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Abstract. We propose a method for carrying out wind turbine load validation in wake conditions using measure-
ments from forward-looking nacelle lidars. Two lidars, a pulsed- and a continuous-wave system, were installed
on the nacelle of a 2.3 MW wind turbine operating in free-, partial-, and full-wake conditions. The turbine is
placed within a straight row of turbines with a spacing of 5.2 rotor diameters, and wake disturbances are present
for two opposite wind direction sectors. The wake flow fields are described by lidar-estimated wind field charac-
teristics, which are commonly used as inputs for load simulations, without employing wake deficit models. These
include mean wind speed, turbulence intensity, vertical and horizontal shear, yaw error, and turbulence-spectra
parameters. We assess the uncertainty of lidar-based load predictions against wind turbine on-board sensors in
wake conditions and compare it with the uncertainty of lidar-based load predictions against sensor data in free
wind. Compared to the free-wind case, the simulations in wake conditions lead to increased relative errors (4 %–
11 %). It is demonstrated that the mean wind speed, turbulence intensity, and turbulence length scale have a
significant impact on the predictions. Finally, the experiences from this study indicate that characterizing turbu-
lence inside the wake as well as defining a wind deficit model are the most challenging aspects of lidar-based
load validation in wake conditions.

1 Introduction

Wind turbines are designed according to reference wind con-
ditions described in the IEC standards (IEC, 2019). These
reference conditions are used to establish the full design
load basis and for the purpose of certification of turbine
designs. Nevertheless, certified turbines need to be further
verified to withstand the site-specific loads during the en-
tire lifetime, when site conditions exceed those of the type
certified. As a current best practice, the wind turbine (WT)
operating loads are predicted using high-fidelity aeroelas-
tic simulations based on site-specific environmental condi-
tions. The environmental conditions are typically obtained
from anemometers installed on meteorological masts in the
proximity of the wind turbine location. These mast mea-
surements, and therefore the uncertainty quantification of the
aeroelastic model, are usually limited to wake-free sectors.
However, wind conditions inside wind farms are significantly

different than those in undisturbed wind conditions (Frand-
sen, 2007).

Wake effects are responsible for wind speed reduction
and turbulence level increase, generally resulting in reduced
power productions and increased load levels (Larsen et al.,
2013). To account for these effects, aeroelastic load sim-
ulations are combined with wake models, which predict
wake-induced effects on the flow field approaching individ-
ual WTs. The most applied approach consists of increasing
the turbulence in load simulations, resulting in a load in-
crease which should correspond to the effect of the wake-
added turbulence. The effective turbulence depends on the
park layout and on the material properties of the turbine
components under consideration (Frandsen, 2007). This ap-
proach is recommended by the IEC61400-1. An alternative
and more detailed practice also described in the IEC standard
relies on the use of the dynamic wake meandering (DWM)
model (Larsen et al., 2006, 2007; Madsen et al., 2010), which
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is an engineering model providing simulated wind field time
series including wake deficits.

The comparison of fatigue loads predicted using the DWM
model and the effective turbulence approach by the IEC
showed a discrepancy of 20 % (Thomsen et al., 2007). The
uncertainty varied according to the inflow conditions and
spacing between turbines. The work of Larsen et al. (2013)
showed a very fine agreement between both power and load
measurements and predictions based on a site-specific cal-
ibrated DWM model for the Dutch Egmond aan Zee wind
farm. However, the study did not quantify uncertainty in a
systematic approach. More recently, Reinwardt et al. (2018)
estimated fatigue load biases in the range 11 %–15 % for
the tower bottom and 8 %–21 % for the blade-root flapwise
bending moments using the DWM model. To date, these ap-
proaches are characterized by a significant level of uncer-
tainty, due to the stochastic nature of environmental condi-
tions and the various simplifying assumptions used in the
wake model definitions (Schmidt et al., 2011). Further, these
results motivate the need for improving wind turbine load
validation approaches in wake conditions.

The recent applications of lidars in the wind energy field
demonstrate the feasibility of these systems to reconstruct
inflow wind conditions including mean wind speed (Raach
et al., 2014; Borraccino et al., 2017), turbulence (Mann et al.,
2009; Branlard et al., 2013; Peña et al., 2017; Newman and
Clifton, 2017), and wake characteristics (Bingöl et al., 2010;
Iungo and Porté-Agel, 2014; Machefaux et al., 2016), among
others. Nacelle-mounted lidars enable us to measure wind
field characteristics for any wind direction/nacelle yaw po-
sition, including situations when the turbine rotor is in the
wake of a neighbouring turbine. An excellent level of agree-
ment has been found between the nacelle-mounted lidar-
estimated and mast-measured mean wind speed in free-wind
conditions (Borraccino et al., 2017). Power curve validations
using nacelle-mounted lidars have been showing promising
results (Wagner et al., 2014). Although lidar-derived along-
wind variances could deviate from those derived from cup
anemometer measurements (Peña et al., 2017), the load pre-
dictions in wake-free sectors based on nacelle-lidar wind
field representations resulted in uncertainties lower than or
equal to those obtained with mast measurements (Dimitrov
et al., 2019).

