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Abstract. Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine
load calculations despite its long research effort in the past. In the present paper, a new second-order dynamic
stall model is developed with the main aim to model the higher harmonics of the vortex shedding while retaining
its robustness for various flow conditions and airfoils. Comprehensive investigations and tests are performed at
various flow conditions. The occurring physical characteristics for each case are discussed and evaluated in the
present studies. The improved model is also tested on four different airfoils with different relative thicknesses.
The validation against measurement data demonstrates that the improved model is able to reproduce the dynamic
polar accurately without airfoil-specific parameter calibration for each investigated flow condition and airfoil.
This can deliver further benefits to industrial applications where experimental/reference data for calibrating the
model are not always available.

1 Introduction

An accurate prediction of wind turbine blade loads is influ-
enced by many parameters including 3D and unsteady ef-
fects. The first mainly occurs in the root and tip areas of the
blade due to radial flow and induced velocity influences, re-
spectively (Bangga, 2018). The latter can occur due to vari-
ation in the inflow conditions caused by yaw misalignment,
wind turbulence, shear and gusts, tower shadow, and aeroe-
lastic effects of the blade. The abovementioned phenomena
may result in dynamic stall (DS). Experimental studies (Mar-
tin et al., 1974; Carr et al., 1977; McAlister et al., 1978)
showed that the aerodynamic forces can differ significantly
in comparison to the static condition. DS is often initiated
by the generation of a leading edge vortex (LEV), which in-
creases the positive circulation effect on the airfoil suction
side, causing delayed stall (Bangga, 2019). This intense lead-
ing edge vortex is convected downstream along the airfoil
towards the trailing edge. At the same time, the lift force in-
creases significantly, and the pitching moment becomes more
negative compared to the static values. A significant drag in-
crease is observed at large angles of attack. An example is

shown in Fig. 1. Afterwards, a trailing edge vortex (TEV)
with opposite rotational direction than LEV is formed, which
pushes the leading edge vortex towards the wake area. This
onset may result in a significant drop of the lift coefficient
(CL) and can be dangerous for the blade structure itself, al-
though dynamic stall also generally enhances aerodynamic
damping.

To model the behavior of the airfoil under these situations,
semiempirical models can be used. The models are known
to produce reasonable results without any notable increase
in computational effort. Despite that, these models usually
cannot reproduce higher harmonics of the load fluctuations.
Furthermore, the applied constants shall be adjusted accord-
ing to the flow conditions and airfoils. Leishman and Bed-
does (LB) (Leishman and Beddoes, 1989) have developed a
model for dynamic stall combining the flow delay effects of
attached flow with an approximate representation of the de-
velopment and effect of separation (Larsen et al., 2007). This
model was developed for helicopter applications and there-
fore includes a fairly elaborate representation of the nonsta-
tionary attached flow depending on the Mach number and
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Figure 1. Typical dynamic stall behavior of S801 airfoil. Data obtained from Ramsay et al. (1996).

a rather complex structure of the equations representing the
time delays (Larsen et al., 2007). Hansen et al. (2004) simpli-
fied the model for wind turbine applications by removing the
consideration of compressibility effects and the leading edge
separation. The latter was argued because the relative thick-
ness of wind turbine airfoil is typically no less than 15 %.
This model was called the Risø model in Larsen et al. (2007).
Examples of the other models are given by Øye (Øye, 1991),
Tran and Petot (Tran and Petot, 1980) (ONERA model), and
Tarzanin (Boeing Vertol model) (Tarzanin, 1972). To better
model the vortex shedding characteristics at large angles of
attack, second-order dynamic stall models were introduced.
An example of this model was given by Snel (1997) which
makes use of the difference between the inviscid and viscous
static polar data as a main forcing term for the dynamic po-
lar reconstruction, in contrast to the LB model that uses the
changes of the angle of attack over the time. An improved
version of the Snel model was proposed recently by Adema
et al. (2020) to cover for the increased shedding effects in
the downstroke phase. All abovementioned models employ
the static polar data and dynamic flow parameters as the in-
put needed for the dynamic polar reconstruction. Then, the
models compute the dynamic force difference required for
the reconstruction process.

Although many studies have been dedicated to dynamic
stall modeling (Gupta and Leishman, 2006; Larsen et al.,
2007; Adema et al., 2020; Elgammi and Sant, 2016; Wang
and Zhao, 2015; Sheng et al., 2006; Galbraith, 2007; Sheng
et al., 2008), engineering calculations in the industry are still
relying on the very basic classical dynamic stall models such
as the Leishman–Beddoes and Snel models. The reason is
the simplicity to tune in the models for different airfoils and
for different flow conditions. Therefore, one major key for a
model to be used in industrial applications is robustness of
the model itself; i.e., the model is easy to apply with a small
number of well-defined user parameters. One of the purposes
of this paper is to document widely used dynamic stall mod-
els in research and industries. These include the first-order
LB model and the second-order Snel model. A very recently
improved Snel model according to Adema et al. (2020) will
also be evaluated. The mathematical formulations of these

models will be presented in this report. Weaknesses of exist-
ing dynamic stall modeling shall be identified, and possible
corrections to those limitations will be described. Finally, a
new second-order dynamic stall modeling will be proposed
that is able to model not only the second-order lift and drag
forces, but also the pitching moment along with calculation
examples in comparison to experimental data for different
airfoils and flow conditions.

The paper is organized as follows. Section 2 describes
the mathematical formulation of existing dynamic stall mod-
els and the new model developed in this work. Then, in
Sect. 3 assessments are carried out on the performance of
the second-order dynamic stall models in comparison with
measurement data. The new model is further tested at various
flow conditions and to examine its robustness on four differ-
ent airfoils without further calibrating the constants. Finally,
all results will be concluded in Sect. 4.

2 Mathematical formulations

In this section the mathematical formulations of each model
are described in detail. The reasons are mainly to provide
information on how each model was employed and to gain
deeper insights for further developing the new model. Note
that each existing model was developed by different au-
thors; thus different symbols and formulation methods were
adopted in those publications (Beddoes, 1982; Leishman,
1988; Leishman and Beddoes, 1989; Snel, 1997; Adema
et al., 2020). In this paper, all models are described in a con-
sistent way for clarity and for an easier interpretation and
implementation process.

2.1 Leishman–Beddoes model

The original Leishman–Beddoes model is composed of three
main contributions representing various flow regimes: (1) un-
steady attached flow, (2) unsteady separated flow and (3) dy-
namic stall. The present section will elaborate the mathemat-
ical description and its physical interpretation of each mod-
ule. Figure 2 illustrates several main parameters needed for
modeling the dynamic stall characteristics.
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Figure 2. Illustration of the main aerodynamic parameters needed
for modeling the dynamic stall characteristics.

2.1.1 Unsteady attached flow

In this module, the unsteady aerodynamic response of the
loads is represented by the time delay effects. The indical for-
mulas were constructed based on the work of Beddoes (1982)
and have been refined by Leishman (1988). The loads are as-
sumed to originate from two main sources: one for the initial
noncirculatory loading from the piston theory and another
for the circulatory loading which builds up quickly to the
steady-state value (Leishman and Beddoes, 1989). In the for-
mulation, the relative distance traveled by the airfoil in terms
of semi-chords is represented by s = 2V t/c, which can also
be used to describe the nondimensional time. Note that V ,
t and c are free-stream wind speed, time and chord length,
respectively. For a continuously changing angle of attack αn,
the effective angle of attack (αen ) can be represented as

αen = αn−Xn−Yn, (1)

where n is the current sample time. The last two terms de-
scribe the deficiency functions that are given by

Xn =Xn−1 exp
(
−b1β

21s
)
+A11αn exp

(
−b1β

21s/2
)
, (2)

Yn = Yn−1 exp
(
−b2β

21s
)
+A21αn exp

(
−b2β

21s/2
)
, (3)

where

1αn = αn+1−αn, (4)
1s = sn− sn−1. (5)

In these equations, b1, b2, A1 and A2 are constants. The vari-
able β represents the compressibility effects and is formu-
lated as β =

√
1−M2. Because information about the pre-

vious cycle is needed in the formulations, initializations are
required. The solution needs to develop for a certain time un-
til convergence of the resulting unsteady loads is obtained.

The circulatory normal force due to an accumulating series
of step inputs in angle of attack can be obtained using

CC
Nn =

dCN

dα

(
αen −α

INV
0

)
. (6)

The variable α0INV is the angle of attack for zero inviscid nor-
mal force. The original formulation of the model disregarded

the use of αINV
0 . However, this term is important when the

airfoil has a finite camber. This has been pointed out as well
by Hansen et al. (2004).

