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Abstract. Lidar systems have the potential of alleviating structural loads on wind turbines by providing a pre-
view of the incoming wind field to the control system. For a collective pitch controller, the important quantity of
interest is the rotor-effective wind speed (REWS). In this study, we present a model of the coherence between the
REWS and its estimate from continuous-wave nacelle-mounted lidar systems. The model uses the spectral tensor
definition of the Mann model. Model results were compared to field data gathered from a two- and four-beam
nacelle lidar mounted on a wind turbine. The comparison shows close agreement for the coherence, and the data
fit better to the proposed model than to a model based on the Kaimal turbulence model, which underestimates
the coherence. Inflow conditions with larger length scales led to a higher coherence between REWS and lidar
estimates than inflow turbulence of smaller length scale. When comparing the two lidar systems, it was shown
that the four-beam lidar is able to resolve small turbulent structures with a higher degree of coherence. Further,
the advection speed by which the turbulent structures are transported from measurement to rotor plane can be
estimated by 10 min averages of the lidar estimation of REWS. The presented model can be used as a computa-
tionally efficient tool to optimize the position of the lidar focus points in order to maximize the coherence.

1 Introduction

The control system is an integral part of a wind turbine and
has substantial influence on its behaviour. Its aim is to max-
imize the power production while keeping the turbine struc-
tural loading within the design limits. In order to decrease
the levelized cost of energy, several novel sensors and control
strategies have been proposed. One of them is a lidar-assisted
pitch controller and one of the first was introduced by Harris
et al. (2006). It utilizes nacelle- or spinner-mounted lidar sys-
tems to retrieve information about the inflow. In contrast to
traditional feedback (FB) control of rotor speed, disturbances
in the inflow can be measured by the lidar before they affect
the turbine. For collective pitch control, a simple approach is
to add a feedforward (FF) pitch angle demand (βFF) based on
lidar measurements to the FB demand (βFB) derived from the
rotor speed deviation from its desired value (�r); see Fig. 1.

Figure 1. Block diagram of a lidar feedforward collective pitch
controller to assist a traditional feedback controller.

For such a controller, the important information about the
wind is the rotor-effective wind speed (REWS) (veff), which
can be defined in several ways (Soltani et al., 2013). One
definition states that the REWS is the average longitudinal
wind speed component over the entire rotor plane, which is
used in this work. Alternatively, the average of the longitu-
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dinal wind speed with different weights for the hub or tip
regions of the blade can be used. In the ideal case of per-
fect lidar measurements of veff and turbine modelling, distur-
bances can be completely rejected and optimal rotor speed
control can be achieved (Dunne et al., 2011). However, this
is not achievable in reality and important shortcomings of the
lidar systems are

– the contamination from lateral and vertical wind speed
components,

– the spatial averaging due to the lidar’s probe volume,

– the scarcity of measurement points in the rotor plane

– and the uncertain estimation of the time delay between
lidar measurement and disturbance arrival at the rotor.

Thus, it is important to optimize the measurement positions
of the lidar to maximize the correlation between lidar mea-
surement and REWS for which flexible and computationally
efficient models are required.

Previously, Schlipf et al. (2013) presented an analytic
correlation model in the frequency domain to calculate the
magnitude-squared coherence and transfer function between
a lidar and a turbine using the Kaimal spectral model and an
empirical exponential decay coherence model of the longi-
tudinal wind component for separations perpendicular to the
flow. The turbulence model is defined in the IEC-61400-1
standard (IEC, 2005). The advantage of this approach com-
pared to simulations in time domain is the reduced compu-
tational effort. However, integrating certain lidar properties
becomes complicated if done analytically. For example, the
spatial averaging effect of the lidar has not been integrated
into the model. Therefore, Schlipf et al. (2013) also pro-
posed a semi-analytic model, where properties of the lidar
can be added in the frequency domain, and coherence and
transfer function can then be calculated. The model has been
extended by Haizmann et al. (2015a) to include linear rotor-
effective horizontal and vertical shear estimation. Different
optimal focus positions were found for REWS and shear es-
timations, implying that a compromise needs to be found if
both quantities are wanted. Another optimization was per-
formed in Schlipf et al. (2015), where additionally the wind
evolution and constraints from the controller were consid-
ered. In Simley and Pao (2013b), a similar semi-analytic
method was presented to calculate the correlation between a
spinner-mounted lidar and blade-effective wind speeds. The
difference lies in the fact that spinner lidars rotate with the ro-
tor and thus sample the wind field rotationally. In a more re-
cent publication, the theoretical and practical aspects of lidar
optimization are addressed (Simley et al., 2018). The results
of the optimization of several lidar setups based on different
optimization metrics are presented.

Comparisons between data gathered during field exper-
iments and models were conducted in several studies. In
Schlipf et al. (2013), the previously mentioned semi-analytic

model was compared against data gathered on National Re-
newable Energy Laboratory (NREL)’s Controls Advanced
Research Turbine (CART2) test turbine. The measured and
modelled transfer functions showed very good agreement,
and the maximum coherent wavenumber, defined as the
wavenumber where the coherence reaches a value of 0.5, was
0.06 rad m−1 for both methods. A similar comparison was
performed on NREL’s CART3 turbine by Scholbrock et al.
(2013), where deviations between model and measured data
were observed. As a possible explanation, interference of the
guy wires of a close-by meteorological mast with the lidar
was given. In a later experiment on the same turbine with a
different lidar system, Haizmann et al. (2015b) found great
agreement between data and model. For this lidar, the maxi-
mum coherent wavenumber was found to be 0.03 rad m−1.

The integration of lidar measurements into turbine control
by suitable controllers and their associated benefits have been
the topic of various analyses. FF additions to FB controllers
have been studied in, e.g. Laks et al. (2011); Dunne et al.
(2011). A more sophisticated flatness-based controller was
proposed in Schlipf and Cheng (2014), while individual pitch
controllers have been considered in, e.g. Dunne et al. (2012).
Model-predictive control approaches were examined in, e.g
Mirzaei et al. (2013).

