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Abstract. The actuator line (AL) was intended as a lifting line (LL) technique for computational fluid dynamics
(CFD) applications. In this paper we prove – theoretically and practically – that smearing the forces of the
actuator line in the flow domain forms a viscous core in the bound and shed vorticity of the line. By combining
a near-wake representation of the trailed vorticity with a viscous vortex core model, the missing induction from
the smeared velocity is recovered. This novel dynamic smearing correction is verified for basic wing test cases
and rotor simulations of a multimegawatt turbine. The latter cover the entire operational wind speed range as
well as yaw, strong turbulence and pitch step cases. The correction is validated with lifting line simulations with
and without viscous core, which are representative of an actuator line without and with smearing correction,
respectively. The dynamic smearing correction makes the actuator line effectively act as a lifting line, as it was
originally intended.

1 Introduction

The actuator line (AL) technique developed by Sørensen
and Shen (2002) is a lifting line (LL) representation of the
wind turbine rotor suitable for computational fluid dynam-
ics (CFD) simulations. It captures transient physical features
like shed and trailed vorticity (including root/tip vortices),
without the computational cost associated with resolving the
full rotor geometry. Thus, the AL model enables large-eddy
simulations (LES) of large wind farms in realistic, turbulent
atmospheric boundary layers (Vollmer et al., 2017).

However, in contrast to LL vortex formulations, the blade
forces are dispersed in the flow domain – most commonly in
form of a Gaussian projection – to avoid numerical instabili-
ties. A length scale – also referred to as smearing coefficient
– controls this force redistribution, the lower limit of which
is linked to the grid size by numerical stability requirements
(Troldborg et al., 2009). Mikkelsen (2003) observed a large
sensitivity of the blade velocities to this length scale, which
consequently also propagated to the blade forces. Especially
in regions along the blade exhibiting stark load changes, such
as around the root and tip, forces are substantially over-
predicted, meaning that this effect is exacerbated by non-

tapered and low-aspect-ratio blades. As actuator disc for-
mulations suffer from similar issues towards the blade tip,
Glauert (1935) type tip corrections are also frequently ap-
plied to ALs (Shen et al., 2005). However, these correct discs
for missing discrete blades and should therefore be unneces-
sary – strictly even invalid – for ALs. Shives and Crawford
(2013) and Jha et al. (2014) achieved a reduction in the force
over-prediction by varying the originally fixed smearing fac-
tor with respect to the blade chord. However, their methods
cannot decouple the blade forces from the smearing length
scale: a smeared force distribution in the flow domain un-
avoidably leads to lower induction at the blade – increasing
lift and drag – compared with an actual LL with a concen-
trated, spatially singular force.

1.1 The vortex smearing hypothesis

Shives and Crawford (2013) noticed the similarity between
the velocities induced across an actuator line and those pre-
dicted by a viscous vortex core model. These models in-
clude the limiting effect of viscous shear forces on the in-
duced velocities around vortex cores. A similar comparison
of the swirl velocities about an infinite vortex line is shown in
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Fig. 1 – here with a Lamb–Oseen vortex core model (Lamb,
1932; Oseen, 1911). Without viscosity (inviscid) the veloci-
ties approach infinity towards the vortex centre. The startling
agreement between the Lamb–Oseen and AL velocities was
first demonstrated by Dag et al. (2017). The Gaussian body
force smearing in the AL technique thus produces similar
swirl velocities to a viscous vortex. Ignoring viscous effects,
the AL should, in principle, induce the same velocities as a
LL – equivalent to the inviscid solution. The missing induced
velocity in the AL model (shaded area in Fig. 1) can be ap-
proximated following Dag et al. (2017) as follows:

1vθ (r)=

inviscid︷︸︸︷
0

2πr
−

viscous core︷ ︸︸ ︷
0

2πr

[
1− exp

(
−r2/ε2

)]
=

0

2πr
exp

(
−r2/ε2

)
, (1)

where 0 represents the vortex line’s circulation, r is the dis-
tance from the vortex core and ε is the length scale used in
the force smearing. This formulation can be split into an in-
viscid and viscous/smearing contribution:

1vθ (r)=

inviscid︷ ︸︸ ︷
vθ (r) fε(rε)︸ ︷︷ ︸

smearing

with vθ (r)=
0

2πr
,

fε(rε)= exp(−r2
ε ), rε =

r

ε
. (2)

If this viscous behaviour of the force smearing in AL simula-
tions was limited to the bound vortex representing the blade,
it would not influence the blade forces as long as the blade
was straight. However, Dag et al. (2017) argued that the trail-
ing vortices (in the wake) exhibit the same viscous core, as
they originate from the bound vortex. Hence, the wake of an
AL induces lower velocities at the blade than a LL. The miss-
ing velocity can be estimated from the viscous core equiva-
lence and thus correct the velocities at the blade. This mostly
impacts blade forces by changing the angle of attack at the
blade sections.

1.2 Contributions of this paper

Dag et al. (2017) corrected AL simulations of a rectangular
wing and two rotors with different aspect ratios by recuper-
ating the missing induced velocity introduced by the viscous
core. For all of their simulations they were able to show the
beneficial effect of the correction on the blade load distribu-
tion – represented by more physical behaviour, especially to-
wards the tip and root. However, their implementation of the
correction did not fully couple the flow field with the blade
forces and the induction correction.

The major contributions of this paper are as follows:

– The development of a tuning-free, dynamic and numeri-
cally robust smearing correction, which is fully coupled
to the AL model.

Figure 1. Distribution of the tangential velocity component in a
plane orthogonal to an infinite vortex line (along x) obtained from
either an inviscid or viscous (Lamb–Oseen) theoretical vortex and
an actuator line (AL) CFD simulation.

