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Abstract. Airborne wind energy systems (AWESs) aim to operate at altitudes above conventional wind turbines
where reliable high-resolution wind data are scarce. Wind light detection and ranging (lidar) measurements
and mesoscale models both have their advantages and disadvantages when assessing the wind resource at such
heights. This study investigates whether assimilating measurements into the mesoscale Weather Research and
Forecasting (WRF) model using observation nudging generates a more accurate, complete data set. The impact of
continuous observation nudging at multiple altitudes on simulated wind conditions is compared to an unnudged
reference run and to the lidar measurements themselves. We compare the impact on wind speed and direction for
individual days, average diurnal variability and long-term statistics. Finally, wind speed data are used to estimate
the optimal traction power and operating altitudes of AWES. Observation nudging improves the WRF accuracy
at the measurement location. Close to the surface the impact of nudging is limited as effects of the air–surface
interaction dominate but becomes more prominent at mid-altitudes and decreases towards high altitudes. The
wind speed frequency distribution shows a multi-modality caused by changing atmospheric stability conditions.
Therefore, wind speed profiles are categorized into various stability conditions. Based on a simplified AWES
model, the most probable optimal altitude is between 200 and 600 m. This wide range of heights emphasizes the
benefit of such systems to dynamically adjust their operating altitude.

1 Introduction

The prospects of higher energy potential, more consistent
strong winds and less turbulence in comparison to near-
surface winds has sparked interest in mid-altitude wind en-
ergy systems, with “mid-altitude” defined here as heights
above 100 m and below 1500 m,. Airborne wind energy sys-
tems are a novel class of renewable energy technology that
harvest stronger winds at altitudes which are unreachable
by current wind turbines, at potentially significantly reduced
capital cost (Lunney et al., 2017; Fagiano and Milanese,
2012). For practical and economical reasons we focus on re-
source assessment within the lower part of the atmosphere,
an altitude range spanned by the highly variable boundary

layer. Unlike conventional wind energy, which has converged
to a single concept with three blades and a conical tower, sev-
eral different AWES designs are under investigation by nu-
merous companies and research institutes worldwide (Cheru-
bini et al., 2015). Various concepts are competing for entry
into the market, ranging from ring-shaped aerostats to rigid
wings and soft kites with different sizes, rated power and al-
titude ranges. Since this technology is still in an early stage,
none are currently commercially available.

Developers and operators of large conventional wind tur-
bines, AWES and drones require accurate wind data to es-
timate power output and mechanical loads. They currently
rely on oversimplified approximations such as the logarith-
mic wind profile (Optis et al., 2016) or coarsely resolved re-
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analysis data sets (Archer and Caldeira, 2009; Bechtle et al.,
2019) as the applicability of conventional spectral wind mod-
els (Burton, 2011) has not been verified for these altitudes.
The first investigations (Fechner and Schmehl, 2018) resort-
ing to the Mann model (Mann, 1994; IEC, 2005) have been
conducted.

Recent advancements in wind lidar technology enable
measurements at higher altitudes. This measurement tech-
nique, however, suffers from reduced data availability with
increasing altitude caused by a decrease in aerosol density,
which is needed for the backscattering of the lidar signal
(Peña et al., 2015). No mid-altitude measurement device can
reliably gather long-term, high-frequency data. The tempo-
ral and spatial resolution of lidar devices is insufficient to
precisely measure high-frequency fluctuations, but estimated
turbulence intensity correlates with sonic turbulence mea-
surements for lower altitudes (Sathe et al., 2011). Balloon-
mounted sonic anemometers are in early development (Canut
et al., 2016). The expensive and time-consuming nature of
measurements motivates the usage of numerical weather pre-
diction models, such as the mesoscale Weather Research
and Forecasting (WRF) model, as adequate tools to assess
the synoptic characteristics of the atmospheric boundary
layer (ABL) (Al-Yahyai et al., 2010). These models typically
have a spatial resolution that ranges from 1 km to tens of kilo-
meters and a temporal resolution of the order of minutes.
Subgrid-scale high-frequency variations in resolved quanti-
ties are parameterized. Mesoscale models can be used to pro-
duced long-term reference data sets up to higher altitudes
such as the New European Wind Atlas (Witha et al., 2019).

This work is a continuation of a previous investigation of
mid-altitude wind lidar measurements (Sommerfeld et al.,
2019). The measurements used in these studies were gath-
ered as part of the OnKites II project (Gambier et al., 2017)
at the Fraunhofer Institute for Wind Energy Systems (IWES)
with the goal of evaluating the potential of AWES. This pa-
per makes use of various statistical tools to describe the rela-
tionship between the mesoscale WRF model and lidar mea-
surements to determine the impact of wind speed observation
nudging (Mylonas-Dirdiris et al., 2016).

Section 2 describes the measurement campaign. Section 3
introduces the mesoscale model and observation nudging
methodology used in this article. Section 4 quantifies the im-
pact of observation nudging and summarizes the statistical
differences between WRF and lidar. Results are applied to
estimate optimal operating altitude and power output based
on a simplified AWES model in Sect. 4.7. Section 5 con-
cludes the article with an outlook and motivation for future
work.

