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Abstract. In order to ensure structural reliability, wind turbine design is typically based on the assumption
of gradual degradation of material properties (fatigue loading). Nevertheless, the relation between the wake-
induced load exposure of turbines and the reliability of their major components has not been sufficiently well
defined and demonstrated. This study suggests a methodology that makes it possible to correlate loads with
reliability of turbines in wind farms in a computationally efficient way by combining physical modeling with
machine learning. It can be used for estimating the current health state of a turbine and enables a more precise
prediction of the “load budget”, i.e., the effect of load-induced degradation and faults on the operating costs
of wind farms. The suggested approach is demonstrated on an offshore wind farm for comparing performance,
loads and lifetime estimations against recorded main bearing failures from maintenance reports. The validation
of the estimated power against the 10 min supervisory control and data acquisition (SCADA) power signals
shows that the surrogate model is able to capture the power performance relatively well with a 1.5 % average
error in the prediction of the annual energy production (AEP). It is found that turbines positioned at the border
of the wind farm with a higher expected AEP are estimated to experience earlier main bearing failures. However,
a clear connection between the load estimations and failure observations could not be confirmed in this study.
Finally, the analysis stresses that more failure data are required in future work to enable statistically significant
associations of the observed main bearing lifetimes with load exposures across the wind farm and to validate and
generalize the suggested approach and its associated findings.

1 Introduction

1.1 Motivation

For the past decades, wind energy has been one of the world’s
fastest-growing sources of renewable energy, and it is ex-
pected to show a similar trend of growth in the future. The
development of wind energy with increased wind turbine size
and rated capacity has a significant influence on the opera-
tion and maintenance (O & M) costs (Gonzalez et al., 2016).
Together with poor site accessibility as for offshore instal-
lations where wind turbines might be inaccessible for 4–
5 months per year (Van Bussel and Zaaijer, 2001), failures
are causing severe consequences in terms of downtime and
maintenance costs (Bangalore and Patriksson, 2018). There-
fore, optimizing the wind farm operation by improving per-

formance and reliability in order to minimize the levelized
cost of energy (LCoE) is gaining more and more importance.
The O & M costs of wind turbines amount to around 25 %
of the LCoE for onshore wind turbines and 35 % for off-
shore wind turbines (Dinwoodie et al., 2012). For reducing
the O & M costs, monitoring and predicting the condition of
the turbine’s components in terms of operational health, ma-
terial degradation and remaining lifetime plays an important
role. Improving the detection rate of a monitoring system for
blades, drive train, tower and grout from 60 % to 99 % for in-
stance results in an increase of lifetime levelized savings by
32 % (May et al., 2015).

Most current wind turbine maintenance strategies are
time-based and assume a reliability degradation dependent
on the system age (Reder and Melero, 2018). Throughout
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the lifetime of a turbine, its failure rate is assumed to fol-
low a Weibull distribution with a higher failure frequency in
the first years of operation, followed by a longer period of
a lower constant failure rate. Towards the end of life, an in-
creasing failure rate can be observed again due to wear and
damage accumulation caused by fatigue loading (Mudholkar
and Srivastava, 1993; Hahn et al., 2007).

However, the relation between the load exposure of tur-
bines in a wind farm and their component reliability has not
been sufficiently well defined and demonstrated. Character-
izing this relation would enable to assess the current health
state of a turbine and help to better understand the effect of
load-induced degradation and faults on the operating costs of
wind farms. Especially for offshore wind farms where fail-
ures can lead to high downtime, this plays an important role
for reducing the LCoE.

1.2 Objective

The objective of the present paper is two-fold:

– Firstly, the aim is to suggest a methodology that makes
it possible to investigate the correlation between loads
and component reliability of turbines in wind farms,
by combining data (10 min averages from a supervi-
sory control and data acquisition, SCADA, system) and
physical modeling (HAWC2 aeroelastic load simula-
tions) with machine learning.

– Secondly, the suggested approach is demonstrated on a
case study to investigate whether the loading conditions
can be clearly associated with the observed reliability of
the main bearing.

1.3 Background and related work

Information about the turbine reliability can be derived ei-
ther by modeling structural reliability parameters (e.g., fail-
ure frequency, likelihood of observing failure over a refer-
ence period) or by using collected data from inspection and
maintenance reports (e.g., observed failure rates, observed
time to failure). Opposed to the assumption that turbine reli-
ability only decreases with operational time, several studies
have demonstrated the effect of meteorological conditions on
the turbine reliability, such as Reder and Melero (2016) and
Tavner et al. (2006). Also example studies of the influence
of wake effects on the turbine reliability can be seen in Kim
et al. (2012) and Huang and Chiang (2006). Previous work
aimed at defining a relationship between fatigue and extreme
loading conditions on a turbine and its reliability can be
found in Colone et al. (2018) and Scott et al. (2012). Colone
et al. (2018) modeled the impact of turbulence induced loads
on the fatigue reliability of offshore wind turbine monopiles.
In Scott et al. (2012) the damage effect of extreme and tran-
sient loads on the drivetrain reliability is estimated. However,
these studies focus on modeling the reliability, rather than

investigating observed failure rates from measurement data.
Therefore, the present paper aims at suggesting a methodol-
ogy for modeling various wake-induced loads, performance
and estimated lifetime, and comparing it against measured
failure rates and times to failure. The suggested approach can
be used for modeling various performance and load variables
under different operating conditions.