Based on these findings, we extend the load validation pro-
cedure defined in Dimitrov et al. (2019) to include wake con-
ditions. Therefore, wake-induced effects are accounted for by
means of wind field parameters commonly used as inputs for
load simulations, which are reconstructed using lidar mea-
surements, yet without employing wake deficit models. The
objective of this study is to demonstrate how loads in wake
conditions can be predicted accurately, quantify the uncer-
tainty, and compare it to the uncertainty of lidar-based load
assessments in free wind. The further development of lidar-
based load and power validation procedures can potentially
replace the use of expensive meteorological masts in mea-

surement campaigns as well as improve the wake field re-
construction for aeroelastic load simulations.

The paper is structured as follows. In Sect. 2, we intro-
duce the requirements for load validation and describe the
measurement campaign. In Sect. 3, we present the methods
implemented to derive the wind field parameters for aeroelas-
tic simulations and a wake detection algorithm. The results
are provided in Sect. 4. First, we show the wake-induced ef-
fects on the lidar-estimated wind field parameters in Sect. 4.1
and 4.2. Then, we derive the wind field characteristics used
as input for load simulations in Sect. 4.3. The uncertainties
of load predictions are quantified in Sect. 4.4. The sensitivity
of inflow parameters on load predictions and the uncertainty
distribution of selected cases are assessed in Sect. 4.5. Fi-
nally, we discuss the findings and provide conclusions in the
last two sections.

2 Problem formulation

2.1 Requirements for load validation in wakes

The design load cases and load validation procedure for wind
turbines are described in the IEC standards. The IEC61400-
1 requires the evaluation of fatigue and extreme loading
conditions induced by wake effects originating from neigh-
bouring wind turbines. The increase in loading due to wake
effects can be accounted for by the use of an added tur-
bulence model, or by using more detailed wake models
(i.e. DWM). Load validation guidelines are described in
IEC61400-13 (IEC, 2015), which recommends the so-called
one-to-one comparison, among a few approaches. This ap-
proach consists of carrying out individual aeroelastic simu-
lations for each measured realization of environmental con-
ditions. To date, wind conditions are obtained from meteoro-
logical masts.

The objective of this work is to carry out load validation of
wind turbines operating in wake conditions using measure-
ments from nacelle-mounted lidars only. The wake-induced
effects are accounted for by lidar-estimated wind field char-
acteristics, without employing wake deficit models. This im-
plies that wake flow fields can be described by means of
average flow characteristics commonly used as inputs for
load simulations. We assess the viability of the suggested ap-
proach by carrying out a load validation study as follows:

– one-to-one load comparison between measured and pre-
dicted load realizations using wind field characteristics
derived from lidar measurements of the wake flow field;

– uncertainty quantification in terms of the statistical
properties of the ratios between measured and predicted
load realizations;

– comparison of lidar-based load prediction uncertainties
in wakes against uncertainties of load predictions in
free-wind conditions using lidar measurements.
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We assume that the observed deviations in load predic-
tions between those that are lidar-based under wake condi-
tions and those that are lidar-based under free-wind condi-
tions are solely due to the error in the wind field representa-
tion. This is a simplistic but conservative assumption, as the
uncertainties of load predictions are a combination of uncer-
tainty in the reconstructed wind profiles, aeroelastic model
uncertainty, load measurement uncertainty, and statistical un-
certainty (Dimitrov et al., 2019).

2.2 Measurement campaign

Wind and load measurements are collected from an exper-
iment conducted at the Nørrekær Enge (NKE) wind farm
during a period of 7 months between 2015 and 2016. The
farm is located in the north-west of Denmark and consists
of 13 Siemens 2.3 MW turbines, with a 93 m rotor diame-
ter (D) and hub height of 80 m a.g.l. (above ground level).
The turbines are installed in a single row oriented along the
75 and 255◦ direction compared to true north, with 487 m
(5.2D) spacing, as pictured in Fig. 1. The wind farm is lo-
cated over flat terrain, and the surface is characterized by
a mix between croplands and grasslands, and a fjord to the
north (Peña et al., 2017). The prevailing wind direction is
west (Borraccino et al., 2017).