To verify simulated performance, field tests have been pur-
sued. In Scholbrock et al. (2013), a pulsed lidar system was
used on NREL’s CART3 turbine. A collective pitch feedfor-
ward approach (similar to Fig. 1) was compared to a feedback
controller only and load reductions at low frequencies (be-
low 0.1 Hz) were observed. Damage equivalent loads (DELs)
were reduced by approximately 2 % and 7 % for the tower
fore-aft bending and the blade flapwise bending moments,
respectively. A similar study was presented in Schlipf et al.
(2014) using the CART2 turbine, where the blade and tower
DELs were reduced by 10 %. However, periods where the
lidar’s vision was obstructed by hard targets showed an in-
crease in DELs, thus emphasizing the influence of environ-
mental conditions on lidar measurements. Another experi-
ment on CART2 was performed by Kumar et al. (2015),
where, besides adding a feedforward controller, the gains
of the feedback controller had been reduced. Here, the load
analysis showed that a reduction was achieved after reducing
the feedback gains.

In this paper, we present a model of the coherence between
REWS estimated from turbine and lidar measurements. The
model uses the description of a turbulence field according to
the model by Mann (1994), which allows to derive expres-
sions of the auto- and cross-spectra numerically. In Sect. 2,
these expression are presented along with the determination
of REWS from field measurements at the turbine and from
the lidar. Section 3 explains the test site and its characteri-
zation, while Sect. 4 shows the measurement results and the
comparison with the presented model. The model can be used
as a computationally efficient tool to predict the auto- and
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cross-spectra of REWS from turbine and lidar measurements
and the optimization of the lidar focus point positions.

2 Methodology

In this section, we present a coherence model between na-
celle lidar systems and a wind turbine. The theoretical ex-
pressions to calculate the variances of turbine and lidar mea-
surements have already been derived in Mirzaei and Mann
(2016) and here we extend those to also calculate auto- and
cross-spectra.

The fluctuating part of a three-dimensional (3-D) wind
field can be represented by the vector field u(x, t)=
(u1,u2,u3), where x = (x1,x2,x3) and k = (k1,k2,k3) refer
to a 3-D spatial and wavenumber domain, respectively. We
assume that the vector field u(x, t) is frozen and the fluc-
tuations are advected by the mean wind speed, i.e. Taylor’s
frozen turbulence hypothesis (Mizuno and Panofsky, 1975)
applies:

u(x, t)= u(x1−Ut,x2,x3), (1)

where U = 〈u(x1,0,0)〉 is the mean wind speed along the
advection direction x1. Thus, the dependence on time can be
eliminated. The field u(x) can be written as a Fourier trans-
form pair:

u(x)=
∫

u(k)eik·xdk⇔ u(k)=
1

(2π )3

∫
u(x)e−ik·xdx,

(2)

where an integral over the three-dimensional quantities, k or
x, means the integral from −∞ to∞ over all three compo-
nents. The more rigorous Fourier–Stieltjes notation (Batche-
lor, 1953) was avoided due to brevity and clarity. The ensem-
ble average of the absolute squared Fourier coefficients is the
spectral tensor 8ij (k):

〈u∗i (k)uj (k′)〉 =8ij (k)δ(k− k′), (3)

where δ(.) is the Dirac delta function. Since u∗(k)= u(−k),
Eq. (3) can be written as

〈ui(k)uj (k′)〉 =8ij (k)δ(k+ k′). (4)

The advantage of using a three-dimensional spectral tensor
8ij compared to one-dimensional spectra and coherences as
in Schlipf et al. (2013) is that the problem of comparing lidar-
derived wind speed estimates with rotor-averaged winds is a
truly three-dimensional question. As we will see later, the
lidar beams are focused at different locations measuring dif-
ferent velocity components and the resulting spectra can be
naturally expressed as weighted two-dimensional integrals
over the three-dimensional spectral tensor; see, for example,
Eq. (22). In this paper, we use the spectral tensor model by
Mann (1994) which is given analytically and only contains

three adjustable parameters: αKε2/3, L and 0. The first is
the spectral Kolmogorov constant αK (Monin and Yaglom,
1975) multiplied by the dissipation rate of specific turbulent
kinetic energy density ε to the two-thirds power. This param-
eter gives the level on the spectra in the inertial subrange
(Kolmogorov, 1941). The second parameter L is a length
scale describing the size of the eddies containing the most en-
ergy. Finally, 0 is a parameter describing the deviation from
isotropy which is caused by the mean shear usually present
in the lower parts of the atmosphere. When 0 = 0, turbulence
is isotropic, while typical values in the atmospheric surface
layer where most wind turbines are present are between 3 and
4 (Peña et al., 2010; Sathe et al., 2012; de Maré and Mann,
2014; Chougule et al., 2015). Even though the spectral ten-
sor of Mann is given analytically, the usual one-dimensional
spectra which are the ones measured by, for example, sonic
anemometers, cannot be expressed in closed form but have to
be numerically integrated1. This is where the Kaimal model
has an advantage as the one-dimensional spectra are given
as simple analytic expressions (Kaimal and Finnigan, 1994;
IEC, 2005). However, each of the three velocity component
spectra are described by two parameters (a length scale and
a variance), making in total six parameters, and on top of
that all coherences between velocity components also have
to be specified. In the IEC standard, only the coherence of
the longitudinal velocity is specified. That requires three new
parameters, and if all coherences for all combinations of ve-
locity components were to be described in the same way,
which is necessary for the present investigations, the num-
ber of parameters would be overwhelming. Additionally, the
Mann model is related to the physical equations of the flow,
i.e. the continuity equation and a linearized version of the
Navier–Stokes equations describing the effect of the shear on
the turbulence. With these advantages, we feel confident that
using the Mann model for these investigations is a sensible
choice.

2.1 Overview coherence model

In this study, we have used an estimation of the coherence to
evaluate the correlation between models and measurements.
Specifically, we were interested in the magnitude-squared co-
herence between the REWS measured at the turbine and es-
timated from lidar measurements:

γRL(k1)=
|SRL(k1)|2

SLL(k1)SRR(k1)
, (5)

where SLL and SRR are the auto-spectra of the lidar and tur-
bine estimates of REWS and SRL is their cross-spectrum.
From time series measurements, these spectra were calcu-
lated over a 10 min period. The resulting frequency domain

1A lookup table of one-dimensional spectra obtained from
the Mann model can be obtained from the second author at
jmsq@dtu.dk
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is converted into wavenumber domain by the use of Taylor’s
frozen turbulence hypothesis using k1 =

2πf
U

. The wavenum-
ber describes the size of a turbulence fluctuation where a
small wavenumber indicates a (spatially) large fluctuation,
and vice versa. The remainder of this section will present the
methods to calculate the REWS and spectra. At the end, the
model is compared against numerical simulations to validate
the implementation.

