve this optimiza-
tion problem and is detailed in the next section. This iterative
approach provides a feedback mechanism that lends itself to
additional benefits such as fault detection.

3.2 Alternating direction method of multipliers

Alternating direction method of multipliers (ADMM) is a
technique used to solve distributed optimization problems
(Boyd et al., 2011) such as Eq. (1). This algorithm is partic-
ularly useful in this case since each individual turbine solves
its own optimization in parallel, communicates the solution
to neighboring subsets, and iterates this process until the
wind farm has converged and each node has reached a sin-
gle value. In this study, each turbine determines its own local
wind direction by only talking to its nearest neighbors, as
indicated in Sect. 2. ADMM is used to solve a network op-
timization with connecting nodes to determine a consensus
between shared nodes such that

minimize
Nturbs∑
i

fi(xi,bi)+ λ
∑

(j,k)∈E
wjk‖zjk − zkj‖2 (4)

subject toxi = zij , j ∈N (i), (5)

where zjk are copies of x at different nodes; i.e., zj,k is a copy
of xj at turbine k such that the wind farm reaches consensus
of the wind direction across the wind farm; and λ is a penalty
term that enforces consensus. If λ is very large, there will be
total consensus. If λ is very small, there will be no consensus
among nodes. The operator ‖ · ‖2 indicates the L2 norm.

The distributed optimization problem is solved using
ADMM by minimizing the augmented Lagrangian:

Lρ(x,b,z,u)=
∑
i∈V
fi(xi,b)+

∑
(j,k)∈E

λwjk‖zjk − zkj‖2

− (ρ/2)
(
‖ujk‖

2
2+‖ukj‖

2
2

)
+ (ρ/2)

(
‖xj − zjk + ujk‖

2
2

+‖xk − zkj + ukj‖
2
2

)
, (6)

where u is the scaled dual variable and ρ > 0 is the penalty
parameter that enforces the constraints on the problem, i.e.,
enforces xi = zi,j . The variables x, b, z, and u are updated
in serial. In this particular setup, the bias, bi , does not have a
z update or u update since the biases are only known to the
individual turbines; i.e., they are not communicated to nearby
turbines.

4 Alternative methods for estimating wind direction

In addition to a consensus-based approach, alternative meth-
ods can be used to determine an estimate of the wind direc-
tion given the measurements of nearby turbines in the wind
farm that are less computationally expensive. This section
presents three alternative methods that will be used for com-
parison to the consensus-based approach in the presence of a
fault in one of the turbines. Results of the comparison will be
given in Sect. 5.

4.1 Averaging

The first and simplest approach uses averaging across all of
the turbines such that

xi =
1
N

N∑
j

xj,measure, (7)

where xi is the modified wind direction signal of turbine i,N
is the number of turbines in the wind farm, and xj,measure is
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the wind direction measured at turbine j . The main limitation
to this approach is that it provides only one wind direction
across the entire farm. It is common for the wind direction to
vary across a large wind farm, so averaging is likely to give
poor results for some turbines. Also, averaging is expected to
perform worse in the presence of faults.

4.2 Weighted averaging

The next approach that was examined was a weighted aver-
age of the wind directions at each turbine such that

xi =

N∑
j

wijxj,measure, (8)

where wij is a weight based on the distance between tur-
bines i and j . In this case, we used a normal distribution that
weights turbines that are closer to turbine i with a higher
weight and turbines that are farther away from turbine i
with a lower weight. This method allows for changes in
wind direction across the wind farm, which is likely to be
an improvement over simple farm-wide averaging. However,
faulty sensor cases may still be problematic.

4.3 Cluster average

Lastly, a cluster average was applied at each turbine. This
is similar to consensus in that only measurements from the
nearest X turbines are used, where X = 15 for this study.
However, cluster averaging uses a simple weighted average
rather than the iterative, consensus-based approach presented
in Sect. 3.1. This uses the network topology also used for the
consensus-based approach to determine the wind direction at
a turbine:

xi =

Ni∑
j

wijxj,measure, (9)

where the weighted average wind direction at each turbine
is determined by a subset of turbines, Ni . In the example in
Sect. 6, Ni ∈ R20. This is similar to the weighted average
method, except only a subset of turbines are used rather than
all of the turbines. Using only this subset may be helpful in
excluding information from turbines that are far away.