Modeling wake-induced loads in wind farms is a crucial
step for fatigue load assessments both in the design process
and during the operational phase of a wind farm where load
measurements are costly and therefore rarely conducted. Car-
rying out aeroelastic simulations each time a load assessment
is required is impractical. Therefore, various methods have
been developed to reduce the number of computations re-
quired. A popular approach is the use of so-called surrogate
models which are reduced-order models that are trained on
a limited number of aeroelastic simulations. Once the surro-
gate model has been trained, multiple site-specific load as-
sessments at arbitrary sites can be obtained at a low com-
putational cost and without the need of new aeroelastic sim-
ulations. Examples are Toft et al. (2016) and Müller et al.
(2017), who propose a methodology based on response sur-
face (RS) for site-specific load estimations. Teixeira et al.
(2017) demonstrate the use of kriging surfaces for fatigue
load estimations of offshore wind turbines.

These approaches focus solely on one surrogate model and
use a relatively small variable space. In Dimitrov et al. (2018)
the surrogate model framework is expanded with the motiva-
tion to fully characterize the wind field conditions, as well
as to enable comparing different surrogate models within the
framework. Based on this framework, a benchmark of differ-
ent surrogate models in Schröder et al. (2018) has shown that
an artificial neural network (ANN)-based surrogate model
outperforms other methods using polynomial chaos expan-
sion and RS in terms of model accuracy, computational time
as well as convergence stability.

The abovementioned approaches are only applicable for
estimations on single turbines. In Dimitrov (2019) the sur-
rogate modeling framework is extended in order to estimate
wake-induced loads for a wind farm with arbitrary layout. In
this approach the number of simulations required for model-
ing different wake conditions is reduced by parametrizing the
wake effects. This method has been demonstrated in a case
study on the Horns Rev I wind farm (Galinos et al., 2016) and
further validated against measurement data in Dimitrov and
Natarajan (2019). In the present study, the abovementioned
wind farm surrogate modeling framework is expanded for es-
timating further performance and lifetime parameters under
additional operating condition, and its predictions are com-
pared against observed failures.
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Figure 1. Methodology for estimating performance, loading condition and lifetime characteristics within a wind farm.

2 Methodology

The suggested methodology for comparing wake-induced
loads against the component reliability of turbines is illus-
trated in Fig. 1. It can be used to estimate various perfor-
mance, loading and lifetime characteristics of a wind farm.
The approach can be applied to any wind farm with arbitrary
layout and turbine type as long as data recorded from the
SCADA system are available together with observed failure
events, e.g., from inspection and maintenance reports. The
framework can be split into six main steps which are more
thoroughly described in the following sections:

1. define variable input space and create samples X1 from
predefined distributions and boundaries;

2. create high-fidelity simulation database for normal op-
eration S1(X1), to be used as training inputs for a surro-
gate model;

3. train a surrogate modelM(X) (an ANN) mapping undis-
turbed environmental conditions to load and power out-
puts;

4. obtain site-specific load and power estimations under
normal operating conditions, M(Xsite), by sampling
the surrogate model over the joint distribution of site-
specific environmental conditions Xsite;

a. establish a site-specific joint probability distribu-
tion of undisturbed wind conditions by analyzing
measured data;

https://doi.org/10.5194/wes-5-1007-2020 Wind Energ. Sci., 5, 1007–1022, 2020



1010 L. Schröder et al.: A surrogate model approach for associating wind farm load variations with turbine failures

b. carry out a Monte Carlo (MC) simulation with the
surrogate model, drawing samples Xsite from the
site-specific joint distribution;

5. add other operational conditions (e.g., transients such as
start-ups and shutdowns);

a. simulate scenarios with the selected (transient) op-
erating conditions S2(X2);

b. analyze SCADA data and fault and event logs to
establish the annual frequency of the events;

c. weight estimates according to the probabilities of
the operational states w1 and w2 obtained from
data;

6. compute a summary statistic Ssum to be considered as a
proxy for component reliability and compare estimates
against observed failure events.

