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Abstract. The present paper characterizes the performance of non-intrusive uncertainty quantification methods
for aeroservoelastic wind turbine analysis. Two different methods are considered, namely non-intrusive poly-
nomial chaos expansion and Kriging. Aleatory uncertainties are associated with the wind inflow characteristics
and the blade surface state, on account of soiling and/or erosion, and propagated throughout the aeroservoelastic
model of a large conceptual offshore wind turbine.

Results are compared with a brute-force extensive Monte Carlo sampling, which is used as benchmark. Both
methods require at least 1 order of magnitude less simulations than Monte Carlo, with a slight advantage of
Kriging over polynomial chaos expansion. The analysis of the solution space clearly indicates the effects of
uncertainties and their couplings, and highlights some possible shortcomings of current mostly deterministic
approaches based on safety factors.

1 Introduction

The analysis and design of complex engineering systems are
typically based on sophisticated numerical models. While in
the past these have been mostly based on deterministic for-
mulations, more recently probabilistic approaches have been
gaining an increased attention because of their ability to ac-
count for uncertainties in both the models and their inputs.
Although numerous applications of probabilistic methods
can be found in many areas of engineering, so far formal un-
certainty quantification has been applied to a lesser degree in
the wind energy field. In fact, probabilistic approaches have
been used to estimate wind turbine extreme loads, as reported
by Dimitrov (2016) and Graf et al. (2018) among others, but
comprehensive analyses and design procedures that account
for uncertainties have been lagging behind. This can proba-
bly be attributed to the inherent complexity of the models de-
scribing the behavior of wind turbines and the environment in
which they operate. Indeed, wind (and water, in the offshore
case) excitations are highly unsteady and characterized by
complex phenomena. Additionally, comprehensive wind tur-
bine simulation environments are obtained by coupled multi-

physics models, which account for the effects of structural
dynamics, aero- and hydrodynamics, closed-loop controls,
and their mutual interactions. As a consequence of the inher-
ent complexity and computational cost of the resulting simu-
lation tools, most of the analysis and design methods are cur-
rently based on deterministic simulation models and uncer-
tainties are, to a large extent, only indirectly accounted for.
For example, instead of computing extreme loads from the
tails of probability distributions – which would be the proba-
bilistic approach – artificial deterministic wind time histories
are routinely used to generate in a simpler way such limit
cases (IEC61400-1, 2005).

The behavior of wind turbines and of the environment in
which they operate is profoundly affected by uncertainties.
Therefore, time is ripe for investigating rigorous mathemat-
ical formulations to evaluate the robustness of designs and
to establish confidence levels on outputs of interest. In the
literature, already a few authors have taken the first steps
in this direction. One of the first wind-energy-related pub-
lications in this field is the paper by Witteveen et al. (2007),
where an intrusive formulation of polynomial chaos expan-
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sion (IPCE) is used to investigate the effects of uncertain-
ties affecting the ONERA dynamic stall model with regard
to a 1 MW wind turbine blade. The authors conclude that the
model is very sensitive to input uncertainties and that IPCE is
able to reconstruct the output statistics with 1 order of magni-
tude fewer function evaluations than a standard Monte Carlo
(MC) approach. In Petrone et al. (2011), the aerodynamic
design optimization of a wind turbine blade is presented,
where uncertain levels of contamination affect the airfoil po-
lars along the span of the blade. A simplex stochastic collo-
cation (SSC) method is used for the propagation of the un-
certainties, and convergence is compared against the standard
MC approach. SSC is found to be significantly more efficient
than MC, in the sense that it requires a much smaller number
of evaluations of the model for convergence. Multi-objective
design solutions are also presented in the same work, in-
vestigating trade-offs between maximum power coefficient
and minimum sound pressure levels. Another approach for
the robust design optimization of wind turbine rotor blades
is presented by Campobasso et al. (2016), where uncertain-
ties are assumed in the chord and twist distributions as well
as in the prescribed pitch angle. Additional recent efforts in
this area have been dedicated to the development of novel
stochastic models for the aerodynamic analysis of wind tur-
bine blades (Fluck, 2017).