2.2 REWS estimated from turbine measurements

The REWS veff is the defined as the longitudinal wind vector
component averaged over the entire rotor plane:

veff(x1)=
1
πR2

∫∫
rotor

u1(x)dx2dx3 (6)

=
1
πR2

∫∫
rotor

∫
u1(k)eik·xdkdx2dx3

=
1
πR2

∫
u1(k)eik1x1

∫∫
rotor

ei(k2x2+k3x3)dx2dx3dk (7)

=

∫
u1(k)eik1x1

2J1(κR)
κR

dk, (8)

where R is the rotor radius, κ =
√
k2

2 + k
2
3 and J1 is the

Bessel function of the first kind, and where the Fourier trans-
form of the velocity field has been introduced by Eq. (2). The
rotor is positioned perpendicular to the x1 axis, i.e. no yaw
misalignment.

To calculate the auto-spectrum of veff, we first work out
the auto-correlation using Eq. (8):

RRR(x1)=
〈
veff(x′1)veff(x′1+ x1)

〉
(9)

=

〈∫
u∗1(k)e−ik1x

′

1
2J1(κR)
κR

dk (10)∫
u1(k′)eik

′

1(x′1+x1) 2J1(κ ′R)
κ ′R

dk′
〉
.

Notice that we have complex conjugated the first term, which
is allowable because it is real. Each complex term in the in-
tegral is therefore conjugated. We now change the product of
integrals into a double integral and move the ensemble aver-
aging inside this integral. Since the Fourier transforms of the
velocities are the only stochastic variables in the expression,
the ensemble average can be moved so it only embraces the
product of u∗1(k) and u1(k′). Now we use Eq. (3) to introduce
the spectral tensor, and performing the integral over k′ leaves
us with a single three-dimensional integral:

RRR(x1)=
∫
811(k)

4J 2
1 (κR)
κ2R2 eik1x1dk. (11)

This equation is now inserted into the definition of the spec-
trum:

SRR(x1)=
1

2π

∫
RRR(x1)e−ik1x1dx1, (12)

and the Fourier transform essentially annihilates the inte-
gral over k1 in Eq. (11), and we are left with the final two-
dimensional integral expression for the auto-spectrum of veff:

SRR(k1)=

∞∫∫
−∞

811(k)
4J 2

1 (κR)
κ2R2 dk2dk3. (13)

To estimate veff from signals measured on the turbine,
the approach in Østergaard et al. (2007) was followed. It is
based on using the entire rotor as an anemometer and de-
rives the rotor-effective wind speed by considering the tur-
bine model characteristics and several measured signals. The
methods gives the magnitude of an undisturbed wind field
that creates the (unique) combination of power production,
rotational speed and pitch angle at the turbine. Thus, there is
no need to correct for the effect of turbine induction.

The entire turbine is modelled by a simple drive train
model:

J �̇=Qa−Qg−Qloss, (14)

where J is the moment of inertia of the drive train, � is the
rotational speed of the rotor, Qa is the aerodynamic torque
produced by the rotor, Qg is the generator torque and Qloss
is a collective term for the lost torque along the drive train.
In our field experiment, torque measurements at the low-
speed shaft (LSS) were performed. Thus, the measurements
are taken before the gearbox and generator (where most of
the losses occur) and we can replace QLSS =Qg+Qloss in
Eq. (14). The sampling rate of the turbine data was 1 Hz.
Further a low-pass filter was used to reduce the influence of
measurement noise in the estimation of �̇. The aerodynamic
torque is defined by

Qa =
1
2
ρπR2 v

3
eff
�
Cp(β,λ)=

1
2
ρπR2R

3�2

λ3 Cp(β,λ), (15)

where ρ is the air density, λ= �R
veff

is the tip-speed ratio
(TSR), Cp(β,λ) is the power coefficient as function of pitch
angle β and TSR. By solving Eq. (14) forQa and substituting
it in Eq. (15), we arrive at

Cp(β,λ)
λ3 =

2Qa

ρπR5�2 =
2(QLSS+ J �̇)
ρπR5�2 . (16)

With a measurement of the pitch angles, a lookup with linear
interpolation can be used to find λ that satisfies Eq. (16), and
by the definition of the TSR, the REWS can be estimated:

v̂eff,R =
�R

λ
. (17)

The necessary Cp(β,λ) surface can be precomputed. De-
tails can be found in Appendix A. Note that issues of non-
monotonicity of Cp(β,λ) in Eq. (16) can be avoided by per-
forming the lookup on Cp(β,λ)

λ3 and not on Cp(β,λ). The air
density has been calculated from pressure and temperature
measurements on a nearby meteorological mast.

Wind Energ. Sci., 4, 421–438, 2019 www.wind-energ-sci.net/4/421/2019/



D. Held et al.: Lidar REWS 425

2.3 REWS estimated from lidar measurements

Lidar systems are able to measure the frequency shift of light
backscattered at aerosols moving with the wind in the atmo-
sphere. This frequency shift is proportional to the velocity
of the aerosols, and thus the wind speed can be determined.
The measurement of a continuous-wave lidar system can be
expressed mathematically as the convolution of the line-of-
sight (LOS) component of the wind vector and a weight-
ing function given by the laser light intensity along the laser
beam:

vLOS(xf)=

∞∫
−∞

n ·u(sn+ xf)ϕ(s− df)ds, (18)

where xf is the position of the lidar focus point, n is the laser
beam unit vector,

ϕ(s)=
1
π

zR

z2
R+ s

2
(19)

is the weighting function defined by the Rayleigh length zR,
and df is the distance from the lidar system to the focus point.
The Rayleigh length describes the shape of the probe volume
through Eq. (19). Note that the probe volume of the lidar
increases with focus distance, i.e. zR ∝ d

2
f . The probe volume

has an attenuating effect on the turbulent fluctuations of the
wind field. Equation (18) is assuming that the first statistical
moment is used to calculate the dominant frequency of the
Doppler spectrum, which is a result of the Fourier analysis of
the detected light signal. Different frequency estimators can
yield less turbulence attenuation (Held and Mann, 2018). The
Fourier transformation of the weighting function (Eq. 19) is
F[ϕ(s)](k)= exp(−zR|k|) and the auto-spectrum of the lidar
measurement along a single beam can be expressed as

SLL(k1)=ninj

∞∫∫
−∞

8ij (k)e−2zR|k·n|dk2dk3,

(one beam only),

(20)

where ni refers to the components of the laser beam unit
vector n and summation of repeated indices is implied. The
implied sum (ni8ijnj ≡

∑3
i=1
∑3
j=1ni8ijnj ) could also be

written in vector and matrix notation as n · (8n), where the
parentheses indicate a product between a matrix and a vector
n, and a ·means the dot product. Details of the derivation can
be found in Mirzaei and Mann (2016).