2 Measurement campaign

The lidar data used in this study (Bastigkeit et al., 2017) were
collected between 1 September 2015 and 29 February 2016

at the Pritzwalk Sommersberg airport (lat: 53◦10′47.00′′ N,
lon: 12◦11′20.98′′ E) in northern Germany (see white X in
Fig. 1). The area surrounding the airport mostly consists of
flat agricultural land with the town of Pritzwalk to the south.
A Galion4000 single-beam pulsed wind lidar from SgurrEn-
ergy was used (Gottschall et al., 2009). Wind speed data were
collected using the Doppler beam swinging (DBS) method
(opening angle of 62◦), which averaged multiple line-of-
sight measurements at a constant elevation angle and four az-
imuth angles to calculate the 10 min mean wind speed at 40
range gates up to an altitude of about 1100 m. Reference
measurement found the mean lidar error to be around 1 %
with a standard deviation of 5 % (Gottschall, 2013). The re-
sulting wind speed is inherently spatially and temporally av-
eraged. At an altitude of 1100 m the radius of the averaging
disk defined by the four azimuth positions with 90◦ incre-
ments is about 585 m. For the reconstruction of 10 min mean
wind speed it is thus assumed that the wind vector does not
change over this area, a valid assumption for these heights
over flat terrain.

Lidar data availability highly depends on the applied
carrier-to-noise ratio (CNR) filter and the aerosol content of
the air as the wind speed is calculated based on the backscat-
ter of the emitted laser beam. Most aerosols originate from
the surface and are transported aloft. Particle density de-
creases with height and drops to almost zero within the free
atmosphere above the ABL (Matthias and Bösenberg, 2002).
Data quality quantified by the CNR dropped on average by
approximately 5 dB over the course of 1000 m. A fixed CNR
threshold of CNRdB >−25 dB, combined with additional
self-defined filters (Sommerfeld et al., 2019), was applied
and insufficient data were discarded. As a result, data avail-
ability dropped from about 81 % at 100 m to about 24 %
at 1000 m. Low data availability caused by weather effects
(e.g., strong precipitation) further emphasizes the importance
of simulations for mid-altitude wind resource assessment as
no measurement technique with sufficient spatial and tempo-
ral resolution is available at this point.

3 Mesoscale modeling framework

To complement the 6-month lidar data set, two WRF 3.6.1
simulations using the Advanced Research Weather Research
and Forecasting (ARW) model (Skamarock and Klemp,
2008) were carried out. The “baseline run”, which is here-
inafter referred to as NoOBS, is a 12-month study of the area
around the measurement location (see Fig. 1) from 1 Septem-
ber 2015 used to derive annual statistics. Lidar measure-
ments (Sommerfeld et al., 2019) were incorporated into the
6-month test model between September 2015 and Febru-
ary 2016 using OBSGRID (Wang et al., 2015), which is here-
inafter referred to as OBS.

This methodology uses the difference between the model
and measurements to calculate a nonphysical forcing term
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Figure 1. Topography map of all three WRF model domains (a) and a magnification of the innermost domain (b) with the lidar measurement
site highlighted by a white X.

which is added to the governing conservation equations of
the simulation to gradually nudge the model towards the
observation (see Eq. 1) (Stauffer et al., 1991; Deng et al.,
2007). Each simulation is composed of three nested domains
with 27, 9 and 3 km grid spacing and horizontal grid dimen-
sions of about 120× 120 elements at 60 heights along the
terrain-following vertical hybrid pressure coordinate η. Dif-
ferences between the simulation runs (see Sect. 3.1) are com-
pared within the innermost domain of the simulation. Output
data were stored in 10 min intervals. Figure 1 shows the to-
pography map of the simulation. Initial and boundary con-
ditions of both simulations are based on the ERA-Interim
(Dee et al., 2011) reanalysis data set by the European Cen-
tre for Medium-Range Weather Forecasts, which consists
of 6-hourly atmospheric fields with a spatial resolution of
roughly 80 km horizontally and 60η levels. Turbulent kinetic
energy (TKE) closure within the ABL was achieved by using
the Mellor–Yamada–Nakanishi–Niino (MYNN) 2.5 scheme,
which predicts subgrid TKE as a prognostic variable (Nakan-
ishi and Niino, 2004; Lee and Lundquist, 2017). The Noah-
MP land-surface model and MYNN surface layer scheme
were used. The Rapid Radiative Transfer Model (RRTM)
longwave radiation and Dudhia shortwave radiation scheme
were used (see Appendix A). In addition to observation
nudging (see Sect. 3.1) analysis nudging was performed on
every domain of each simulation. Analysis nudging nudges
each grid point towards a time-interpolated value from grid-
ded analyses of synoptic observations (Stauffer et al., 1991),
whereas observation nudging directly drives the simulation
towards the additional observations. Within the planetary
boundary layer (PBL) of the inner domain analysis nudging
was switched off (see nudging settings in Appendix A). All

simulations were run on the EDDY1 high-performance com-
puting clusters at the University of Oldenburg.