The noncirculatory (impulsive) normal force is obtained
by

CI
Nn =

4KαTI

M

(
1αn

1t
−Dn

)
, (7)

where TI is given by TI =Mc/V . The deficiency func-
tion Dn is given by

Dn =Dn−1 exp
(
−1t

KαTI

)
+

(
1αn−1αn−1

1t

)
exp

(
−1t

2KαTI

)
(8)

and 1t = tn− tn−1.
The total normal force coefficient under attached flow con-

ditions is given by the sum of circulatory and noncirculatory
components as

CP
Nn = C

C
Nn +C

I
Nn . (9)

2.1.2 Unsteady separated flow

Leishman and Beddoes (1989) stated that the onset of lead-
ing edge separation is the most important aspect in dynamic
stall modeling. The condition under which leading edge stall
occurs is controlled by a critical leading edge pressure coef-
ficient that is linked into the formulation by defining a lagged
normal force coefficient CP1

Nn as

CP1
Nn = C

P
Nn −Dpn , (10)

where Dpn is given by

Dpn =Dpn−1 exp
(
−
1s

Tp

)
+

(
CP

Nn −C
P
Nn−1

)
exp

(
−
1s

2Tp

)
. (11)

It has been investigated by Leishman and Beddoes (1989)
that the calibration time constant Tp is largely independent of
the airfoil shape. The substitute value of the effective angle of
attack incorporating the leading edge pressure lag response
may be obtained using

αfn = α
INV
0 +

(
CP1

Nn
dCN/dα

)
. (12)

In most airfoil shapes, the progressive trailing edge sep-
aration causes loss of circulation and introduces nonlinear
effects on the lift, drag and pitching moment, especially on
cambered airfoils. This is even more important for wind tur-
bine airfoils because the relative thickness is large. To derive
a correlation between the normal force coefficient and the
separation location (fn), the relation based on the flat plate
from Kirchhoff and Helmholtz can be used, which reads

CVISC
Nn =

dCN

dα

(
1+
√
fn

2

)2(
αn−α

VISC
0

)
. (13)
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The location of the separation point is usually obtained by
a curve-fitting procedure in literature. For example, Leish-
man and Beddoes (1989) proposed the following correlation:

fn =

 1− 0.3exp
(
αn−α1
S1

)
; αfn ≤ α1

0.04+ 0.66exp
(
α1−αn
S2

)
; αfn > α1

. (14)

The coefficients S1 and S2 define the static stall characteris-
tic while α1 defines the static stall angle. The derivation was
based on the NACA 0012, HH-02 and SC-1095 airfoils that
have a single break point of the static lift force coefficient.
Gupta and Leishman (2006) proposed the formulation for the
S809 airfoil as

fn =

 c1+ a1 exp(S1αn) ; αfn ≤ α1
c2+ a2 exp(S2αn) ; α1 < αfn < α2
c3+ a3 exp(S3αn) : αfn ≥ α2

(15)

that has two break points (α1 and α2) of the static lift force
coefficient, where c1, c2, c3, a1, a2 and a3 are constants.

The additional effects of the unsteady boundary layer re-
sponse may be represented by application of a first-order lag
to the value of fn to produce the final value for the unsteady
trailing edge separation point f2n (Leishman and Beddoes,
1989). This can be represented as

f2n = fn−Dfn , (16)

where Dfn is given by

Dfn =Dfn−1 exp
(
−
1s

Tf

)
+ (fn− fn−1)exp

(
−
1s

2Tf

)
, (17)

and Tf is a constant. Then, the unsteady viscous normal force
coefficient for each sample time can be obtained using

Cf
Nn =

dCN

dα

(
1+

√
f2n

2

)2(
αen −α

VISC
0

)
+CI

Nn . (18)

The tangential component of the force can be obtained by
(Leishman and Beddoes, 1989)

Cf
Tn =−η

dCN

dα
α2

en

√
f2n . (19)

Note that positive Cf
Tn is defined in the direction of the trail-

ing edge while η is a constant.
According to Leishman and Beddoes (1989) and Gupta

and Leishman (2006), a general expression for the pitching
moment behavior cannot be obtained from Kirchhoff the-
ory, and an alternative empirical relation must be formulated.
Gupta and Leishman (2006) proposed the following formu-
lation for the S809 airfoil

Cf
M = CM0 +

(
K0+K1

(
1− f2n

)
+K2 sin

(
πfm2n

))
; αn ≤ α2

CM0 +

(
K0+K3 exp

(
K4f

m
2n

))
; αn > α2.

(20)

where CM0 defines the moment coefficient at zero normal
force and K0 is the mean offset of the aerodynamic center
from the quarter chord position. K1, K2, K3, K4 and m are
constants.

2.1.3 Dynamic stall

The third part of the model describes the post-stall character-
istics where the vortical disturbances near the leading edge
become stronger. The effect of vortex shedding is given by
defining the vortex lift as the difference between the lin-
earized value of the unsteady circulatory normal force and
the unsteady nonlinear normal force obtained from the Kirch-
hoff approximation, which reads

CVn = C
C
Nn (1−Kn) , (21)

where Kn is given by

Kn =
1
4

(
1+

√
f2n

)2
. (22)

The normal force is allowed to decay, but it is updated with
a new increment in the normal force based on prior forcing
conditions, which can be defined as

CV
Nn = CV

Nn−1
exp

(
−
1s
Tv

)
+
(
CVn −CVn−1

)
exp

(
−
1s
2Tv

)
; if 0< τvn < Tvl

CV
Nn−1

exp
(
−
1s
Tv

)
; otherwise,

(23)

where Tv and Tvl are the vortex decay and center of pressure
travel time constants, respectively. The nondimensional vor-
tex time is given by (Pereira et al., 2011; Elgammi and Sant,
2016)

τvn =

{
τvn−1 + 0.451t

c
V ; if CP1

Nn > C
CRIT
N

0; if CP1
Nn < C

CRIT
N and 1αn > 0,

(24)

with CCRIT
N being the inviscid critical static normal force,

usually indicated by the break of the (viscous) moment polar
at the critical angle of attack αCRIT

n . This can be formulated
as

CCRIT
N =

dCN

dα

(
αCRIT
n −αINV

0

)
. (25)

The idealized variation in the center of pressure with the
convection of the leading edge vortex can be modeled by

CPvn =Kv

(
1− cos

(
πτv

Tvl

))
. (26)

The dynamic moment coefficient can be formulated as

CV
Mn
=−CPvnC

V
Nn . (27)
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Therefore, the total dynamic loading on the airfoil from all
modules can be written as

CD
Nn = C

f
Nn +C

V
Nn , (28)

CD
Tn = C

f
Tn , (29)

CD
Mn
= Cf

Mn
+CV

Mn
, (30)

and by converting these forces into lift and drag, one obtains

CD
Ln = C

D
Nn cosαn−CD

Tn sinαn, (31)

CD
Dn = C

D
Nn sinαn+CD

Tn cosαn. (32)

2.1.4 Note to present implementation

In Eqs. (14) and (15), a curve-fitting procedure is usually
adopted in literature. In this sense, the parameters or even
the formulation need to be adjusted when the airfoil is differ-
ent. Therefore, in the present implementation, the separation
point is derived directly from the static polar data using the
inversion of Eq. (13) as

fn =

2

√√√√ CVISC
Nn

dCN
dα

(
αfn −α

VISC
0

) − 1.0

2

. (33)

The same approach was used for example by Hansen et al.
(2004). This way, the user can avoid dealing with curve fit-
ting adjustment (which requires changes on the constants for
different airfoils and flow conditions) as long as the static
polar data are available.

In the original formulation, the pitching moment is also
obtained by a curve-fitting procedure in Eq. (20). Again, this
kind of approach is not straightforward as the user needs to
perform curve fitting of the polar data. In the present imple-
mentation, the moment coefficient is easily obtained from the
static viscous polar data by interpolating the value at the ef-
fective angle of attack, incorporating the leading edge pres-
sure time lag αfn , which reads

Cf
Mn
= CVISC

M
(
αfn
)
. (34)

In this sense, the moment coefficient can be reconstructed
easily without the need to adjust the parameters in advance,
minimizing the user error.