2.1 Define variable input space and sample from
predefined distributions

Selecting the variable input space is a crucial step in the
creation of the simulation database. The performance and
mechanical load variations of turbines within a wind farm
mainly depend on the wake-induced turbulence. In this anal-
ysis, the wake-induced turbulence is characterized by vari-
ables that can be grouped into ambient conditions Xamb, tur-
bine position Xpos and wake-induced effects Xfarm based on
the study by Dimitrov (2019):

– Xamb = [u, σU , α, Hs, Tp, 1] (mean wind speed, tur-
bulence, wind shear, significant wave height, wave peak
period and wind-wave misalignment);

– Xpos = [Zw] (water depth);

– Xfarm = [RD, γ , Nrows] (row spacing, wake incidence
angle and number of disturbing turbines).

The environmental variables fromXamb andXpos include the
most relevant factors that affect mechanical loads on both the
nacelle and the foundation. The variables from Xfarm intend
to describe the relative position of the wake source(s) with
respect to the disturbed turbine such that the model is gen-
eralized for arbitrary wind farm layouts. The choice of the
three wake-induced variables of Xfarm is explained more in
detail in Dimitrov (2019).

To make sure that the model is able to cover a wide range
of conditions, the distributions and boundary functions of
each variable have to be defined accordingly. Since some of
the ambient variables are conditional on each other, the vari-
able space is generated by sampling from their joint proba-
bility distribution using a Rosenblatt transformation (Rosen-
blatt, 1952) that takes into account the predefined distribu-
tions and bounding functions (Dimitrov, 2019).

It should be noted that the variable space should be defined
specifically for each use case. For instance, if only nacelle
load estimates are of interest, the variables for wave-induced
loads (Hs, Tp,1) can be neglected since they most likely will
not effect the final estimates.

2.2 Create aeroelastic simulation database

The set of sampled input variables which can be represented
as X= [Xamb, Xpos, Xfarm] is then used for simulating the de-
sired output variables S(X) (see Fig. 2). For running aeroe-
lastic time series simulations a wind flow model as well as
a wake model that allows the superposition of multiple wake
sourcesNrows for modeling wake-induced effects is required.
Furthermore, a structural model, aerodynamic model and the
controller of the turbine need to be included in order to model
the structural response. In case this approach is applied to off-
shore turbines, also a hydrodynamic model and soil model
(or alternatively a simplified apparent fixity model) are nec-
essary for including the effects of hydrodynamic and soil
forces.

Subsequently, the time series simulations St (X) are post-
processed in order to obtain 10 min statistics, lifetime indi-
cators and damage-equivalent fatigue loads (DELs) for as-
sessing performance, lifetime or fatigue. By applying the
Palmgren–Miner’s rule the lifetime DEL can be formulated
for a given Wöhler exponentm using the following equation:

DEL=


∫
u

∫
θ

Req(u,θ )mneqp(u,θ )dudθ

neq,L


1/m

, (1)

with the 1 Hz equivalent fatigue load Req that is simulated,
e.g., for 600 s corresponding to neq = 1 Hz · 600 s= 600
equivalent cycles, the joint probability p(u, θ ) of the wind
speed u and wind direction θ and the number of equivalent
cycles neq,L corresponding to operation over the intended
lifetime of the wind farm.

For assessing the component reliability of a main bearing,
the fatigue life indicator L10 for which 10 % of the bearings
would not survive (Calderon, 2015) can be calculated:

L10 =
a1a2a3106

60n

(
C

Pd

)p
[years], (2)

where n is the rotational speed, ai , i =1, 2, 3 are life cor-
rection coefficients, C is the dynamic bearing rating and
p = 10/3 is the life exponent for roller bearings. A high
value indicates a longer main bearing lifetime. The dynamic
equivalent force Pd is defined as a hypothetical force result-
ing in the same lifetime as if acting on the bearing center as
pure radial load (in case of radial bearing) or pure axial load
(in case of thrust bearing) (NTN, 2009). It can be calculated
using the radial force Fr and the axial force Fa as follows:

Pd = bxFr+ byFa, (3)
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Figure 2. Process of aero-servo-hydro-elastic simulations using sampled input variables.

Figure 3. Schematic illustration of site-specific wind farm load es-
timation using surrogate model.

with calculation factors bx and by that depend on the specific
roller bearing type; i.e., if Fa

Fr
≤ 0.27, then bx = 1 and by =

2.5. Otherwise if Fa
Fr
> 0.27, then bx = 0.67 and by = 3.7.

2.3 Train surrogate model

Once the simulation database is created, the surrogate model
can be trained using the set of input variables X and set of
target variables S(X) as shown in Fig. 3. As mentioned be-
fore, the selection of which variables should be included in
the target set S(X) depends on the intention of the specific
use case.

The transfer function for mapping the input variables to the
targets can be any type of regression model. However, this
study suggests using feed-forward ANNs, since they were
found to be the most suitable method for the task of site-
specific load estimations in terms of prediction time, accu-

racy and convergence robustness with smaller training sam-
ples (Schröder et al., 2018).