3.1 Observation nudging

Observation nudging, also referred to as “dynamic analy-
sis”, is a form of four-dimensional data assimilation (FDDA)
whereby each grid point within the radius of influence
and time window is nudged towards observations using a
weighted average of differences between the model (qm in-
terpolated at the observation location) and observations (qo)
(Dudhia, 2012; Reen, 2016). In this study horizontal wind
speedU and direction8were nudged towards measurements
with a time interval of 6 h between an altitude of 66 and
1100 m in order to not overly constrain the simulation. Nudg-
ing could not be performed at times and altitudes at which
lidar data were not available. The nonphysical forcing term
is implemented in the form of prognostic equations (Deng
et al., 2007):

∂qµ

∂t
(x,y,z, t)= Fq (x,y,z, t)

+µGq

N∑
i=1
W 2
q (i,x,y,z, t)

[
qo(i)− qm (xi,yi,zi, t)

]
N∑
i=1
Wq (i,x,y,z, t)

. (1)

Here q refers to the quantity that is nudged, µ is the dry hy-
drostatic pressure, Fq (x, y, z, t) is the physical tendency term
of q, Gq is the nudging strength of q, N is the total number

1EDDY: HPC cluster at the Carl von Ossietzky Univer-
sität Oldenburg; see https://www.uni-oldenburg.de/fk5/wr/
hochleistungsrechnen/hpc-facilities/eddy/ (last access: 3 Octo-
ber 2019).
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of assimilated observations, i is the index of the current ob-
servation, and Wq is the weighting-function-based temporal
and spatial separation between grid cells and observations
(Dudhia, 2012). The four weighting functions Gq , Wt (x, y,
z, t), Wz(x, y, z, t) and Wxy(x, y, z, t) describe the temporal
and spatial nudging strength. Values used in this study can be
found in Appendix A. The inverse of Gq can be interpreted
as a nudging timescale as it dictates how quickly the model
approaches the observation.
Wxy and Wz define the spatial nudging weight, while the

temporal weighting function Wt defines the duration and
weighting strength in time. Wt ramps from 0 to 1 and back
to 0 (Reen, 2016). The nudging time window and the time
between implemented observations was chosen to be 6 h so
that the implemented observations do not overlap each other.
This ensures all time steps are nudged while not excessively
limiting the model.

Vertical influence was set very small so that observations
only affect their own η level (Dudhia, 2012). The horizontal
weighting factor Wxy (see Eq. 2) is calculated based on the
radius of influence R and the distance between the observa-
tion and the grid location D. We used the Cressman scheme
as the horizontal nudging weighting function with a radius
of influence of R = 180 km, thereby affecting the whole in-
ner domain.

wxy =

{
R2
−D2

R2+D2 0≤D ≤ R
0 else

(2)

4 Results

It is important to keep the differences in temporal and spa-
tial resolution between lidar measurements and WRF simu-
lations in mind. Furthermore, data availability highly influ-
ences the ability to nudge the simulation (see Sect. 2) and
compare wind speed statistics.

To quantify the local effect of observation nudging, we
investigate the cell closest to the lidar measurement loca-
tion and compare measured and modeled horizontal wind
speeds U and direction. Additionally, we investigate several
sections at different locations and altitudes within the inner
domain to quantify the spatial and temporal impact of single-
location observation nudging on the entire domain. Vector
values of each WRF cell are calculated on the faces of each
cell, linearly interpolated to the cell center and rotated from
the grid projection to the earth coordinate system.

4.1 Impact of nudging on wind statistics

Figure 2 shows the scatter plots of measured and simulated
horizontal wind speed at various altitudes for times at which
lidar data are available. The continuous line represents the
linear regression of the data (the regression coefficient is dis-
played in the legend), while the dotted line shows an ideal
correlation. The color of the scatter points corresponds to

the frequency of occurrence. Multiple wind speed clusters
caused by stratification can be identified. While there is a
trend towards higher wind speeds with increasing altitude,
low wind speeds (U < 6 m s−1) still occur at high altitudes.
Both simulations overpredict horizontal wind speeds at low
altitudes, which is a known problem of WRF and could be
attributed to the model not resolving subgrid-scale rough-
ness elements properly (e.g., modeling a strongly simpli-
fied parameterization of forests and/or cities) or flaws in the
planetary boundary layer model; this could lead to overly
geostrophic winds over land (Mass and Ovens, 2011). Ob-
servation nudging improves the overall correlation with mea-
surements at the measurement location as the surface influ-
ence decays. Both models approach similar values at higher
altitudes, which could be caused by the lack of observations,
and therefore observation nudging due to reduced data avail-
ability, or is indicative of WRF generally being better at mod-
eling more geostrophic winds.

The statistical analysis of the absolute difference between
the WRF-simulated quantities at the measurement loca-
tion and the lidar observations (1U = UWRF−Ulidar;18=
8WRF−8lidar wrapped on an interval [−π , π ]) is shown in
Fig. 3 in the form of a box plot. The circle corresponds to
the median, the colored box indicates the 25th and 75th per-
centile, and the whiskers to both sides mark ±2.7 times the
standard deviation (σ ). Outliers beyond ±2.7σ are hidden
to maintain clarity and readability. The continuous line in
Fig. 3a represents the root mean square error between the
measured Ulidar and simulated wind speed UWRF.