Furthermore, to avoid discontinuity in the downstroke
phase for Eq. (24), an additional condition is applied in the
present implementation as

τvn =

 τvn−1 + 0.451t
c
V ; if CP1

Nn > C
CRIT
N

0; if CP1
Nn < C

CRIT
N and 1αn ≥ 0

τvn−1 ; otherwise
. (35)

2.2 Snel second-order model

The history of the Snel second-order model (Snel, 1997)
dates back to 1993 based on Truong’s observation on dy-
namic lift coefficient characteristics (Truong, 1993). Truong

proposed that the difference between the static and dynamic
lift can be divided into two terms: the forcing frequency re-
sponse and the higher-frequency dynamics of a self-excited
nature. The total dynamic response of the airfoil is formu-
lated as

CD
Ln = C

VISC
Ln +1CD1

Ln +1C
D2
Ln , (36)

CD
Dn = C

VISC
Dn + , (37)

CD
Mn
= CVISC

Mn
+ , (38)

with D1 and D2 being the first- and second-order correc-
tions, respectively. The first correction is modeled using an
ordinary differential equation (ODE) by applying a spring-
damping like function as

τ1ĊD1
Ln +Kf10n1C

D1
Ln = F1n . (39)

The frequency of the first-order corrected lift follows the fre-
quency of the forcing term F1. This term is based on the time
derivative of the difference between the steady inviscid co-
efficient CINV

Ln and viscous lift coefficient CVISC
Ln of an air-

foil (1CINV
Ln ) as

F1n = τ1̇C
INV
Ln , (40)

1CINV
Ln = C

INV
Ln −C

VISC
Ln =

dCL

dα

(
αn−α

INV
0

)
−CVISC

Ln , (41)

with n and dCL/dα as the current sample time and inviscid
lift gradient, respectively. The time constant τ in the above
equation represents the time required for the flow to travel
half a chord distance as

τ =
c

2V
. (42)

The “stiffness” coefficient of the first-order term Kf10n can
be expressed as

Kf10n =


1+0.51CINV

Ln
8(1+60τ α̇n) ; if α̇nCINV

Ln ≤ 0
1+0.51CINV

Ln
8(1+80τ α̇n) ; if α̇nCINV

Ln > 0
. (43)

As shown in Faber (2018), the above equation becomes nu-
merically unstable if α̇n is large (increasing reduced fre-
quency above 0.1) for α̇nCINV

Ln ≤ 0. The reason is that the de-
nominator goes to zero and then negative, causing numerical
integration instability. Thus, based on pure intuition the de-
nominator value was set to a minimum of 2.0 in Faber (2018).
In the present implementation, a similar approach is adopted
but the limit differs. Instead, the minimum denominator value
is limited to 1×10−5, because it yields more physical results
for several cases tested by the authors.

To incorporate the higher-order frequency dynamics, a
second-order ODE is used to describe the second-order cor-
rection term. The general form may be written as

τ 21̈CD2
Ln +Kf21n1̇C

D2
Ln +Kf20n1C

D2
Ln = F2n (44)
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similar to the first-order correction. The frequency of the
higher-order dynamics is determined by the forcing term F2n ,
defined as

F2n = 0.1ks
(
−0.151CINV

Ln + 0.051̇CINV
Ln

)
. (45)

It is noted that the value 0.1 as a constant was chosen ac-
cording to Adema et al. (2020). This is not a fixed value and
can be adjusted based on the evaluated cases as seen in lit-
erature (Adema et al., 2020; Snel, 1997; Holierhoek et al.,
2013; Faber, 2018; Khan, 2018). Variable ks is a constant
with a typical value of 0.2. The spring coefficient is given by

Kf20n = k
2
s

[
1+ 3

(
1CD2

Ln

)2
][

1+ 3α̇n2
]

(46)

and the damping coefficient as

Kf21n = 60τks

[
−0.01

(
1CINV

Ln − 0.5
)
+ 2

(
1CD2

Ln

)2
]
; if α̇n > 0

2τks; if α̇n ≤ 0.
(47)

2.3 Adema–Snel second-order model

The recently developed model of Adema et al. (2020) im-
proves the original Snel model (Snel, 1997) in several as-
pects. Instead of using the lift coefficient (CL), the nor-
mal force coefficient (CN) is used, similar to the LB model
(Leishman and Beddoes, 1989). The total dynamic response
of the airfoil is formulated as follows.

CD
Nn = C

VISC
Nn +1C

D1
Nn +1C

D2
Nn (48)

CD
Tn = C

VISC
Tn + (49)

CD
Mn
= CVISC

Mn
+ (50)

The model introduces some modifications of the original
model in terms of (1) projected ks, (2) the first-order coeffi-
cient and (3) the second-order coefficient. The mathematical
formulation of the first-order term of the model is listed as

τ1ĊD1
Nn +Kf10n1C

D1
Nn = F1n , (51)

F1n = τ1̇C
INV
Nn , (52)

1CINV
Nn = C

INV
Nn −C

VISC
Nn =

dCN

dα

(
αn−α

INV
0

)
−CVISC

Nn , (53)

Kf10n =


1+0.21CINV

Nn
8(1+60τ α̇n) ; if α̇nCINV

Nn ≤ 0
1+0.21CINV

Nn
8(1+80τ α̇n) ; if α̇nCINV

Nn > 0,
(54)

and for the second-order correction term as

τ 21̈CD2
Nn +Kf21n1̇C

D2
Nn +Kf20n1C

D2
Nn = F2n , (55)

F2n = 0.01ks
(
−0.041CINV

Nn + 1.5τ1̇CINV
Nn

)
, (56)

Kf20n = 10(ks sinαn)2
[

1+ 3
(
1CD2

Nn

)2
][

1+ 2802τ 2α̇n
2
]
, (57)

Kf21n =


60τks

[
−0.01

(
1CINV

Nn − 0.5
)
+ 2

(
1CD2

Nn

)2
]
;

if α̇n > 0

60τks

[
−0.01

(
1CINV

Nn − 0.5
)
+ 14

(
1CD2

Nn

)2
]
;

if α̇n ≤ 0.

(58)

One may notice that Eq. (56) contains τ in the second term
of the right-hand side (RHS). This is intended to remove the
dependency of the model on the velocity as the input parame-
ter. The other main difference with the original model is also
observed in Eq. (57), where ks is projected by sinαn. At last,
the downstroke motion of the second-order term of Eq. (58)
is modified to enable vortex shedding effects.

To sum up the characteristics of the above-discussed state-
of-the-art dynamic stall models, Table 1 lists the properties of
each model and in which aspects the model can be improved
further.

2.4 New second-order IAG model

The proposed IAG model is developed based on knowledge
gained from four different models: Leishman–Beddoes, Snel,
Adema–Snel and ONERA (Tran and Petot, 1980; Dat and
Tran, 1981; Petot, 1989) models with modifications. Similar
to the modern models like those from Snel (and ONERA)
and its derivatives, the present model is constructed by two
main terms: the first-order and second-order corrections. The
total dynamic response of the airfoil is formulated as

CD
Ln = C

D1
Ln +1C

D2
Ln , (59)

CD
Dn = C

D1
Dn +1C

D2
Dn , (60)

CD
Mn
= CD1

Mn
+1CD2

Mn
, (61)

with D1 and D2 being the first- and second-order correc-
tions, respectively. Below the description of the modifica-
tions made for the new model will be discussed in detail.

2.4.1 First-order correction

Based on the Hopf bifurcation model of Truong (1993) that
used the LB model as the starting point of the first-order cor-
rection, the present model operates similarly. Despite that,
the LB model is not transferred into the state-space for-
mulation, but it is retained as the indical formulation. The
model applies the superposition of the solution using a finite-
difference approximation to Duhamel’s integral to construct
the cumulative effect on an arbitrary time history of angle of
attack. The LB model described in Sect. 2.1.1 to 2.1.3 will
be used with the following modifications.
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Table 1. Properties of the discussed dynamic stall models.