Feed-forward ANNs (Goodfellow et al., 2016) consist of
multiple fully connected layers. In each layer the input x is
transformed linearly to z=Wx+ b with weight matrix W
and bias b. After the result is passed through a non-linear ac-
tivation function σ (z), it will serve as input to the next layer
x[i+1]

= σ (z[i])= σ (W[i]x[i]+b[i]). When training an ANN,
the weight parameters W and bias parameters b can be esti-
mated by minimizing the cost function J (W, b). The cost
function is a measure of the difference between the model
prediction g(W, b, x) and the observed output y. When us-
ing a least-squares approach the cost function can be calcu-
lated as shown in Fig. 4, where Ne is the number of training
samples.

J (W,b)=
Ne∑
i=1

(yi − g (W,b,xi))2 (4)

2.4 Site-specific estimations using surrogate model

In order to deploy the trained surrogate model to give esti-
mations for the desired offshore wind farm, a new input data
set has to be generated that includes the site-specific ambi-
ent environmental conditions, as well as farm-related param-
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Figure 4. Wind turbine schematic including loads considered in this study: blade-root bending moments Mx and My , tower-top bending
moments Mx and My , bearing torsional moment Mz, main bearing axial force Fa and main bearing radial force Fr.

eters for the specific wind farm. Similarly as in Sect. 2.1,
the ambient input variables Xamb are sampled with a Monte
Carlo simulation using Rosenblatt transformation in order
to construct the site-specific joint probability distributions
with the wind direction θ being the first independent vari-
able. The distributions of these ambient conditions can be
obtained from any available measured or modeled source,
such as SCADA data or a meteorological mast. Since the in-
put variablesXpos andXfarm on the other hand depend on the
turbine position within the wind farm, they have to be gener-
ated for each turbine separately. Regarding the wake-related
input Xfarm, the row spacing RD, wake incident angle γ
and number of upstream turbines Nrows have to be collected
for each wind direction sector separately. The trained ANN
is then applied using these input variables Xamb, Xpos and
Xfarm for estimating the output S(Xsite). In case there are sev-
eral lines of turbine rows upstream, the output is estimated
for each equally spaced turbine line and the most conserva-
tive estimate is selected. Algorithm 1 shows the implementa-
tion steps required for the abovementioned procedure. For a
more detailed explanation of this approach including an im-
plemented example case, see Dimitrov (2019).

The estimations from the ANN are then simply summed
up for each turbine. A probability weighting of the samples
is not necessary since they are already generated taking into
account the probability distributions of the input space. The
annual energy production (AEP) of each turbine can be cal-
culated using Eq. (5) with the number of Monte Carlo sam-
ples Nsim, estimated electrical power P̂i and the number of

operating hours per year Nhours,y . The DEL values can be
summed up according to Eq. (6). Note that before the sum-
mation, the estimations L̂i need to be inverted to 1 Hz fa-
tigue range sums Linv,i = 600 · L̂im. Afterwards the sum can
be converted back to lifetime DEL using the number of 1 Hz
equivalent load cycles corresponding to 25 years Nsec,L.

AEPsum =

Nsim∑
i=1

Nhours,y

Nsim
· P̂i (5)

DELsum =


Nsim∑
i=1

25·N10 min,y
Nsim

· L̂inv,i

Nsec,L


1/m

(6)

2.5 Add other operational conditions (e.g., transients)

Further scenarios can be included by simulating selected op-
erating conditions (e.g., start-up, shutdown events). When
summing up estimations for normal operation with these se-
lected conditions, weights for the probability of the opera-
tional state need to be included in Eqs. (5) and (6). The prob-
ability of the turbine operating in normal, start-up and shut-
down condition varies per wind speed and can be extracted
from SCADA data or fault and event logs. For transient
events the probability-weighted AEP and DEL can be cal-
culated using the number of transient events per year NTR,y .
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AEPTR =

Nsim∑
i=1

NTR,y

Nsim
· P̂i (7)

DELTR =


Nsim∑
i=1

25·NTR,y
Nsim

· L̂inv,i

Nsec,L


1/m

(8)

It follows that the probability-weighted AEP and DEL for
normal operation can be calculated using Eqs. (9) and (10).

AEPnormal =

Nsim∑
i=1

Nhours,y −NTR,y

Nsim
· P̂i (9)

DELnormal =


Nsim∑
i=1

25·(N10 min,y−NTR,y)
Nsim

· L̂inv,i

Nsec,L


1/m

(10)

Finally, the weighted AEP and lifetime DELs can simply be
added.

AEPtot = AEPnormal+AEPTR (11)
DELtot = DELnormal+DELTR (12)

3 Example case

In the following case study the suggested methodology is ap-
plied to an offshore wind farm to assess which conditions
might be correlated with the component reliability of a main
bearing. Main bearings support the rotor shaft, which trans-
fers the aerodynamic torque from the rotor into the gear-
box while reducing non-torque loads entering the gearbox
(Calderon, 2015). With around USD 150 000 to 300 000 per
failure (Dvorak, 2013) unplanned bearing replacement costs
are a significant part of the total yearly O & M expenses,
which can be approximately USD 645 000 for an offshore
5 MW turbine (Stehly and Beiter, 2020). Figure 4 illustrates
the loads considered in this study which are expected to have
highest impacts on the main bearing.