The simulation with observation nudging generally out-
performs the unnudged simulation and is in better agreement
with the measurements, particularly at the altitudes of in-
terest to high-altitude wind energy systems. It furthermore
reduces the spread of the bias, illustrated by the smaller
whiskers and boxes. The root mean square error (RMSE)
1U shows similar results for both simulations below 100 m
and above 700 m. The largest improvement or smallest er-
ror can be found between 300 and 600 m. This could be ex-
plained by a better performance of the mesoscale model at
these altitudes due to a reduced impact of the air–surface in-
teraction, which is strongly parameterized.

The NoOBS shows an almost constant wind direction bias
at all altitudes. Observation nudging substantially reduces the
directional bias 18 up to high altitudes as can be seen in
Fig. 3b. Similar to the wind speed bias, wind direction bias
at 1100 m is almost the same for both simulations. The neg-
ative wind direction bias represents an anticlockwise devia-
tion. Other studies (Carvalho et al., 2014; Giannakopoulou
and Nhili, 2014) have found similar wind direction biases. A
possible reason for this systematic error is that WRF does not
adequately resolve surface roughness, resulting in lower sur-
face friction and leading to overly geostrophic winds (Mass
and Ovens, 2011). The almost constant median wind direc-
tion bias indicates that WRF is able to capture the clockwise
rotation of the “Ekman spiral” in the Northern Hemisphere.
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Figure 2. Linear regression of lidar-measured wind speeds against NoOBS-modeled (WRF “baseline run” without observation nudging)
wind speeds (a, c, e) and OBS-modeled (“test run” with OBSGRID observation nudging) wind speeds (b, d, f) at ∼ 100 m (a, b), ∼
300 m (c, d) and ∼ 500 m (e, f).

4.2 Representative nudging results

We compare 10 min mean horizontal wind speed for 24 h on
21 September 2015 in Fig. 4 to visualize the impact of ob-
servation nudging on the mesoscale model output. The white
spaces in the lidar measurements (see Fig. 4a) are data points

that have been filtered out due to insufficient data quality.
The dashed line is the WRF-modeled surface heat flux (SHF)
used to estimate atmospheric stability (see Sect. 4.5). The
color of the profiles indicates the wind direction, and lidar-
measured profiles are shown in grey for comparison. The
black dot in each profile marks the altitude of highest wind
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Figure 3. Statistical analysis of the bias between simulated and measured wind speed (1U ) and direction bias (18). The circle corresponds
to the median, the colored box indicates the 25th and 75th percentile, and the whiskers mark ±2.7σ . The solid lines in (a) show the RMSE
between the modeled and measured wind speed.

speed, while the black circle indicates the optimal altitude for
the operation of an airborne wind energy system based on a
simplified power approximation (see Sect. 4.7). However, the
single-point representation is only a rough measure of oper-
ational altitude since an AWES generally sweeps a range of
altitudes.

Even though observation nudging leads to statistical im-
provements in wind speed and wind direction prediction over
the entire period (compare Sect. 4.1 and 4.4), individual days
can still show a decline in model accuracy. The low-level
jet (LLJ) and high wind speeds at higher altitudes, which the
NoOBS model captures fairly well, are significantly weaker
in the OBS model. Implementing additional measurements
at a higher frequency might yield results closer to measure-
ments, but adding too many unphysical forcing terms might
overly restrict the simulation.

The planetary boundary layer height (PBLH) (black line),
which in the MYNN scheme is calculated from the profile
of virtual potential temperature and from the profile of the
TKE (Brunner et al., 2015; Nakanishi and Niino, 2004), is
directly affected by wind speed observation nudging. During
the investigated day, observation nudging leads to a lower
daytime PBLH.

4.3 Spatial influence

Single-location observation nudging influences the area
within the radius of influence (Rxy = 180 km; see Ap-
pendix A), which here includes the entire inner domain
(150 km× 150 km). Figure 5 shows the mean absolute dif-
ference of horizontal wind speed (1U = |UOBS|−|UNoOBS|)
between the OBS and NoOBS model along lines of constant

longitude and latitude for the entire simulation period. The
grid cell in which observations were assimilated is indicated
by the vertical line and highlighted by the square marker. The
four colors indicate different altitudes. As the outer domains
remain unnudged, the boundary conditions of the inner do-
main remain the same, which leads to a rapid decline in ab-
solute difference towards the outside of the domain. The dif-
ference in wind speed does not go to exact zero because the
results are interpolated to the center of each grid cell. Near-
surface results close to the measurement location, which is
highlighted by the black vertical line, experience the largest
change in wind speed (red line, z= 12 m). The asymmetry
could be caused by the downstream transportation of nudg-
ing effects (dominant wind direction: west).

4.4 Diurnal variability

Average diurnal variation indicates typical wind speed vari-
ations for a given location and period. It further reinforces
the benefit of dynamically adapting operating altitudes of
AWES. The hourly average lidar wind speed depends on data
availability, as described in Sect. 2. Lidar availability below
100 m on average decreases by about 10 percentage points
during the noon hours, while it remains fairly constant at
altitudes between 100 and 300 m. Above this altitude, data
availability increases in the afternoon by up to about 15 per-
centage points (Sommerfeld et al., 2019).