Model name First or second Higher Model Model Model
order harmonics CL CD CM

Leishman–Beddoes first order – x x x
Snel second order x x – –
Adema–Snel second order x x x –

In the above LB model, predictions for drag are not accu-
rate as will be shown in Sect. 3.1. This inaccuracy lies in the
determination of η in Eq. (19) for the tangential force com-
ponent because drag is more sensitive to tangential force than
the lift force is. Also, to maintain simplicity, parameter η is
removed, and the tangential force is obtained from the static
data at the time-lagged angle of attack αfn by

Cf
Tn = C

VISC
T

(
αfn
)
. (62)

If one uses this formulation directly, at some point drag still
becomes lower than the static drag value by a significant
amount. By evaluating the experimental data for several air-
foils and various flow conditions, this is not physical at small
angles of attack, especially in the downstroke regime, where
it usually just returns to the static value. In fact, those exper-
imental data infer that strong drag hysteresis occurs only at
high angles of attack beyond stall. Similarly, in the upstroke
regime the drag value increases only slightly (approximately
only 20 %). In Fig. 3, one can see that drag hysteresis occurs
when ζn.ζv, with

ζn =
1
π

dCN

dα

(
1+
√
fn

2

)2

, (63)

and ζv is a constant with a value of 0.76. Based on these
observations, a simple drag limiting factor is adopted when
ζn ≥ 0.76 as

CD
Dn =


1.2CVISC

Dn ; if CD
Dn > 1.2CVISC

Dn

and
(
CP

Nn −C
P
Nn−1

)
≥ 0.0

CVISC
Dn ; if

(
CP

Nn −C
P
Nn−1

)
< 0.0

CD
Dn; otherwise.

(64)

Note that for the purpose of numerical implementation, it is
always recommended in practice to adopt relaxation to avoid
any discontinuity which may present in the above formula-
tion. Furthermore, the value of ζv may be chosen differently
for different airfoils depending on the vortex lift influence
on drag. Further studies on this aspect are encouraged. The
effects of these modifications are displayed in Fig. 4.

It will also be shown in Sect. 3.1 that predicting moment
coefficient directly from the static polar data by means of the
time-lagged angle of attack has its drawback in the correct
damping effect calculation. One may obtain better results by
using the “fitting function” as in Eq. (20) instead of using

Figure 3. Relation between drag hysteresis in the stall regime with
weighted separation parameter ζ for four airfoils. From (a) to (d):
S801 (13.5 %), NACA4415 (15 %), S809 (21 %) and S814 (24 %).

Eq. (34). However, this limits the usability for different air-
foils, since the fitting has to be done again for each individual
airfoil. For wind turbine simulations, this is fairly impractical
because a wind turbine blade is usually constructed by sev-
eral different airfoils, not to mention the interpolated shapes
in between each airfoil position. To solve for this issue, a
relatively simple approach is introduced by applying a time
delay to the circulatory moment response as

CC
Mn
=

CC
Mn−1

exp
(
−
1s

T U
M

)
−CPfn

(
CVn −CVn−1

)
exp

(
−

1s

2T U
M

)
;

if τvn < Tvl and 1αn ≥ 0
CC

Mn−1
exp

(
−
1s

T D
M

)
−CPfn

(
CVn −CVn−1

)
exp

(
−

1s

2T D
M

)
;

if 1αn < 0
CC

Mn−1
; otherwise

(65)

where

CPfn =K
C
f

dCN

dα

(
αCRIT
n −αINV

0

)
, (66)
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Figure 4. Drag reconstruction in comparison with the experimental
data for the S801 airfoil (Ramsay et al., 1996) applying (a) Eq. (19),
(b) Eq. (62), and (c) Eqs. (62) and (64).

Figure 5. Moment reconstruction in comparison with the exper-
imental data for the S801 airfoil (Ramsay et al., 1996) applying
(a) Eq. (34) and (b) Eq. (65).

with KC
f , T U

M and T D
M being constants relatively insensitive

to airfoils. Furthermore, the second condition of Eq. (35)
is modified to avoid discontinuity which occurs at a large
reduced frequency (e.g., k = 0.2) for any LB-based models
without recalibration of the time constant as

τvn =

 τvn−1 + 0.451t
c
V ; if CP1

Nn > C
CRIT
N

τvn−1 exp(−1s); if CP1
Nn < CNCRIT and 1αn ≥ 0

τvn−1 ; otherwise.
(67)

The effects of these modifications are displayed in Fig. 5.

The total first-order dynamic response of the airfoil is for-
mulated as

CD1
Nn = C

f
Nn +C

V
Nn , (68)

CD1
Tn = C

f
Tn , (69)

CD1
Mn
= Cf

Mn
+CV

Mn
+CC

Mn
, (70)

where the definition and description of each variable were
given in Sect. 2.1 for the LB model. Thus the first-order lift
and drag responses can be obtained by

CD1
Ln = C

D1
Nn cosαn−CD1

Tn sinαn, (71)

CD1
Dn = C

D1
Nn sinαn+CD1

Tn cosαn. (72)

2.4.2 Second-order correction

The second-order correction takes the form of the non-linear
ordinary differential equation according to the second-order
correction of the Snel (Snel, 1997) and Adema–Snel (Adema
et al., 2020) models. Generally, the basis of implementation
of the present model mostly uses the Adema–Snel (Adema
et al., 2020) model where the normal force is used instead of
the lift force as for the original Snel model (Snel, 1997) as

1̈CD2
Nn +Kf21n1̇C

D2
Nn +Kf20n1C

D2
Nn = F2n . (73)

This way, shedding effects apply not only to the lift force but
also to the drag force. Note that τ is not present in Eq. (73) in
contrast to the original formulation in Eqs. (44) and (55). The
equation is changed because the time derivatives in the above
equation are no longer with respect to time but to s = 2V t/c,
similar to the ONERA model (Tran and Petot, 1980; Dat and
Tran, 1981; Petot, 1989). This is done to nondimensionalize
the equations.

In Eq. (57), the ks was projected as a function of the angle
of attack by sinαn. This modification causes problems when
the hysteresis effect takes place in both positive and nega-
tive angles because Eq. (57) will be zero and then negative,
causing instability of the ODE. Thus, the original form of the
Snel model (Snel, 1997) is retained in the present model, but
the constant is modified as

Kf20n = 20k2
s

[
1+ 3

(
1CD2

Nn

)2
][

1+ 3α̇n2
]
. (74)

The idea for the downstroke damping as in Eq. (58) is
adopted in the present model; the following form and con-
stants are used:

Kf21n =



150ks

[
−0.01

(
1CINV

Nn − 0.5
)
+ 2

(
1CD2

Nn

)2
]
;

if α̇n > 0

30ks

[
−0.01

(
1CINV

Nn − 0.5
)
+ 14

(
1CD2

Nn

)2
]
;

if α̇n ≤ 0 and αn ≥ αCRIT
n

0.2ks;

if α̇n ≤ 0 and αn < αCRIT
n .

(75)
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Note again that τ is not present in the above equation. The
original formulation in Eq. (58) replaces the damped oscilla-
tor when α̇n ≤ 0 for a self-excited oscillator of Van der Pol
type with more damping. This is in contrast with the imple-
mentation done in Truong (2016), where the self-excited os-
cillator is only replaced by the damped oscillator, when the
flow is reattached on the return cycle. Under such circum-
stances, the oscillatory behavior still subsists in the return
cycle, albeit with smaller amplitude. To accommodate this
aspect, the last term of Eq. (75) is applied when the angle is
smaller than αCRIT

n . As for the forcing term, the original form
of the Snel model (Snel, 1997) is adopted as

F2n = 0.5ks
(
−0.151CINV

Nn + 0.051̇CINV
Nn

)
. (76)

To facilitate the inclusion of the higher harmonic effects for
the pitching moment, the idealized center of pressure ob-
tained in the first-order correction given in Eq. (26) is passed
into the second-order model. Thus, the dynamic moment re-
action takes the form

1CD2
Mn
=−CPvn1C

D2
Nn . (77)

Regarding the tangential force, a similar assumption is made
as in Eq. (49) where the influence of1CD2

Tn is neglected in the
formulation, but 1CD1

Tn is considered in the first-order term
correction described above. Finally, the second-order term of
the lift (1CD2

Ln ) and drag (1CD2
Dn ) can be calculated easily.

The effects of the second-order term are displayed in Fig. 6.

2.5 Constants applied for the investigated dynamic stall
models

The following constants are applied in the implemented dy-
namic stall models. These values are kept constant through-
out the paper. The constants for the Leishman–Beddoes
model and for the proposed IAG model are given in Tables 2
and 3, respectively. For any model developed based on the
Leishman–Beddoes type, the critical angle of attack plays
a major role. This can be obtained as the angle where the
viscous pitching moment breaks or when the drag increases
significantly (or the stall angle). The applied critical angles
are given in Table 4. The validation is done by comparing
the calculations with experimental data obtained at The Ohio
State University for the S801 airfoil (13.5 % relative thick-
ness) (Ramsay et al., 1996), NACA4415 airfoil (15 % rela-
tive thickness) (Hoffman et al., 1996), S809 airfoil (21 % rel-
ative thickness) (Ramsay et al., 1995) and S814 airfoil (24 %
relative thickness) (Janiszewska et al., 1996). All selected
test cases for the airfoils are employed with a leading edge
grit (turbulator) to enable the “soiled” effects on a wind tur-
bine blade at a Reynolds number of around 750 K. Note that
these polar data are different from those used for example by
Sheng et al. (2010) where the natural transition cases were
taken. Therefore, the critical angles of attack are also differ-
ent. The results of the studies are presented in the following
sections.