The typical setup of a nacelle lidar looking forward is
shown in Fig. 4a. The lidar system sequentially probes sev-
eral focus points in front of the rotor. Due to the limitation of
measuring, only the LOS components of the wind vector as-
sumptions are necessary to derive the REWS from the lidar
measurements. Here, we apply the following assumptions:
(1) no vertical components, (2) zero turbine yaw misalign-
ment. Based on these assumptions, the REWS can be esti-
mated from lidar measurements as the average of all vLOS

velocities:

veff,L =
1

bcosα

b∑
i=1

vLOS,i, (21)

where b is the number of beams and α is the half-cone open-
ing angle of the scanning cone (see Fig. 4a).

In wavenumber domain, the auto-spectrum of the REWS
estimate from lidar measurement using Eqs. (21) and (18)
can be written as

SLL(k1)=
1

b2cos2α

∑b

i,j=1

∞∫∫
−∞

nik8kl(k)nj l

eidfk·(ni−nj )−zR(|k·ni |+|k·nj |)dk2dk3,

(22)

where the index k should not be confused with the wavenum-
ber k. The details of the derivation can be found in Mirzaei
and Mann (2016) with the only difference that they integrate
over k1 to get the variance, whereas we do not in order to get
the one-dimensional spectrum.

When evaluating Eq. (21) from field measurement, a cor-
rection of the slowdown in speed as the wind approaches the
turbine is necessary. This correction is referred to as induc-
tion correction. First, we used an analytic solution for the
flow speed reduction and diversion around the rotor (Con-
way, 1995). The model assumes an actuator disk model and
laminar, uniform inflow with uniform, non-rotational load-
ing. An example of the flow around a rotor can be found in
Appendix B. The induction correction ac =

U
U∞

, where U∞
is the undisturbed free steam wind speed, can be defined from
the calculated flow field at the focus positions of the lidar
beams. Thus, the induction correction depends on lidar pa-
rameters, i.e. the half-cone opening angle α and the focus
distance df, and on the operational point of the turbine, i.e.
the induction factor a. The induction factor is determined
from the measured 10 min mean REWS by the lidar, and a
steady-state thrust curve is used to look up the thrust coeffi-
cient Ct. Then the relation Ct = 4a(1−a) is used to calculate
the induction factor. The effect of the induction is assumed
to be constant over a 10 min period.

Integrating the induction corrections into Eq. (21) yields

v̂eff,L =
1
ac

1
bcosα

b∑
i=1

vLOS,i . (23)

This represents measuring the wind speed component per-
pendicular to the turbine rotor even when the turbine is
misaligned with the free-stream wind direction. A turbulent
structure travelling along the mean wind direction, which
is not aligned with the rotor axis if yaw misalignment is
present, can arrive at the different position at the rotor than
predicted by the model. The model assumes that the turbu-
lent structures travel along the mean wind direction and that
the turbine is aligned with that wind direction. However, in
the case of small yaw misalignment, the shortcoming of the
model can be assumed to be insignificant.
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2.4 Determination of the cross-spectrum

Similarly, the cross-spectrum between the REWS and its esti-
mate from lidar measurements veff,L can be calculated using

SRL(k1)=
1

bcosα

∑b

i=1

∞∫∫
−∞

nij8j1(k)ei(dfk·ni+k11x)

e−zR|k·ni |
2J1(κR)
κR

dk2dk3,

(24)

where1x indicates the distance between rotor and lidar mea-
surement planes. Details of the derivation of the previous two
equations can be found in Mirzaei and Mann (2016). Note
that it is assumed that the lidar system probes focus points
simultaneously, which is a simplification of the sequential
scanning performed by the actual lidar system.

2.5 Model implementation and validation against
simulations

For the implementation of the model, a C++ code has been
created to numerically solve Eqs. (13), (22) and (24). Adap-
tive cubature integration was used as an integration algo-
rithm2. To validate the implementation, numerical simula-
tions have been performed. At first, six random 3-D turbu-
lence boxes with different turbulence seeds have been cre-
ated according to the Mann spectral tensor (Mann, 1998)3.
The boxes had dimensions of 2800 m× 64 m× 64 m using
8192× 32× 32 grid points per box and contained only the
turbulent part of the wind field; i.e. the mean wind speed
was zero. The lidar measurements have been simulated us-
ing Eq. (18); however, due to the finite size of the boxes, the
integration has been truncated at±10zR from the focus point;
details can be found in Held and Mann (2018). The two lidar
systems presented in Table 1 have been used. The rotor plane
(with a diameter of 52 m) was discretized by 100× 100 grid
points.

The results of the coherence analysis can be found in
Fig. 2. It can be seen that the coherence for the two-beam
lidar drops at lower wavenumbers than the four-beam lidar.
This is due to the greater coverage of the rotor plane using
four distinct focus locations compared to only two for the
two-beam lidar. Further, the comparison between the sim-
ulations and the model shows very good agreement. Some
deviations remain, which can be attributed to using only six
simulations when estimating the coherence.

2The adaptive cubature integration scheme was written by
Steven G. Johnson and is available on GitHub: https://github.com/
stevengj/cubature (last access: 6 August 2019).

3The software can be downloaded free of charge at http://www.
wasp.dk/weng\T1\textbackslash#details__iec-turbulence-simulator
(last access: 6 August 2019).