The performance, fatigue loads and main bearing lifetime
are estimated within the offshore wind farm and compared
against the observed failure records. The data used in this
study consist of a 5-year SCADA data set with a sampling
rate of 10 min. The bearing type observed in this study is
a SKF CARB toroidal roller bearing in non-locating posi-
tion. The main bearing failure records are available from in-
spection and maintenance reports for the same period. Fig-
ure 5 shows the normalized failure rate of the main bear-
ing, i.e., the frequency at which the main bearing has failed.
Figure 6 illustrates the inverted time to failure (TTF) 1

TTF ,
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Figure 5. Observed normalized failure rate within wind farm from
inspection reports.

Figure 6. Observed normalized inverted time to failure within wind
farm from inspection reports.

where TTF is defined as the time between start of uptime
and start of downtime of the main bearing. A higher inverted
TTF therefore indicates earlier failures and shorter lifetimes
of the main bearing.

3.1 Define variable input space and sample from
predefined distributions

The variable space used for creating the simulation database
in this analysis is generated following the approach described
in Sect. 2.1. The wind speed is sampled from a uniform
distribution ranging between 4 and 30 m s−1 covering the
power production range of the wind turbine. For each wind
speed sample the remaining variables are drawn from a uni-
form distribution as well with the selected boundaries as pre-
sented in Table 1. It should be noted, however, that the input
variables can be sampled following any suitable distribution
function without influencing the power and load estimations
of the resulting model as the sampling only influences the
training process. The boundary functions of the wind speed
standard deviation is based on the IEC class IA for offshore
conditions and result in a range of 0.16 to 3.89 m s−1. The
wind shear boundaries are hard coded based on Dimitrov

et al. (2018). Regular waves are modeled as wind-speed-
dependent deterministic function for the significant wave
heightHs and wave peak period Tp. However, the wind shear
and wave conditions are not used as input variables for the
surrogate model later on, since the database is simulated us-
ing a constant wind shear of 0.14 and the study only observes
loads that are expected to not be influenced by waves. The
boundaries for the wind wave misalignment 1 are selected
based on Van Vledder (2013). The selected boundaries of the
water depth and row spacing is based on the wind farm lay-
out. Studies have shown that a turbine does not seem to ex-
perience wake condition with wind–wake angles of bigger
range than ±25◦ (Dimitrov, 2019; Frandsen, 2007). Finally,
up to four upstream turbines are considered for generating
multiple wake conditions based on Dimitrov (2019) showing
that including more wake sources does not have a significant
effect on the resulting load estimations.

A 2000-point pseudo-Monte Carlo approach based on a
low-discrepancy Halton sequence is used to generate the
variable space. The resulting samples can be seen in Fig. 7.

3.2 Aeroelastic simulations for normal operation and
transients

A total number of 32 output channels are simulated using the
aeroelastic tool HAWC2 (Larsen and Hansen, 2019; Madsen
et al., 2020) of the NREL offshore 5 MW reference turbine
with a jacket structure (Vorpahl et al., 2011). The simula-
tion settings and turbine model are chosen in order to be rep-
resentative of the actual wind farm. Turbulence is included
with the help of so-called turbulence boxes which are “ran-
dom realizations of three-dimensional, stationary and homo-
geneous turbulent wind fields” (Dimitrov, 2019). Under ex-
actly same conditions, the simulated time series will differ
from realization to realization due to this effect of the turbu-
lence, which is called the seed-to-seed uncertainty. However,
by using a large Monte Carlo sample as in this approach the
effect of seed-to-seed uncertainty is reduced (Dimitrov et al.,
2018). For simulating the wake effects the dynamic wake
meandering (DWM) model (Larsen et al., 2008) is used. It
models the wake effects by generating three turbulence boxes
for each simulation: the “ambient wind field over the ro-
tor area” (Larsen et al., 2008) is introduced by a standard
turbulence box on which the wake deficit, introduced by a
micro-turbulence box, is superimposed (Larsen and Hansen,
2019). The relative position of these two turbulence boxes
depends on the meandering of the wake which is introduced
by a large-scale turbulence field.

The simulations are carried out on each of the 2000 sam-
ples and repeated for three different yaw misalignments
(−10, 0,+10◦) including from zero up to four wake sources,
which results in a total of 30 000 simulations for each out-
put channel. These time series simulations are carried out for
600 s for normal operation and 250 s for start-up and shut-
down operation. A total of 19 start-up simulations are carried
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Table 1. Sampling conditions of variables considered for creating a simulation database including references used for the selection. D is
rotor diameter.