The wind turbine T04 was instrumented with sensors for
load measurements at the roots of two blades, tower top,
and tower bottom (Vignaroli and Kock, 2016). The strain
gauges were installed at 1.5 m from the blade-root flange,
at 11.85 m below the lower surface of the tower top flange,
and at 5.9 m above the upper surface of the tower bottom
flange. The data acquisition software was set to sample at
35 Hz on all channels. Additional data were provided by the
supervisory control and data acquisition (SCADA) system
including nacelle wind speed and orientation, power output,
blade pitch angles, and generator speed. A meteorological
mast was installed at 232 m (2.5D) distance from T04 in
the direction of 103◦. The mast instrumentation comprises
cup and sonic anemometers, wind vanes, and thermometers
mounted at several heights, among others. Details about the
instrumentations can be found in Vignaroli and Kock (2016)
and Borraccino et al. (2017).

This study uses wind measurements from the cup
anemometers at 57.5 and 80 m, which are used to derive
wind speed, turbulence, and shear as discussed in the fol-
lowing sections. According to the definition in IEC61400-
12-1 (IEC, 2017), the wake-free sector spans approximately
123◦ to 220◦. A narrow sector of 12◦ from 97 to 109◦ is cho-
sen as free-wind reference to ensure close correspondence
between lidar- and mast-measured parameters. Based on the
farm geometry and visual inspection of data, wake sectors of
30◦ are considered ranging from 55 to 85◦ for the north-east
directions and from 235 to 265◦ for the south-west.

2.3 Lidars

Two forward-looking lidars were installed on the nacelle
of T04: a pulsed lidar (PL) with a five-beam configura-
tion and a continuous-wave (CW) system. The CW lidar
by Zephir has a single beam, which scans conically with a
cone angle of 15◦ and a sampling frequency of 48.8 Hz. The
CW lidar measured sequentially at five different ranges up-
wind from the turbine, at 0.1, 0.3, 1.0, 1.3, and 2.5D, and it
took approximately 50 s to complete a full scan at all ranges.
The CW lidar measurements are binned according to the az-
imuthal positions in 50 bins of 7.2◦. Based on Dimitrov et al.
(2019), we select 10 of these bins for further analysis and fo-
cus on ranges between 0.3 and 2.5D, as illustrated in Fig. 2b.

The PL lidar provided by Avent technology has five fixed
beams; a central beam oriented in the longitudinal direc-
tion at hub height and four beams oriented at the corner of
a square pattern, as shown in Fig. 2d. The PL lidar mea-
sures simultaneously at 10 different ranges in front of the
turbine 0.53, 0.77, 1.03, 1.17, 1.30, 1.53, 1.78, 2.03, 2.5,
and 3.0D, by acquiring radial velocity spectra for 1 s at
each beam, thus scanning a single plane with a sampling fre-
quency of 0.2 Hz (Peña et al., 2017). To provide a direct com-
parison with results from the CW lidar, we focus the analysis
on the PL lidar measurements up to 2.5D. More details of the
lidars are described in Peña et al. (2017) and Dimitrov et al.
(2019), while calibration reports are provided in Borraccino
and Courtney (2016a, b). The top views of the PL scanning
pattern and CW lidar binned data selection are illustrated in
Fig. 2a, c. The lidars measure approximately within 2.5 and
5D downstream of the wake source turbine.

We conduct the load analysis using 10 min reference pe-
riods. The dataset is filtered so that we select only periods
where the turbine is operational and load, mast, and lidar
measurements are available. A total of 6198 10 min periods
are available in the wide direction sector, which decreases to
1042 samples in the narrow sector. The majority of measure-
ments within the wake sectors are from westerly directions
235–265◦ with 3659 samples, while 899 samples are avail-
able from wake directions 55–85◦.

3 Methodology

Load simulations are carried out using the state-of-the-art
aeroelastic HAWC2 software (Larsen and Hansen, 2007).
The structural part of the code is based on a multi-body
formulation assembled with linear anisotropic Timoshenko
beam elements (Kim et al., 2013). The wind turbine struc-
tures (i.e. blades, shaft, tower) are represented by a number
of bodies, which are defined as an assembly of Timoshenko
beam elements (Larsen et al., 2013). The aerodynamic part
of the code is based on the blade element momentum (BEM)
theory, extended to handle dynamic inflow and dynamic stall
(Hansen et al., 2004), among others.
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Figure 1. The Nørrekær Enge wind farm in northern Denmark on a digital surface elevation model (UTM32 WGS84). The wind turbines are
shown in circles, the turbine T04 with the nacelle lidars in red, and the mast as a triangle. The sectors used for the analysis are also shown;
narrow direction sector: 97–109◦; wide direction sector: 97–220◦; wake sectors: 55–85 and 235–265◦. The waters of Limfjorden are shown
in light blue.