5 Comparison of methods: wind direction
estimation

This section demonstrates the benefits of the consensus ap-
proach in Sect. 3.1 compared to the alternative methods pre-
sented in Sect. 4.

5.1 Small wind farm – fault detection

First, the four different methods in Sects. 3.1–4 were tested
on a six-turbine wind farm to demonstrate the performance

when a bias or fault is experienced at a turbine. The six-
turbine wind farm is shown in Fig. 1a. The network topology
used for the consensus approach, Sect. 3.1, and the cluster av-
eraging, Sect. 4.3, is shown in Fig. 1b using the three nearest
neighbors clustering strategy. The different colors in Fig. 1b
represent the different clusters. For example, the darker blue
lines indicate that Turbines 2, 3, and 4 are communicating
with Turbine 5.

The wind direction is simulated from 270◦, and a fault is
introduced at Turbine 0 such that the wind turbine is measur-
ing a 90◦ offset from the wind, i.e., a wind direction of 0◦.
Such an error is possible in the field for a number of reasons
including a drifting yaw position signal or a bent wind vane.

Figure 2 shows the results of implementing the different
methods described in Sects. 3.1–4. The top-left plot shows
the “measured” data vs. the true wind direction. The top-right
plot shows the estimated wind direction at each turbine us-
ing the consensus approach described in Sect. 3.1. This plot
shows that, through its iterative approach, consensus is able
to determine the actual wind direction at Turbine 0 as well as
at all of the other turbines. In evaluating the three averaging
approaches in Sect. 4, the error introduced by a fault at Tur-
bine 0 spreads at least to the nearby turbines or, in the case
of the simple average, across the entire wind farm. The re-
sulting mean absolute error of each scenario is shown in the
bottom-right subplot of Fig. 2. The consensus algorithm is
able to outperform all of the other methods in this faulty sen-
sor scenario. The mean absolute error shows that these other
methods reduce the “average” error across the wind farm.
This metric is important when assessing the accuracy of a
method across a wind farm as will be shown in a larger wind
farm example in Sect. 5. However, in this example, there is
only one fault/error and the plots in Fig. 2 show that the error
has spread to more turbines. In this case, it is critical that the
consensus algorithm is able to identify the erroneous wind di-
rection signal and minimally impact the other turbines in the
wind farm. This will have implications when implementing
advanced wind farm control strategies like wake steering.

5.2 Large wind farm

Next, the different methods were applied to simulated data
of a real wind farm. A subset of those turbines is shown in
Fig. 4, resulting in more than 100 turbines. Note, the x and
y axis scale has been removed for proprietary reasons. The
wind farm includes two met towers with sensors at 50 and
80 m elevation and a sodar. SCADA data were collected at
1 min time intervals from individual turbines over approx-
imately 8 months. The data channels of interest were the
perceived wind direction (yaw position combined with the
yaw error), wind speed, and measured power at each turbine.
The latitude and longitude values of each turbine were trans-
formed into Universal Transverse Mercator (UTM) coordi-
nates to provide approximate distances in meters between
turbines. In addition, data were available for the same time
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Figure 1. (a) Example six-turbine wind farm. (b) Example clustering based on the nearest three neighbors. The different colors represent
the different clusters. For example, the darker blue lines indicate that Turbines 2, 3, and 4 are communicating with Turbine 5.

Figure 2. This six-turbine example demonstrates the effectiveness of the different methods in the presence of a fault in the Turbine 0 wind
direction sensor. Panel (a) shows the “truth” data and the “measured” data. Note that the arrows are pointed in the upwind direction. Panel (b)
shows the results of the consensus algorithm. Panel (c) shows the results of equal averaging across the wind farm. Panel (d) shows the cluster
averaging approach and (e) shows the weighted averaging approach across the full wind farm. The mean absolute errors of each of the
methods are shown in panel (f).
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Figure 3. (a) This plot shows the simulated “truth” data underlying wind direction data based on the 30◦ wind direction change across the
wind farm. (b) This plot shows the simulated “measured” wind direction with noise added on top of the “truth” data. Note that the arrows
are pointed in the upwind direction.