– A theoretical proof of the force smearing – vortex core
equivalence.

– Proof of the vortex core inheritance in trailed vorticity.

– The confirmation of the missing velocity assumption
by comparing LL simulations with/without viscous core
and AL results with/without correction.

The test cases include constantly and elliptically loaded
wings as well as rotor simulations of a multimegawatt tur-
bine covering the entire operational wind speed range. As
the AL model is especially attractive for wind farm simula-
tions, the focus here is on coarsely resolved ALs. The correct
dynamic behaviour of the new correction is verified through
yawed inflow and pitch step simulations.

2 Proof of force smearing – vortex core equivalence

The equivalence between the velocity field induced by an
AL and a viscous vortex can be derived directly from the
incompressible Navier–Stokes equations. This proof follows
the approach by Forsythe et al. (2015) that successfully con-
nected an AL’s vorticity field to its force projection. Starting
by taking the curl of the incompressible momentum equation,
the vorticity transport equation is obtained (ω =∇ ×u):

∂ω

∂t︸︷︷︸
=0

steady

+ (u∇)ω = (ω∇)u︸ ︷︷ ︸
=0
2D

+ ν∇2ω︸ ︷︷ ︸
=0

inviscid

+∇
f

ρ
, (3)
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where ν is the viscosity, ρ is density and f represents the
body forces from the AL. Away from the root and tip,
the flow around a high-aspect-ratio blade is nearly two-
dimensional, as the span-wise flow is negligible. Viscous
effects are disregarded in light of the large Reynolds num-
bers encountered. Furthermore the relationship between the
body force and flow field becomes quasi-steady assuming
the flow is attached. Cancelling the respective terms and not-
ing that in two-dimensional flow (y−z plane) ω = ωx êx and
∇ = (0, ∂

∂y
, ∂
∂z

):

(u∇)ωx êx =∇
f

ρ
. (4)

Assuming the drag to be negligible, the force – in the form of
lift – exerted by the AL on the flow in terms of its circulation
0 becomes

f =−f aerog(r) (5)

f aero = L= ρu×0êx g(r)=
1
πε2 exp(−r2/ε2). (6)

Here g represents a two-dimensional Gaussian force projec-
tion with r indicating the distance from the AL. Inserting
these expression into Eq. (4) and exploiting standard matrix
transformation and mass conservation1

(u∇)ωx êx =∇(0gêx ×u)= (u∇)0gêx (7)
(u∇)ωx = (u∇)0g. (8)

Due to mass conservation the u∇ term can be inverted; this
gives a direct relationship between the force projection and
vorticity:

ωx = 0g =
0

πε2 exp(−r2/ε2). (9)

As the body force is axially symmetric, the vorticity only
induces tangential velocities

ωx(r)=
1
r


∂ruθ

∂r
−

∂ur

∂θ︸︷︷︸
=0

axisymmetry


⇒ uθ =

1
r

r∫
0

rωx(r)dr. (10)

Inserting Eq. (9) and integrating gives the swirl velocity in-
duced by a smeared body force

uθ =
0

2πr

[
1− exp(−r2/ε2)

]
. (11)

1
∇ × (êx ×u)= (u∇)êx − (êx∇)u+ êx (∇u)−u(∇ êx )=

(u∇)êx + 0+ 0+ 0

This expression equals that of the Lamb–Oseen vortex, only
with the viscous core radius replaced by the smearing coef-
ficient2. This marks the theoretical confirmation of the ob-
servations by Dag et al. (2017), which additionally indicates
that a viscous core behaviour with an AL requires inviscid,
two-dimensional and locally steady flow conditions.

3 Numerical methodology

3.1 Actuator line simulations

The discretized incompressible Navier–Stokes equations are
solved using DTU’s CFD code EllipSys3D (Sørensen, 1995;
Michelsen, 1994a, b). The flow is iteratively solved at
each time instant by the SIMPLE algorithm (Patanker and
Spalding, 1972). Depending on the turbulence model either
the third-order accurate QUICK (Leonard, 1979) scheme
(RANS) or a fourth-order CDS scheme (LES) discretizes the
convective terms. As the flow variables are located at the cell
centres, a modified Rhie and Chow (Réthoré and Sørensen,
2012) algorithm avoids pressure–velocity decoupling. Fur-
ther details regarding the numerical techniques are given in
Meyer Forsting et al. (2017). For all comparisons with the LL
code, the RANS equations are solved using the k−ω shear-
stress transport turbulence closure of Menter (1993). Only
the turbulent inflow cases in Sect. 5.2.4 are computed using
the DES technique of Strelets (2001). The AL model was im-
plemented by Mikkelsen (2003) in EllipSys3D. We employ
a version utilizing three-dimensional Gaussian force projec-
tion, which follows the original formulation of Sørensen and
Shen (2002). As the AL model is especially attractive for
wind farm simulations, the focus here is on coarsely re-
solved ALs, with either 9 or 19 sections (Ns) along the blade.
They are uniformly spaced and discretize the blade start-
ing from the root at 1.5 m to the tip at 63 m. The smearing
length scale is connected to the number of sections, such that
ε = 2R/(Ns + 1)−R defining the rotor radius – which en-
sures that the forces in the domain change smoothly between
sections (Nathan, 2018). The tower and nacelle are not mod-
elled.