Figure 2. Top and front views of the CW lidar (a, b) and PL li-
dar (c, d) scanning patterns shown by the blue dots. The trajectory
of the lidar beams is illustrated by the dotted lines in cyan. The
bins/beams notation is also given. The location of the lidars on T04
is shown with a red square marker. The reference coordinate system
has an origin at the hub centre with the x axis in the mean wind
direction. The distances are normalized with respect to the rotor di-
ameter D.

In the present study, the HAWC2 turbine model is based on
the structural and aerodynamic data of the Siemens SWT 2.3-
93 turbine and is equipped with the original equipment man-
ufacturer controller. The turbulence used in the simulations
is generated using the Mann turbulence model (Mann, 1994,
1998). As described in Dimitrov et al. (2018), the turbulent
wind field for aeroelastic simulations can be fully charac-
terized statistically by nine environmental parameters listed
in Table 1. The methods to derive the wind field parame-
ters from the radial velocity measurements of the nacelle-
mounted lidars are described in Sect. 3.1–3.3. We propose a
wake detection algorithm to detect wakes using lidar mea-
surements in Sect. 3.4.

3.1 Wind field reconstruction

Wind field reconstruction (WFR) is defined as the process of
retrieving wind field characteristics by combining measure-
ments of the wind in multiple locations (Raach et al., 2014;
Borraccino et al., 2017). As nacelle-mounted lidars measure
only the line-of-sight (LOS) component of the wind vector,
WFR techniques are used to derive the input wind field vari-
ables for carrying out load simulations. The present work
implements the WFR technique described in Dimitrov et al.
(2019). This approach assumes three-dimensional wind vec-
tors and vertical and horizontal wind profiles combined with
an induction model. The vertical wind shear is defined by a
power-law profile,
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Table 1. Wind field parameters serving as input for aeroelastic load simulations.

Description Parameter Description Parameter

Mean wind speed at hub height uhub Air density ρ

Turbulence intensity σu/uhub Mann turbulence spectra tensor parameters:
Shear exponent α Turbulence length scale L

Wind veer 1ϕ Anisotropy factor 0

Yaw misalignment ϕ Turbulence dissipation parameter αkε
2/3

u(z)= uhub

(
z

zhub

)α
, (1)

where zhub is the hub height. The flow direction ϕ(z) is de-
scribed by the combined effects of the mean yaw misalign-
ment and the change of wind direction with height, the wind
veer,

ϕ(z)= ϕ+
1ϕ

D
(z− zhub) . (2)

We assume a linear variation in wind direction over the
rotor diameter D. To define the relation between the free-
flow wind vector u= (u, v, w) and the LOS velocity uLOS,
we consider a reference coordinate system with origin at hub
height and co-linear with the wind turbine orientation. The
wind coordinate system is aligned with the mean wind di-
rection, which is defined by the flow direction in Eq. (2).
Thus, the transformation from the wind- into the reference-
coordinate system is achieved by the rotational transforma-
tion T1:

T1 =

cosϕ(z) −sinϕ(z) 0
sinϕ(z) cosϕ(z) 0

0 0 1

 . (3)

Note that the wind flow inclination (tilt) is neglected. The
orientation of the LOS velocity with respect to the reference
coordinate system is defined by rotations about the y and
z axes, ψy and ψz (see Fig. A1). Therefore, the transforma-
tion from the LOS- into the reference-coordinate system is
achieved by the rotational transformation TLOS:

TLOS =

 cosψy cosψz −cosψy sinψz sinψy
sinψz cosψz 0

−sinψy cosψz sinψy sinψz cosψy

 . (4)

As lidars measure only the LOS velocity, the first row
alone of TLOS is considered. The relation between the wind
vector and the LOS velocity is expressed in terms of matrix
transformations as

ulos = TLOST1u. (5)

This formulation is suitable assuming lidar point-like mea-
surements and homogeneous wind field, which implies that

the three velocity component statistics do not change over
the scanned area. By combining Eqs. (1)–(5) and including
an induction factor Cind based on a two-dimensional induc-
tion model (Dimitrov et al., 2019), the relation between the
LOS and the wind velocity field is derived in its extended
form as

uLOS = uhub

(
z1

zhub

)α [
Cind cos

(
ϕ+

1ϕ

D
(z− zhub)