Figure 6a shows the lidar-measured and mesoscale mod-
eled diurnal wind speed variation at the measurement lo-
cation filtered by lidar availability; i.e., times when no li-
dar data were available were disregarded. A clear diurnal
wind speed variation resulting from the cycle of stable and
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Figure 4. Visualization of modeled and measured 10 min mean wind speed and wind direction for 21 September 2015. (a) The measured
lidar data set, (b) the observation-nudged OBS data set and (c) results from the unnudged reference NoOBS model. (a) The wind speed and
WRF-calculated SHF (dashed line). (c) The hourly 10 min mean wind speed profile colored according to wind direction. X marks the altitude
of highest wind speed and© the optimal AWES operating altitude calculated as described in Sect. 4.7.
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Figure 5. Mean absolute wind speed difference 1U along lines of constant longitude (a) and latitude (b) within the inner, nudged WRF
domain. Approximate distance of d3 ≈ 180 km (dotted lines), d2 ≈ 75 km (dashed lines) and d1 ≈ 0 km (solid line) from the center (lat:
53◦10′47.00′′ N, lon: 12◦11′20.98′′ E) where the OBS model was nudged. The vertical line highlights the grid cell closest to the observation.

unstable stratification can be identified. On average OBS
shows lower hourly wind speeds than NoOBS and is closer
to measurements. The diurnal variation of the unfiltered 12-
month NoOBS, 6-month OBS and 6-month NoOBS data sets
(Fig. 6, right) deviates significantly from the measurements.
Observation nudging leads to overall lower wind speeds and
wind shear throughout the day in the unfiltered data set.
Due to the large difference in average measured and un-
filtered modeled diurnal wind speeds, it seems that lidar
measurements alone cannot appropriately represent average
wind conditions aloft due to availability bias, which has also
been observed at other locations (Gryning and Floors, 2019).
Therefore, we believe that the nudged data set yields more
representative results than the unnudged model or the mea-
surements alone.

4.5 Wind speed probability distribution

The common way to approximate the probability distribution
of the horizontal wind speed f (U ) is the Weibull distribution
fit (Eq. 3), which describes the statistical distribution as a
function of the scale parameter A and the shape parameter k
(Troen and Lundtang Petersen, 1989).

fWeibull(u)=
k

A

( u
A

)k−1
e−( uA )k (3)

Previous investigation of the lidar measurements showed a
multi-modality in the wind speed frequency of occurrence
caused by different atmospheric stability (Sommerfeld et al.,
2019). Figure 7a visualizes the entire measured and simu-
lated wind speed frequency distribution. Its corresponding
Weibull fit is shown in Fig. 7b, and the difference between
the two can be found in Fig. 7c. Each row summarizes the
various data sets: first 6-month lidar, then 6-month OBS and
6-month NoOBS, followed by 12-month NoOBS.

All 6-month data sets show a high occurrence of low
and high wind speeds, which indicates a multi-modal fre-

quency distribution. This effect is most pronounced in the
lidar data set. The comparison of wind speed frequency with
the Weibull fit further emphasizes the multi-modality as a
simple Weibull fit is not able to capture the higher proba-
bility at low and high wind speeds. These distinct flow sit-
uations further drift apart with increasing surface distance.
As a result the Weibull distribution overestimates the occur-
rence of wind speeds between the two peaks. Both OBS and
NoOBS slightly overestimate low-altitude wind speed (see
Fig. 3) compared to lidar measurements. Both models and the
lidar measurements show a broadening of the frequency dis-
tribution towards higher altitudes. High wind speeds become
more likely, while low wind speeds still occur. Therefore, an
AWES needs to be able to operate in a wide range of wind
speeds or be controlled in a way that avoids extreme condi-
tions. The 12-month NoOBS simulation shows lower wind
speeds than the 6-month simulations as the included summer
months generally have lower wind speeds due to the lower
synoptic pressure gradients. The Weibull fit of this simulation
tends to overestimate higher wind speeds and underestimate
low wind speeds at all altitudes.

Using the sign of the WRF-calculated SHF as a simple
proxy to differentiate stable and unstable wind conditions
similar to Sommerfeld et al. (2019), the wind speed distri-
bution follows the expected trends of low wind shear during
unstable stratification and higher wind shear and wind speeds
during stable stratification (Arya and Holton, 2001). Obser-
vation nudging reduces the occurrence of high wind speeds
at high altitudes in comparison to NoOBS and leads to an
increase in the probability of wind speeds around 5 m s−1

during times of positive SHF. The Weibull distribution fit of
these sub-states is generally better at representing the mod-
eled wind conditions.

Figure 8 shows the scale parameter A, shape parameter k
and Hellinger distance H (Upton and Cook, 2008) between
the wind speed frequency distribution and the correspond-
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Figure 6. Hourly average diurnal variation of measured and modeled horizontal wind speed U filtered by lidar availability (a) and unfil-
tered (b).