3 Experimental setup

3.1 Instrumentation

Field measurements have been conducted at DTU’s test site
at Risø, located at the Roskilde Fjord in Denmark. The site
consists of one row of wind turbines intended for testing,
and several meteorological masts are installed around the tur-
bines; see Fig. 3. During the experiments, only a Nordtank
was operative, which is located at a distance of 215 m (4.1D)
at an angle of 195◦ (from north). In general, there is a slight
positive terrain slope from the fjord towards the turbines. To
the east of the Vestas V52, some buildings and vegetation ex-
ist, while towards the west the turbine is facing flat fields and
the fjord.

For this experiment, two continuous-wave coherent
Doppler lidars manufactured by Windar Photonics A/S have
been mounted on a Vestas V52 turbine. The lidar systems,
a two-beam and a four-beam lidar, are mounted on the na-
celle of the turbine and have been staring forward to measure
the inflow of the turbine. An illustration and a photo of the
four-beam lidar can be seen in Fig. 4.

The specifications for both lidars can be found in Table 1.
The two systems both contain one laser source located inside
the nacelle and switch between the focus point sequentially.
Each scan is completed in 1 s. Note the different Rayleigh
lengths due to the different focus distances and the increased
half-cone opening angle for the two-beam system. The az-
imuth angle refers to the position on the scanning cone sur-
face. The position at the top of the cone is at an azimuth angle
of 0◦. Hence, the two-beam lidar consists of two horizontal
beams, while the four-beam lidar has one focus point in each
quadrant of the rotor area. The distance between the lidar
system and the rotor is dNac.

The Vestas V52 turbine has a diameter of 52 m and a hub
height of 44 m with a rated power of 850 kW. It is heavily
instrumented with several mechanical strain gauges, in par-
ticular a strain gauge setup to measure the torque on the low-
speed shaft. Also a meteorological mast is located approxi-
mately 2.5D in front of it. To characterize the flow conditions
during the experiment, a Metek P2901 USA-1 3-D sonic
anemometer mounted at hub height was used. Further mea-
surements from a Vaisala PTB110 air pressure sensor and a
Vaisala R/H HMP 155 humidity sensor were used in addition
to the temperature measurements from the sonic anemometer
to calculate the air density.

3.2 Site characterization

The wind rose derived from wind direction and horizontal
wind speed of the sonic anemometer measurements during
the periods of the experiment is presented in Fig. 5a. The
main wind direction is from the west, with winds coming
from the Roskilde Fjord.
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Figure 2. Coherence between the estimation of REWS from the turbine and the lidar. The comparison between the numerical simulations
(Simu) and the implementation of the model (Theo) shows very good agreement.

Figure 3. Digital terrain model (DTM) of the DTU’s test site at Risø, where the Vestas V52, its meteorological mast and the Nordtank
turbine are indicated. Zone 32 UTM coordinates centred at the Vestas V52 turbine were used. The DTM data were obtained from the Danish
Map Supply (Agency for Data Supply and Efficiency, 2018). The units on both axes are in metres.

To get a clearer picture of the inflow conditions, the data
set was grouped into sectors of 30◦ and the Mann model has
been fitted to the average spectra in each sector. The fitting
followed the procedure in Mann (1994) and was performed
on the u, v, w spectra and the uw co-spectra. The spectra
have been normalized by the mean wind speed squared. The
model has three parameters: αKε2/3, L is a length scale, and
0 is an anisotropy parameter as already explained in Sect. 2;
for further details, see Chougule et al. (2015). The results of
the three model parameter as function of wind direction can
be seen in Fig. 5b. First of all, the effect of the wake from the
Vestas V52 turbine on the sonic anemometer is clearly seen
at a wind direction of 90◦. In this sector, a very high turbulent
kinetic energy dissipation rate and a low anisotropy parame-

ter were calculated. The results from this sector were disre-
garded and linearly interpolated. Secondly, two wind regimes
can be identified. A region spanning from 330 to 180◦ shows
a length scale L of approximately 20 m, while for the region
from 210 to 300◦ larger length scales were fitted. Similarly,
the normalized dissipation rate is higher in the first region
compared to the second. This is in agreement with the terrain
of the test site. The inflow for the first region is character-
ized by obstacles like buildings and tall vegetation. The sec-
ond region faces open fields and the fjord fetch. The fit has
also been performed for the Kaimal turbulence model, which
is defined in the IEC 61400-1 standard (IEC, 2005). This
model has one characteristic length parameter (Lk). Here,
only the u, v and w spectra were fitted. The measured spec-
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Figure 4. (a) Illustration of the four-beam lidar focus locations on a cone with apex at the turbine nacelle. (b) Photo of the four-beam lidar
mounted on the Vestas V52 turbine at the Risø test site.

Table 1. Information of lidar setup parameters and measurement periods. The azimuth angle refers to the position on the scanning cone
surface with 0◦ being the top of the cone.

Two-beam Four-beam

Focus distance df (m) 37 62
Rayleigh length zR (m) 2.1 6.0
Half-cone opening angle α (◦) 30 18
Azimuth angle (◦) 90 and 270 45, 135, 225 and 315
Distance focus points – rotor 1x (m) 32 59
Distance lidar – rotor dNac (m) ≈ 1 ≈ 1
Scan time per beam (s) 0.5 0.25
Sampling rate (Hz) 1 1
Period measured 30 March–3 May 2016 21 October–15 December 2016

tra have been normalized by their measured variance and the
frequency domain has been converted into wavenumber do-
main. Then the model was fitted to the measured spectra by
minimizing the combined mean squared error of the spectra.

We separated the following analysis into two regions. The
information on the two regions can be found in Table 2 in-
cluding the averaged fits to the Mann model. Note that these
two regions do not refer to the operational regions of the con-
troller. More 10 min periods were obtained for region 2 due
to the dominant wind direction from the west. The fitting re-
sults for the Kaimal model can also be found in Table 2. Sim-
ilar to the Mann model, a larger length scale parameter was
found for region 2. In Appendix C, the spectra and the fit-
ted Mann model can be found. By dividing the data into two
regions, as shown in Table 2, it was possible to identify two
wind regimes with different turbulence parameter. It was also
observed that binning according to atmospheric stability did
not lead to significantly different spectra.

4 Results

The first step in the analysis of the results was to apply ap-
propriate data filters, which reject measurements based on
certain criteria. It was necessary to identify periods where the
turbine was in a normal power production state. Thus, a lower

Table 2. Measurement sectors and fitted Mann model
(
αε2/3

U2 , L
and 0) and Kaimal model (Lk) parameters.