The numerical domain for the rotor simulations is dis-
cretized in a verified, standard manner (Meyer Forsting et al.,
2017; Troldborg et al., 2009). It consists of a box with 25R
side length that contains an inner box with a uniformly
spaced refined mesh of 3.2R edge length at its centre sur-
rounding the rotor (see Fig. 2). To capture the velocity gra-
dients around the AL correctly the mesh spacing is 1x =
R/40. This is twice the recommended minimum (Troldborg
et al., 2009); however, it delivers more accurate angle of at-
tack estimates at the section centres (Shives and Crawford,
2013). In total, 256 cells discretize the flow domain along
each dimension, resulting in 16.8× 106 degrees of freedom.
All variables, except pressure and its correction, which ne-

2Note that in the x− y plane the circulation would be −0.
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Figure 2. Numerical box domain with a structured mesh and uni-
form spacing around the rotor at its centre. Only every eighth grid
point is shown.

cessitate special treatment (Sørensen, 1995), obey symmetry
conditions on the lateral boundaries, whereas at the inflow
and outflow faces they follow Dirichlet and Neumann condi-
tions, respectively. The wing test cases follow the same ap-
proach only withNs = 32 and an inner box edge length of 3b,
where b is the wing’s half-span. This results in 80 cells along
each dimension and 5.1×105 degrees of freedom. To ensure
that the blade tip remains inside a single cell during one time
step 1t < 1x/(�R) – with mesh spacing 1x and rotational
speed �. Without rotation, the term �R is replaced by the
advection speed of the wake. The kinematic viscosity and
air density are kept constant at 1.789 ×10−5 kg m−1 s−1 and
1.225 kg m−3, respectively. Simulations are stopped when
the thrust residual reaches 1× 10−5.

The sensitivity of the rotor thrust to the domain size, time
step and grid size is explored in Fig. 3. The length of the do-
main edges is doubled to 50R, the time step is halved with
respect to a set-up obeying the method described above. A
simulation of the NREL 5-MW at 8 ms−1 with either 40
or 60 grid cells along the rotor depending on the smearing
length scale acts as a reference. With ε = R/10 and R/20,
this represents 4 and 3 times the recommended resolution,
respectively (Troldborg et al., 2009). Although non-zero, the
sensitivity of the results is acceptable in code comparison and
should impact AL simulations with and without correction
similarly.

3.2 Free-wake lifting line rotor simulations

The in-house solver MIRAS has been employed to perform
the free-wake lifting line simulations. MIRAS is a multi-

Figure 3. Thrust sensitivity of the NREL 5-MW AL simulations at
a 8 ms−1 wind speed with respect to grid size, doubling the domain
size and halving the time step at two smearing length scales (Ns =
{9,19}, Tref = {4.20,4.06}× 105 N).

fidelity computational vortex model, which is mainly used
for predicting the aerodynamic behaviour of wind turbines
and their wakes. It has been developed at DTU over the last
decade and been extensively validated for small to large size
wind turbine rotors by Ramos-García et al. (2017, 2014a, b).

The free-wake vortex method essentially models the wake
of a wind turbine using a bundle of infinitely thin vortex fila-
ments. To avoid numerical singularities, a viscous core must
be introduced, which represents a more physical distribution
of the velocities induced by each vortex filament, desingular-
izing the Biot–Savart law near the centre of the filament. The
velocity induced by each one of the elements is obtained di-
rectly by evaluating the Biot–Savart law, and by summing the
velocity induced by all filaments, the total wake induction is
obtained as follows:

u(xi)=
N∑
j=1

Kij
γj

4π
tj × r ij

r3
ij

,

where Kij =
r2
ij(

ε2z
j + r

2z
ij

)1/z , (12)

N is total number of filaments that form the wake, r ij =
xi − yj is the distance vector from the vortex element yj
to the evaluation point xi , γj is the circulation of the fil-
ament, tj is the unit orientation vector of the j th filament
and rij = |r ij |, εj is the vortex core radius of the filament,
and z defines the cut-off velocity profile where the Lamb–
Oseen model (Lamb, 1932; Oseen, 1911), z= 2, has been
employed.

A viscous core model is applied to emulate the effect of
viscosity by changing the vortex core radius as a function of
time (Leishman et al., 2002):

εi(t)=
√

4αvδvνti + ε0, (13)

where αv is a constant set to 1.25643 (Ananthan and Leish-
man, 2004), ν is the kinematic viscosity and ti is the time
elapsed since the generation of the ith filament. In order to
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represent the diffusive timescales, the viscous core radius is
set to change with the vortex age by adding a turbulence
eddy viscosity, δv , first proposed by Squire (1965), and in
this work set to 1× 10−3. To avoid the singular behaviour of
newly released vortex elements, an initial core radius, ε0, is
introduced. In accordance with Ramos-García et al. (2017),
who found that a small core radius is necessary to have flow
convergence, a core radius of 0.1 % of the local chord at the
release station is used.

For the sake of the present study, two different approaches
to compute the angle of attack have been followed.

– Inviscid (LL), where the non-regularized Biot–Savart
law is used to compute the induction from the wake fila-
ments at the quarter-chord location. This is the standard
method used in a lifting line solvers.

– Viscous (LL+core), where the regularized Biot–Savart
law is used to compute the induction at the quarter-
chord location. A viscous core with a radius equal to the
actuator line smearing factor is used for a direct compar-
ison of the methods.

This enables a double validation of the models. On the one
hand the corrected AL simulations can be validated against
the LL calculations, and on the other hand the raw AL model,
without tip correction, can be compared against the LL+core
simulations which include the smearing effect in the free-
wake model.