Modern simulation and design frameworks are typically
based on validated comprehensive aeroservoelastic models.
Drastic rewritings of such complex codes to incorporate
stochastic formulations are clearly undesirable. To enable the
use of legacy codes as black boxes within a probabilistic
approach, studies have been recently focusing on the aug-
mentation of aeroservoelastic solvers with non-intrusive un-
certainty propagation methods. In addition to enabling the
reuse of existing software, non-intrusiveness also allows one
to rapidly reap the benefits of any modeling improvement,
as the problem of uncertainty quantification is essentially de-
coupled from the details of the underlying simulation model.
This approach is followed by Abdallah et al. (2015) using
MC. The method, however, is non-intrusive but also typically
extremely expensive because it performs a straightforward
exhaustive sampling of the solution space. More sophisti-
cated spectral methods are used in Matthäus et al. (2016)
and Murcia et al. (2017). In these three studies, the impact of
uncertainties in the soiling of the airfoils and the wind inflow
is estimated in terms of the statistics of rotor performance
and extreme loads.

The present study expands and refines the work presented
in Matthäus et al. (2016) with the primary goal of identify-
ing the most suitable approaches for the propagation of un-
certainties throughout aeroservoelastic wind turbine models.
A second goal of this work is that of establishing the per-
formance and convergence properties of such methods for
this specific application. The in-depth study of uncertainties
and their effects on wind turbines is not amongst the goals
of this paper, although it is clearly a long-term objective of

crucial importance. Among the various approaches that are
available in the literature (Sudret, 2007), non-intrusive poly-
nomial chaos expansion (NIPCE) and Kriging (Krige, 1951)
are considered here because of their generality and typical
good performance on a wide range of different applications.

The study is conducted with reference to a conceptual off-
shore 10 MW wind turbine, which is representative of the
most up-to-date technology. The machine is modeled with
the code Cp-Lambda (Code for Performance, Loads and
Aeroelasticity by Multi-Body Dynamic Analysis), which im-
plements a multibody formulation for flexible systems with
general topologies. The element library includes rigid bod-
ies, nonlinear flexible elements, joints, actuators, and aerody-
namic models (Bottasso et al., 2006; Bauchau, 2011). Uncer-
tainties are assumed both in the wind characteristics, using
actual field measurements, and in the aerodynamic proper-
ties of the rotor blades, on account of soiling and erosion.
Simulations are performed over a range of wind speeds cov-
ering the entire operating regime of the machine. The two
considered uncertainty propagation methods are compared in
terms of their ability to reconstruct the main statistics of key
performance indicators and design drivers, including maxi-
mum blade tip deflection, ultimate and fatigue loads at vari-
ous spots on the machine, and, finally, annual energy produc-
tion (AEP). An exhaustive sampling by the classical MC ap-
proach is used as benchmark to define the convergence and
accuracy of the tested methods. The resulting probabilistic
simulation framework can quantify the effects of uncertain-
ties for a comprehensive black-box aeroservoelastic simula-
tor, in support of the analysis and design of wind turbines.
This work is an intermediate step towards the inclusion of
robust design methods in the procedures described in Bor-
tolotti et al. (2016), which are at present purely deterministic
(except that for the standard treatment of wind by the use of
multiple realizations of turbulent fields; IEC61400-1, 2005).

The paper is structured as follows. Section 2 first dis-
cusses sources and models of uncertainty for wind turbine
aeroservoelasticity and then briefly presents the two meth-
ods considered here for the propagation of such uncertainties.
Next, the wind turbine model is presented at the beginning of
Sect. 3, followed by a comparison of the convergence trends
for the two methods in Sect. 3.2, while an analysis of the
results is discussed in Sect. 3.3. Conclusions and recommen-
dations for future work are finally given in Sect. 4.

2 Sources of uncertainty and propagation methods

Uncertainties are commonly categorized into two macro fam-
ilies: aleatory and epistemic uncertainties. The former source
of uncertainty emerges from the underlying randomness of a
process, as for example described by the probability distri-
bution of the wind speed at a certain site. The latter, on the
other hand, originates from a lack of knowledge and data.
This work considers the effects of aleatory model parameters

Wind Energ. Sci., 4, 397–406, 2019 www.wind-energ-sci.net/4/397/2019/



P. Bortolotti et al.: Uncertainty quantification in the aeroservoelastic simulation of wind turbines 399

and inputs with established underlying probability distribu-
tions.