Figure 6. Airfoil response reconstruction in comparison with the
experimental data for the S801 airfoil (Ramsay et al., 1996) apply-
ing only the first-order correction and with inclusion of the second-
order term. (a) Lift, (b) drag and (c) pitching moment.

3 Results and discussion

The three state-of-the-art dynamic stall models reviewed
above (Leishman–Beddoes, Snel, Adema–Snel) have been
used as a basis for examining the dynamic loads of four
different pitching airfoils at various flow conditions. Expe-
rience gained from those models is used to formulate a new
second-order dynamic stall model, namely the IAG model,
by evaluating the weakness and strength of each model. The
presented second-order models need to solve a set of differ-
ential equations. For this purpose, the Euler–Heun forward
integration method is used.

3.1 Comparison against experimental data

This section compares the predicted dynamic forces and the
measurement data. For a fair comparison, all models are as-
sessed with the same time step size of 1t = T/1440, with
T being the pitching period. The evaluations are performed
on the S801 airfoil at k = 0.073. The comparison of each
model is shown in Figs. 7 to 9 for the Snel, Adema and IAG
models, respectively. Note that the constants of the other ex-
isting dynamic stall models are taken directly from literature
without further calibration for the S801 airfoil. Therefore, it
is already expected that their performance will not be op-
timal. The main purpose of the comparison is not to study
their accuracy but to analyze the robustness of each model
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Table 2. Constants applied for the Leishman–Beddoes model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv η

0.3 0.7 0.14 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.95

Table 3. Constants applied for the IAG model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv KC
f T U

m T D
m ζv

0.3 0.7 0.7 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.1 1.5 1.5 0.76

Table 4. Critical angle of attack (αCRIT
n ) applied for the Leishman–

Beddoes and IAG models.

S801 NACA4415 S809 S814

15.1◦ 10◦ 14.1◦ 10◦

Figure 7. Dynamic force reconstruction using the Snel model in
comparison with the measurement data (Ramsay et al., 1996) for
1t = T/1440. S801 airfoil, k = 0.073, α = 20◦ and 1α = 10◦.

for a different airfoil without tuning the constants. On the
other hand, the constants for the IAG model in Table 3 were
obtained using the S801 airfoil. To enable a fair assessment
of the model robustness, the IAG model will also be used to
reconstruct the dynamic polar data of four airfoils with dif-
ferent relative thicknesses without changing the constants in
Sect. 3.6.

The original Snel models cannot predict the drag and mo-
ment coefficients in the original formulations. Thus, only the
static polar data are shown. The Snel model actually shows
an acceptable accuracy even though the constants are taken
as found in literature. The higher harmonic effects are unfor-

Figure 8. Dynamic force reconstruction using the Adema model in
comparison with the measurement data (Ramsay et al., 1996) for
1t = T/1440. S801 airfoil, k = 0.073, α = 20◦ and 1α = 10◦.

tunately not captured by this model. This is further refined
by the Adema model which was developed as an improve-
ment for the Snel model. The model performs fairly well for
the lift and drag predictions, though the drag value at small
angles of attack is a bit off. The pitching moment predic-
tion is also not included in its formulations. These disadvan-
tages are better treated in the proposed IAG model. Not only
the prediction of the lift coefficient but also the accuracy of
drag prediction are improved significantly. The modifications
described in Sect. 2.4 result in the improvement at low and
high angle-of-attack regimes. The model is also able to re-
construct the pitching moment polar accurately, which is im-
portant for aeroelastic calculations of wind turbine blades.

For the following sections, the proposed IAG model will
be tested under various flow conditions and for several air-
foils at various relative thicknesses in comparison with mea-
surement data. Note that these calculations are performed
without changing the constants to assess the robustness of
the model at different flow conditions.
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Figure 9. Dynamic force reconstruction using the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
1t = T/1440. S801 airfoil, k = 0.073, α = 20◦ and 1α = 10◦.

3.2 Effects of time signal deviation

The actual pitching motion within The Ohio State Univer-
sity (OSU) measurement differs slightly from the intended
motion. The actual time series of the angle of attack is in-
cluded in the experimental data (Ramsay et al., 1996; Hoff-
man et al., 1996; Ramsay et al., 1995; Janiszewska et al.,
1996). To assess the effects of this time signal deviation on
the aerodynamic response, the calculations using these time
signal data were performed applying the IAG model. The re-
sults are compared with the experimental data and the re-
sults of the IAG model presented in Sect. 3.1. Note that these
time signal data are fairly coarse and can cause problems for
second-order dynamic stall models because the gradient of α
change can be extremely large. To cover for this issue, the
time signal is interpolated in between each available point
using a third-order cubic-spline interpolation. The time sig-
nals are discretized by 1t = T/1440 over a single pitching
period. The first period of oscillation is used for initializa-
tion of the time integration; thus a constant angle of attack is
applied as shown in Fig. 10.

Figure 11 presents the influence of the time signal vari-
ation on the aerodynamic performance in terms of CL, CD
and CM. TS labels the exact time signals in the experimental
campaign. Although the time signal difference has almost no
influence on the global prediction characteristics, some de-
viation from the idealized sinusoidal motion can be noticed
clearly. For example, one can see the increased lift buildup
in the upstroke regime before stall and the location of the lift
stall. Some deviations in the drag and pitching moment co-
efficients are observed as well. For the rest of the paper, the
prediction procedure using the actual time signal from the

Figure 10. Comparison of the time series of the idealized sinusoidal
angle of attack to the exact signals in the experimental campaign for
the S801 airfoil, k = 0.073, α = 20◦ and 1α = 10◦.

experimental data is used for the best consistency with the
experimental campaign.

3.3 Performance of the model for different mean angles
of incidence

In this section, the effects of the mean angle of attack are
evaluated. Three different angles of attack at the same inflow
conditions are selected for this purpose. These are α = 8,
14 and 20◦. Note that these mean angles of attack are only
approximations since the actual time signal data from the ex-
perimental campaign are used. The selected mean angles rep-
resent the regime of attached flow, partly separated flow and
fully separated flow conditions. These are helpful to assess
the model performance under various flow situations.

Figure 12 presents the results for the lift coefficient under
these three investigated mean angles of attack. The model
performs very well for these different cases. The maximum
lift is a bit overestimated in the model for the lowest α, but in
general all unsteady lift characteristics in the measurement
data are reproduced in a sound agreement with the experi-
mental data. A similar behavior is shown for the drag pre-
diction depicted in Fig. 13. The proposed model captures the
increased drag effect and its shedding characteristics well.
The simple modifications applied in Sect. 2.4 result in a good
prediction of the drag coefficient compared with the experi-
mental data. In Fig. 14, the prediction for pitching moment
is shown. Here the predicted moment coefficient is in a good
agreement with the measured values.

3.4 Performance of the model for different reduced
frequencies

The effects of pitching frequency on the aerodynamic re-
sponse will be discussed in this section. Three different re-
duced frequencies are examined, namely k = 0.036, 0.073
and 0.111. The stall regime is shown here, where the pre-
diction is the most challenging. The actual time signals as of
the measurement campaign are used, following the procedure
described in Sect. 3.2.

https://doi.org/10.5194/wes-5-1037-2020 Wind Energ. Sci., 5, 1037–1058, 2020



1048 G. Bangga et al.: An improved second-order dynamic stall model for wind turbine airfoils

Figure 11. Dynamic force reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for1t = T/1440
using the actual angle of attack in the experimental campaign. TS labels the exact time signals in the experimental campaign. S801 airfoil,
k = 0.073, α = 20◦ and 1α = 10◦.