4 Tip/smearing correction for the actuator line

Applying the velocity correction methodology introduced in
Sect. 1.1 in three-dimensional space yields a velocity correc-
tion vector. The viscous core behaviour of the AL bound vor-
ticity – proven in Sect. 2 to originate from the force smearing
– is inherited by the trailing vortices, as will be demonstrated
in Sect. 5.1.1. Therefore, the induction from the trailed vor-
ticity at the blade is lower than without force smearing. Fig-
ure 4 shows the path of trailed vorticity shed from in-between
two sections of a blade with a strength of 10 = 0s −0s+1
with

0s =
1
2

√
v2
s +w

2
sCL(α)c. (14)

Here s defines the blade section index, CL is the sectional lift
coefficient, c is the section chord and α is the angle of attack,
which depends on the inflow angle in combination with blade
pitch and twist at the section. The missing induction from this
single trailed vortex at a point C is obtained by integrating
along the vortex line

u∗ =

∞∫
0

fεδũ dl, (15)

Figure 4. Trailed vorticity path. The blade rotates in the x−y plane
and z points downstream. The vortex element δl with a strength of
0s −0s+1 is shed at r and transported downstream by the local
velocity. The distance from the shedding location r to a point C
along the blade is h (h= r −Cx ), where δl induces tangential and
axial velocities.

where l is the vortex following coordinate. Here δũ is the
velocity induced by an infinitesimal element δl of the vortex
line at point C, which is given by the Biot–Savart law:

δũ=
10

4π
δl× x

|x|3
, (16)

where x is the vector pointing from the element towards C.
The smearing factor for this vortex element becomes

fε = exp
(
−

(xê⊥)2

ε2

)
. (17)

The viscous core only acts in the plane orthogonal to the vor-
tex element δl; hence, ê⊥ projects x onto this plane. This
is different to using the distance, |x|, as Dag et al. (2017)
proposed, which violates the two-dimensional nature of the
viscous core.

The total missing induction at a blade section s is obtained
by summing the contribution from all trailed vortices. The
number of trailed vortices Nv is directly related to the num-
ber of blade sections Nv =Ns + 1. Discretizing the vortices
in time, the missing induction at a certain blade section be-
comes

u∗s =

Nv∑
v

Nt∑
n

f ns,v1ũ
n
s,v. (18)

Here v denotes the trailed vortex index, n is the time in-
dex and Nt is the number of time steps. Note that n= 1 is
the most recently shed vortex element. As a tip/smearing
correction should remain computationally inexpensive, nu-
merically solving the Biot–Savart law in Eq. (16) to ob-
tain 1ũns,v is unfeasible. This would necessitate NtNvNs or
Nt (Ns+1)Ns evaluations. An accurate, yet fast, alternative to
solving the Biot–Savart law directly is the near-wake model
(NWM) for trailed vorticity by Pirrung et al. (2016, 2017b),
which also includes downwind convection. It performs well
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for dynamic flow cases and exhibits great numerical stabil-
ity, as it was originally developed to enhance the aerody-
namic accuracy of blade element momentum (BEM) mod-
els. Its formulation is based on a lifting line representation of
the blade’s trailed vorticity as depicted in Fig. 4 and approxi-
mates the induced velocities from a single trailed vortex line
by two indicial functions. The velocity induced by a vortex
element is given in the NWM as

1ũns,v =
(
Xns,v +Y

n
s,v

) 0
sin(φn)
−cos(φn)

 , (19)

with φ representing the helix angle of the vorticity shed in
the CFD domain (see Fig. 4). The indicial functions take the
following form:{
Xns,v,Y

n
s,v

}
= a{X,Y }

rv

4πhs |hs |
10nvφ

∗
n

s,v[
1− exp

(
−b{X,Y }

1β∗
n

φ∗
n

s,v

)]

exp

(
−b{X,Y }

n−1∑
i

1β∗
i

φ∗
i

s,v

)
. (20)

The definitions of a{X,Y },b{X,Y },β∗ and φ∗ are those of Pir-
rung et al. (2016, 2017b). The indicial functions allow for
the solution to be time-advanced by a mere multiplication,
considerably reducing the model evaluations to NvNs +Nv .
In the original formulation this removes the need for book-
keeping; however, as the smearing factor also changes with
the position of the vortex element, all previously shed ele-
ments are advanced individually in this specific implemen-
tation. This is only an experimental feature for testing the
smearing correction and should be simple to remove in a fu-
ture, more practical implementation.

Following the lifting line formulation of the NWM shown
in Fig. 4 (refer to Appendix A for a detailed mathematical de-
scription) the perpendicular distance from the vortex element
to C becomes

x⊥ =
δl

|δl|
× x =

r cosφ

 tanφ (β cosβ − sinβ)
− tanφ (−1+h/r + cosβ +β sinβ)

−1+ (1−h/r)cosβ

 . (21)

Thus, the smearing factor becomes

f ns,v = exp
(
−
|x⊥(rv,βn,hs,φn)|2

ε2

)
. (22)

When discretizing in time, βn is taken to be at the mid-point
of the vortex element.

Finally the missing velocities computed in Eq. (18) correct
the original velocities from the CFD simulations

us = u
CFD
s +u∗s . (23)

Therefore, the correction influences the blade forces through
the angle of attack and the velocity magnitude, although it
is the former that dominates. It also changes the circulation
at each blade section through Eq. (14) and, thus, the shed
vorticity and its induction. Hence determining the correction
velocity is an iterative procedure. The correction algorithm is
executed after the flow field is solved and takes the following
form:

1. Interpolate the velocity vector uCFD at the section cen-
tres from the CFD flow field.

2. Compute the helix angles φ, where φv =

−tan−1
(
wCFD
v−1+w

CFD
v

vCFD
v−1+v

CFD
v

)
and φ{1,Nv} =−tan−1

(
wCFD
{1,Ns }

vCFD
{1,Ns }

)
.