Wind turbines are subjected to several sources of uncer-
tainty. In addition to the inherently stochastic character of the
wind, which varies in time and space for a multitude of rea-
sons, uncertainties are also present in the aerodynamic char-
acteristics of the machine; in the mechanical properties of the
materials, structures and foundations; and in the characteris-
tics and performance of many of the subsystems of a wind
turbine. Not only the nominal values of all such parameters
are uncertain but additional sources of uncertainty are also in-
troduced by manufacturing processes and the status of wear
and tear of each individual machine or component. Addition-
ally, one should not forget that measurements are also uncer-
tain (Tarp-Johansen et al., 2002) so an absolute real ground
truth can not be established in general.

Due to its preliminary character, this study limits its atten-
tion to uncertainties affecting the wind inflow and the aero-
dynamics of the blades. These are typical and relevant ex-
amples of aspects of a turbine model that can often only be
described in statistical terms, but also have a profound im-
pact on the behavior and overall performance of the system.
It should, however, be remarked that the methods analyzed
here are general and in principle applicable to problems other
than the ones considered for this work.

2.1 Uncertainty in the characterization of the wind

Wind is a natural phenomenon where air particles move dy-
namically following three-dimensional paths as a result of a
number of driving effects. In general, such a complex process
can only be measured and described in terms of its statistics.
International standards, such as IEC61400-1 (2005) (Interna-
tional Electrotechnical Commission), represent wind profiles
by a combination of deterministic mean parameters – typi-
cally mean hub-height speed, shear exponent (SE), and ver-
tical and horizontal inflow angles – and a turbulence model,
which, for an assigned mean turbulence intensity (TI), de-
scribes the stochastic variability in the flow field. Each real-
ization of the turbulent wind field is associated with a random
seed. By combining the mean flow field with the fluctuations
produced by the turbulence model, one obtains a represen-
tation of the wind field in space and time. Sufficient dura-
tions and number of realizations are typically necessary for
the statistics of the generated wind fields to reach conver-
gence.

However, effects such as solar irradiation, seasonal and
long-term climate changes, vegetation growth, and complex
terrain conditions play important roles in increasing uncer-
tainties in the characteristics of the wind (Sathe et al., 2011;
Ernst and Seume, 2012). These effects may alter in a signif-
icant way the statistics of the wind at a given site. All such
effects are difficult to measure and quantify with precision,
in turn introducing uncertainties in the assumed wind char-
acteristics used for the simulation and design of wind tur-

bines. This is clearly a problem of crucial importance. In fact,
for a given turbine and control system, the assumed wind in-
put plays a fundamental role in determining performance and
loading, including lifetime and safety.

This work assumes that both TI and SE are uncertain.
However, field data often exhibit a correlation between SE
and TI that, according to Dimitrov et al. (2015), can be mod-
eled as

SE= SEref+
TIref−TI

TIcSE
. (1)

In this expression, SEref is a reference value for the shear ex-
ponent, cSE a correction factor that can be generally assumed
equal to 4, and TIref is the value of the turbulence intensity
at a wind speed of 15 m s−1. Here an uncertain multiplicative
factor kTI is used to perturb an initial distribution of TI over
wind speed; when kTI equals 1, TI at 15 m s−1 equals TIref.
Therefore, through Eq. (1), kTI also introduces a correspond-
ing uncertainty in SE.

Here and in the following all uncertain parameters are
modeled with scaled beta distributions. Such distributions are
preferred to other possible choices for two reasons: first, they
are highly flexible in shaping the probability density function
on account of given statistical data and, secondly, they gener-
ate bounded distributions with lower and upper limits. This
is a necessary feature when modeling parameters that can-
not assume negative values. It should be noted, however, that
neither NIPCE nor Kriging are bound to scaled beta distribu-
tions, and truncated Gaussian, log-normal, uniform distribu-
tions, or others could also be readily used. The parameters of
the beta distribution for the uncertain factor kTI are reported
in Sect. 3.1.

2.2 Uncertainty in rotor aerodynamic properties

A second important source of uncertainty in wind turbine
simulation and design lies in the aerodynamic characteris-
tics of the rotor. Among other effects, the performance of the
airfoils – measured in terms of the aerodynamic coefficients
of lift, drag, and moment – is considered a possible major
source of uncertainty.