Figure 4. (a) This figure shows a subset of the turbines used in this study. (b) Connecting undirected edges indicating all groupings within
the wind farm based on distance from each wind turbine to its neighbors.

period from the met towers and the sodar. The met towers
had data at 1 min time intervals and the sodar had data avail-
able at 10 min intervals.

To assess the performance of each method, the wind direc-
tion data were simulated to provide a set of “truth” data. The
simulated wind direction was generated based on the change
in wind direction seen across the wind farm with added noise.
First, the change in wind direction was observed in measure-
ments from met towers in geographically different locations
within the farm. Next, noise was added on top of this change
in wind direction across the wind farm. Using the met tow-
ers, there was an average of 30◦ wind direction change across
the wind farm. A standard deviation of 10◦ was added on top
of the wind direction change to simulate noisy wind direc-
tion signals recorded at each turbine. Figure 3a shows the
“true” underlying wind data based on the 30◦ wind direction
change across the wind farm, and Fig. 3b shows the “mea-
sured” wind direction with noise added on top of the “truth”
data. Note that the “measured” data in Fig. 3b visually look
similar to the actual SCADA data recorded; see Fig. 7a.

5.2.1 Network topology and sensitivity analysis

Using the simulated SCADA data, the network topology and
the penalty parameter, λ from Eq. (4), could be determined
using a sensitivity analysis. The results are shown in Fig. 5.
First, the optimal penalty parameter λ was determined to be
λ= 60 based on Fig. 5a. Figure 5a shows that a small or
large λ produces a larger error. A small λ corresponds to lit-
tle consensus among the turbines, and a large λ encourages
total consensus among turbines. Figure 5b shows the sensi-
tivity of the mean absolute error to the clustering size used by
the consensus algorithm. This subplot shows that communi-
cating with only a few nearby turbines produces large local
errors, since an individual turbine does not receive enough
additional information to make an informed decision on the
actual wind direction. In addition, communicating with too
many turbines also produces large errors. If a turbine com-
municates with too many other turbines, all the turbines end
up agreeing on one wind direction across the farm. For this
wind farm simulated data set, the consensus approach pro-
vides the best results with approximately 15 turbines. There-
fore, the remainder of the results are shown with turbines
communicating with the nearest 15 turbines; see Fig. 4b.
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Figure 5. (a) This subplot shows the mean absolute error computed with consensus using a range of penalty parameters, λ. (b) The cluster
size was varied and resulting mean absolute error calculated to understand the best number of turbines to communicate with.

Table 1. Results of different methods. The mean absolute error col-
umn is also plotted in the lower right subplot of Fig. 6. The consen-
sus method also has the smallest maximum error.

Method Mean absolute Maximum absolute
error error

Consensus 2.99◦ 8.71◦

Equal averaging 6.10◦ 17.19◦

Weighted averaging 3.78◦ 10.00◦

Cluster averaging 3.99◦ 14.84◦

Sensors 8.41◦ 25.78◦

5.2.2 Comparing different methods

Next, the different methods described in Sects. 3.1–4 were
compared across the large wind farm. Figure 6 shows the re-
sults of the different methods applied to this large wind farm
with a wind direction change of 30◦ and a standard deviation
of 10◦. The results indicate that the best results are achieved
with the consensus algorithm, but the other methods perform
similarly and are not as computationally expensive. They can
reduce the error at some individual turbines, especially when
no faults or additional biases are present. If corrected signals
are included where no additional biases are present, the clus-
ter averaging or the weighted averaging approach would be
a good computationally efficient option. The total error re-
sults of each of the methods are summarized in Fig. 6 in the
bottom-right plot. In addition to the mean absolute error, the
largest absolute errors were also recorded for each method
and those results are shown in Table 1.