3. Combine the CFD velocities with the respective cor-
rection from the previous time step n− 1, such that
un = u

CFD
n +u∗n−1.

4. Compute the smearing factor fε for all time steps, sec-
tions and elements (Eq. 22).

5. Determine the angle of attack and velocity magnitude
from un to determine 0s (Eq. 14)3,

6. Compute the velocities from the newly released vortex
element 1ũn (Eq. 19).

7. At the first iteration of each time step, advance the pre-
vious elements in time.

8. Compute the velocity correction at the current time step
u∗n (Eq. 18).

9. Update the velocity at the sections with some form of
relaxation un = uCFD

n +u∗n.

10. Repeat steps 5–9 until convergence is reached.

We use the technique by Pirrung et al. (2017a) established
for the NWM to accelerate and ensure its convergence. Fur-
thermore, the activation of the correction is delayed until the
starting vorticity of the rotor has been transported at least
one blade length away from the rotor plane. This enhances
its numerical stability, as induction has already built up at
the blades by its time of activation.

5 Results

5.1 Basic wing test cases

To verify the smearing hypothesis (Sect. 1.1) and the novel
smearing correction (Sect. 4) two basic wing flow cases with
known theoretical solutions are modelled using CFD. Either

3Strictly, the influence of the shed vorticity on the velocity at the
AL should be removed as remarked by Martínez-Tossas and Mene-
veau (2019), however its influence is negligible.
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Figure 5. Definition of the wing test cases with either a rectangular
or elliptic planform. Vortices are trailed in-between sections and
the actuator line forces are computed and exerted at the sections’
centres.

Table 1. Input parameters common to both rectangular and elliptic
wing simulations.

w∞ (ms−1) 2b (m) rv=1 (m) � (rad s−1)

10 10 0.5 0

a rectangular or an elliptic wing is represented by an AL as
shown in Fig. 5, where the coordinate system is unchanged
from the definition in Fig. 4. The AL is discretized in uni-
formly spaced sections in-line with the underlying flow grid,
and the smearing parameter is twice the section width, which
ensures a continuous force distribution along the wing. The
common simulation parameters are given in Table 1. Unless
specifically stated the sectional lift coefficient CL = 1 and
drag is zero along the wing, independent of the angle of at-
tack. The chord of the rectangular wing is set to 1 m and the
elliptical chord distribution is

c(x)= c0

√
1−

(
x− (b+ rv=1)

b

)2

, (24)

with the root chord c0 = 4 m. All simulations are performed
within the same computational domain, defined in Sect. 3.1.

The theoretical predictions of the velocity field are
achieved by representing the vortex system of Fig. 5 with
vortex filaments. The velocity induced by a filament with a
viscous vortex core at an arbitrary point C is

u= fε(x⊥)
0

4π
(x1+ x2)(x1× x2)
x1x2+ x1 · x2

(25)

x⊥ =
|x1× x2|

|x2− x1|
and xi = |xi |, (26)

where x1 points from the start of the filament to C and x2
from its end. For a definition of fε(x⊥) refer to Eq. (17);
without viscous core fε(x⊥)= 1. The contribution from dif-
ferent segments is summed to give the overall velocity field.
As the wing is lightly loaded, we assume that all vortex seg-
ments remain in the x− z plane.

5.1.1 Trailed vorticity smearing

The vortex smearing hypothesis assumes the trailed vortic-
ity inheriting the smeared velocity field from the bound vor-

Figure 6. Velocities induced perpendicular to a rectangular wing
predicted by an actuator line (AL) without correction and by vor-
tex segments with a viscous core (Vortex) with different smearing
parameters. Velocities are shown along lines cutting the bound and
trailed vortices at right angles and y = 0. Only half of the horseshoe
vortex is depicted as x′ = x− (b+ rv=1).

tex, which was confirmed theoretically by Martínez-Tossas
and Meneveau (2019) for straight wings. We test this further
by simulating a rectangular wing without any correction. All
vorticity is shed from the wing tips, creating the well-known
horseshoe vortex. Hence, for the hypothesis to be valid, the
velocity distribution in the plane orthogonal to the trailed
vortices should be identical to that of the bound vortex .

Figure 6 compares the velocities induced by a rectangu-
lar wing predicted by an AL and three vortex segments (one
bound, two trailed) for five different smearing parameters.
Only half of the wing is presented, due to symmetry. Veloc-
ity distributions are shown for lines cutting the vortex seg-
ments at right angles for y = 0. Clearly the velocity smear-
ing is identical between trailed and bound vorticity, confirm-
ing the smearing hypothesis. Slight differences are linked to
the numerical discretization of the Gaussian force projection
(Shives and Crawford, 2013) and numerical diffusion.