The estimation of airfoil aerodynamic coefficients can be
obtained by experimental and numerical techniques. Both
approaches are challenging and lead to uncertainties of an
aleatory and epistemic nature, especially in the stall and post-
stall regimes. Although potentially very significant, such un-
certainties are not considered further in this work, which fo-
cuses instead on blade surface conditions.

During operation, the surface of a blade may be contami-
nated by the deposition of dust, dirt, insects, and pollen. Ad-
ditionally, the blade surface can also be altered due to erosion
caused by sand and rain. All these effects are typically and
particularly prominent at the leading edge, which has a fun-
damental role in dictating the behavior of airfoils. As a result,
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Figure 1. Interpolation of the airfoil aerodynamic coefficients be-
tween the fully clean and fully rough conditions.

changes in surface conditions during operation may result in
significant uncertainties in power capture and loading.

Several studies have quantified the impact of erosion and
contamination on aerodynamic performance (Khalfallah and
Koliub, 2007; Sareen et al., 2014; Zidane et al., 2016). The
exact pattern and location of surface changes during opera-
tion is a random process, which is largely governed by local
effects, such as the local relative speed of the flow with re-
spect to the blade and the local manufacturing surface qual-
ity, e.g., in terms of gel coat thickness and bonding strength
(Khalfallah and Koliub, 2007). In the current study, an un-
certain level of airfoil profile unevenness is simulated by
using the random variable kAF, modeled with a scaled beta
probability density function. Variable kAF is assumed to vary
within the values of 0 and 1, where 0 corresponds to the nom-
inal (clean) state of an airfoil, while 1 corresponds to a con-
taminated or fully rough state of operation. The airfoil aero-
dynamic coefficients between these two states are linearly in-
terpolated for any intermediate value of the random variable,
as shown in Fig. 1.

Uncertainties in the actual extension of surface degrada-
tion along the span of the blade are modeled by introducing
a second parameter, termed extent of spanwise degradation
(ESD). Parameter ESD is defined as the nondimensional span
length – measured from blade tip – where factor kAF affects
the airfoil coefficients. Since surface degradation typically
occurs in the outer portion of the blades, ESD is assumed to
follow a beta distribution between 0, which corresponds to a
fully clean blade, and 0.5, which implies that the outer 50 %
of the blade is affected by surface degradation with a severity
dictated by kAF.

2.3 Methods for uncertainty propagation

As anticipated in Sect. 1, the current literature offers a vast
range of methods for the propagation of uncertainties. A de-
tailed overview of the various formulations can be found in
Sudret (2007). Among the many options, based on the results
presented in Matthäus et al. (2016), the present study con-

Table 1. Principal characteristics of the 10 MW AVATAR wind tur-
bine.

Wind turbine model 10 MW offshore

Wind class IEC 1A
Rated electrical power 10.0 MW
Drivetrain and generator efficiency 94.0 %
Rotor diameter D 205.76 m
Hub height H 127.0 m
Nacelle uptilt angle 8 5.0◦

Rotor cone angle 4 2.5◦

Cut-in wind speed Vin 4 m s−1

Cut-out wind speed Vout 25 m s−1

Max tip speed vtipmax
90 m s−1

Blade mass 52 874 kg
Tower mass 630.0 t

siders the regression-based third-order NIPCE and Univer-
sal Kriging (UK), as implemented in DAKOTA (Adas et al.,
2015), to propagate the uncertainties discussed in Sect. 2.1
and 2.2.

In Matthäus et al. (2016), the methods of spectral projec-
tion and linear regression were tested to determine the poly-
nomial coefficients of NIPCE, the latter typically yielding
the best results. In terms of polynomial order, tests were con-
ducted between the first and 16th order. The best results were
obtained for the third order, while above this value the solu-
tion first stopped improving and then deteriorated. It was also
found that Universal Kriging is superior to Ordinary Kriging,
mostly due to its better adaptability to a general trend in the
response.

3 Application to a 10 MW wind turbine

Here uncertainties in the wind characteristics and in the air-
foil polars are propagated throughout the aeroservoelastic
model of an offshore wind turbine, with the goal of compar-
ing the performance of the uncertainty quantification meth-
ods and of establishing their main convergence characteris-
tics. First, Sect. 3.1 introduces the turbine model together
with the assumed uncertainties. Convergence of the statistics
is then discussed in Sect. 3.2, while the analysis of the effects
of uncertainties on some key outputs is finally presented in
Sect. 3.3.