Figure 7. Frequency of occurrence (a), Weibull fit (b) and difference between the two (c) for the 6-month lidar measurements (top row),
6-month OBS model (second row), 6-month NoOBS model (third row) and 12-month NoOBS (bottom row). All data (not filtered by lidar
data availability) were used for the WRF data set.
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Figure 8. Weibull parameter trends over altitude and goodness of fit quantified by the Hellinger distance (right) over altitude for 6 months
of lidar measurements (first row panels), the 6-month OBS model (second row panels), 6-month NoOBS model (third row panels) and the
12-month NoOBS model (fourth row panels).

ing Weibull distribution fit for lidar (first row), 6-month OBS
(second row), 6-month NoOBS (third row) and 12-month
NoOBS (fourth row).

The different trends under positive and negative SHF of
both Weibull parameters visualize the existence of entirely
different flow regimes. The Hellinger distance between the
Weibull fit and frequency distribution (negative SHF: blue,
positive SHF: red), the total data and a simple fit (black),
and between the total data and the weighted sum of both
Weibull fits (green) is shown. All WRF models show an over-
all smaller H than a similar analysis of the lidar data set
(Sommerfeld et al., 2019). The sharp bend in both A and
k of the lidar data above 750 m is likely caused by insuffi-
cient data availability. NoOBS results show a sharp increase
in A up to 250 m and a slight reduction above, while OBS
shows a trend close to the surface, and A values remain al-
most constant above 500 m. No data set shows a convergence
of A at higher altitudes, indicating that these wind conditions
are driven by different conditions in the free atmosphere. The
12-month NoOBS simulations show lower-scale parameter
values as they include generally slower winds during sum-
mer. While A trends are quite different for lidar and WRF,
k trends are more similar. They peak between 150 and 250 m
and are especially high during stable stratification (Monahan
et al., 2011). OBS trends of k are generally closer to mea-
surement results than NoOBS.

Even though the Hellinger distance of individual Weibull
fits for times of positive or negative SHF is generally higher
than the Weibull fit of the entire data set, the weighted sum of
both individual fits yields the best result at all altitudes. The
12-month Weibull fit using the entire data set performs com-
parably to a weighted sum up to an altitude of about 250 m.

4.6 Effect of stability on average wind shear

Atmospheric stability highly influences the shape of wind
speed profiles, which is important for determining optimal
operating conditions for an AWES (see Sect. 4.7). Obukhov
length L (Obukhov, 1971; Sempreviva and Gryning, 1996)
is commonly used to categorize the stability of the boundary
layer. Here the application is extended to mid-altitudes. L is
defined by the simulated friction velocity u∗, virtual poten-
tial temperature θv, potential temperature θ , kinematic virtual
sensible surface heat flux QS, kinematic virtual latent heat
flux QL, the von Kármán constant k and gravitational accel-
eration g. Table 1 summarizes the frequency of occurrence
of each stability class.

L=

(
−u3
∗θv

kg

)(
1
QS
+

0.61
QLθ

)
(4)

In comparison with the unnudged simulation, OBS shows
an increase in unstable and nearly unstable situations. Sta-
ble and nearly stable stratification seem almost unaffected
by OBS nudging, while neutral and very stable stratification
occur slightly less often. This might improve the overall pre-
dicting capabilities of WRF as the MYNN 2.5 boundary layer
scheme overestimates the frequency of very stable conditions
with an error of up to 9 % (Krogsæter and Reuder, 2015).
Neutral conditions, still commonly used in many wind en-
ergy siting applications, only occur about 30 % of the time
during the measurement period and only about 20 % of the
time during the 1-year reference NoOBS simulation.

Figure 9 shows the frequency distribution of the differ-
ent stability categories with the mean highlighted by white
squares. All categories show distinct trends and distributions
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Figure 9. Wind speed U , frequency of occurrence and mean (white square) categorized by atmospheric stability according to Obukhov
length L (see Table 1) for 6-month OBS (top panels), 6-month NoOBS (center panels) and 12-month NoOBS (bottom panels).

Table 1. Stability classes according to Obukhov length calculated based on WRF results (Floors et al., 2011).

Stability classes L (m) OBS NoOBS NoOBS
6 months 6 months 12 months

Unstable (u) −200≤ L≤−100 5.69 % 3.93 % 7.27 %
Nearly unstable (nu) −500≤ L≤−200 8.21 % 6.35 % 7.09 %
Neutral (n) |L| ≥ 500 28.71 % 29.76 % 20.71 %
Nearly stable (ns) 200≤ L≤ 500 18.26 % 19.30 % 12.56 %
Stable (s) 50≤ L≤ 200 18.63 % 18.6 % 17.24 %
Very stable (vs) 10≤ L≤ 50 6.15 % 6.75 % 10.04 %
Other −100≤ L≤ 10 14.76 % 15.31 % 25.09 %

that are consistent between data sets, which contribute to the
multi-modality of the overall wind speed frequency distri-
bution. The difference in high-altitude wind speeds between
stratifications indicates the influence of different geostrophic
wind conditions. The categorization by L is based on sur-
face data and seems to be valid within the lower part of
the atmosphere where the spread of the corresponding fre-
quency distribution is relatively small in comparison to high
altitudes. This is particularly true for stable and neutral strat-
ification whereby wind speeds above approximately 200 m
spread widely. Unstable conditions are probably more con-
sistent because of increased mixing from the surface up to
high altitudes. The divergence of wind speeds towards higher
altitudes indicate inhomogeneous atmospheric stability and
suggests that surface-based stability categorization is insuf-
ficient for higher altitudes. Wind speed extrapolation based

on low-altitude measurements can lead to a misestimation of
mid-altitude wind conditions, especially during neutral and
stable conditions close to the surface (Konow, 2015).