5.1.2 Smearing correction verification

As mentioned in Sect. 4, the new smearing correction uses
a lifting line representation of the trailed vorticity. Thus, the
prediction of the velocity correction with our model or vor-
tex segments should be identical. To simultaneously verify its
numerical implementation, our model only receives the sam-
pled velocities from the flow domain to compute the circula-
tion at the sections. Furthermore, the body forces are not ap-
plied inside the domain to avoid influencing the trailed vortex
paths, and the correction velocities are not added to the CFD
velocities to keep the circulation unchanged. This holds the
trailed vortices in the x− z plane, simplifying the represen-
tation of the wake with vortex segments. The segments’ cir-
culation is exactly the same as in the smearing correction to
avoid any numerical effects influencing the comparison. Fig-
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Figure 7. Analytical (An.) and corresponding model prediction of
the velocity correction for varying force smearing (ε = 2b/(Nv−1))
along a rectangular and elliptic wing, where x′ = x− (b+ rv=1).

ure 7 compares the velocity correction predicted by the ana-
lytical vortex segments and our model at each section along
a rectangular and elliptic wing for different smearing factors
(i.e. ε = 2b/(Nv − 1)). With decreasing force smearing the
velocity correction concentrates towards the tips, as the in-
duced velocity gradients increase. Therefore, even at higher
resolution the smearing correction remains significant, al-
though more localized. Generally the model slightly over-
predicts the missing induction at the wing, becoming more
prominent with increasing resolution. At Nv = 64 the differ-
ence reaches a maximum of 6.7 % (rectangular) and 1.7 %
(elliptic) with respect to the inflow velocity. The average er-
ror does not breach 0.5 % in any case. The velocity jump
towards the tip sections of the elliptical wing is related to the
equidistant discretization of the wing (Pirrung et al., 2014).

5.1.3 Coupled AL-smearing correction verification

The coupling between velocity correction and the flow do-
main is verified by comparing the corrected downwash at an
elliptical wing to the theoretical expectation. The downwash
should be constant along the wing and is given by

vth =−
00

4b
=−

w∞c0CL

8b
, (27)

where 00 is the circulation at the wing root. Similar to
Shives and Crawford (2013) the CL was not fixed, but in-
stead followed the theoretical lift curve slope for thin airfoils
CL = 2π . For the wing to operate at a constant lift coefficient
CL = 1, its angle of attack needed to include the effect of the
induced velocities:

α = αeff+αi =
CL

2π
+ tan−1

(
c0CL

8b

)
. (28)

This represents a more rigorous test of the coupled system
than prescribing the loading along the wing, as only the cor-
rect downwash leads to the desired, constant sectional lift
coefficients.

Figure 8 shows the downwash predicted by AL simu-
lations with different smearing parameters and active cor-
rection. The CFD components of the velocities are shown

Figure 8. Downwash at an elliptical wing predicted by AL simula-
tions with different smearing factors and smearing correction. The
CFD components of the velocities are shown (dashed) as well as the
total downwash incorporating the correction (solid). The theoretical
value acts as reference.

Table 2. Input parameters for the NREL 5-MW simulations.

V∞ (ms−1) � (rpm) Pitch (◦)

4 4.6 0.00
6 6.9 0.00
8 9.2 0.00
14 12.1 2.59
25 12.1 23.09

(vCFD) separately to emphasize the contribution of the cor-
rection to arrive at the correct, constant downwash of 1 ms−1.
Clearly without the correction, the induced velocities are a
function of the smearing factor and only arrive at the theo-
retically expected value for Nv = 32. Including the correc-
tion greatly reduces the dependence of the downwash on the
force smearing. The insufficient correction towards the tips
feeds back to the equidistant discretization of the AL (Pir-
rung et al., 2014), which is linked to the uniform spacing of
the underlying flow grid.

5.2 Rotor simulations – NREL 5-MW

The validity of the smearing hypothesis and its correction
in rotor applications is demonstrated with simulations of the
NREL 5-MW turbine (Jonkman et al., 2009) using actuator
line (AL) and lifting line (LL) models. The input parameters
for these simulations are given in Table 2.

5.2.1 Uniform inflow

Figure 9 compares the AL results with and without the novel
smearing correction to the LL with and without viscous core.
At this wind speed of 8 ms−1 the thrust coefficient is highest
(CT = 0.84) – and hence induction is highest – thus lending
itself as a strong verification case. Clearly, there is an equiva-
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Figure 9. Normal and tangential forces on the NREL 5-MW blades
at 8 ms−1 predicted by AL simulations with/without smearing cor-
rection and LL with/without viscous core (Ns = 19, ε = 0.1R).

lence between the original AL and the LL with a viscous core
and the corrected AL with the LL. Therefore, the smearing
correction makes the AL effectively act as a LL, as originally
intended by Sørensen and Shen (2002). The impact of the
viscous core is most prominent toward the blade root and tip.
The sudden drop in the forces predicted by the AL/LL+core
for the tip section of the blade – located at r/R = 0.97 – is
not triggered by any aerodynamic tip effects, but relates to
a pronounced reduction in chord. Figure 10 shows the di-
minishing effect of the correction on the angle of attack to-
wards the root and tip. As the correction velocities are neg-
ligible with respect to the rotational velocity – they impact
the velocity magnitude by less than 0.1 % in the lifting re-
gion of the blade – it is ultimately the change in the angle
of attack that explains the observations in the force distribu-
tions. While not greatly affecting the magnitude of the forces
in the mid-section of the blade, the viscous core does intro-
duce greater fluctuations in the force distribution. Hence, the
missing induction introduced by the viscous core reduces the
coupling between neighbouring blade sections. The smear-
ing correction also recovers this behaviour of the LL. Sur-
passing rated wind speed, forces increase inboard until cut-
out. Thus, just before cut-out at 25 ms−1 loading reaches a
maximum towards the root, causing an equally pronounced
influence of the smearing correction in this region, as demon-
strated in Fig. 11. Again, the equivalence of the AL and LL
implementations is remarkable. This high wind speed case
also demonstrates our correction is not only a tip correction.