3.1 Wind turbine model and associated uncertainties

The AVATAR wind turbine is considered in this work, as
a representative case of a large offshore wind turbine. This
conceptual machine was developed by a consortium of aca-
demic and industrial partners within the EU project AVATAR
(AVATAR Consortium, 2014–2017), and its main character-
istics are summarized in Table 1. In this study, the standard
configuration defined by the consortium is used, while the
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Table 2. Spanwise positions of the airfoils.

Airfoil Thickness Position Airfoil Thickness Position

Circle 100.0 % 0.0 % DU00-W2-350 35.0 % 36.31 %
Circle 100.0 % 0.61 % DU97-W-300 30.0 % 45.63 %
DU-600 60.0 % 17.00 % DU91-W2-240 24.0 % 65.00 %
DU00-W2-401 40.1 % 28.47 % DU91-W2-240 24.0 % 100.00 %

Table 3. Probability density functions for turbulence intensity fac-
tor kTI, airfoil roughness kAF, and non-dimensional spanwise extent
of erosion ESD.

α β Region

kTI 3.4 6.0 [0.5, 2.0]
kAF 2.0 6.0 [0.0, 1.0]
ESD 2.5 4.0 [0.0, 0.5]

blade inner structure is the one developed at Politecnico di
Milano (Croce et al., 2017). Table 2 lists the airfoils used
along the span of the blades.

For airfoils DU97-W-300 and DU91-W2-240, which oc-
cupy the outermost part of the blade, surface conditions are
specified by the two parameters kAF and ESD by interpolat-
ing between fully clean and fully rough aerodynamic coeffi-
cients. The clean and rough polars of the two airfoils, which
are based on the work performed in the AVATAR project
(Méndez et al., 2017), are reported in Fig. 2. On the other
hand, only clean aerodynamic coefficients are used for the
airfoils located closer to the blade root, as surface degrada-
tion is less likely to happen in this region.

Uncertainties are considered for kTI, kAF, and ESD. As
previously explained, the wind parameter SE is not assumed
as an independent uncertain variable, but it obeys the rela-
tionship of Eq. (1), assuming SEref is equal to 0.15 and TIref
is equal to 4.9 % (see Fig. 3). All uncertainties are assumed to
follow the beta distributions whose parameters are reported
in Table 3. The distribution of turbulence intensity is taken
from a measurement campaign conducted in a wind park
in the North Sea. The distribution for kTI = 1 is reported in
Fig. 3.

An extensive MC analysis is first performed to character-
ize the solution space. The three uncertainties are propagated
throughout the aeroservoelastic model in a power production
state at 12 different wind speeds from cut-in to cut-out, con-
sidering six turbulent seeds. Eight outputs of interest are an-
alyzed, namely maximum blade tip deflection (MTD), ulti-
mate and damage equivalent load (DEL) of the thrust mea-
sured at the main shaft (ThS), ultimate and DEL combined
blade root moment (CBRM), ultimate and DEL combined
tower base moment (CTBM), and finally annual energy pro-
duction (AEP). MTD and ultimate ThS, CBRM, and CTBM
are obtained by computing the maximum overall value across

Table 4. Main statistics of the eight outputs of interest for 1100 MC
function evaluations. MTD: maximum tip deflection; ThS: thrust at
main shaft; CBRM: combined blade root moment; CTBM: com-
bined tower base moment; DEL: damage equivalent load; AEP: an-
nual energy production.

Mean
Standard Coefficient
deviation of variation

MTD 6.99 m 0.11 m 1.58 %
ThS 2.08 MN 0.02 MN 1.02 %
DEL ThS 0.34 MN 0.05 MN 13.79 %
CBRM 56.29 MNm 0.63 MNm 1.12 %
DEL CBRM 29.51 MNm 2.61 MNm 8.83 %
CTBM 236.05 MNm 2.20 MNm 0.93 %
DEL CTBM 46.79 MNm 7.82 MNm 16.72 %
AEP 53.7 GWh 0.29 GWh 0.54 %

all time steps and wind speeds. DELs and AEP are instead
averaged via the Weibull distribution corresponding to wind
class 1A, which is characterized by a shape factor of 2 and an
average wind speed at hub height of 10 m s−1 (IEC61400-1,
2005).