)
cosψy cosψz− sin

(
ϕ+

1ϕ

D
(z− zhub)

)
cosψy sinψz

]
. (6)

The two-dimensional induction model assumes longitudi-
nal and radial variation in the induced wind velocity. The
resulting induction factor Cind is computed as

Cind =

[
1− a0

(
1−

ξx√
1+ ξ2

x

)

·

(
2

exp(+βaεa)+ exp(−βaεa)

)2
]
, (7)

where a0 is the induction factor at the rotor centre area;
ξx = x/Rrotor is the distance from the rotor normalized by
the rotor radius; ρa =

√
y2+ z2/Rrotor is the radial distance

from the rotor centre axis; and εa = ρa/
√
λa(ηa + ξ2

x ), where
γa = 1.1, βa =

√
2, αa = 8/9, λa = 0.587, and ηa = 1.32

(Dimitrov et al., 2019).
The parameters (uhub, α,1ϕ, ϕ, a0) from Eq. (6) are to be

characterized by the WFR, while x, y, and z describe the spa-
tial location of the measurement points. The WFR approach
relies on a model-fitting technique and consists in minimiz-
ing the residual between the modelled wind field and lidar
measurements (Borraccino et al., 2017).

The CW and PL lidar-estimated mean wind speed in free
wind, for the narrow direction sector (97–109◦), is compared
with measurements from the 80 m cup anemometer mounted
on the mast in Fig. 3 (left and middle). An excellent agree-
ment is found for the lidar-estimated mean wind speed us-
ing both lidars. The lidar-estimated shear exponents are com-
pared with the shear obtained by fitting the power-law profile
using measurements from the cups at 57.5 and 80 m in Fig. 3
(right). The observed deviations result from the use of differ-
ent parts of the rotor span by the PL lidar compared to the
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mast measurements (Dimitrov et al., 2019). In addition, the
shear exponents derived by the CW lidar compare very well
with those from the PL lidar (not shown).

3.2 Turbulence spectral model

The wind field vector u(x) can be described by the solely
spatial vector x = (x, y, z), assuming Taylor’s frozen turbu-
lence hypothesis (Mizuno and Panofsky, 1975). The statis-
tics of velocity fluctuations (u′, v′, w′), where (′) denotes
fluctuations around the mean value, are expected to be ho-
mogeneous in space (Mann, 1994). It follows that the auto-
or cross-covariance function between two points can be de-
fined only in terms of the separation distance as Rij (r)=
〈u′i(x)u′j (x+ r)〉, where i, j = (1, 2, 3) are the indices cor-
responding to the components of the wind field, 〈〉 denotes
ensemble averaging, and r = (r1, r2, r3) is the separation
vector in the three-dimensional Cartesian coordinate sys-
tem. The covariance tensor of single-point turbulent statistics
(R(r = 0)= R) can be written as

R=

[
〈u′u′〉 〈u′v′〉 〈u′w′〉
〈v′u′〉 〈v′v′〉 〈v′w′〉
〈w′u′〉 〈w′v′〉 〈w′w′〉

]
=

 σ 2
u σuv σuw
σvu σ 2

v σvw
σwu σwv σ 2

w

 , (8)

where the matrix elements define variances and covariances
of the three-dimensional velocity field u= (u, v, w). The
spectral velocity tensor8ij (k) is defined as the Fourier trans-
form of the covariance tensor,

8ij (k)=
1

(2π )3

∫
Rij (r)exp(ik · r)dr, (9)

where k = (k1, k2, k3) is the wave number vector. The spec-
tral velocity tensor can be described by the model of Mann
(1994). This model requires only three parameters: αkε

2/3,
L, and 0, where αk is the spectral Kolmogorov constant, ε is
the turbulent energy dissipation rate, L is a length scale pro-
portional to the size of turbulence eddies, and 0 is a parame-
ter describing the anisotropy of the turbulence. Although the
Mann model assumes near-neutral atmospheric conditions,
the model has been applied to different surface and atmo-
spheric stability conditions (Peña et al., 2010). The one-point
spectra are computed as

Fij (k1)=
∫ ∫

8ij

(
k,0,L,αkε

2/3
)
dk2dk3. (10)

The procedure to derive spectral parameters from the mea-
sured spectra of the three velocity components is described
in Mann (1994). The LOS spectra measured by a lidar beam
can be related to the velocity spectral tensor by accounting
for probe volume effects as described in Mann et al. (2009),

FLOS (k1)= ninj

∫ ∫
|φ̂(k ·n)|28ij

(
k,0,L,αkε

2/3
)
dk2dk3, (11)

where φ̂ is the Fourier transform of the lidar spatial weight-
ing function and n is the unity vector along the beam. For

a CW lidar, this is typically described by a Lorentzian func-
tion (Sonneschein and Horrigan, 1971; Mann et al., 2010).
For the pulsed lidar, we assume a Gaussian weighting func-
tion (Frehlich, 2013).