Altitudes below 200 m are least affected by observation
nudging as OBS remains almost unchanged from NoOBS
(see Sect. 4.1). Stable profiles show a peak at around 300 m,
which is indicative of a characteristic low-level jet. Com-
paring OBS and NoOBS for 6 months, observation nudging
seems to reduce the spread at higher altitudes within each
category except very stable. The impact of observation nudg-
ing on wind profiles during unstable stratification is relatively
low, while wind speed profiles under neutral and stable strat-
ification are more affected.
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4.7 Optimal operating altitude and power production

We estimate optimal operating altitude and traction power of
a ground-generator AWES using a simple ground-generator
(pumping-mode) AWES point-mass model adapted from
Schmehl et al. (2013). We focus on 6-month OBS, as we
previously proved increased accuracy, and use 12-month
NoOBS to estimate annual values. The estimated optimal
power per unit of lifting area of the wing popt is described
by

popt =
ρair

2
U3
√
c2

L+ c
2
D

[
1+

(
cL

cD

)2
]

fopt
(
cosε cosφ− fopt

)2
=

2
27
ρairU

3

√
c2

L+ c
2
D

[
1+

(
cL

cD

)2
]

cosε3. (5)

Air density ρair is calculated by a linear approximation of
the standard atmosphere (ISO 2533:1975) (ρair(z)= 1.225–
0.00011z; kg m−3). Losses associated with the misposition-
ing of the aircraft relative to the wind direction, expressed
by azimuth angle φ and elevation angle ε relative to the
ground station, are included in the model. Additional losses
caused by gravity, tether sagging and tether drag are ne-
glected. As a result, lift FL and drag FD force and there-
fore the lift (cL = 1.7) and drag coefficients (cD = 0.06),
which are assumed to be constant, are geometrically related
to the apparent wind velocity. Assuming an optimal tether
speed and a quasi-steady state with the wing moving di-
rectly cross-wind with a zero azimuth angle (φ = 0) relative
to the wind direction, we can estimate the optimal traction
power. The optimal elevation angle (εopt) and operating alti-
tude (zopt) are geometrically related to the assumed-constant
tether length (ltether) (sinεopt =

zopt
ltether

).
Figure 10 summarizes the frequency of optimal operating

altitude and optimal power assuming a constant tether length
of 1500 m. The white solid line shows the cumulative fre-
quency of optimal operating altitude. Both simulations for
this particular location and time period show similar trends,
with the most probable optimal altitude between approxi-
mately 200 and 400 m. Times of very high traction power are
fairly rare and likely associated with low-level jets. Lower
power at higher altitudes is caused by misalignment losses.

Figure 11 estimates the optimal traction power and op-
erating altitude as a function of tether length based on the
mean wind speed profile of atmospheric stability conditions
(Fig. 9). The tether length of each estimation is assumed to
be constant and used to calculate the optimal elevation angle.
The axis limits of different atmospheric conditions had to be
adjusted as the calculated power varied by orders of mag-
nitude. All estimates show diminishing benefits of a longer
tether. These incremental gains would probably be negated
by additional drag- and weight-associated losses. Winds dur-
ing times of very stable and unstable stratification lead to a

Figure 10. Frequency of optimal traction power over optimal oper-
ating altitude based on 6-month OBS (a) and 12-month NoOBS (b)
assuming a constant tether length of 1500 m. The continuous white
line shows the frequency of optimal operating altitude for the whole
power range (abscissa axis in a).

clear optimal altitude independent of tether length between
200 and 400 m, while weakly stable and shear-driven wind
speed profiles lead to higher optimal operating altitudes and
a broader range of optimal altitudes as a function of tether
length.

5 Conclusion

A full 6 months of lidar measurements up to 1100 m were
assimilated into a mesoscale model using observation nudg-
ing. An unnudged reference model (NoOBS), the nudged
model (OBS) outputs and lidar measurements were com-
pared in terms of wind speed and direction statistics, as well
as wind profile shape at the measurement site, and spatial
differences were quantified. Observation nudging only has
a marginal impact on simulated surface layer wind speeds
as ground effects dominate the WRF model. Wind speeds
between 300 and 500 m were most affected by observation
nudging. Modeled wind speeds at these altitudes are sta-
tistically closest to the measurements, making this an ade-
quate approach for resource assessment at mid-altitudes as
measurement availability decreases. The impact of nudg-
ing weakens above these altitudes. Whether this is caused
by lower measurement data availability or a generally bet-
ter performance of the mesoscale model above the surface
layer could not be determined. Observation nudging reduced
the seemingly systematic wind direction bias between sim-
ulations and measurements at all altitudes. Due to the lack
of high-resolution measurements at high altitudes, unnudged
mesoscale model data are the best we have in terms of pre-
liminary resource assessment.
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Figure 11. Optimal traction power per wing area popt (dashed lines) and optimal operational altitude (solid line) estimated based on mean
wind speed profiles categorized by Obukhov length (L) for 6-month OBS, 6-month NoOBS and 12-month NoOBS simulations with varying
tether length (ltether = 500–2500 m).