Variable Lower bound Upper bound Reference

Wind speed u 4 m s−1 30 m s−1 Turbine type
Wind speed standard deviation σu 0.04 · u 0.16 (0.75 · u+ 5.6) IEC class IA
Wind shear α −0.3 0.6 Dimitrov et al. (2018)
Significant wave height Hs 2 m 4 m Johannessen et al. (2001)
Wave peak period Tp 8 s 12 s Johannessen et al. (2001)
Wind wave misalignment 1 −20◦ 20◦ Van Vledder (2013)
Water depth Zw 17 m 21 m Farm layout
Row spacing RD 4D 13D Farm layout
Wind-wake angle γ −20◦ 20◦ Dimitrov (2019), Frandsen (2007)
Number of wake rows N 0 4 Dimitrov (2019)

Figure 7. Sample distribution obtained using 2000-point pseudo-Monte Carlo simulation of a 9-dimensional variable space {u, σu, α, Hs,
Tp, 1, Zw, RD, γ }. All variables are uniformly distributed within defined ranges.

out according to the standard DLC 3.1 (IEC, 2019) for each
wind speed ranging between 4 and 22 m s−1. Higher wind
speeds are not considered as the controller would trigger an
emergency shutdown due to an exceedance of the maximum
rotor speed. A total of 27 shutdown simulations are carried
out according to DLC 4.1 (IEC, 2019) for wind speeds be-
tween 4 and 30 m s−1.

Subsequently, the time series are post-processed in order
to obtain the desired 10 min statistics, DELs and bearing
lifetime. For calculating the DELs of the simulated loads
the rainflow counting method (Matsuishi and Endo, 1968)
is used with a Wöhler exponent of 4 for the tower top, 8 for

the shaft and 10 for the blade root. In order to calculate the
lifetime indicator of the main bearing first the time series of
the radial force on the main bearing is calculated using the
simulated lateral and vertical forces:

Fr =

√
F 2

lateral+F
2
vertical. (13)

With the radial force Fr the equivalent dynamic force on the
main bearing Pd is calculated using Eq. (3), and next the
lifetime L10 is calculated using Eq. (2). A dynamic bearing
rating of C = 19600 kN is used, which is the recommended
value for the specific bearing type with the specific inner di-
ameter and mass based on the SKF handbook on roller bear-
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Figure 8. Normalized electrical power P estimated by ANN on test
set with respect to normalized power simulated using HAWC2.

ings (SKF, 2018). A factor of a1 = 0.21 is used correspond-
ing to a 99 % probability of surviving the estimated lifetime.
The factor a2 refers to the bearing material and is set to 1
based on Harris (2001). Finally, the factor a3 representing the
bearing condition, including lubrication and cleanness con-
ditions amongst other things, is set to 1 since the necessary
information is not available.

3.3 Train and validate surrogate model (ANN)

The surrogate model is calibrated for estimating 11 output
variables S(X) as shown in Fig. 4. However, only estimations
for the power, main bearing lifetime, torsional moment at the
main bearing and blade-root flapwise bending moment are
presented in this paper since the remaining loads show simi-
lar resulting patterns.

Various ANN architectures have been trained and evalu-
ated on the test set. After hyperparameter tuning the most
suitable settings as shown in Table 2 are selected. The data
set of 30 000 samples is divided into a 90 % training, 5 %
validation and 5 % testing set. Since the number of samples
is relatively large, using other ratios for the train–test split
did not affect the model performance. The model parameters
are estimated with error back-propagation using the adaptive
moment estimation (Adam) (Kingma and Ba, 2014) as an
adaptive learning rate optimization algorithm for minimiz-
ing the cost function J (W, b). Instead of calculating the cost
function for the complete data set, at each iteration a mini-
batch optimization is used in order to increase computational
efficiency and to achieve a more robust convergence. Fur-
thermore, a regularization factor is included in the parameter
estimations to avoid overfitting to the training data.

The model performance is then evaluated by calculating
the accuracy of the model predictions on the test set (see Ta-
ble 2). Figures 8 and 9 show a one-to-one plot for the esti-
mated power P and main bearing lifetime L10 on the test set
against the simulation data from HAWC2.

Figure 9. Normalized bearing lifetime L10 estimated by ANN on
test set with respect to normalized bearing lifetime simulated using
HAWC2.

Figure 10. Site-specific wind rose calculated from free-stream
SCADA data.

3.4 Site-specific estimations

In order to exclude outliers from the SCADA data, the
OpenOA filtering toolkit developed at NREL (Optis et al.,
2019) is applied. Figure 10 shows the probability of each
wind direction sector that is obtained from the filtered free-
stream SCADA data.

For each wind direction sector a Weibull distribution is
fit to the wind speed measurements, and a lognormal dis-
tribution is fit per wind speed bin to the wind speed stan-
dard deviation measurements. The wind–wave misalignment
which describes the difference between wind direction and
wave direction of wind-generated wave can depend on the
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Table 2. Hyperparameter of ANN used as surrogate model and accuracy of the model predictions on the test set.