3.3 Turbulence characterization

Turbulence characterization using lidars is subjected to sev-
eral sources of uncertainty. The measurement volumes along
the LOS lead to spatial averaging of turbulence, which re-
duces the LOS variance when compared to a point measure-
ment (Sjöholm et al., 2008; Sathe and Mann, 2013). Besides,
the ability to properly measure the variances of the velocity
components depends on the scanning strategy. Since the li-
dar beams are rarely aligned with any of the three velocity
components, the LOS variance can be influenced by the vari-
ance of other velocity components, also referred to as cross-
contamination effects.

We implement two approaches to derive filtered and unfil-
tered turbulence based on the work of Peña et al. (2017). The
first approach uses the turbulence spectral model by Mann to
correct turbulence estimates by accounting for the expected
attenuation of the fluctuations of the radial velocity due to the
lidar’s probe volume. This can be achieved numerically by
deriving the relation between the variance of the LOS veloc-
ity with and without filtering effects, respectively σ 2

u,LOS,va
and σ 2

u,LOS,pt. The filtering is expressed by

r
(
Zr,L,0,ψy,ψz

)2
=

∞∫
0
FLOS (k1)dk1

∞∫
0
Fij (k1)dk1

=
σ 2
u,LOS,va

σ 2
u,LOS,pt

. (12)

The magnitude of r2 varies in relation to the probe vol-
ume length Zr, turbulence characteristics, and spatial loca-
tion of measurement points (Mann et al., 2010; Peña et al.,
2017). Following the procedure described in Dimitrov et al.
(2019), the covariance matrix of the filtered LOS velocity
components RLOS can be related to the covariance of the
undisturbed wind field R. To express the LOS variance as a
function of the u-component variance, we normalize R with
respect to σ 2

u . We neglect the terms σ 2
uv and σ 2

vw as they
are small and we lack sufficient information to recover all
components. Hence, we derive the ratios between variances
of different velocity components using the spectral tensor
model by Mann (1994),

R
σ 2
u

=

 1 0 σuw/σ
2
u

0 σ 2
v /σ

2
u 0

σwu/σ
2
u 0 σ 2

w/σ
2
u

 . (13)

The effects of cross-contamination and flow direction are
accounted for by means of matrix transformations includ-
ing TLOS and T1. The relation between the covariance ma-
trix of the LOS components and that of the undisturbed wind
field is then expressed in terms of σ 2

u as
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Figure 3. Comparison of 10 min lidar-estimated and mast-measured inflow characteristics. We show a 1 : 1 line for guidance, the slope of a
linear regression model and the coefficient of determination R2.

RLOS

σ 2
u

= r
(
Zr,L,0,ψy ,ψz

)2(TLOSCT1
R
σ 2
u

TT1 CT TTLOS

)
, (14)

where C is the induction matrix (Dimitrov et al., 2019). Note
that RLOS is expressed as a full covariance matrix contain-
ing three vector components. However, as only LOS veloci-
ties are measured by the nacelle-mounted lidar, only the first
component of RLOS is measured. It follows that the ratio in
Eq. (14) identifies the relation between the LOS variance and
the wind field variance in the longitudinal direction. As de-
scribed in Dimitrov et al. (2019), the LOS residuals u′LOS
are calculated as the difference between the LOS measure-
ments uLOS and the mean LOS field uLOS(uhub, α, 1ϕ, ϕ,
a0) obtained from Eq. (6) as

u′LOS = uLOS− uLOS (uhub,α,1ϕ,ϕ,a0) . (15)

Eventually, σ 2
u is derived by scaling the variance of the LOS

residuals from Eq. (15) with the reciprocal of the filtering
ratio estimated using Eq. (14). As the filtering ratio is evalu-
ated for each LOS direction, we can combine multiple lidar
measurements to estimate σ 2

u . The procedure is described in
detail in Dimitrov et al. (2019).