The MC analysis was stopped at 1100 evaluations, where
the convergence of mean and standard deviations for all
quantities consistently returned variations below 1 % of their
average values. While convergence is rapidly obtained for the
mean values of the eight outputs of interest, standard devia-
tions require a significantly higher number of evaluations to
reach convergence. The statistics of the outputs are reported
in Table 4.

Here, six seeds were used to limit the computational cost
of the MC analysis, following accepted international stan-
dards (IEC61400-1, 2005). However, as reported in the liter-
ature (Dimitrov et al., 2015; Graf et al., 2018), this number
might not always be adequate. This is confirmed also here as
the use of only six seeds does not guarantee the full conver-
gence of all quantities, especially in terms of standard devia-
tions, as shown by Fig. 4. While the differences in AEP and
DELs are indeed small, this is not true for the ultimate loads.
A better understanding of the convergence of results with the
number of turbulent realizations should be the subject of fu-
ture work, as discussed in Sect. 4.
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Figure 2. Fully clean and fully rough aerodynamic coefficients CL, CD , CM , and airfoil efficiency vs. angle of attack for airfoils DU97-W-
300 and DU91-W2-240.

Figure 3. Turbulence intensity distribution for varying wind speed.

3.2 Convergence analysis

The convergence of the uncertainty propagation methods is
studied first. The analysis considers mean and standard devi-
ation of AEP, maximum tip displacement, thrust, combined
blade root moment, combined tower base moment, and the
corresponding damage equivalent loads.

Third-order NIPCE and UK, both as implemented in
DAKOTA (Adas et al., 2015), are tested against the MC
benchmark presented in Sect. 3.1. To ensure a fair compari-

son, a MC sampling strategy is adopted for both NIPCE and
Kriging. The number of training data samples follows the
relation R = r Nt , where r is the collocation ratio, varying
from 0.6 to 8, andNt is the total number of terms considering
a total-order expansion. The collocation ratio is defined as
the ratio between the number of function evaluations used to
train the model and the total number of terms in the chaos ex-
pansion. On the resulting response surface, an extensive MC
sampling with 100 000 points is conducted to extract mean
and standard deviation.

Both NIPCE and UK appear to be capable of estimating
the eight outputs of interest at a much reduced number of
function evaluations compared to MC. In addition, UK con-
sistently converges faster than the other two methods, with
a reduction of 1–2 orders of magnitude with respect to MC
for the estimation of the output mean and standard deviation.
The plots reported in Fig. 5 provide a visualization of these
results. In the figure, a gray area represents the 95 % con-
fidence intervals for the finite (here equal to 1100) number
of sampling points used in the MC analysis. The gray band
could be made narrower by increasing the number of sam-
ples.

3.3 Effects of uncertainties on outputs of interest

The results obtained by UK with 40 function evaluations are
then subjected to a more detailed analysis. Response surfaces
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Figure 4. Probability density functions (PDFs) of key output metrics for varying number of seeds. Each case is based on 1100 sampling
points.

Figure 5. Convergence of mean and standard deviation for key output quantities. The gray area reflects the potential inexactness of the MC
benchmark, and it represents the 95 % confidence intervals for 1100 sampling points.
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Figure 6. Key outputs (in percent difference with respect to the mean value) and corresponding probability density functions, for kTI equal
to one.

for the eight outputs of interest and their corresponding prob-
ability density functions are shown in Fig. 6. The plots are
generated by first training the UK model with 40 points and
then evaluating it with a random sample of 1 million points.
Given the three-dimensional nature of the solution space,
two-dimensional surfaces are plotted for a constant kTI equal
to one.