Model training (hyperparameters) Model testing

Number of hidden layers 3 R2 power P 0.996
Number of neurons per hidden layer 24 R2 bearing life L10 0.989
Number of neurons in output layer 11 R2 bearing DEL Mz 0.946
Activation function tanh R2 blade-root DEL Mx 0.946
Weight initialization 0.1
Learning rate 0.07
Regularization 0.02
Number of epochs 400
Mini batch size 4000
Minimum R2 0.99
Adam – rms prop 0.999
Adam – momentum 0.99

Figure 11. Site-specific wind speed sampled from Weibull distri-
bution from free-stream SCADA data.

wind speed and significant wave height (Van Vledder, 2013).
However, since the bearing in the rotor is almost not affected
by the wave conditions the wind–wave misalignment is as-
sumed to be normally distributed with a mean µ= 0 and
standard deviation σ = 5 based on presented distributions
in Van Vledder (2013). The three above site-specific input
variables of the environmental conditions Xamb are gener-
ated using a 20 000-point pseudo-Monte Carlo simulation
based on Sobol sequences following the approach described
in Sect. 2.4. The final input samples for the surrogate model
are shown in Fig. 11 for the wind speed, Fig. 12 for the wind
speed standard deviation and Fig. 13 for the wind–wave mis-
alignment.

For summing up the model predictions of both normal and
transient operation, the model predictions are weighted ac-
cording to their probability of operational state. Figure 15
shows the probabilities of start-up and shutdown events for
an example turbine. The annual number of transients over
the whole wind farm can be seen in Fig. 14.

Figure 12. Sampled wind speed standard deviation taken from
SCADA.

Figure 13. Sampled wind wave misalignment.

3.5 Operation-state weighted sum

The final resulting probability-weighted outputs for the off-
shore wind farm for the AEP, main bearing lifetime, blade-
root flapwise DEL and torsional bearing DEL are shown in
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Figure 14. Number of start-up and shutdown events within wind
farm from SCADA data.

Figure 15. Example for percentage of start-up and shutdown events
per wind speed for Turbine 19 (marked with blue circle in Fig. 14).

Figs. 16 to 19. These results should be analyzed in compar-
ison with Figs. 5 and 6, which show the actual failure maps
over the wind farm.

For validation purposes, the surrogate model is used to es-
timate the power time series of each turbine for a time pe-
riod of 1 year under normal operation and compared against
the measured power from the SCADA system (see Fig. 20).
The coefficient of determination R2 of the power predictions
for the single turbines ranges between 0.89 and 0.93 (see
Fig. 21). The power for the northernmost turbine could not
be calculated since its measurement data were not available.
The AEP is calculated for each turbine showing a relative er-
ror between the measured and the estimated normal behavior
AEP between 0.1 % and 3.4 % (see Fig. 22). The mean rela-
tive error of the AEP estimation for all 29 turbines is 1.5 %.

4 Discussion

The results show that the ANN is able to accurately model
the simulated power, DEL and L10 with a coefficient of de-
termination R2 between 0.95 and 0.99. The validation of the
estimated time series against the measured 10 min SCADA
statistics shows that the power is modeled with a mean pre-

Figure 16. Estimated normalized AEP within wind farm for normal
operation including start-up and shutdown events.

Figure 17. Estimated normalized bearing lifetime within wind farm
for normal operation including start-up and shutdown events.

Figure 18. Estimated normalized blade-root flapwise DEL within
wind farm for normal operation including start-up and shutdown
events.

diction error of 1.5 % and an average R2 value of 0.91.
The time series predictions show a consistent offset at rated
power (see Fig. 20). A reason for the difference might be
that a generic model had to be used since the more accurate
model by the turbine manufacturer was not available. Fur-
thermore, higher uncertainty can be observed for the eastern
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Figure 19. Estimated normalized DEL of torsional moment on
main bearing within wind farm for normal operation including start-
up and shutdown events.

Figure 20. Comparison of measured power time series from
SCADA data (solid line) and predicted time series from the ANN
(dashed line) for an example turbine.

turbines, i.e., the turbines which are more often experiencing
wake conditions (see Fig. 21).

The surrogate modeling approach discussed in this study
includes several assumptions and uncertainties which are
propagated to the final predictions. The uncertainties in the fi-
nal model predictions depend on various matters, such as the
defined variable space, the wake model used, the selection
of environmental input parameters, assumptions for model-
ing the wake effects in the surrogate model and the surro-
gate model performance. Investigating different model se-
tups has shown that the results are sensitive towards the way
in which the wake is observed (i.e., size of wind direction
sector) and how wake is defined as input variables (i.e., con-
sidering upstream turbines resulting in most conservative es-
timates). Despite these uncertainties and data limitations, the
model is able to capture the relative differences in the power
and fatigue load accumulation over the wind farm well.

