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Abstract. When simulating a wind turbine, the lowest eigenmodes of the rotor blades are usually used to de-
scribe their elastic deformation in the frame of a multi-body system. In this paper, a finite element beam model
for the rotor blades is proposed which is based on the transfer matrix method. Both static and kinetic field matri-
ces for the 3-D Timoshenko beam element are derived by the numerical integration of the differential equations
of motion using a Runge–Kutta fourth-order procedure. In the general case, the beam reference axis is at an
arbitrary location in the cross section. The inertia term in the motion differential equation is expressed using
appropriate shape functions for the Timoshenko beam. The kinetic field matrix is built by numerical integration
applied on the approximated inertia term. The beam element stiffness and mass matrices are calculated by simple
matrix operations from both field matrices. The system stiffness and mass matrices of the rotor blade model are
assembled in the usual finite element manner in a global coordinate system accounting for the structural twist
angle and possible pre-bending. The program developed for the above-mentioned calculations and the final so-
lution of the eigenvalue problem is accomplished using MuPAD, a symbolic math toolbox in MATLAB®. The
natural frequencies calculated using generic rotor blade data are compared with the results proposed from the
FAST and ADAMS software.

1 Introduction

Vibration of an elastic system refers to a limited reciprocat-
ing motion of a particle or an object of the system. Wind
turbines operate in an unsteady environment which results in
a vibrating response (see Manwell et al., 2009). They consist
of long slender structures (rotor blades and tower), which re-
sult in resonant frequencies that should be taken into account
during the initial design and construction. When the excita-
tion frequency of the vibrating system is near any natural fre-
quency, an undesirable resonant state occurs with large am-
plitudes, which may lead to damage or even the collapse of
the wind turbine or its components. The vibration response,
especially of the rotor blades, depends on the stiffness which
is a function of the materials used, the design and the size
(see Jureczko et al., 2005). Therefore, the estimation of nat-

ural frequencies in the early design phase plays an important
role in avoiding resonance.

The eigenmodes associated with the lowest natural fre-
quencies are employed as shape functions to describe the
elastic deformation of the rotor blade beam model in the
frame of the usual simulation of the wind turbine as a multi-
body system. Generally, the first two bending eigenmodes
in each direction (flapwise and edgewise) and optionally the
two additional torsional eigenmodes are used. The determi-
nation of the lowest eigenmodes with sufficient numerical
accuracy is the first step with respect to the modal superposi-
tion applied to the deformational motion of the rotor blades.

Due to the geometrical complexity of the blade cross sec-
tion profiles and the extended use of composite materials, the
exact calculation of natural frequencies in the design process
takes a considerable amount of time and financial expense
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with regards to the 3-D modelling of the rotor blade using
CAD software; hence a simplified finite element beam model
is necessary. A twisted rotor blade is simplified into a can-
tilever beam with a non-uniform cross section. The structural
twist angle is implemented by changing the orientation of the
principal axis of the blade cross section along the length of
the blade.

In the finite element formulation of beams two linear beam
theories are established, the Euler–Bernoulli beam model and
the Timoshenko beam model. Although the Euler–Bernoulli
beam theory is widely used, the Timoshenko beam theory is
considered to be better as it incorporates the effects of trans-
verse shear and the rotational inertia on the dynamic response
of the beam (see Kaya, 2006). In the classical approach of the
finite element formulation for the free vibration analysis of
beams, the stiffness and mass matrices are derived using in-
terpolation functions derived from second- and fourth-order
Hermite polynomials. The stiffness matrix is derived from
the following equation (see Wu, 2013):

K (e) =
∫

BTDmBdv, (1)

where K (e) is the element stiffness matrix, B is the strain ma-
trix and Dm is the elasticity matrix for the beam. The element
mass matrix of the beam (see Wu, 2013) is derived using the
following equation:

M (e)=
∫
ρaTadv, (2)

where M (e) is the element mass matrix, ρ is the mass den-
sity, v is the volume and a is the matrix of interpolation func-
tions.

Using the above-mentioned standard relations and appro-
priate shape functions for the Euler–Bernoulli beam and the
Timoshenko beam, the stiffness matrix and consistent mass
matrix for the finite beam element can be derived. However,
an alternative to this procedure, based on the transfer matrix
method for the beam theory (see Graf and Vassilev, 2006:69–
88 and Stanoev 2007) is developed in the present article.
The element stiffness matrix can be derived on the basis of
numerical integration of the first-order ordinary differential
equation system for the differential beam element. The asso-
ciated mass matrix can be developed by numerical integra-
tion of the inertia term in the differential equation of motion.
The numerical integration results in static and kinetic field
matrices, from which the element stiffness and mass matri-
ces can be easily assembled.

In the present article, the above-mentioned procedure is
used to determine the element stiffness and element mass
matrix for the Timoshenko beam. The interpolation functions
used for deriving the mass matrix are based on Hermite poly-
nomials according to Bazoune and Khulief (2003). The sys-
tem stiffness and mass matrices for the rotor blade are assem-
bled in a global coordinate basis in the usual finite element

manner. The numerical solution of the associated eigenvalue
problem for the system without damping is computed using
computer algebra software (in the frame of MATLAB®).