The comparison of AL and LL is summarized in Fig. 12
in the form of local thrust and power distributions at differ-
ent wind speeds. Note that for the wind speeds below rated
(< 11.4 ms−1), the coefficients are identical. The results are
only presented for simulations with Ns = 9 for visibility, but
compare equally well at higher resolution. As mentioned ear-
lier, the smearing correction predominantly acts towards the
tip and root. An additional overview of all results is given in
Table 3. Here the total rotor thrust T and power P predicted
by the corrected actuator line (AL∗) and the lifting line (LL)
are listed as well as the influence of adding the viscous core
relative to AL∗ and LL, respectively. The AL and LL solu-

Figure 10. Angle of attack with/without smearing correction on the
NREL 5-MW blades at 8 ms−1 (Ns = 19, ε = 0.1R).

Figure 11. Normal and tangential forces on the NREL 5-MW
blades at 25 ms−1 predicted by AL simulations with/without smear-
ing correction and LL with/without viscous core (Ns = 9, ε =
0.2R).

tions are not directly compared to avoid including any mean
bias in the comparison. The impact of the correction on the
AL forces is nearly identical to removing the viscous core
in the LL simulations at any wind speed, which further sup-
ports our correction methodology. In light of the large errors
incurred without any correction, unsurprisingly, some form
of tip correction is usually applied in AL simulations.

5.2.2 Yawed inflow

As the smearing correction does not include yaw effects –
the wake is assumed to advect normal to the rotor plane –
we tested its influence at yaw angles χ of 15,30 and 45◦ at
8 ms−1. Again the LL with and without viscous core acted
as a reference. The time steps remained the same as in uni-
form inflow. Here only the results for the most extreme case
at 45◦ yaw are shown, as the differences are most severe in
this case. Figure 13 presents the normal and tangential force
variation during one rotation, averaged over three distinct re-
gions of the blade, at a wind speed of 8 ms−1. Whilst the
agreement is best towards the blade tip, the force variation
with azimuthal position is similar between AL and LL simu-
lations across all sections. AL results are shifted downwards
with respect to the LL predictions at the inner sections, hint-
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Table 3. An overview of the simulation inputs and results for the NREL 5-MW in uniform inflow. Results are grouped by blade/grid
resolution. For the actuator line (AL) and lifting line (LL) the simulation time step 1t , the total thrust T and power P as well as the relative
change in these quantities caused by the correction/removing the viscous core are listed. Note that AL∗ represents the corrected AL results,
and the change is expressed relative to the rotor thrust and power.

Ns ε/R V∞ [ms−1] 1t × 10−2 [s] T × 105 [N] 1T [%] P × 106 [W] 1P [%]

AL LL AL∗ LL 1AL 1LL AL∗ LL 1AL 1LL

9 0.2 4 15.90 18.12 1.01 1.02 3.50 3.21 0.26 0.26 9.19 8.74
6 13.82 12.08 2.27 2.30 3.78 3.20 0.89 0.88 8.91 8.72
8 10.36 9.06 4.08 4.09 2.84 3.20 2.13 2.08 7.51 8.71

14 7.87 6.89 4.64 4.77 4.00 3.19 5.39 5.54 5.64 4.90
25 7.87 6.89 2.84 2.99 2.77 0.82 5.40 5.68 3.08 1.65

19 0.1 4 10.37 18.12 0.98 0.99 2.80 2.13 0.25 0.25 7.48 5.81
6 6.90 12.08 2.21 2.22 2.79 2.12 0.83 0.85 7.45 5.79
8 5.17 9.06 3.92 3.95 2.81 2.13 1.98 2.02 7.49 5.81

14 3.93 6.89 4.52 4.61 3.09 5.98 5.22 5.35 4.71 7.50

Figure 12. Local thrust and power coefficients along the NREL 5-
MW blades at different wind speeds predicted by AL simulations
with/without smearing correction and LL with/without core (Ns =
9, ε = 0.2R).

ing at the AL experiencing higher induction in this region.
However, for the verification of the smearing correction this
shift is irrelevant, instead its impact on the AL forces needs
to be assessed relative to the difference between LL with and
without core. In this respect the smearing correction behaves
correctly, increasing forces in a similar fashion as a LL with-
out core in the mid-section of the blade and reducing them
towards the root and tip.

5.2.3 Pitch step

The pitch step is defined as

ψ = ψ0+
1ψ

2
[1+ tanh(k(t − t0))] , (29)

with ψ0 defining the pitch angle before the step, t0 repre-
senting the time instant of the step and 1ψ denoting the
pitch change. Here an extremely violent step is chosen – de-
termined by k – to encourage an equally pronounced blade

Figure 13. Normal (a, b, c) and tangential (d, e, f) force variation
during one rotation as a function of azimuthal position of the NREL
5-MW blades at 8 ms−1 and 45◦ yaw. The forces are averaged over
three sections (inner: a, d; middle: b, e; outer: c, f) of the blade and
are predicted by AL simulations with/without smearing correction
and LL with/without viscous core. The blade is facing upwind at
χ = 0◦ and is pointing vertically up at χ = 90◦ (Ns = 9, ε = 0.2R).

force response and test the numerical stability of our correc-
tion. The parameters governing this comparison are given in
Table 4, which realize a pitch step of ±2◦ in 0.14 s (10 %
to 90 % pitch). To capture the swift change in pitch, the
time step is adjusted in both AL and LL simulations to
3.94× 10−2 s. The blade force response is normalized as

F̂ (t)=
F (t)−F0

F∞−F0
, (30)
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Table 4. Inputs defining the pitch step.

V∞ [ms−1] � [rpm] ψ0 [◦] 1ψ [◦] k

14 12.1 2.59 ±2 16

Figure 14. Normalized tangential force response at two blade sec-
tions (middle and tip) of the NREL 5-MW following a pitch step of
+2◦ in 0.14 s at 14 ms−1 predicted by AL simulations with/without
smearing correction and LL with/without viscous core (Ns = 9,
ε = 0.2R).

with F0 and F∞ denoting the steady-state values before and
after the pitch step, respectively.