6 SCADA data analysis using the consensus
algorithm for power analysis

In Sect. 4, we showed that the consensus algorithm is bet-
ter able to estimate wind direction than the equal average,
weighted average, and cluster average methods. In this sec-
tion, we examine opportunities enabled by the algorithm, in-
cluding with respect to power estimation and power curve
calculation. First, consensus can capture the varying wind di-
rection across the wind farm. Next, it can predict power loss
by calculating misalignment in the turbine.

The consensus algorithm was used to post-process
SCADA data to understand the possible gains of this ap-
proach. First, the wind direction was examined at one time
step with and without the consensus algorithm. Figure 7a
shows the wind direction recorded at each wind turbine for
one time step. This subplot shows the variability across the
wind farm and the disagreement among turbines. Figure 7b
shows the wind direction determined from the consensus al-
gorithm at the same time step. Each time step takes 0.5 s to
compute, in serial on a desktop computer, using the algorithm
described in Sect. 3.1. The output of the consensus algorithm
shows a smoothly varying wind direction across the wind
farm. One implication of smoothly varying wind direction is
that it may reduce the yaw motion of the yaw controller and
the yaw drive in those turbines are not chasing local wind
gusts that only last for a short time. Figure 8 shows the ter-
rain and the corresponding color-coded wind direction and
indicates that the wind direction varies with terrain, an effect
that this algorithm is able to capture even in complex terrain.
In particular, a strong change in wind direction is detected
near the canyon in the north-central part of the wind farm.

Next, the results of the consensus algorithm were used to
determine the wind direction at the location of the sodar on
the outside of the wind farm by interpolation from the in-
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Figure 6. This figure demonstrates the performance of the different methods on a larger wind farm than the one shown in Fig. 2 with noisy
signals and a wind direction change across the wind farm. Panel (a) shows the “true” data and the actual data. Panel (b) shows the results
of the consensus algorithm. Panel (c) shows the results of implementing equal averaging across the wind farm. Panel (d) shows the cluster
averaging approach and (e) shows the weighted averaging approach across the full wind farm. The mean absolute errors of each of the
methods are shown in panel (f).

dividual turbines; i.e., the wind direction was determined at
each turbine and the results were interpolated to the sodar lo-
cation within the wind farm. The results were compared with
the time series data recorded by the sodar as shown in Fig. 9.
The top plot shows the time series wind direction measured
by the sodar in blue and the estimate based on the consen-
sus algorithm in red. This figure shows good agreement be-
tween the estimated wind direction and the wind direction
measured by the sodar. The 100 h shown in Fig. 9 were cho-
sen to demonstrate the performance of the algorithm under
large wind direction changes due to meteorological drivers.

Figure 9b shows the error between the estimated and actual
signal recorded by the sodar. The points are color-coded with
respect to wind speed. The largest errors are experienced
at low wind speeds, typically at or below cut-in. Figure 10
shows the error distribution of the consensus algorithm com-
pared with the sodar for wind speeds greater than 4.0 m s−1.

Next, to demonstrate the benefits of the estimated wind di-
rection at each turbine, the estimated wind direction was used
to determine the error, between the wind direction signal and
the consensus-based wind direction signal, experienced by
each turbine across the wind farm. The error was calculated
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Figure 7. (a) The wind direction recorded at each turbine across the wind farm at one time step using actual SCADA data recorded at each
turbine. (b) The wind direction estimated by the consensus algorithm at the same time step.

Figure 8. The consensus-based wind direction is shown across part
of the wind farm based on the color of each turbine with the terrain
plotted in the background. This shows the effects of terrain on the
wind direction and indicates that the wind direction can vary across
the wind farm.

between the estimated wind direction and the measured wind
direction at the turbine. Figure 11a shows the power curve,
computed with 95 % confidence intervals, of one turbine with
small wind direction errors (less than 1◦) in green and large
wind direction errors (greater than 10◦) in magenta. Using
the estimated wind direction, we can identify when turbines
are operating in misaligned conditions and correct dynamic
yaw misalignment in the yaw controller.