Figure 21. Coefficient of determination R2 of power time series
prediction under normal operation.

Figure 22. Relative error between measured AEP from SCADA
data and estimated AEP within wind farm.

The DEL predictions of the blade-root flapwise bending
moment and the torsional bearing moment in Figs. 18 and 19
seem to increase when moving east within the farm. This is
expected as those turbines are experiencing multiple wake
conditions with prevailing wind from southwest. The model
predictions in Fig. 16 show that the highest AEP is ob-
served at turbines positioned in the outer border of the wind
farm. This makes sense as well because these turbines are
more likely to experience free-stream conditions and there-
fore higher wind speeds as compared to inner positioned tur-
bines. Comparing the AEP map (Fig. 16) with the main bear-
ing lifetime predictions (Fig. 17), it can be seen that those
mentioned outer turbines with increased AEP are estimated
to have a shorter main bearing lifetime. This indicates the
possible correlation that turbines within a wind farm that are
located at positions of higher expected AEP might be prone
to experiencing earlier main bearing failures as compared to
the rest of the wind farm.

Although the lifetime L10 is a rather simplistic indicator
and misses additional condition information (e.g., about the
lubrication status), the lifetime estimations (Fig. 17) do not
contradict the observed main bearing lifetime (Fig. 6): while
turbines at the outer border of the wind farm are estimated
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to have a shorter main bearing lifetime, most turbines that
were observed to have a premature failure already within the
first 3 years of operation are positioned on the border as well,
with only one exception. A comparison of the observed fail-
ure rates (Fig. 5) with the DEL estimations does not show
any clear patterns or correlations, except that 2 out of 12 tur-
bines with higher failure rates are positioned in the region
of highest estimated blade-root DEL Mx and main bearing
DEL Mz. Furthermore, there does not seem to be an obvious
connection between the prevailing wind direction of around
240◦ (Fig. 10) and the failures.

The reference value by SKF for the required L10 lifetime
of a wind turbine roller bearing ranges between 30 000 and
100 000 h of operation (SKF, 2018), i.e., that 10 % of a suf-
ficiently large number of identical main bearings under iden-
tical conditions are expected to fail within the first 3.4 to
11.4 years of operation. Given that already 40 % of the tur-
bines of the studied wind farm have experienced a main bear-
ing failure by the sixth year of operation, the observations
might indicate an unexpectedly high failure rate. However,
when interpreting the results and drawing conclusions about
possible correlations, it is also important to keep in mind
the limitations of the model and data. Since the number of
recorded failures is rather limited, it might not be represen-
tative of the underlying main bearing failure statistics. More
observations are necessary in order to demonstrate a statisti-
cally significant difference in the averages of the main bear-
ing lifetime (mean TTF) per turbine or subgroup of turbines.
It becomes clear that more failure data from the same wind
farm as well as from other wind farms are needed to validate
and generalize the possible relationships. Furthermore, the
observed main bearing failures are not necessarily fatigue-
induced and might have been caused by other factors that are
not included in the analysis (e.g., faults during manufactur-
ing process). Finally, the case study shows model estimations
for a limited number of operational states, i.e., normal oper-
ation and start-up and shutdown behavior. Other operational
states or wind conditions could have an impact on the main
bearing reliability (i.e., parking, curtailment, wake steering,
wind gusts, faults, emergency shutdown).

5 Conclusions

This study presents a procedure that makes it possible to
correlate performance and loading conditions within a wind
farm with its component reliability in a computationally ef-
ficient way. It can be used for assessing the health state of
turbines in a wind farm and for getting a better understand-
ing and definition of how fatigue loading can lead to failures.
In the demonstration on an offshore wind farm with the focus
on observed main bearing failures, the following was found:

– The ANN is able to predict the electrical power, blade-
root flapwise DEL, torsional bearing DEL and main

bearing lifetime accurately with an R2 value of higher
than 0.95 compared to the simulated values.

– The validation of the estimated power time series
against the 10 min SCADA power signals shows that
the surrogate model is able to capture the power per-
formance relatively well with a 1.5 % average error in
the AEP prediction.

– Turbines at the border of the wind farm are estimated to
have a shorter bearing lifetime. These estimations do not
contradict the observed bearing lifetime from inspection
and maintenance reports.

– A clear connection between the load estimations and
failure observations could not be confirmed.

– Further future work can expand the case study to more
operating states which could affect the bearing reliabil-
ity, such as parking conditions. Also, more valuable in-
sights can be gained by including other types of data
sources, e.g., SCADA alarms.

Finally, the analysis stresses that more failure data are
needed in order to validate and generalize the suggested ap-
proach and its associated findings.

Data availability. The HAWC2 simulation database
used for training a surrogate model is available at
https://doi.org/10.11583/DTU.12245978 (Schröder, 2020). It
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post-processed simulation results.
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