In Sects. 2 and 3, the proposed method is described in de-
tail; in Sect. 4 the method is applied on a rotor blade struc-
ture with 288 degrees of freedom (DOFs). The results for
the natural frequencies and the corresponding eigenmodes
are compared with the results calculated using the FAST and
ADAMS software.

2 Theoretical framework for the 3-D Timoshenko
beam

2.1 Kinematic relationships

The general assumptions in the linear beam theory are as fol-
lows:

a. The beam reference (longitudinal) axis is at any arbi-
trary location of the cross section.

b. The only stresses that occur are normal stresses σx and
shear stresses τxy , τxz.

c. Cross section planes, which are initially normal to the
longitudinal axis, will remain plane after deformation.

The geometrical representation of the deformation state of a
beam cross section is shown in the Fig. 1. The deformations
up, vp and wp at a cross-sectional point P are determined by
three displacement functions u(x), v(x) and w(x) and three
cross-sectional rotation angles ϕx(x), ϕy (x) and ϕz(x) – all
of them are a function of the beam axis coordinate x. The dif-
ferential equation system is derived in accordance with Sta-
noev (2013):

As seen in Fig. 1, the displacement vector up can be ex-
pressed at any cross section point P as

up =

[
up (x,y,z)
vp (x,y,z)
wp (x,y,z)

]
=

[
u (x)− yϕz (x)+ zϕy (x)

v (x)− zϕx (x)
w (x)+ yϕx (x)

]
(3)

The three components of the strains occurring in the beam
can be expressed as the derivatives of the displacement func-
tions up, vp and wp. The axial strain εxx and the two shear
strain components γxz and γxy are given by the following:

εxx =
∂up

∂x
= u′− yϕ′z+ zϕ

′
y (4a)

γxz =
∂up

∂z
+
∂wp

∂x
= ϕy +w

′︸ ︷︷ ︸
γy

+ yϕ′x (4b)

γxy =
∂up

∂y
+
∂vp

∂x
=−ϕz+ v

′︸ ︷︷ ︸
γy

− zϕ′x, (4c)

where γz and γy are the constant shear strains that are not
neglected in Timoshenko beam theory.

γy =−ϕz+ v
′ (5a)

γz = ϕy +w
′ (5b)
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Figure 1. Deformation at the point (x,y,z) (see Andersen and Nielsen, 2008).

2.2 Principle of virtual work for internal forces

The virtual work components for internal forces correspond-
ing to normal stresses and shear stresses are given by the fol-
lowing:

−δWi =

∫
x

{
δu′N + δϕ′zMz+ δϕ

′
yMy

}
dx+

∫
x

{δγzQz}dx

+

∫
x

{
δγyQy

}
dx+

∫
x

{
δϕ′xMTP

}
dx, (6)

where N is the axial force, Mz and My are bending internal
moments,Qy andQz are the corresponding shear forces and
MTP is the St. Venant torsional moment.

With the introduction of the constitutive relations of
Hooke’s material law for the stresses corresponding to the
internal forces in Eq. (6) and expressing the strains using
Eqs. (4a)–(4c) and (5a)–(5b), the virtual work relationship
is reformulated as

−δWi=

∫
x

{
E


∫
A

dA


︸ ︷︷ ︸

A

· u′−

∫
A

ydA


︸ ︷︷ ︸

Ay

·ϕ′z +

∫
A

zdA


︸ ︷︷ ︸

Az

·ϕ′y

δu
′

−E


∫
A

ydA


︸ ︷︷ ︸

Ay

· u′−

∫
A

y2dA


︸ ︷︷ ︸

Ayy

·ϕ′z +

∫
A

yzdA


︸ ︷︷ ︸

Ayz

·ϕ′y

δϕ
′
z

+E


∫
A

zdA


︸ ︷︷ ︸

Az

· u′−

∫
A

yzdA


︸ ︷︷ ︸

Ayz

·ϕ′z +

∫
A

z2dA


︸ ︷︷ ︸

Azz

·ϕ′y

δϕ
′
y

+G

[
Asz

(
w′+ϕy

)
δw′+Asz(w′+ϕy )δϕy

+Asy
(
v′−ϕz

)
δv′−Asy (v′−ϕz)δϕz

]

+G

∫
A

(z2
+ y2)dA


︸ ︷︷ ︸

IT

ϕ′xδϕ
′
x

}
dx (7)

Here,Asz = αsz·A andAsy = αsy ·A are the shear areas in the
z and y directions respectively, αsz, αsy are the corresponding
shear correction coefficients, A is the cross-sectional area,
Ay is the static moment with respect to the z axis, Az is the
static moment with respect to the y axis, Ayy is the moment
of inertia with respect to the z direction, Azz is the moment
of inertia with respect to the y direction, Ayz is the deviation
moment of inertia and IT is the torsional moment of inertia.