The second approach avoids filtering effects by use of the
ensemble-averaged Doppler radial velocity spectrum (Mann
et al., 2010). This method relies on the hypothesis that the
lidar average Doppler spectrum is related to the probabil-
ity density function of the radial velocities (Branlard et al.,
2013). This assumption is valid for homogeneous flow and
for negligible velocity gradients within the probe volume. By
assuming homogeneous turbulence, we use the scanning pat-
tern to account for cross-contamination of different velocity
components and extract 10 min σ 2

u statistics by computing
the variance of Eq. (5) as

Var(ulos)= Var
((

cosψy cosψz cosϕ− cosψy sinψz
sinϕ)u−

(
cosψy cosψz sinϕ+ cosψy

sinψz cosϕ)v+ (sinϕ)w) . (16)

By solving the variance operator and neglecting the result-
ing terms 〈u′v′〉 and 〈v′w′〉, as explained above, σ 2

u is derived
as shown in Eq. (10) in Peña et al. (2017).

We show the comparison between lidar-estimated and
mast-measured σu, using the 80 m cup anemometer, for the
free-wind narrow direction sector (97–109◦) in Fig. 4. Pre-
vious work on the characterization of wind conditions at the
NKE site that included wind speed and turbulence showed
a discrepancy between the 76 m sonic- and 80 m cup-based
mean wind speed of 2.6 % and about 12.3 % regarding the
longitudinal velocity variance (Peña et al., 2017). To reduce
the uncertainty of the mast-based and lidar-based wind char-
acteristics, we choose the cup anemometer at 80 m, which
is the hub height, for this analysis. The filtered turbulence
derived from CW and PL lidars, using all the ranges and
beams, are plotted in Fig. 4a, b, whereas the unfiltered tur-
bulence derived from the CW lidar measurements at 1.3D
are shown in Fig. 4c. The deviations between PL lidar and
the cup anemometer values are mostly due to high-frequency
noise contamination as described in Peña et al. (2017). Con-
sidering the wind conditions within the free-wind narrow di-
rection sector, the lidar-estimated turbulence compares very
well with mast measurements; the observed results are con-
sistent with previous findings (Dimitrov et al., 2019).

3.4 Wake detection algorithm

A wake detection algorithm is developed to determine
whether the turbine is operating in free-, partial-, or full-wake
situations. The algorithm relies on 10 min statistics of the
lidar measurements and follows the approach of Held and
Mann (2019). The idea is to detect the increase in turbu-
lence originating from wakes with respect to the free-wind
conditions. This can be done by measuring turbulence inten-
sity TILOS and the relative turbulence difference measured by
two lidar beams pointing at two opposite rotor sides, δTILOS.
The detection parameters are
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Figure 4. (a, b) Comparison of the lidar-based σu, derived with the use of the spectral tensor model, with σu values measured with an
80 m cup anemometer mounted on the mast. (c) Comparison of lidar-based σu, derived from the ensemble-averaged Doppler spectrum of the
CW lidar, with σu values measured with an 80 m cup anemometer. We show a 1 : 1 line for guidance, the slope of a linear regression model,
and the coefficient of determination R2.

TILOS =
σLOS

uLOS
, δTILOS =

TILOS,B1−TILOS,B2

〈TILOS,B1,TILOS,B2〉
, (17)

where B1 and B2 refer to the PL lidar beam notation given
in Fig. 2. Preliminary work (Peña et al., 2017) showed that
the lidar availability greatly decreases when using the bottom
beams. Therefore, we use the top beams of the PL lidar for
this particular analysis. Due to its location (see Fig. 1), the
mast is either in the wake of T04 for wind directions com-
ing from the south-west or in the wake of the upstream tur-
bines for the north-east direction. As a consequence, we can-
not rely on mast measurements to monitor free-wind condi-
tions for wind directions within our range of interest. There-
fore, we propose an alternative approach, which relies on li-
dar measurements only.

At first, we fit the wake detection parameters to a proba-
bility distribution function (pdf) using data from the wake-
free wide direction sector (97–220◦). We select a log-normal
and normal pdf for TILOS and δTILOS, and we choose the
99th percentile as a conservative threshold characterizing the
limit of the normal range of the site-specific free-wind con-
ditions. This results in TILOS,99 = 0.276 and δTILOS,99 =

0.416. Hence, we compare the detection parameters in wake
sectors to the precomputed thresholds and classify accord-
ingly. The parameters are shown as a function of the turbine
yaw positions and classified as partial-wake (blue markers)
and full-wake (red markers) in Fig. 5a, b. A partial-wake sit-
uation is detected for δTILOS > δTILOS,99, whereas the sign
of δTILOS indicates which half of the rotor is affected by the
wake. A full wake is detected when both beams exhibit high
turbulence TILOS,B1,B2 > TILOS,99, but δTILOS < δTILOS,99.
This condition appears when both beams are measuring in-
side the wake.