Figure 15 displays the results for the dynamic lift coef-
ficient response. The lowest reduced frequency of 0.036 is
dominated by the viscous effects. It represents the case where
the “delayed” angle-of-attack response is the weakest. It can
be seen that the maximum attained lift coefficient increases
with increasing k. The gradient of the lift polar in the up-
stroke and downstroke phases also increases as well. These
characteristics are present in both experimental data and pre-
dictions delivered by the IAG model. A similar behavior is
also displayed in drag and pitching moments in Figs. 16
and 17, respectively. It is obvious that stall occurs much ear-
lier for a smaller k value. One can see that the maximum
amplitude of all three force components increases with in-
creasing k. This can be dangerous for the structural stability,
since the amplitude determines the fatigue loads.

To better investigate the effects of k, the IAG model is
used to reconstruct the dynamic polar data at various k val-
ues by applying an idealized sinusoidal motion as presented
in Fig. 18. Only the last DS cycle is shown for clarity of
the observation. While the maximum amplitude of all three
force components at low-frequency domains increases with
increasing k (blue and green markers), the amplitudes for all
three forces at high-frequency domains show different char-
acteristics as shown in the Fourier transformation in Fig. 19,

albeit with much smaller values. The higher harmonic ampli-
tudes are attributed to flow separation effects, while for low-
frequency domains are driven by the pitching motion (i.e.,
external unsteadiness or inflow).

3.5 Performance of the model for different pitching
amplitudes

In this section, the effects of pitching amplitude on the aero-
dynamic response of a pitching airfoil are investigated. The
mean angle of attack is fixed at α = 20◦. Note again that
α is only an approximation because the actual time signal
data from the measurement campaign are applied. This large
mean angle of attack is purposely selected because the post-
stall characteristic is of interest and is well known for its vio-
lent vibration, even for the static condition. The small ampli-
tude in this case means that the whole pitch oscillation occurs
within the stall regime.

Figures 20 to 22 display the dynamic force responses due
to pitching motion of the airfoil predicted by the IAG model
in comparison with the experimental data. The model accu-
rately reconstructs the dynamic forces despite the predicted
case being challenging within the post-stall regime. Interest-
ing to note is that the small-pitching-amplitude case induces
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Figure 12. Lift reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for 1t = T/1440
using the actual angle of attack in the experimental campaign at
various α values. From (a) to (c): α = 8, α = 14 and α = 20◦. S801
airfoil, k = 0.073 and 1α = 10◦.

Figure 13. Drag reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for 1t = T/1440
using the actual angle of attack in the experimental campaign at
various α values. From (a) to (c): α = 8, α = 14 and α = 20◦. S801
airfoil, k = 0.073 and 1α = 10◦.

stronger shedding effects for lift than the larger-amplitude
case. This can be explained as follows. As described by
Leishman in his papers (Beddoes, 1982; Leishman, 1988;
Leishman and Beddoes, 1989), the airfoil sees a lagged force
response compared to the imposed disturbance. Therefore,

Figure 14. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
1t = T/1440 using the actual angle of attack in the experimental
campaign at various α values. From (a) to (c): α = 8, α = 14 and
α = 20◦. S801 airfoil, k = 0.073 and 1α = 10◦.

Figure 15. Lift reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for 1t = T/1440
using the actual angle of attack in the experimental campaign at
various k values. From (a) to (c): k = 0.036, k = 0.073 and k =
0.111. S801 airfoil, α = 20 and 1α = 10◦.

in his model, a time-lagged angle of attack is introduced
as the “effective” angle actually seen by the airfoil section.
When the pitching motion takes place partly within the fully
separated region (in the static case) and partly in the at-
tached/partly separated flow region, the airfoil still sees the
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Figure 16. Drag reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for 1t = T/1440
using the actual angle of attack in the experimental campaign at
various k values. From (a) to (c): k = 0.036, k = 0.073 and k =
0.111. S801 airfoil, α = 20 and 1α = 10◦.

Figure 17. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
1t = T/1440 using the actual angle of attack in the experimental
campaign at various k values. From (a) to (c): k = 0.036, k = 0.073
and k = 0.111. S801 airfoil, α = 20 and 1α = 10◦.

lower angle (where the flow is still attached) even though the
pitching motion already reaches the post-stall regime. This
effect stops/decreases when the effective angle is larger than
the critical angle defined in Table 4. As the critical angle for
the S801 airfoil is defined at 15.1◦, the lower-amplitude case
is fully operating within the stall regime, where the attached
flow effect is not present.

3.6 Performance of the model for different airfoils

In this section, the performance and robustness of the pro-
posed IAG model are assessed for airfoils with different rel-
ative thickness. All model constants in Table 3 remain the
same for all calculations. The difference from one airfoil cal-
culation to the other lies only in the critical angle of attack
value as shown in Table 4. The value was obtained simply
by looking at the static polar data where the viscous pitching
moment breaks or when the drag increases significantly.

Despite the increased airfoil thickness from 13.5 % to
24 %, Figs. 23 to 25 demonstrate that the reconstructed dy-
namic forces are in a good agreement with the experimental
data, not only for the general trend but also the higher har-
monic effects. As is also the case for the Leishman–Beddoes
model, it is important to select the appropriate value for the
critical angle of attack. The simple approach used in the
present paper has shown its usefulness and potentially re-
duces the complexity of parameter tuning for industrial appli-
cations. Elgammi and Sant (2016) for example defined two
different critical angles of attack, one for CN and the other
for CT that were shown to improve the prediction accuracy.
Although their attempt might be beneficial, this is not fol-
lowed in this work because one main aim of the studies is
to reduce parameter tuning required for one case to the other
cases.

3.7 Predictions of the center of pressure

To further complement the analyses conducted in Sect. 3.6,
the location of the actual pressure center is calculated in this
section as

Xp =−
CM

CL
, (78)

which indicates the distance of the pressure point to the quar-
ter chord position where CM is defined.

A correct location of the pressure point is important for de-
termining the stability on aeroelastic simulations of wind tur-
bine blades. The results of the calculations both for the exper-
imental data and for the proposed IAG model are presented
in Fig. 26 for all four investigated airfoils both as time series
and as the polar plot. It can be seen clearly that the agreement
between the experimental data and the present predictions is
excellent for all investigated airfoils.
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Figure 18. Effects of k on the aerodynamic response by the IAG model for 1t = T/1440. S801 airfoil, α = 20 and 1α = 10◦. (a–c) Polar;
(d–f) time series.

Figure 19. Fourier transformation of the predicted forces presented in Fig. 18. fs = f/f0 with f0 being the pitching frequency.

Figure 20. Lift reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for 1t = T/1440
using the actual angle of attack in the experimental campaign at
various1α values. (a)1α = 5.5◦; (b)1α = 10◦. S801 airfoil, k =
0.073 and α = 20◦.

3.8 L2 norm of error analyses

Holierhoek et al. (2013) introduced a way of quantifying the
absolute error between the experimental data and modeled
lift coefficient. The general formulation reads

Figure 21. Drag reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for 1t = T/1440
using the actual angle of attack in the experimental campaign at
various1α values. (a)1α = 5.5◦; (b)1α = 10◦. S801 airfoil, k =
0.073 and α = 20◦.

L
φ
2 =

√√√√ 1
N

N∑
i

(
φmod
i −φ

exp
i

)2
, (79)
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Figure 22. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
1t = T/1440 using the actual angle of attack in the experimen-
tal campaign at various 1α values. (a) 1α = 5.5◦; (b) 1α = 10◦.
S801 airfoil, k = 0.073 and α = 20◦.

Figure 23. Lift reconstruction by the IAG model in compari-
son with the measurement data (Ramsay et al., 1996; Hoffman
et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996) for
1t = T/1440 using the actual angle of attack in the experimen-
tal campaign for different airfoils. From (a) to (d): S801 (13.5 %),
NACA4415 (15 %), S809 (21 %) and S814 (24 %). k = 0.073, α =
20◦ and 1α = 10◦.

with φ being the variable of interest, i the current sample
and N the total number of samples. In their paper, however,
only lift was considered. Here all three force components will
be shown for four different airfoils. Figure 27 displays the
quantified error for two different flow categories, attached
and deep stall. The time series of the angle of attack was
obtained from the measured data by applying a third-order
cubic-spline interpolation in between each available point.
One can see that generally the attached flow case is predicted
very well, while the error increases as the flow condition be-
comes more complicated. Interestingly, especially for lift, it
seems that the error decreases with increasing airfoil thick-

Figure 24. Drag reconstruction by the IAG model in compari-
son with the measurement data (Ramsay et al., 1996; Hoffman
et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996) for
1t = T/1440 using the actual angle of attack in the experimen-
tal campaign for different airfoils. From (a) to (d): S801 (13.5 %),
NACA4415 (15 %), S809 (21 %) and S814 (24 %). k = 0.073, α =
20◦ and 1α = 10◦.