After the coefficient comparison in Eqs. (6) and (7) the
internal forces corresponding to the normal stresses can be
expressed by introducing the cross sectional stiffness matrix
EA: N

−Mz

My

=
 EA EAy EAz
EAy EAyy EAyz
EAz EAyz EAzz


︸ ︷︷ ︸

EA

·

 u′

−ϕ′z
ϕ′y



⇒

 u′

−ϕ′z
ϕ′y

= (EA)−1

 N

−Mz

My

 (8)

The shear stress components in Eqs. (6) and (7) lead to the
following relations:

Mx =MTP =GITϕ
′
x (9)

Qz =GAsz
(
w′+ϕy

)
(10a)

Qy =GAsy
(
v′−ϕz

)
(10b)
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The relation described in Eq. (10a) and (10b) implies that the
chosen reference axis coincides with the shear centre due to
neglected shear–torsion coupling terms in Eq. (7).

For the special case where the cross section coordinate
system coincides with the principal axes, the deformation re-
lationship in Eq. (8) reduces to N

−Mz

My

=
 EA 0 0

0 EAYY 0
0 0 EAzz

 ·
 u′

−ϕ′z
ϕ′y


⇒

 u′

−ϕ′z
ϕ′y

= (EA)−1

 N

−Mz

My

 (11)

2.3 Differential equation system

The virtual work relation in Eq. (7) is rewritten for the case
where the beam coordinate system coincides with the princi-
pal axis of the cross section – see Eq. (11).

−δWi =

∫
x

{(
EAu′

)
δu′+

(
EAyyϕ

′
z

)
δϕ′z+

(
EAzzϕ

′
y

)
δϕ′y

+ (GITϕ
′
x)δϕ′x +GAsz

(
w′+ϕy

)
(δw′+ δϕy)

+GAsy
(
v′−ϕz

)(
δv′− δϕz

)}
dx (12)

After the partial integration of Eq. (12) the cross section de-
formation relations and differential equilibrium conditions
for the Timoshenko beam element are compiled in a first-
order differential equation system (see Eqs. 13, 14). For the
Timoshenko beam with an arbitrary beam reference axis at
any point on the cross section (see Eq. 8), the system of dif-
ferential equations can be expressed in the following form:

d
dx



u
v
w
ϕx
ϕy
ϕz
N
Qy

Qz

Mx

My

Mz


=



0 0 0 0 0 0 S11 0 0 0 S13 −S12

0 0 0 0 0 1 0
1

GAsy
0 0 0 0

0 0 0 0 −1 0 0 0
1

GAsz
0 0 0

0 0 0 0 0 0 0 0 0
1
GIT

0 0

0 0 0 0 0 0 S31 0 0 0 S33 −S32
0 0 0 0 0 0 −S21 0 0 0 −S23 S22
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0



·



u
v
w
ϕx
ϕy
ϕz
N
Qy

Qz

Mx

My

Mz


+



0
0
0
0
0
0
−px
−py
−pz
−mT
−my
−mz


(13)

The differential equation system for the Timoshenko beam
with the beam reference axis on principal axes can be repre-
sented in the following matrix form:

d
dx



u
v
w
ϕx
ϕy
ϕz
N
Qy

Qz

Mx

My

Mz


=



0 0 0 0 0 0
1
EA

0 0 0 0 0

0 0 0 0 0 1 0
1

GAsy
0 0 0 0

0 0 0 0 −1 0 0 0
1

GAsz
0 0 0

0 0 0 0 0 0 0 0 0
1
GIT

0 0

0 0 0 0 0 0 0 0 0 0
1

EAzz
0

0 0 0 0 0 0 0 0 0 0 0
1

EAzz
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0



·



u
v
w
ϕx
ϕy
ϕz
N
Qy

Qz

Mx

My

Mz


+



0
0
0
0
0
0
−px
−py
−pz
−mT
−my
−mz


(14)

The entries Sij in Eq. (13) are determined by the inversion of
the cross-sectional stiffness matrix in Eq. (8): u′

−ϕ′z
ϕ′y

=
 EA EAy EAz

EAy EAyy EAyz
EAz EAyz EAzz

−1

︸ ︷︷ ︸
S

·

 N

−Mz

My



=

 S11 S12 S13
S21 S22 S23
S31 S32 S33


︸ ︷︷ ︸

S

·

 N

−Mz

My

 (15)

3 Alternative finite element formulation

In the classical finite element formulation, the beam stiff-
ness matrix and the consistent beam mass matrix are de-
rived by developing an approach for the displacement func-
tions through shape (interpolation) functions, which consist
of first- and third-order Hermite polynomials. In this section,
an alternative finite element procedure is presented, based on
the numerical Runge–Kutta fourth-order integration of the
differential motion equations. The integration of the static
part (the coefficient matrix in Eqs. 13 and 14 respectively)
leads to the static field matrix, while the integration of the
inertia terms in the equation of motion Eq. (16) results in a
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Figure 2. The finite beam element: internal forces and nodal DOFs.

kinetic field matrix. In the last step of the integration, using
both field matrices, the respective element stiffness and the
element mass matrices can be calculated using simple matrix
operations.