Next, the average power loss of a turbine was computed
for different amounts of wind direction error using a wind di-
rection error of less than 1◦ as the baseline from the SCADA
data. Figure 11b shows the results of the average data, across
all turbines across 500 h, in black. The percent of the 500 h of
data used to compute the power loss at each offset is shown;
i.e., 48.5 % of the data have less than 5◦ offset. This plot indi-
cates that some turbines across the wind farm could be spend-
ing a significant amount of time misaligned. In literature, tur-
bines operating in yaw misalignment have a loss of power
that is proportional to cos(θ )pP (Gebraad et al., 2016), where
θ is the misalignment angle and pP is determined empirically
(Fleming et al., 2017). The value of pP has been shown to be
between 1.0 and 2.0 (Gebraad et al., 2016; Fleming et al.,
2017). In Fig. 11b, the SCADA data show the percent de-

crease in power vs. misalignment, where misalignment is cal-
culated compared to wind direction consensus, most closely
follows a cos(θ )1.4 relationship. The loss in power is consis-
tent with literature, which again indicates that the consensus-
algorithm-estimated wind direction is a reasonable estimate
of the wind direction at each turbine. Having a better wind di-
rection measurement for the yaw controller of a turbine could
improve yaw misalignments and reduce the amount of yaw-
ing a turbine performs and might improve the effectiveness
of wake steering (Fleming et al., 2014a).

Finally, one additional metric was used for assessing the
potential value of the consensus algorithm. We calculated
the relative power performance of the turbines as they ex-
perienced large (> 20◦) and small (< 10◦) wind direction er-
rors compared to two baselines: (1) the sodar in the wind
farm, and (2) the estimated wind direction from the consen-
sus algorithm. In this analysis, we first eliminated erroneous
data such as power values more than 13 % overrated power
and less than 0. We used 10 min sodar data and 1 min turbine
power and nacelle position data and calculated the statistics
including the mean, median, and standard deviation of the
power at each individual turbine based on wind speed bins of
1 m s−1. An average power curve was computed for the wind
turbines in this wind farm after removing further outliers, de-
fined as data points that were outside of 2 standard devia-
tions above or below the median in each 1 m s−1 wind speed
bin. Based on a separate analysis using a power curve analy-
sis for each individual turbine, we determined that some tur-
bines likely experienced drift in their yaw-position sensors,
causing it to appear that they had regularly large wind direc-
tion errors despite being oriented correctly into the wind. We
therefore removed data from turbines with consistently high,
inexplicable wind direction errors compared to the consensus
algorithm or the sodar.

Figure 12 shows results from this second power curve
analysis that attempt to determine the effects of wind direc-
tion error on the power of a turbine. The wind direction error
was computed using a sodar on site and the wind direction es-
timated with the proposed consensus algorithm. The top-left

Wind Energ. Sci., 4, 355–368, 2019 www.wind-energ-sci.net/4/355/2019/



J. Annoni et al.: Wind direction estimation using SCADA data with consensus-based optimization 365

Figure 9. (a) Comparison between the estimated wind direction calculated via consensus at the location of the sodar (red) and the actual
wind direction recorded by the sodar (blue). The wind directions recorded by the nearest 10 turbines are shown in gray. (b) Error between
the estimate and the actual wind direction recorded at the sodar. The dots are color-coded based on wind speed.

Figure 10. Error distribution of the estimated wind direction com-
pared with measurements from the sodar. Note the measurements
of the sodar are interpolated to match the 1 min time series from the
consensus algorithm.

plot shows the difference in the power curve analysis when a
large vs. small error is detected using the wind direction ref-
erence from sodar measurements. The bottom-left plot shows
the percent difference between these two power curves at
each bin, where most percent differences are less than 1 %. In
other words, the sodar reference is almost the same as the tur-
bine sensor reference. The top-right plot shows the difference
between the two power curves when using the consensus-
based wind direction estimate as the wind direction refer-

ence. The bottom-right plot shows the percent difference be-
tween the small and large wind direction errors detected with
the wind direction estimate, which shows much larger differ-
ences than when using the sodar as wind direction reference.
The consensus algorithm therefore appears better able to de-
tect true wind direction errors than the sodar.