Here only the tangential force response after a +2◦ step
for the mid and tip blade sections are shown in Fig. 14, as
they capture the main features of the response. As the defini-
tion here is positive pitch to feather, the force decreases along
the blade for positive pitch changes. The AL simulations ex-
hibit a faster response with a kink at 0.14 s, coinciding with
the pitch change reaching 99 % of the step. Therefore, the AL
seems to capture the pitch rate lift. The LL does not show this
feature so – as in yaw – the correct behaviour of the smear-
ing correction on the AL force response should be assessed
relative to the influence of removing the viscous core in the
LL model. Overall, the correction has limited effect on the
dynamic response, which is also confirmed by the LL sim-
ulations, but the correction essentially acts on the forces in
the same fashion as removing the core in the LL. In the mid-
section it reduces the forces by a maximum of 1 % during
the first 2 s, dropping to 0.5 % afterwards. At the tip section
it intensifies the response by a maximum of 1 %, diminishing
to 0.3 % at 4 s.

5.2.4 Turbulent inflow

Highly turbulent inflow should challenge the numerical sta-
bility of the new smearing correction by introducing strong
and abrupt changes in the angle of attack. Comparing sim-
ulations with and without inflow turbulence should also re-
veal whether turbulence alters the nature of the correction.
Figure 15 shows the impact of the smearing correction on
the time-averaged normal and tangential blade forces at an
8 ms−1 mean wind speed for AL simulations with uniform
and turbulent inflow. At a turbulence intensity (TI) of 15 %,

Figure 15. Time-averaged normal and tangential forces on the
NREL 5-MW blades at an 8 ms−1 mean wind speed and chang-
ing inflow turbulence predicted by the AL model with and without
smearing correction (Ns = 35, ε = R/8).

Figure 16. Variation of normal and tangential forces on the NREL
5-MW blades at an 8 ms−1 mean wind speed and turbulence inten-
sity of 15 % predicted by the AL model with and without smearing
correction (Ns = 35, ε = R/8).

the forces are unsurprisingly slightly larger (≈ 20 Nm−1)
than in uniform inflow. However, the change in forces in-
troduced by the correction is nearly identical (< 2 Nm−1).
When comparing the standard deviation of the forces with
and without correction in Fig. 16 the smoothing and damp-
ening effect of the smearing correction on the forces in highly
turbulent inflow also becomes apparent. Madsen et al. (2018)
observed a corresponding reduction of the force variations on
the whole rotor blade when comparing near-wake model re-
sults against BEM results for the NM 80 rotor in turbulent
inflow. This illustrates that the smearing correction leads to
the same dynamic coupling between neighbouring blade sec-
tions as a lifting line model.

6 Conclusions

The actuator line was intended as a lifting line technique
for CFD applications. In this paper we prove – theoretically
and practically – that smearing the forces of the actuator line
in the flow domain leads to smeared velocity fields. For the
typical Gaussian force projection, the widely known Lamb–
Oseen (Lamb, 1932; Oseen, 1911) viscous core appears in
both bound and trailed vorticity. This core reduces the veloc-
ities approaching the vortex centre compared with the invis-
cid solution of the lifting line. Thus, the trailed vorticity of
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an actuator line induces lower velocities at the blade owing
to the force projection. We recover this missing induction by
combining a near-wake model of the trailed vorticity with the
Lamb–Oseen viscous core model and coupling it with the ac-
tuator line model. Basic wing test cases with theoretical solu-
tions verify the correction, as it recovers nearly all induction
independent of the severity of the force smearing. Further-
more, rotor simulations show the applicability and strength
of the correction over the entire operational wind speed range
as well as in yaw, strong turbulence and undergoing pitch
steps. Here the correction is validated with lifting line simu-
lations with and without viscous core, which are representa-
tive of an actuator line with and without smearing correction,
respectively. The agreement between the respective actuator
line and lifting line results is remarkable.

The current implementation of the smearing correction re-
lies on heavy bookkeeping. In future versions the latter will
be removed without jeopardizing stability or accuracy, mak-
ing it suitable for wind farm simulations in realistic atmo-
spheric flows. Potentially, the correction might also enable
accurate rotor simulations at lower discretization.

Code and data availability. All data and parts of the code cover-
ing the smearing correction are available upon request. Commercial
and research licenses for EllipSys3D can be purchased from DTU.
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Appendix A: Fixed-wake equations

The equations governing the fixed-wake approach underly-
ing the smearing correction (see Fig. 4) are summarized for
completeness.

Direction vector from the vortex element to a control point
along the blade:

x =

−r cosβ + r −h
r sinβ
−vhβ/�

 . (A1)

Definition of the vortex element:

δl = δl cosφ

 −sinβ
−cosβ
vh/(�r)

 (A2)

with δl = rδβ
cosφ . Note that

cosφ =
�r√

(�r)2
+ v2

h

=
1√

1+
(
vh
�r

)2 (A3)

with tanφ = vh
�r

.

Incremental velocity induced by the vortex element

δũ=
10

4π
δl× x

|x|3
=

Ar

 (vh/�r) (β cosβ − sinβ)
− (vh/�r) (−1+hr + cosβ +β sinβ)

[−1+ (1−hr )cosβ]

 , (A4)

with

A=
10rδβ

4π[
r2

(
1+ (1−hr )2

− 2(1−hr )cosβ +
(
vhβ

�r

)2
)]

︸ ︷︷ ︸
|x|2

−
3
2

hr =
h

r
. (A5)
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