Figure 25. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996; Hoff-
man et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996)
for 1t = T/1440 using the actual angle of attack in the experimen-
tal campaign for different airfoils. From (a) to (d): S801 (13.5 %),
NACA4415 (15 %), S809 (21 %) and S814 (24 %). k = 0.073, α =
20◦ and 1α = 10◦.
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Figure 26. Center of pressure reconstruction in comparison with the measurement data by the IAG model for1t = T/1440 using the actual
angle of attack in the experimental campaign for different airfoils. From top to bottom: S801 (13.5 %), NACA4415 (15 %), S809 (21 %) and
S814 (24 %). k = 0.073, α = 2◦0 and 1α = 10◦.

ness. The reason for the larger error obtained for the thinner
airfoil is attributed to the complex characteristics of the lead-
ing edge stall, causing severe load variations, especially with
increasing angle of attack. Thus, it makes the prediction more
challenging. Furthermore, the quantification of the error was
also performed on two other dynamic stall models, Snel and
Adema–Snel. The same approach for the angle of attack sig-
nal was applied. One can see that the IAG model shows its
improved prediction in particular for the deep-stall case for
all three force components.

4 Conclusions

Comprehensive studies on the accuracy of several state-of-
the-art dynamic models to predict the aerodynamic loads

of a pitching airfoil have been conducted. From the stud-
ies, the strength and weaknesses of each model were high-
lighted. This information was then transferred to develop a
new second-order dynamic stall model proposed in this pa-
per. The new model improves the prediction for the aerody-
namic forces and their higher-harmonic effects due to vor-
tex shedding, developed for robustness to improve its us-
ability in practical wind turbine calculations. Details on the
model characteristics, modifications and treatment for nu-
merical implementation were summarized in the present pa-
per. The studies were conducted by examining the influence
of the time step size, time signal deviation, mean angle of at-
tack, reduced frequency, pitching amplitude and variation in
the airfoil thickness. Several main conclusions can be drawn
from the work.
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Figure 27. Quantified L2 norm of error with respect to the measurement data for four airfoils. (a–c) Attached flow case (k = 0.073, α = 8◦,
1α = 5.5◦); (d–f) deep-stall case (k = 0.073, α = 20◦, 1α = 10◦).

– The general characteristics of the polar data can be pre-
dicted by all investigated dynamic stall models. De-
spite that, only the Adema model and the present IAG
model are able to demonstrate the higher harmonic ef-
fects among the three investigated models.

– The exact time signal imposed based on the measure-
ment campaign improves the prediction accuracy of the
IAG model in comparison with the idealized sinusoidal
motion.

– The dynamic forces reconstructed by the IAG model are
in a sound agreement with the experimental data under
various flow conditions by variation in α, k and1α and
for four different airfoils by changing only the values of
the critical angle of attack.

– The amplitudes at low-frequency domains increase with
increasing k and can be attributed to the effects of
inflow/external unsteadiness. The amplitudes at high-
frequency domains decrease with increasing k values,
which are driven by flow separation effects.

– When the airfoil operates at a high α within the stall
regime, a small1α leads to increased vibrations for lift.
The opposite is true for the pitching moment.

5 Recommendations for future work

The present paper evaluates the newly developed IAG model
under various flow conditions for four different airfoils. The
following aspects are encouraged for future work.

– In the present studies, the assessment was mainly car-
ried out for the S801 airfoil having a relative thickness
of 13.5 %. This airfoil is mainly characterized by lead-
ing edge separation, which is very challenging for vali-
dating the accuracy of a dynamic stall model. However,
typical modern wind turbine blades usually employ air-
foils with no less than 18 % relative thickness and a
much higher Reynolds number. Therefore, future inves-
tigations shall be done for thicker airfoils at various flow
conditions as well.

– The above statement is also true for the current available
experimental data. Therefore, experiments on dynamic
stall for thick airfoils at a much higher Reynolds number
are encouraged.

– Three-dimensional effects (Himmelskamp or tip loss ef-
fects) for a rotating blade can alter the loads signif-
icantly even under a steady inflow condition. Further
consideration and examination of the model under this
condition shall be carried out.

– Further tests and recalibration of the model for deep-
stall conditions at extremely large angles of attack are
encouraged, which can be relevant for a turbine in stand-
still.
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Appendix A: List of symbols

Variables
s Nondimensional time (s)
V Incoming wind speed (m s−1)
t Time (s)
c Chord (m)
CN Normal force coefficient (–)
CT Tangential force coefficient (–)
CL Lift force coefficient (–)
CD Drag force coefficient (–)
CM Pitching moment coefficient (–)
CP

N Total inviscid CN (–)
CP1

N Time-lagged total inviscid CN (–)
CI

N Impulsive inviscid CN (–)
CC

N Circulatory inviscid CN (–)
Cf

N Viscous CN (–)
Cf

T Viscous tangential force coefficient (–)
Cf

M Viscous pitching moment coefficient (–)
CC

M Circulatory pitching moment coefficient (–)
CV

N Vortex lift CN (–)
CCRIT

N Critical CN (–)
CPf Stepping parameter moment (–)
f Frequency (Hz)
f0 Pitching frequency (Hz)
fn, f1, f2 Separation factor (–)
F1, F2 First- and second-order forcing term (–)
k Reduced frequency (k = πf0c/V ) (–)
Kf Stiffness coefficient (–)
ks Constant close to Strouhal number (–)
M Mach number (–)
X, Y , D Deficiency functions (–)
c1, c2, c3 Curve-fitting constants (–)
a1, a2, a3 Curve-fitting constants (–)
S1, S2, S3, α1 Curve-fitting constants (–)
A1, A2, b1, b2 Model constants (–)
Kα , Tp, Tf, Tv, Tvl Model constants (–)
Kv, η, KC

f , T U
m , T D

m Model constants (–)
Greek letters
α Angle of attack (rad (unless stated otherwise))
α0 Zero lift α (rad (unless stated otherwise))
αe Effective α (rad (unless stated otherwise))
αf Time-lagged αe (rad (unless stated otherwise))
αCRIT Critical α (rad (unless stated otherwise))
β Mach-number-dependent parameter (–)
τv Nondimensional vortex time (–)
τ Time constant (–)
ζv Vortex lift drag limiting factor (–)
Subscripts
n Present sampling time (–)
f Viscous lagged value (–)
v Vortex lift affected value (–)
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Superscripts
INV Static inviscid (–)
VISC Static viscous (–)
I Impulsive (–)
CRIT Critical (–)
D Dynamic loading (–)
D1 First-order correction (–)
D2 Second-order correction (–)

Wind Energ. Sci., 5, 1037–1058, 2020 https://doi.org/10.5194/wes-5-1037-2020



G. Bangga et al.: An improved second-order dynamic stall model for wind turbine airfoils 1057

Data availability. The raw data of the simulation results can be
shared by contacting the corresponding author of the paper.

Author contributions. GB developed the new model, designed
the studies and conducted the analyses. TL and MA supported
the research and provided suggestions and discussion about the
manuscript.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. The authors gratefully acknowledge
Wobben Research and Development GmbH for providing the
research funding through the collaborative joint work DSWind.
The measurement data provided from The Ohio State University
are highly appreciated.

Financial support. This research has been supported by the
Wobben Research and Development GmbH (grant no. DSWind).

This open-access publication was funded
by the University of Stuttgart.

Review statement. This paper was edited by Alessandro Bian-
chini and reviewed by Khiem V. Truong and Gerard Schepers.

References

Adema, N., Kloosterman, M., and Schepers, G.: Development of a
second-order dynamic stall model, Wind Energ. Sci., 5, 577–590,
https://doi.org/10.5194/wes-5-577-2020, 2020.

Bangga, G.: Three-Dimensional Flow in the Root Region of
Wind Turbine Rotors, Kassel University Press GmbH, Kassel,
https://doi.org/10.19211/KUP9783737605373, 2018.

Bangga, G.: Numerical studies on dynamic stall characteristics of
a wind turbine airfoil, J. Mech. Sci. Technol., 33, 1257–1262,
https://doi.org/10.1007/s12206-019-0225-1, 2019.

Beddoes, T.: Practical computation of unsteady lift, in: 8th Euro-
pean Rotorcraft Forum, Aix-en-Provence, France, 1982.