3.1 The differential equations of motion

The differential equations of motion for the differential beam
element (see Fig. 2) can be written in a matrix form according
to Stanoev (2007) and Müller (2012) as follows:[
z1,x
z2,x

]
=

[
A11 A12
A21 A22

]
︸ ︷︷ ︸

A

·

[
z1
z2

]
+

[
b1
b2

]

+

[
0
m

]
· z̈1 (16)

In the above-mentioned equation, matrix A is the coefficient

matrix (see Eqs. 13, 14) and vector z=
[
z1
z2

]
is the state

vector, where

z1=
[
u (x) v (x) w (x) ϕx (x) ϕy (x) ϕz (x)

]T
is the vector of the displacement functions, and (16a)

z2=
[
N (x) Qy (x) Qz (x) Mx (x) My (x) Mz (x)

]T
is the vector of internal (section) force functions. (16b)

The vector b =
[
b1
b2

]
contains the known excitation forces;

however, for an eigenvalue problem b = 0. The coefficient
matrix A and the state vector z in addition to excitation force
b constitute the static part of the motion equation. The kinetic
part of the motion equation can be expressed using a matrix
of the interpolation functions and nodal acceleration vector
as follows:[

0
m

]
· z̈1 =

[
0
m

]
[81(x) 82(x)]︸ ︷︷ ︸

bm

·

[
V̈ (a)
V̈ (b)

]
︸ ︷︷ ︸
V̈ R(e,t)

, (17)

where z̈1 =
[
ü v̈ ẅ ϕ̈x ϕ̈y ϕ̈z

]T is the vector of ac-
celerations, [81 (x) 82 (x)]εR(6×12) is the matrix of inter-
polation functions (see Sect. 3.3), V̈ (a) , V̈ (b) εR(6×1) is the
vector with nodal accelerations and mεR(6×6) is the inertia
matrix of the differential beam element (see Sect. 3.2).

3.2 The inertia matrix term

The inertia matrix in Eq. (18) implies that the distributed
mass µ (x) (kg m−1) is applied eccentrically at any location
(y,z) in the cross section. The inertia matrix is expressed ac-
cording to Stanoev (2013):

m= µ ·



1 0 0 0 z −y
0 1 0 −z 0 0
0 0 1 y 0 0

0 −z y (y2
+ z2
+
2p

µ
) 0 0

z 0 0 0 (z2
+
2y

µ
) −yz

−y 0 0 0 −yz (y2
+
2z

µ
)


, (18)

where 2p, 2y and 2z in (kg m) are the mass moments of
inertia for the cross section.

2y =
µ · Iy

A
=
µ ·Azz

A
, 2z =

µ · Iz

A
=
µ ·Ayy

A
,

2p =2y +2z (19)

3.3 Shape functions for the Timoshenko beam element

The acceleration term z̈1 in Eq. (17) is expressed using the
product of Hermite interpolating polynomials and the nodal
acceleration vectors V̈ (a) and V̈ (b).

Shape functions for axial and torsional deformations u (ξ )
and ϕx (ξ ), respectively, are derived using first-order polyno-
mial as follows:

u (ξ )= a1+ a2ξ = [1 ξ ]︸ ︷︷ ︸
Nu

[
a1
a2

]
︸ ︷︷ ︸
a

=Nu · a, ξ =
x

L
(20)

To express the coefficients aj in terms of the nodal dis-
placements u (ξ = 0)= ua , u (ξ = 1)= ub or in terms of the
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Figure 3. Definition of the dimensionless coordinate (ξ ) of a beam
element.

torsion ϕx (ξ = 0)= ϕxa ,ϕx (ξ = 1)= ϕxb the following re-
lations are applied to Eq. (20):[
ua
ub

]
︸ ︷︷ ︸

u

=

[
1 0
1 1

]
︸ ︷︷ ︸

S

[
a1
a2

]

→

[
a1
a2

]
= S−1

·u=

[
1 0
−1 1

][
ua
ub

]
(21)

Substituting Eq. (21) into Eq. (20) results in the shape func-
tion for axial deformation

u (ξ )= [1 ξ ]
[

1 0
−1 1

]
︸ ︷︷ ︸

Gu

[
ua
ub

]
︸ ︷︷ ︸
vu

=Nu ·Gu · vu

= Hu1︸︷︷︸
1−ξ

ua + Hu2︸︷︷︸
ξ

ub (22)

and in the following function for torsional deformation ϕx :

ϕx (ξ )=Hu1ϕxa +Hu2ϕxb (23)

The relationships in Eq. (10a), Eq. (11) and the correspond-
ing part of Eq. (14) are a starting point to derive approxima-
tion functions for bending deformation in the xz plane:

Qz =GAsz
(
w′+ϕy

)
=M ′y = EAzzϕ

′′
y (24)

Using the above-mentioned relation the expression for w′ is
given by

w′ =−ϕy +
EAzz

GAsz
ϕ′′y =−ϕy + ηy

L2

12
ϕ′′y︸ ︷︷ ︸

γy

← ηy =
12EAzz
GAszL2 (25)

The translational deformation functionw (ξ ) is approximated
by a cubic polynomial function:

w (ξ )= c0+ c1ξ + c2ξ
2
+ c3 ξ

3

=

[
1 ξ ξ2 ξ3

]
︸ ︷︷ ︸

Nw


c0
c1
c2
c3


︸ ︷︷ ︸

c

=Nw · c (26)