Region 1 Region 2

Direction 330–180◦ 210–300◦

No. of 10 min periods 1678 2713
αε2/3

U2 (10−3 m−1) 4.29 1.60
L (m) 18.5 37.9
0 (–) 2.36 2.41
Lk (m) 201.0 326.6

threshold on the minimum power production (i.e. > 0 kW),
minimum rotor speed (i.e. > 16 rpm) and maximum pitch
angle (i.e. < 23◦) in a 10 min period were utilized. These
thresholds were found by inspection of the available turbine
data. This filter removed 52.8 % and 53.8 % of the data for
the two- and four-beam experiments, respectively.

The filter applied to the lidar data consisted of a minimum
number (> 90 % or 540 measurements) of available measure-
ments on each beam in a 10 min interval. Unavailable mea-
surements have been interpolated linearly. Instances where
four or more consecutive unavailable measurements occurred
on any beam were also discarded. Whether a measurement is
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Figure 5. (a) Wind rose gathered during the test periods at the Risø test site. (b) The three top panels show the result of fitting the Mann
model to the calculated mean spectra as a function of wind direction. The bottom of panel (b) shows the number of acquired 10 min periods
as a function of wind direction.

available or not was decided internally by the lidar system
and depends on carrier-to-noise ratio and the Doppler peak
shape and area. After applying the turbine availability fil-
ter, this filter for the lidar data led to additionally discarding
2.9 % and 15.3 % for the two- and four-beam system, respec-
tively. Since the four-beam system was under development
during the field test, a higher unavailability is observed. Note
that the interference by the blades is removed by the lidar
systems based on the Doppler spectra, which have a distinct
shape when laser light is reflected at the blades.

Additionally, inflow from all yaw position except from the
wake sector (195◦± 30◦) was considered because the lidar
yaw misalignment measurements are biased in wake situa-
tions (Held et al., 2018). The yaw position filter led to an
additional exclusion of 6.0 % and 6.3 % of the data for the
two- and four-beam periods, respectively.

4.1 Comparison of mean wind speeds

Next, the 10 min average REWS estimates of lidar and tur-
bine are compared to the sonic anemometer mounted on
the meteorological mast. The comparisons for the two li-
dar systems and the turbine can be found in Fig. 6. Be-
sides the previously mentioned data filters, only yaw posi-
tions where the turbine was facing the meteorological mast
(i.e. a yaw heading of 289◦ ± 20◦) have been considered.
It can be seen that both lidar systems agree well with the
mast’s sonic anemometers; linear least-square fitting results
in a slope close to unity with no significant bias. This indi-
cates that the corrections for turbine misalignment and in-
duction are working as intended. Similarly, the correlation
between mast and turbine also shows very good accordance
with no systematic error.

Corresponding comparisons are performed between the
REWS estimated from the lidar systems and the turbine, re-

spectively. The correlation plots can be found in Fig. 7. Anal-
ogous to the comparisons to the mast, theses comparisons
also show that there is no systematic error between the two
signals. Both linear fits show unity slopes and very small off-
sets. They are slightly worse than the comparisons to the me-
teorological mast, which can be explained by model inaccu-
racies when estimating the REWS when using turbine and
lidar data.

For illustrative purposes, the next plots in Fig. 8 show a
single time series result for the lidar and turbine estimate of
REWS. Both signals have a sampling rate of 1 Hz. In general,
it can be seen that the fluctuations in REWS that were sensed
by the rotor can also be measured by the lidar systems. For
the two-beam lidar, larger deviations can be observed since
this lidar probes the incoming wind field only at two loca-
tions. Fluctuations that occur at the top or bottom parts of the
rotor cannot be measured. In the case of the four-beam sys-
tem, a measurement in each quadrant is performed and gives
a better estimate of the wind speed affecting the entire rotor.
Further, the preview ability of the lidar systems also becomes
apparent. Fluctuations can be measured before they affect the
rotor.

4.2 Comparison of coherence

The effect of probing two versus four focus locations is now
studied in wavenumber domain by comparing the squared
coherences. The experimental data are also compared to two
models: the model based on the Mann turbulence model in-
troduced in Sect. 2 and the Kaimal turbulence model used
in previous studies (Schlipf et al., 2013). As mentioned in
Sect. 3.2, the analysis was split into two regions, of which
one is disturbed by buildings or trees (region 1) and the other
has an undisturbed inflow over open fields or the fjord’s fetch
(region 2).
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Figure 6. Comparison of 10 min REWS estimates from of the lidars and the turbine to the meteorological mast’s sonic anemometer. The
data were taken from periods when the turbine was operational and facing the mast.

Figure 7. Comparison of 10 min REWS estimates between the lidars and the turbine. Data from the wake sector and non-operational periods
of the turbine were removed. All units are m s−1.

The coherence analysis for region 1 can be found in Fig. 9.
At first, it can be seen that the coherence of the two-beam
lidar drops at lower wavenumbers than the coherence of
the four-beam lidar, indicating that small fluctuations can
be sensed more accurately by the four-beam system. Sec-
ondly, the measured data agree very well with the Mann tur-
bulence model coherence. The Kaimal model, on the other
hand, seems to give a slight underestimation of the coher-
ence. The wavenumber at which the measured coherence
dropped to the level of 0.5 is 0.027 rad m−1 for the two-
beam and 0.051 rad m−1 for the four-beam system. These
wavenumbers have been defined as the smallest detectable
eddy size (Schlipf et al., 2018) and can be interpreted as the
size of the eddy that is captured with an accuracy of 50 %.
They are approximately 219.4 m (4.2D) for the two-beam
and 122.5 m (2.6D) for the four-beams system, where the
number in the brackets is normalized by the rotor diameter.
Thus, by adding two additional focal points to a two-beam

nacelle lidar system, the smallest detectable eddy size can be
reduced by 44 %.

The results for region 2 are presented in Fig. 10. Here,
very similar observations can be made. The coherence for
the two-beam lidar drops at lowers wavenumbers com-
pared to the four-beam lidar. The wavenumbers at γRL = 0.5
are 0.032 rad m−1 and 0.056 rad m−1, and the smallest de-
tectable eddy sizes are 198.8 m (3.8D) and 111.4 m (2.1D),
respectively. This demonstrates once more a reduction of
44 % in the smallest detectable eddy size. Comparing these
numbers to the results of region 1 shows that flow having
larger length scale parameter is beneficial for lidar systems
as the coherence drops at higher wavenumbers.