The implications of the results presented in Figs. 11 and 12
suggest that with a modified wind direction signal, it might
be possible to account for these wind direction errors in real
time and improve the performance of an individual turbine
by taking advantage of consensus-derived wind direction es-
timates from additional data available within the wind farm.
Many data-analysis factors impact the quantitative perfor-
mance, so we do not assert any specific quantitative gains
for the consensus algorithm compared to turbine wind vanes
or sodar but instead point to some qualitative differences to
motivate future research. Given the data-processing decisions
explained in the description of Fig. 12, it appears that the
consensus algorithm more closely predicts the actual wind
direction error across turbines than does the sodar, in that
small errors measured with consensus result in higher mean
powers for wind speed bins below rated. This result is ex-
pected because there is only one sodar in the wind farm and
a significant amount of spatial variation in the wind direc-
tion, which the consensus algorithm is able to capture. This
analysis indicates that by using only SCADA data in the way
outlined in this article, it is possible to detect dynamic yaw
misalignment. A corrected wind direction input based on this
algorithm could be used with the yaw controller, which might

www.wind-energ-sci.net/4/355/2019/ Wind Energ. Sci., 4, 355–368, 2019



366 J. Annoni et al.: Wind direction estimation using SCADA data with consensus-based optimization

Figure 11. (a) The power curve of a single turbine was computed using 0.5 m s−1 bins over 500 h of data. The power curve is plotted
for small wind direction errors of less than 10◦ (green) and large wind direction errors of more than 10◦ (magenta). (b) The power loss is
computed for different yaw offset angles. The trend is consistent with cosine power laws seen in literature.

Figure 12. (a, b) Power curves based on binned data for 1 m s−1

wind speed bins across all turbines and (c, d) percent difference be-
tween binned power from small wind direction errors to large wind
direction errors. Positive percent difference indicates more power
is generated when wind direction errors are small. Panels (a, c) are
based on comparisons between turbine wind vanes and the sodar,
and (b, d) are based on comparisons between the turbine wind vanes
and the consensus algorithm.

be able to minimize yaw misaligned conditions. Lidars have
been used to date to correct for yaw misalignment. How-
ever, due to the limitations in scanning distances, lidars have
only been able to correct static misalignment. This approach
allows for more reliable wind direction measurements that
correspond to larger timescales and space scales, which can
ride through local wind variations with small timescales and
might avoid yawing prematurely.

7 Conclusions and future work

This article presents a framework for a cooperative wind farm
where turbines benefit from increased communication, i.e.,
sharing of data. The specific example that has been presented
here is a wind direction consensus algorithm that uses infor-
mation from nearby turbines to determine the wind direction.
The results indicate that this strategy is able to detect wind
direction errors and is supported using a power curve anal-
ysis and expected power loss from misalignment from the
literature. By increasing communication between turbines,
it is possible to improve the performance of turbines in a
wind farm. The proposed consensus-based approach was also
compared with averaging methods and outperformed these
methods especially when handling turbines with faults and/or
biases in the data.

Future work will improve and extend the consensus ap-
proach beyond wind direction estimation alone. An early step
will determine the optimal number of connections between
turbines given the layout and terrain features as well as al-
lowable computation time. Next, the network topology cho-
sen could facilitate short-term forecasting in a wind farm.
For example, it takes minutes for wind to propagate down-
stream. Turbines that exist upstream could communicate to
connected downstream turbines the near-term conditions in-
cluding wind direction changes that could mitigate extreme
loading events. In addition, the consensus approach will in-
vestigate the sensitivity to various turbulence levels in the
atmosphere. This could be incorporated into the consensus
algorithm itself in the form of a stochastic optimization.

Finally, future work will include incorporating wind speed
data to have a better estimate of the atmospheric conditions
at each turbine. In addition, future work can use this frame-
work for fault detection in wind direction sensors. Sensors
that stray far from the consensus can be flagged for mainte-
nance, and if wind direction sensors are offline, information
from nearby turbines can be used to continue operating the
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turbine until maintenance can be scheduled and completed.
In summary, this framework for cooperative consensus lays
the groundwork for many different avenues for cooperative,
autonomous wind farms.
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