Using the constant shear strain relation in Eqs. (5b) and (26)
the polynomial expression for constant shear strain can be
deduced as follows:

γz = ηy
L2

12
ϕ′′y , where ϕ′′y =−w

′′′
=−

6c3

L3 (27)

By including Eqs. (27) and (26) in Eq. (25) the polynomial
expression for ϕy (ξ ) results in

ϕy (ξ )=
1
L

[
0 − 1 − 2ξ −

ηy

2
− 3ξ2

]
c0
c1
c2
c3


=Nϕy · c (28)

To determine the coefficients cj the following boundary con-
ditions are applied:

vw =


wa
ϕya
wb
ϕyb

=

w(ξ = 0)
ϕy(ξ = 0)
w(ξ = 1)
ϕy(ξ = 1)



=


1 0 0 0

0 −
1
L

0 −
ηy

2L
1 1 1 1

0 −
1
L
−

2
L
−

3+ ηy
2

L


︸ ︷︷ ︸

Hw

·


c0
c1
c2
c3

= Hw · c

(29)

The inversion of Eq. (29) yields

c = (Hw)−1
· vw =

1
1+ ηy

·


ηy + 1 0 0 0

−ηy
−L(ηy + 2)

2
ηy

ηy

2
L

−3
L(ηy + 4)

2
3
−L(ηy − 2)

2
2 −L −2 −L


︸ ︷︷ ︸

Gw


wa
ϕya
wb
ϕyb



=Gw · vw (30)

The interpolation functions for w (x,y,z) and ϕy (x,y,z),
Eqs. (26) and (28), can be expressed by employing Eq. (30):

w (ξ )=
[
1 ξ ξ2 ξ3

]
︸ ︷︷ ︸

Nw

1
ηy + 1


ηy + 1 0 0 0

−ηy
−L(ηy + 2)

2
ηy

ηy

2
L

−3
L(ηy + 4)

2
3
−L(ηy − 2)

2
2 −L −2 −L


︸ ︷︷ ︸

Gw
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wa
ϕya
wb
ϕyb


︸ ︷︷ ︸

vw

=Hw1wa +Hw2ϕya +Hw3wb+Hw4ϕyb , (31)

where the products of both matrices Nw and Gw are intro-
duced as functions Hwj (j = 1, . . .,4).

ϕy (ξ )=
1
L

[
0− 1− 2ξ −

ηy

2
− 3ξ2

]
︸ ︷︷ ︸

Nϕy

1
ηy + 1


ηy + 1 0 0 0

−ηy
−L(ηy + 2)

2
ηy

ηy

2
L

−3
L(ηy + 4)

2
3
−L(ηy − 2)

2
2 −L −2 −L

 ·

wa
ϕya
wb
ϕyb


=Hϕy1

wa +Hϕy2
ϕya +Hϕy3

wb+Hϕy4
ϕyb (32)

In Eq. (32), the functions Hϕyj (j = 1, . . .,4) are introduced
in an analogous manner.

A similar method is used for determining the approxima-
tion functions v (ξ ) and ϕz (ξ ) for bending deformation in the
xy plane.

Starting with Eqs. (10b), (11) and (14), the following is
obtained:

Qy =GAsy
(
v′−ϕz

)
=−M ′z =−EAyyϕ

′′
z (33)

v′ = ϕz−
EAyy

GAsy
ϕ′′z = ϕz+ ηz

L2

12
ϕ′′z

← ηz =
12EAyy
GAsyL2 (34)

The approximations analogous to Eqs. (31) and (32) can be
derived as follows:

v (ξ )=Hv1va +Hv2ϕza +Hv3vb+Hv4ϕzb (35)
ϕz (ξ )=Hϕz1 va +Hϕz2ϕza +Hϕz3 vb+Hϕz4ϕzb (36)

TheH∗j functions developed in Eqs. (31), (32), (35) and (36)
are “static” shape functions for the Timoshenko beam. Sup-
posing dependence on time alone for the nodal displacement
vectors V (a) and V (b), the matrix of the interpolation func-
tions [81 (x) 82 (x)] in the inertia term Eq. (17) can be de-
veloped using Eqs. (31), (32), (35) and (36) (see Kusuma
Chandrashekhara, 2018):

81(x)=


Hu1 0 0 0 0 0

0 Hv1 0 0 0 Hv2
0 0 Hw1 0 Hw2 0
0 0 0 Hu1 0 0
0 0 Hϕy1

0 Hϕy2
0

0 Hϕz1
0 0 0 Hϕz2

 ,

82(x)=


Hu2 0 0 0 0 0

0 Hvs 0 0 0 Hv4
0 0 Hws 0 Hw4 0
0 0 0 Hu2 0 0
0 0 Hϕys 0 Hϕy4

0
0 Hϕzs 0 0 0 Hϕz4

 , (37)