Equivalently to region 1, the Mann turbulence model fits
very well to the measured data. There are however some
slight deviations for both lidars in the region of 0.01 to
0.1 rad m−1, which could be caused by modelling inaccura-
cies of the assumed turbine model or general measurement
noise in the turbine or lidar data. When comparing the ex-
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Figure 8. Time series example of lidar and turbine estimates of REWS. A high degree of similarity between the signals can be seen. Also,
the preview ability of the lidar system is evident.

Figure 9. Squared coherence between the REWS estimation of the lidar and the turbine for region 1. The two models are also included in
the plot.

perimental data to the Kaimal model, a larger mismatch is
observed compared to region 1. These deviations could stem
from the lack of the Kaimal model to represent 3-D turbu-
lent structures. It is a 1-D model, which has been extended
to represent 3-D turbulence by applying an empirical expo-
nential lateral coherence model with completely independent
velocity components, while the Mann model defines a full 3-
D tensor model. Thus, the Mann model is able to represent
better the three-dimensional structure of turbulence and thus
give more realistic coherences.

To quantify the error between measured and model-
derived coherence, we use the root-mean-squared error
(RMSE) calculated from the data presented in Figs. 9 and 10.

The RMSE is defined as

RMSE=

√√√√ 1
N

N∑
i=1

(γRL,Data,i − γRL,Model,i)2,

where γRL,Data,i refers to the measured coherence,
γRL,Model,i is the model-derived coherence, and N is
the number of data points. The model-derived coherence has
been linearly interpolated at the available wavenumbers from
the measurements. The RMSE is summarized in Table 3.

It can be seen that the errors between measured data and
the model based on the Mann turbulence model are consis-
tently lower than those of the model based on the Kaimal tur-
bulence model. For the two-beam lidar, the errors are approx-
imately twice as high, while the difference is slightly less for
the four-beam lidar. Also, in region 2, the model based on the
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Figure 10. Squared coherence between the REWS estimation of the lidar and the turbine for region 2. The two models are also included in
the plot.

Table 3. Comparison of the RMSE between measured and model-
derived coherence for the two- and four-beam lidars in regions 1
and 2.

Two-beam Four-beam

Region 1 Region 2 Region 1 Region 2

Mann
0.955 1.900 1.994 2.662

model (10−2)

Kaimal
2.194 4.842 2.395 3.850

model (10−2)

Kaimal turbulence model performs worse, which also can be
seen when comparing Figs. 9 and 10.

Next, to better compare the measured coherence of the
two- and four-beam lidar systems for regions 1 and 2, all
measured coherences have been plotted in one figure. It can
be seen that the coherence of the four-beam system drops at
larger wavenumbers than the two-beam lidar due to probing
the incoming wind at two additional positions. Differences
between regions 1 and 2 can also be observed. For both li-
dars, the coherence measured in region 2 is higher than that
in region 1. This can be explained by the larger turbulence
length scale, which implies that there are more large-scale
fluctuations in the flow. These large-scale fluctuations can be
better resolved by both lidar systems.

Further, it is observed that even without the inclusion of
the evolution of turbulence the model is able to predict the
coherence very accurately. This implies that effect of disre-
garding turbulence evolution can be neglected. For bigger
turbines, where larger focus distances are required, turbu-
lence evolution might become more significant.

4.3 Time delay analysis

Next, the delay between lidar and turbine estimations of
REWS is analysed. The delay stems from the perpendicular
distance between the rotor plane and the measurement plane
1x. It depends on the advection speed,

1t =
1x

Uadv
−
tScan

2
, (25)

where tScan is the time to perform one full scan, which is 1 s
for both lidars, and1x = df cosα−dNac, where dNac ≈ 1 m is
the distance between lidar mounting position and rotor. Uadv
is the advection speed of the turbulent fluctuations, which
is estimated by the 10 min average of the lidar-estimated
REWS: Uadv ≈ v̂eff,L.

Since the experiment was performed with very good time
synchronization (with a maximum time delay of a few µs),
it is also possible to calculate the delay between the two sig-
nals and compare it with expected delays based on the ad-
vection speed. The delay between the two signal has been
calculated using the information theoretical delay estimator
presented in Moddemeijer (1988). This method is based on
splitting the two input signal into two parts: the past and the
future and calculating the mutual information of two signals
between the past and the future signals. The input signals
are split in the middle of the time series. By shifting the sig-
nals relative to each other, the time delay which minimizes
the mutual information is found. We have found that this
method performs better than other delay estimators, namely
the maximum index of the cross-correlation and the slope of
the cross-spectrum. Due to the sampling rate of 1 Hz, calcu-
lated delays are discretized in steps of 1 s.

The result can be seen in Fig. 12. For the two-beam lidar,
shorter delays are expected due to the smaller focus distance
and larger half-cone opening angle. Still, the results for both
lidars show great overlap between the measured delay and
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Figure 11. Comparison of the measured coherence of the two- and four-beam lidars for regions 1 and 2.

the delay expected from advection speed and the lidar geom-
etry. The match of the measured and expected delays is worse
for the two-beam lidar compared to the four-beam lidar. An
overestimation of the delay for high wind speeds can be ob-
served. However, the delay for high wind speeds is small and
the delay estimator is affected by the low sampling rate of
1 Hz, which results in a delay resolution of 1 s. For low wind
speed, an underestimation can be observed in the two-beam
lidar data, which can also be identified to some extent in the
four-beam lidar data. We speculate that this can be explained
by faster wind direction changes at low wind speeds which
lead to a turbine misalignment.