Filtering the mesoscale model data according to lidar data
availability yields similar diurnal variation, with OBS being
closer to measurements. Comparing the diurnal variation of
the unfiltered model wind speeds to measurements shows a
significant deviation, which is likely caused by insufficient
lidar data availability at higher altitudes. The bias between
real and lidar-measured wind speed, which depends on the
applied CNR threshold and data availability, can result in a
misrepresentation of the actual wind conditions, especially at
higher altitudes. Mesoscale models, particularly with obser-
vation nudging, can be used to account for this error. Lidar
measurements seem to be biased towards high wind speeds
as measured winds are generally higher than the unfiltered
mesoscale model data. The impact of observation nudging on
the wind profiles in the case of an unstably stratified bound-
ary layer is relatively low, while wind speed profiles under
stable stratification are significantly affected. At the mea-
surement location OBS is overall closer to measurements,
especially between 200 and 600 m. Variations of stratifica-
tion, primarily those associated with the diurnal cycle, lead
to a multi-modal wind speed frequency distribution which
is better represented by the weighted sum of two Weibull
fits than by a single Weibull fit. Obukhov-length-categorized
wind speed profiles, especially during neutral and stable con-
ditions close to the surface, show a divergence with height.
This indicates inhomogeneous atmospheric stability and sug-
gests that surface-based stability categorization is insufficient
for higher altitudes.

Optimal AWES operating altitudes and power output per
wing area were estimated based on a simplified model for
6 months of OBS and 12 months of NoOBS. The model ne-
glects kite and tether weight as well as tether drag. Account-
ing for these losses, which are proportional to tether length,
will reduce the performance of the AWES. Results for both
wind speed data sets show the highest potential at an alti-
tude between 200 and 600 m above which the losses asso-
ciated with the elevation angle are too high. A comparison
of different tether lengths under average wind speeds associ-
ated with different atmospheric stability conditions shows di-
minishing returns in terms of power output for tether lengths
longer than 1500 m. While higher altitudes can potentially be
reached, the optimal operating altitude remains almost un-
changed. The highest energy potential and operating altitude
is associated with neutral and stable stratification. Unstable
conditions result in significantly lower energy potential due
to lower, almost altitude-independent average wind speeds.

Future studies will include using the enhanced mesoscale
model output to drive large-eddy simulations to provide bet-
ter insight into mid-altitude turbulence. The resulting data
set will lead to the development of a mid-altitude engineer-
ing wind model which can be used for the design, load es-
timation, control and optimization of airborne wind energy
systems. Mesoscale model data will be implemented into an
AWES optimization framework to quantify the impact of var-
ious wind speed profiles on power production, optimal trajec-
tory and system size. Furthermore, the possibility of merging
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the mesoscale output with lidar measurements to fill gaps in
the measurement data set to reduce the wind speed bias in-
troduced by lidar availability is being investigated.

Data availability. The data are not publicly available because they
are subject to an NDA with the Fraunhofer IWES. Furthermore, the
overall WRF data size makes up multiple terabytes.
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Appendix A: Namelist parameters for WRF 3.6.1
observation nudging

WRF input parameter Value
grid_fdda 1, 1, 1,
gfdda_inname “wrffdda_d<domain>”,
gfdda_end_h 99 999, 99 999, 99 999,
gfdda_interval_m 360, 360, 360,
fgdt 0, 0, 0,
if_no_pbl_nudging_uv 0, 0, 1,
if_no_pbl_nudging_t 0, 0,1,
if_no_pbl_nudging_q 0, 0, 1,
if_zfac_uv 0, 0, 0,
k_zfac_uv 0, 0, 30,
if_zfac_t 0, 0, 0,
k_zfac_t 0, 0, 30,
if_zfac_q 0, 0, 0,
k_zfac_q 0, 0, 30,
guv 0.0003, 0.0003, 0.0003,
gt 0.0003, 0.0003, 0.0003,
gq 0.0003, 0.0003, 0.0003,
if_ramping 1,
dtramp_min 60.0,
io_form_gfdda 2,
obs_nudge_opt 0,0,1
Cressman scheme 1
time_step 60
obs_rinxy 240, 240, 180
obs_rinsig 0.1
obs_twindo 3, 3, 3
auxinput11_interval_s 360, 360, 360
obs_dtramp 40
obs_nudge_wind 1, 1, 1
obs_coef_wind 6× 10−4, 6× 10−4, 6× 10−4

iobs_onf 2, 2, 2
auxinput11_interval_s 360, 360, 360
auxinput11_end_h 6, 6, 6
if_no_pbl_nudging_uv 0, 0, 1
if_zfac_uv (max_dom) 0, 0, 30
sf_sfclay_physics 5, 5, 5
sf_surface_physics 4, 4, 4
bl_pbl_physics (max_dom) 5, 5, 5
bl_mynn_tkeadvect .true., .true., .true.
ra_lw_physics 1, 1, 1
ra_sw_physics 1, 1, 1
mp_physics 5, 5, 5
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