3.4 Numerical integration

The special form of the numerical Runge–Kutta fourth-order
integration method applied here is described in detail in
Müller and Wolf (1975) and Schenk (2012). The integration
operator is applied to the equations of motion in Eq. (16), i.e.[
z1,x
z2,x

]
= A ·

[
z1
z2

]
+

[
b1
b2

]
+

[
0
m

]
[81(x) 82(x)]︸ ︷︷ ︸

bm

· V̈ R (e, t) (38)

In order to gain sufficient numerical precision the beam axis
needs to be divided into at least 20 integration intervals. The
integration operator transfers the known state vector at be-
ginning of the integration interval to the end of the interval.
The integration procedure starts with the state vector at the
first node a, i.e. at location (x = 0):[
z1(x = 0)
z2(x = 0)

]
︸ ︷︷ ︸

z(a)

=

 1
· · ·

1

z (a) (39)

The integration operator is subsequently applied to the eval-
uated coefficient matrix A at each interval by excluding the
initial state vector z (a). The result are static field matrices
F (x,a), multiplicatively linked to z (a) see Eq. (40). There-
fore, each F (x,a) matrix “transfers” the state vector at loca-
tion (x = 0) to the end x of the integration interval considered
(transfer matrix method). In the frame of the integration pro-
cedure the actual field matrix F (x,a) serves column wise as
an initial vector for the next interval, and the components of
the state vector z (a) remain excluded. The beam “load” vec-

tor
[
b1
b2

]
, Eq. (38), evaluated in the actual interval, yields

the

 β1
β2
1

 column in the F (x,a) matrix after integration –

Eq. (40).
The numerical integration of the inertia term bm in

Eq. (38) is carried out column wise analogously to the “load”
vector, by excluding the nodal accelerations V̈ R (e, t) – the
results are kinetic field matrices H (x,a) at the end of each
integration interval (at location x) (see Eq. 40):[

z1(x)
z2(x)

1

]
︸ ︷︷ ︸=

[
α11 α12 β1
α21 α22 β2
0 0 1

]
︸ ︷︷ ︸ ·

[
z1(a)
z2(a)

1

]

z(x)= F(x,a) · z(a)
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Figure 4. Eccentrically applied mass mE at the xAE point of the beam in the 3-D case.

Figure 5. First flapwise eigenmode.

+

[
H11 H12 0
H21 H22 0

0 0 1

]
︸ ︷︷ ︸ ·

 V̈ (a)
V̈ (b)

0


+H(x,a) · V̈ R(e)

(40)

This type of numerical integration allows (slightly) varying
values of the coefficients of the A matrix, the bm inertia term
and the b vector along the beam axis – i.e. all stiffness, mass
and external load values of the beam element may vary. Af-
ter the last integration step at the second node b, at location
(x = L), static L (e) and kinetic H (e) field matrices are ob-
tained: z1(b)
z2(b)

1

= L(e) ·

 z1(a)
z2(a)

1

+H(e) ·

 V̈ (a)
V̈ (b)

0

 (41a)

Figure 6. First edgewise eigenmode.

where

L(e)=

 L11 L12 f 1
L21 L22 f 2
0 0 1

 ,
H(e)=

 H11 H12 0
H21 H22 0

0 0 1

 (41b)

According to Eqs. (13) and (14) the state variable z1 rep-
resents six-component displacement vectors for V (a) and
V (b), respectively, and the state variable z2 represents six-
component internal forces vectors S (a) and S (b), at loca-
tions (x = 0) and (x = L) respectively.
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Figure 7. Second flapwise eigenmode.

3.5 The element stiffness and mass matrices

By solving the matrix equation in Eq. (41a) for S (a) and
S (b), and accounting for the definitions of internal forces in
finite element beam formulation (see Fig. 2),

F (a)=−S (a) , F (b)= S (b) , (42)

one can derive the element stiffness matrix K (e), the element
mass matrix M (e) and the element forces and moments F 0

using simple matrix operations as shown in Eq. (43). Then
the beam element relationships for the internal forces can be
formulated as[
F (a)
F (b)

]
=

[
F 0(a)
F 0(b)

]
+

[
Kaa Kab

Kba Kbb

]
︸ ︷︷ ︸

K(e)

·

[
V (a)
V (b)

]

+

[
Maa Mab

Mba Mbb

]
︸ ︷︷ ︸

M(e)

·

[
V̈ (a)
V̈ (b)

]
=

[
L−1

12 ·f 1
f 2−L22 ·L−1

12 ·f 1

]
︸ ︷︷ ︸

F0

+

[
L−1

12 ·L11 −L−1
12

L21−L22 ·L−1
12 ·L11 L22 ·L−1

12

]
︸ ︷︷ ︸

K(e)

·

[
V (a)
V (b)

]

+

[
L−1

12 ·H11 −L−1
12 ·H12

H21−L22 ·L−1
12 ·H11 H22−L22 ·L−1

12 ·H12

]
︸ ︷︷ ︸

M(e)

·

[
V̈ (a)
V̈ (b)

]
(43)

Figure 8. Mixed flap/edgewise eigenmode.