The contour plots visibly show nonlinearities. Addition-
ally, they also show that the condition corresponding to a
fully clean rotor, namely ESD and kAF equal to 0 (bottom left
corner of each plot in Fig. 6), generates the highest values for
all eight outputs of interest (left plots). However, according to
the input distributions of Table 3, these conditions also have
a very low probability of occurrence (right plots). For MTD
and the three key loads ThS, CBRM, and CTBM, this means
that the deterministic simulations prescribed by the standards
overestimate the actual output values. Since the variations in
the outputs are limited, and typically in the range of ±3 %,
these results might appear to suggest that the conventional
safety factors equal to 1.2 or 1.3 may be excessive. It is, how-

ever, clear that this analysis is purely limited to the effects
of surface roughness and some wind inflow parameters, and
a more comprehensive analysis should be conducted before
drawing any final conclusion or recommendation. It should
also be remarked that the non-intrusive uncertainty propaga-
tion methods used here would indeed allow for a more gen-
eral analysis in a rather straightforward manner.

MTD provides an interesting example. International stan-
dards prescribe MTD to be 30 % lower than tower clearance.
The top left plots in Fig. 6 show that the largest probabil-
ity of occurrence corresponds to MTD values that fall within
±1 % of the mean, while very low probabilities are associ-
ated with the value of MTD obtained in the deterministic
condition prescribed by the standards (kAF and ESD equal
to 0). Similarly, a deterministic analysis overestimates AEP
by about 3 %, while the uncertainty analysis shows an equal
probability within a range of ±1.5 % from the mean value.

In addition, the contour plots of MTD and AEP indicate
a fairly linear behavior of the solution space, where the two
outputs show a maximum variation along the 45◦ bisector.
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This follows from the fact that, as expected, the rotor is more
loaded for clean airfoils and a low extent of erosion (both kAF
and ESD equal to zero), generating higher AEP and MTD.
These variations are apparently approximately linear and as
a result the region of maximum probability aligns with the
expected values of kAF and ESD.

4 Conclusions and outlook

This work has reported on the first steps towards the develop-
ment of a framework for the non-intrusive propagation of un-
certainties throughout black-box aeroservoelastic wind tur-
bine models. Non-intrusiveness is key to the reusability of
legacy models and for rapidly reaping the benefits of model-
ing improvements without the need for a extensive rewriting
of such complex codes.

NIPCE and UK were applied to a large state-of-the-art
conceptual wind turbine, considering power capture, tip de-
flection, and some typical design-driving loads as perfor-
mance indicators. Uncertainties were considered for both the
wind inflow conditions and the roughness of the blades, on
account of soiling and/or erosion. For both methods, com-
parisons to standard brute-force Monte Carlo predictions in-
dicate a good performance in terms of quality at a signifi-
cantly lower computational cost. Of the two, UK appears to
consistently converge faster than NIPCE.

The analysis of the results indicates nonlinearities and cou-
plings among the various sources of uncertainty. In addi-
tion, it was found that the deterministic conditions prescribed
by international design standards generate maximum values
of loads and power production, which, however, are typi-
cally associated with a very low probability of occurrence.
Although the results obtained here are not comprehensive
enough to draw any significant conclusions, they do suggest
that the use of formal mathematical methods of uncertainty
propagation may lead to a revision of typical safety factors
in the interest of more cost-competitive – but still fully safe
– designs.

The present study should be refined in several important
aspects. To start, the problem of turbulent realizations de-
serves specific attention. Here the number of turbulent seeds
typically recommended by design standards was used, but
appeared not to be always sufficient for guaranteeing con-
vergence of the statistics. If the number of seeds needs to
be increased in a substantial manner to ensure convergence,
this might require a change in the methodological approach,
as the computational cost might become prohibitive. In this
sense, the use of surrogate models, instead of the high-
fidelity ones used here, might become attractive. An ad-
ditional problem of interest is the computation of extreme
states, which populate the tails of the probability distribu-
tions and often act as design drivers. Here, ad hoc sampling
strategies have been developed by the statistical research
community, and could be applied to the problem at hand

(Graf et al., 2018). Other sophisticated sampling methods,
such as Latin hypercube sampling or Hammersley sampling
(Hosder et al., 2007; Eldred et al., 2009), have been described
in the literature and will be the topic of future studies. Fur-
thermore, additional sources of uncertainty should be inves-
tigated. In fact, in principle many parameters and inputs can
be assumed to be uncertain. However, comprehensive knowl-
edge of the role played by the various uncertainties and their
couplings is still largely missing. A ranking of uncertainties
and a deeper understanding of their effects is a very worth-
while endeavor, which might have a significant role in the
future design of wind energy systems.
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