In general, towards high wind speeds, the available pre-
view time provided by the lidar becomes smaller. The re-
quired preview time for the filtering is also shown for the two
lidar setups. Low-pass filtering the lidar system is crucial to
reject high-frequency fluctuations that are sensed by the li-
dar but not experienced by the rotor and if not filtered would
cause detrimental pitch actuation. In this study, a first-order
Butterworth filter is used following the approach presented in
Schlipf (2015), though different filters have been proposed,
e.g. a Wiener filter (Simley and Pao, 2013a). The delay of
the filter is nonlinear but can be approximated by the delay at
a certain frequency of interest (ωdelay = 2πfdelay) (Schlipf,
2015):

tfilt =
arctan

(
ωdelay
ωcutoff

)
ωdelay

, (26)

where fdelay = 0.0425 Hz was chosen as the frequency where
the maximum of the rotor speed spectrum was observed. The
cutoff frequency was determined from the coherence analysis
presented previously at the point where γRL = 0.5. The aver-
age over regions 1 and 2 was computed for both lidar systems

and ωcutoff = Uadvk|γRL=0.5. This implies that the cutoff fre-
quency changes with advection speed and an adaptive filter
is required. For the two-beam lidar, it can be seen that there
is sufficient time to perform the filtering at low wind speeds,
but at high wind speed there is not enough preview time for
the filtering. This results implies that a larger focus distance
or smaller opening angle should be chosen for the two-beam
lidar in order to be able to perform the low-pass filtering. For
the four-beam lidar, it can be seen that the expected preview
time provided by the lidar system is sufficient for the low-
pass filtering.

5 Conclusions

In this study, we presented a model of the coherence between
REWS estimated from turbine and lidar measurements. The
underlying model of the 3-D turbulent field is the Mann
spectral tensor and allows the direct calculation of auto- and
cross-spectra of REWS estimations for lidar and turbine. It is
compared to field data obtained from two continuous-wave
lidar systems mounted on top of the nacelle of a wind tur-
bine. To retrieve the turbulence model parameters, measured
spectra from a sonic anemometer have been fitted to the spec-
tral tensor. The comparisons of squared coherence show that
the presented model fits the field data better than previously
used models, which are based on the Kaimal model defined
in IEC standard. Thus, this study gives confidence that the
proposed model can accurately represent the important lidar
properties and it can be used to optimize the lidar focus point
positions to maximize the coherence between lidar and tur-
bine. A common parameter used in the lidar optimization is
the wavenumber where the coherence drops to a value of 0.5
(Dunne et al., 2014), which can be calculated precisely by
the model.
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Figure 12. Delay time analysis results for the two-beam and four-beam lidars. Delays and advection speeds are calculated based on 10 min
averages. The required filter time of a first-order Butterworth filter is also shown.

We have found that larger turbulence length scales led to
higher coherences between REWS estimated of turbine and
lidar compared to inflow turbulence of smaller length scale.
It was also shown that the smallest detectable eddy size can
by reduced by almost 50 % when using the four-beam com-
pared to the two-beam system. Further, the advection speed
by which the turbulent structures are transported from mea-
surement to rotor plane can be estimated from 10 min aver-
ages of REWS from lidar measurements. This is important
information for the correct timing of the measured fluctua-
tions of the lidar systems. In the case of the four-beam lidar,
there is enough preview provided by the lidar to perform the
necessary low-pass filtering, while the two-beam lidar lacks
preview time for filtering for high wind speeds.

Since some of the physical mechanisms have not been
modelled, future work includes additions to both the lidar
and turbulence modelling. First of all, the evolution of tur-
bulence as it travels from measurement to rotor plane has
been neglected. An amendment of turbulence evolution to the
Mann model has been proposed in de Maré and Mann (2016).
The evolution will have the most influence on the small-scale
fluctuations (Bossanyi, 2013) and including the effect will re-
duce the coherence. Hence, the model presented here can be
considered an idealized case. On the other hand, only small
differences were observed between data and model, implying
that the evolution effect is small. For larger turbines, which
require larger focus distances, this effect could be more se-
vere. Secondly, the stability of the atmosphere was not con-
sidered; i.e. a neutral stratification was assumed. Extensions
to the Mann model have been proposed to include effect of
the atmospheric stability, e.g. Segalini and Arnqvist (2015)
or Chougule et al. (2018). It should be noted that the dis-
crete scanning of the lidar system and possible blade block-
age effects have not been integrated into the model. Also,
environmental conditions like the aerosol concentration, fog
or precipitation have been disregarded.

The presented model in the current form can be applied to
nacelle-mounted continuous-wave lidars and by modifying
the spatial averaging of the lidar it can be extended to nacelle-
mounted pulsed lidars as well. To cover spinner-mounted li-
dar systems, the rotational sampling effect of the lidar as it
rotates with the rotor needs to be modelled.

Data availability. The data are not publicly available since they
contain confidential information owned by Windar Photonics A/S.
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Appendix A: Calculation of the power coefficient
surface

For the calculation of the Cp(β,λ) surface, an aerodynamic
model of the Vestas V52 turbine was used. Aero-elastic simu-
lations in HAWC2 over a domain of several pitch angles and
TSR have been performed. A homogeneous, constant wind
speed of 8 m s−1 was used and constant pitch angles and ro-
tational speeds of the rotor were set during the simulation.
Stiff tower and blades were used to avoid dynamic effects
and calculate quasi-steady state Cp values. The resulting sur-
face can be found in Fig. A1.

Figure A1. Calculated Cp(β,λ) surface for the Vestas V52 turbine. For illustrative purposes, negative Cp values have been replaced with
zero.

Appendix B: Induction correction

In this appendix, an example of the flow field around a ro-
tor operating at the aerodynamic optimum according to the
model of Conway (1995) is shown. The focus positions of
the four-beam lidar are indicated in red.

Figure B1. Example of the flow speed reduction and diversion
around the rotor of a wind turbine. The red lines indicate the laser
beam and the red dots show the focus points.
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Appendix C: Comparison between average fitted
Mann model parameter and average spectra

In Sect. 3.2, the analysis was split into two distinct regions,
of which region 1 was disturbed by buildings and vegeta-
tion, while region 2 had a more undisturbed inflow over field
and the fjord. Previously, the average spectra were fitted to
the Mann model for sectors of 30◦ width. The fitted param-
eter were then averaged per region to obtain a representa-
tive set of parameters for each region. Here, the averaged
parameters are compared to the average spectra for regions
1 and 2. In the process, each individual u, v and w spectrum
and the uw co-spectrum has been normalized by the 10 min
mean wind speed squared, and the average over all spectra
for each region was taken. The result can be seen for region
1 in Fig. C1a and for region 2 in Fig. C1b. It can be seen that
in both cases the model is describing the u, v and w spectra
well. The uw co-spectrum is underestimated by the model,
which was also found in the fits done in Mann (1994).

Figure C1. Average spectra and the corresponding Mann model fits from Table 2 for region 1 (a) and region 2 (b).
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