3.6 Single masses at eccentric positions

The numerical integration according to Runge–Kutta, de-
scribed in Sec. 3.4, offers the possibility of including sin-
gle load or mass quantities within a beam element. Single
eccentric masses can be taken into account at the integra-
tion interval boundaries. In the local coordinate system of the
beam element, at a general position vector xAE =

[
yE zE

]T,
the eccentric mass and the vector representation of dynamic
equilibrium, Eq. (44a)–(44b), is as shown in Fig. 4. The beam
reference axis is at point A, and vector V̈ E represents the ac-
celeration vector at the point of application (x,xAE). With
the help of the dynamic equilibrium conditions Eq. (44a)–
(44b), additional inertia forces and moments due to eccentric
mass can be determined (see Li, 2016):

−NL+NR =mEV̈ E (44a)

ML+MR =

3∑
i=1

(θEi ϕ̈iei)+
(
xAE ×mEV̈ E

)
, (44b)

where NL and NR are internal force vectors on the left and
right in differential proximity to the point at location x, ML

and MR are internal moment vectors on the left and right in
differential proximity to the point at location x (see Fig. 4),
mE is the eccentric single mass, 2Ei are the mass moments
of inertia of the single mass and ϕ̈i are the angular accelera-
tions at location x.
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Figure 9. First torsional eigenmode.

The additional inertia matrix ME (mE,2Ei, x,xAE), de-
rived from Eq. (44a)–(44b), is analogous to the inertia ma-
trix due to distributed mass in Eq. (18). During the numer-
ical integration within the beam element (see Sect. 3.4) an
additional eccentric inertia term has to be added to the ki-
netic field matrix at the end x (the point of application of
eccentric mass) of the corresponding integration interval –
see Eqs. (40) and (45). z1 (x)
z2 (x)

1

=
 α11 α12 β1
α21 α22 β2
0 0 1

 ·
 z1 (a)

z2 (a)
1


+

 H11 H12 0
H21 H22 0

0 0 1

+
 0 0 0

ME81 ME82 0
0 0 1


·

 V̈ (a)
V̈ (b)

0

 (45)

Single masses do not usually appear in a rotor blade model,
but the same finite element may be used for the modelling of
wind turbine towers. In this case single masses within a finite
beam element could represent bolted ring flange connections
or the mass of any equipment, such as lifts etc.

4 The eigenvalue problem

The system matrices for a rotor blade beam model are as-
sembled in the usual finite element manner employing the
developed element matrices K (e) and M (e) from Eq. (43).
In the case of free damped oscillation, the linear homoge-

Figure 10. Third flapwise eigenmode.

Figure 11. Second torsional eigenmode.
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Table 1. First three calculated (bolded values) flapwise and edgewise eigenfrequencies.

Eigenmode type Percentage deviation [%]

FAST ADAMS f Tim FAST and ADAMS and
[Hz] [Hz] [Hz] Timoshenko Timoshenko

First blade asymmetric flapwise yaw 0.6664 0.6296 0.60 6.48
First asymmetric flapwise pitch 0.6675 0.6686 0.6704 0.43 0.27
First blade collective flap 0.6993 0.7019 4.13 4.49

First blade asymmetric edgewise pitch 1.0793 1.0740 1.0958 1.53 2.03
First blade asymmetric edgewise yaw 1.0898 1.0877 0.56 0.74

Second blade asymmetric flapwise yaw 1.9337 1.6507 1.78 15.05
Second blade asymmetric flapwise pitch 1.9223 1.8558 1.8992 1.20 2.34
Second blade collective flap 2.0205 1.9601 6.39 3.11

Table 2. Comparison between Timoshenko and Bernoulli beams with three variants for shear stiffness values.

Timoshenko beam Bernoulli beam

GAsz
EA

, GAsy
EA

10 %, 20 % 20 %, 40 % 30 %, 60 %
Eigenmode type f Tim (Hz) f Tim (Hz) f Tim (Hz) f Bern (Hz)

First flapwise bending mode 0.6704 0.6737 0.6749 0.6771
First edgewise bending mode 1.0958 1.1035 1.1060 1.1113
Second flapwise bending mode 1.8992 1.9227 1.9307 1.9472
First mixed flap/edge mode 3.8357 3.9275 3.9596 4.0262
Second mixed flap/edge mode 4.2922 4.4062 4.4462 4.5295
First torsional mode 5.5181 5.5181 5.5181 5.5181
Second torsional mode 9.6937 9.6937 9.6937 9.6937

nous differential equations of motion are given by

Mq̈ (t)+Dq̇ (t)+Kq(t)= 0, (46)

where MεR(n×n) is the system mass matrix, KεR(n×n) is
the system stiffness matrix, DεR(n×n) is the system damp-
ing matrix and q(t)εR(n×1) is the nodal displacement vector.
The system matrices are symmetric and positively definite
for finite element structures. For a free undamped system,
the equation of motion is reduced to

Mq̈ (t)+Kq(t)= 0 (47)

By introducing the following solution approach which is
given by

q (t)= q̂ eiω0t , q̈ (t)= q̂ (iω0)2eiω0t (48)

into the equation of motion (Eq. 47) the following eigenvalue
problem is obtained:(

M−1K−ω2
0kI
)
q̂k = 0, (49)

where I is a unity matrix. The condition for non-trivial solu-
tion for Eq. (49) is given by

p
(
ω2

0k

)
= det

(
M−1K−ω2

0kI
)
= 0 (50)

The n-grade characteristic polynomial p
(
ω2

0k
)

has n real so-
lutions ω0k, (k = 1, . . .,n) (eigenfrequencies) and n associ-
ated eigenvectors q̂k , calculated from Eq. (49). For real-life
tasks the solution is usually acquired by use of eigensolver
software.