Carr, L. W., McAlister, K. W., and McCroskey, W. J.: Analysis of
the development of dynamic stall based on oscillating airfoil ex-
periments, Tech. rep., NASA TN D-8382, National Aeronautics
and Space Administration, Washington, D.C., USA, 1977.

Dat, R. and Tran, C.: Investigation of the stall flutter of an airfoil
with a semi-empirical model of 2 D flow, TP no. 1981-146, ON-
ERA, p. 11, 1981.

Elgammi, M. and Sant, T.: A Modified Beddoes–Leishman
Model for Unsteady Aerodynamic Blade Load Computations
on Wind Turbine Blades, J. Sol. Energ. Eng., 138, 051009,
https://doi.org/10.1115/1.4034241, 2016.

Faber, M.: A comparison of dynamic stall models and their ef-
fect on instabilities, MS thesis, Delft University of Technol-
ogy, Delft, available at: https://repository.tudelft.nl/islandora/

object/uuid:0001b1eb-c19f-48c3-973d-57eca4996a91 (last ac-
cess: 5 January 2020), 2018.

Galbraith, R.: Return from Airfoil Stall During Ramp-Down Pitch-
ing Motions, J. Aircraft, 44, 1856–1864, 2007.

Gupta, S. and Leishman, J. G.: Dynamic stall modelling of the S809
aerofoil and comparison with experiments, Wind Energy, 9, 521–
547, 2006.

Hansen, M. H., Gaunaa, M., and Madsen, H. A.: A Beddoes–
Leishman type dynamic stall model in state-space and indicial
formulations, Tech. rep., Risø-R-1354, Risø National Labora-
tory, Roskilde, Denmark, 2004.

Hoffman, M., Ramsay, R., and Gregorek, G.: Effects of grit rough-
ness and pitch oscillations on the NACA 4415 airfoil, Tech. rep.,
National Renewable Energy Lab., Golden, CO, USA, 1996.

Holierhoek, J., De Vaal, J., Van Zuijlen, A., and Bijl, H.: Comparing
different dynamic stall models, Wind Energy, 16, 139–158, 2013.

Janiszewska, J., Ramsay, R., Hoffman, M., and Gregorek, G.: Ef-
fects of grit roughness and pitch oscillations on the S814 airfoil,
Tech. rep., National Renewable Energy Lab., Golden, CO, USA,
1996.

Khan, M. A.: Dynamic Stall Modeling for Wind Turbines,
MS thesis, Delft University of Technology, Delft, avail-
able at: https://repository.tudelft.nl/islandora/object/uuid:
f1ee9368-ca44-47ca-abe2-b816f64a564f (last access: 5 Jan-
uary 2020), 2018.

Larsen, J. W., Nielsen, S. R., and Krenk, S.: Dynamic stall model
for wind turbine airfoils, J. Fluids Struct., 23, 959–982, 2007.

Leishman, J.: Validation of approximate indicial aerodynamic func-
tions for two-dimensional subsonic flow, J. Aircraft, 25, 914–
922, 1988.

Leishman, J. G. and Beddoes, T.: A Semi-Empirical model for dy-
namic stall, J. Am. Helicopt. Soc., 34, 3–17, 1989.

Martin, J., Empey, R., McCroskey, W., and Caradonna, F.: An ex-
perimental analysis of dynamic stall on an oscillating airfoil, J.
Am. Helicopt. Soc., 19, 26–32, 1974.

McAlister, K. W., Carr, L. W., and McCroskey, W. J.: Dynamic stall
experiments on the NACA 0012 airfoil, Tech. rep., NASA Tech-
nical Paper 1100, National Aeronautics and Space Administra-
tion, California, USA, 1978.

Øye, S.: Dynamic stall simulated as time lag of separation, in: Pro-
ceedings of the 4th IEA Symposium on the Aerodynamics of
Wind Turbines, Rome, Italy, 1991.

Pereira, R., Schepers, G., and Pavel, M.: Validation of the Beddoes-
Leishman Dynamic Stall Model for Horizontal Axis Wind Tur-
bines using MEXICO data, in: 49th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Ex-
position, 4–7 January 2011, Orlando, USA, AIAA 2011-151,
American Institute of Aeronautics and Astronautics (AIAA), Or-
lando, 2011.

Petot, D.: Differential equation modeling of dynamic stall, La
Recherche Aerospatiale, English Edn., ONERA, 59–72, 1989.

Ramsay, R., Hoffman, M., and Gregorek, G.: Effects of grit rough-
ness and pitch oscillations on the S809 airfoil, Tech. rep., Na-
tional Renewable Energy Lab., Golden, CO, USA, 1995.

Ramsay, R., Hoffman, M., and Gregorek, G.: Effects of grit rough-
ness and pitch oscillations on the S801 airfoil, Tech. rep., Na-
tional Renewable Energy Lab., Golden, CO, USA, 1996.

https://doi.org/10.5194/wes-5-1037-2020 Wind Energ. Sci., 5, 1037–1058, 2020

https://doi.org/10.5194/wes-5-577-2020
https://doi.org/10.19211/KUP9783737605373
https://doi.org/10.1007/s12206-019-0225-1
https://doi.org/10.1115/1.4034241
https://repository.tudelft.nl/islandora/object/uuid:0001b1eb-c19f-48c3-973d-57eca4996a91
https://repository.tudelft.nl/islandora/object/uuid:0001b1eb-c19f-48c3-973d-57eca4996a91
https://repository.tudelft.nl/islandora/object/uuid:f1ee9368-ca44-47ca-abe2-b816f64a564f
https://repository.tudelft.nl/islandora/object/uuid:f1ee9368-ca44-47ca-abe2-b816f64a564f


1058 G. Bangga et al.: An improved second-order dynamic stall model for wind turbine airfoils

Sheng, W., Galbraith, R. M., and Coton, F.: A new stall-onset crite-
rion for low speed dynamic-stall, J. Sol. Energ. Eng., 128, 461–
471, 2006.

Sheng, W., Galbraith, R., and Coton, F.: A modified dynamic stall
model for low Mach numbers, J. Sol. Energ. Eng., 130, 031013,
https://doi.org/10.1115/1.2931509, 2008.

Sheng, W., Galbraith, R. A. M., and Coton, F. N.: Applications of
low-speed dynamic-stall model to the NREL airfoils, J. Sol. En-
erg. Eng., 132, 011006, https://doi.org/10.1115/1.4000329, 2010.

Snel, H.: Heuristic modelling of dynamic stall characteristic, in:
Proceedings of the European Wind Energy Conference, Dublin,
Ireland, 1997.

Tarzanin, F.: Prediction of control loads due to blade stall, J. Am.
Helicopt. Soc., 17, 33–46, 1972.

Tran, C. and Petot, D.: Semi-empirical model for the dynamic stall
of airfoils in view of the application to the calculation of re-
sponses of a helicopter blade in forward flight, in: 6th European
Rotorcraft Forum, Bristol, UK, 1980.

Truong, K.-V.: Modeling aerodynamics for comprehensive analysis
of helicopter rotors, in: Proceedings of 42nd European Rotorcraft
Forum, Lille, France, 2016.

Truong, V.: A 2-d dynamic stall model based on a hopf bifurcation,
in: Proceedings of 19th European Rotorcraft Forum, Cernobbio,
Italy, 1993.

Wang, Q. and Zhao, Q.: Modification of Leishman–Beddoes model
incorporating with a new trailing-edge vortex model, Proc. Inst.
Mech. Eng. Pt G, 229, 1606–1615, 2015.

Wind Energ. Sci., 5, 1037–1058, 2020 https://doi.org/10.5194/wes-5-1037-2020

https://doi.org/10.1115/1.2931509
https://doi.org/10.1115/1.4000329

	Abstract
	Introduction
	Mathematical formulations
	Leishman–Beddoes model
	Unsteady attached flow
	Unsteady separated flow
	Dynamic stall
	Note to present implementation

	Snel second-order model
	Adema–Snel second-order model
	New second-order IAG model
	First-order correction
	Second-order correction

	Constants applied for the investigated dynamic stall models

	Results and discussion
	Comparison against experimental data
	Effects of time signal deviation
	Performance of the model for different mean angles of incidence
	Performance of the model for different reduced frequencies
	Performance of the model for different pitching amplitudes
	Performance of the model for different airfoils
	Predictions of the center of pressure
	L2 norm of error analyses

	Conclusions
	Recommendations for future work
	Appendix A: List of symbols
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