5 Numerical example

The programming code for the procedure and the graphic
plots described/shown below was written in MuPAD, a
symbolic math toolbox in MATLAB® (see Kusuma Chan-
drashekhara, 2018). The code was verified using realistic
data for a wind turbine rotor blade. The blade structural data
belong to a 5 MW reference wind turbine designed for off-
shore development (Jonkman et al., 2009). The blade is 63 m
in length and is divided into 48 beam elements. The blade
structural data consist of distributed mass (mL), blade ex-
tensional stiffness (EA), flapwise stiffness (EAzz), edgewise
stiffness (EAzz), torsional stiffness (GIT), flapwise mass
moment of inertia

(
2y
)

and edgewise mass moment of in-
ertia (2z). Due to the lack of shear stiffness data in Jonkman
et al. (2009), the values of (GAsz) and (GAsy) (used for the
calculations in Table 1) – the respective edgewise and flap-
wise shear stiffness – are estimated to be 10 % and 20 % of
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extensional stiffness (EA), respectively. The values of the
above-mentioned stiffness and mass moment of inertias are
specified at spanwise locations along the blade pitch axis and
about the principal axes of each cross section as oriented by
a twist angle (γ ) defined in the input data. The twist angle
is incorporated using the rotational transformation of each
local element stiffness and mass matrices into the global
coordinate system. The results of first three (flapwise and
edgewise) eigenfrequencies calculated using the Timoshenko
beam model (see Kusuma Chandrashekhara, 2018), are com-
pared with the proposed results from FAST and ADAMS in
Jonkman et al. (2009). The results are as shown in Table 1.

The mode shapes and the corresponding eigenfrequencies
for the first flapwise and edgewise eigenmodes as well for
two torsional eigenmodes are as shown in Figs. 5–11.

In Table 2 the calculated natural frequencies for three dif-
ferent variants of the shear correction coefficients are shown,
approximated as GAsz

EA
or GAsy

EA
ratios. The comparison with

the frequencies calculated using the Bernoulli beam model
outlines the tendency toward a stiffer structure due to the pre-
supposed infinite shear stiffness in this case. Natural frequen-
cies f Bern are 0.5 %–1.0 % higher on average than f Tim –
in the (30 %, 60 %) case. The natural frequencies remain un-
changed for both beam models for the purely torsional modes
only. The reason for this is that the equations for torsion and
bending are uncoupled (for the case of the principal axes, see
Eq. 14) and remain the same in both models.

6 Conclusion and outlook

The proposed Timoshenko beam element in the 3-D descrip-
tion has been developed on the basis of the transfer matrix
method. Both static and kinetic field matrices for the beam
element are derived by applying a Runge–Kutta fourth-order
numerical integration procedure on the differential equations
of motion in a special way. Appropriate shape functions for
the Timoshenko beam have been used to approximate the in-
ertia forces in the motion differential equation. The beam
element stiffness and mass matrices are assembled by ma-
trix operations from the derived element field matrices. The
usual finite element equations of motion for the rotor blade
model are cast in the general case accounting for the struc-
tural twist angle and possible pre-bending. Therefore, in the
general case the rotor blade beam model represents a polyg-
onal approximated space curve.

For the sake of verification, the natural frequencies and
associated eigenmodes are calculated using real-life rotor
blade data with the incorporation of realistic twist angle data.
The first two edgewise and flapwise eigenfrequencies ob-
tained are compared with the proposed results from FAST
and ADAMS software given in Jonkman et al. (2009). It can
be observed that the deviation of the results of the Timo-
shenko beam model from FAST is comparatively lower and
is in good agreement with FAST; thus, it can be stated that

the approach presented regarding alternative finite element
formulation works well.

One key input parameter for the Timoshenko beam model
is the shear stiffness. As it was not the main goal of the
present work to determine an appropriate shear correction co-
efficient for realistic rotor blade data, the numerical example
was performed with a very rough approximation for GAsz
and GAsy . This was done in order to simply demonstrate
the performance and the differences to the Bernoulli beam
model. However, if detailed data for the complex multilayer
design of a rotor blade were available, a more realistic esti-
mation of the shear stiffness could be expected. A workable
method for the determination of the shear correction coeffi-
cient of a real-life rotor blade represents an important topic
for further research.

Data availability. Data used in this work as rotor blade struc-
tural data for the numerical example are publicly available at
https://www.nrel.gov/docs/fy09osti/38060.pdf (last access: 25 Jan-
uary 2019; Jonkman et al., 2009). The MATLAB® program code
written to calculate the rotor blade is available upon request.
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