Figure 5c illustrates the measured fatigue blade-root flap-
wise bending moments for wind speeds between 8 and
10 m s−1, as a function of the turbine orientation. Fatigue
load levels are normalized with respect to the average value

computed using load measurements from the free-wind wide
direction sector. The 10 min periods in which the turbine is
operating in wake situations are shown based on the detec-
tion algorithm. A significant wake-induced effect on the load
levels can be noticed.

Further, we attempt to distinguish situations where the
mast is in wake or in free wind, based on 10 min mast data.
Turbulence from the cup at 80 m and shear derived from the
cups at 57.5 and 80 m are used as wake detection parameters
(results are shown in Fig. B1). The wake detection results
presented in Fig. 5 are obtained using the PL lidar-estimated
filtered turbulence at 1.3D. An in-depth comparison between
the PL and CW lidars, filtered and unfiltered turbulence esti-
mates, and measurements at several ranges are omitted in the
present work.

Improved wake detection can be obtained by establishing
thresholds conditional to the ambient wind conditions (i.e.
wind speed, turbulence, and atmospheric stability) and by
assessing the detection parameters for shorter time periods
(Held and Mann, 2019). More detailed detection algorithms
including wake dynamic characteristics are proposed in the
literature (Aitken and Lundquist, 2014; Aitken et al., 2014).
Nevertheless, the proposed algorithm is able to detect 10 min
periods where dominant wake effects are observed. The con-
servative thresholds ensure a strong wake influence in the in-
flow conditions, and a sufficient number of 10 min periods
are obtained for the purpose of load validation.

4 Results

The results are presented in five parts. The wake-induced ef-
fects on the reconstructed wind field parameters are analysed
in Sect. 4.1 and 4.2. The wind field parameters used as input
for aeroelastic simulations are derived in Sect. 4.3. The one-
to-one load comparison between simulated and measured
loads and their uncertainty quantification are presented in
Sect. 4.4. In Sect. 4.5, we assess the sensitivity of inflow pa-
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Figure 5. (a, b) PL lidar-estimated 10 min wake detection parameters δTILOS and TILOS,B1, as a function of yaw position. Detected wake
situations are shown with coloured markers: wake-free (grey), partial wake (blue), and full wake (red). (c) Measured blade-root flapwise
fatigue loads for wind speeds between 8 and 10 m s−1, normalized over the average load levels in free-wind conditions. The black line shows
the average values binned every 3◦ in direction.

rameters on load predictions and investigate the uncertainty
distribution as a function of the wind speed.

4.1 Wake effects on reconstructed wind parameters

Wind turbine wakes lead to a region characterized by re-
duced wind speed and increased turbulence. We observe
these effects through the PL and CW lidar-estimated wind
speed, turbulence, and shear exponent in Fig. 6. Here, the
slope (m) of a linear regression model between the free-wind
mast-measured and lidar-estimated wind parameters in free-
, partial-, and full-wake situations is shown. In this partic-
ular analysis, the lidar-based wind parameters are derived
from Eq. (6) evaluated at different upstream distance from
the rotor without including induction effects. The 10 min pe-
riods are classified according to the results of the wake detec-
tion algorithm in Sect. 3.4, considering south-westerly direc-
tions (235–265◦). There are 287 and 175 periods respectively
where partial- and full-wake situations are detected, while
the mast is wake-free. The wake-free mean wind speeds
range between 4 and 14 m s−1 at turbulence levels between
5 % and 15 %. Although wake effects vary according to the
ambient wind field, we select all measured conditions for this
comparison.

The influence of wakes on the lidar-estimated mean wind
speed is shown in Fig. 6a. The reconstructed velocities in
a partial wake (blue markers) and full wake (red markers)
are respectively ∼ 5 % and ∼ 20 % lower than ambient wind
speed. The magnitude of the velocity deficit depends on the
number and location of lidar beams that are measuring inside
the wake. Figure 6a also shows the influence of rotor induc-
tion at shorter ranges, where low velocity is measured in the
vicinity of the turbine (Mann et al., 2018). Despite the fact
that velocity recovery is expected moving downstream from
the wake, the induction effects are predominant. Altogether

the PL and CW lidar-estimated mean wind speeds differ from
each other by less than 2 % in the analysed cases.

We compare lidar-measured σu levels inside the wake
against σu measured by the mast in free wind in Fig. 6b. The
bias of PL lidar-filtered turbulence (circle markers) and the
CW lidar-filtered and unfiltered turbulence (star and triangle
markers) are shown as a function of upfront rotor distance.
The results clearly show the increased turbulence in partial
and full wakes. The difference between PL and CW filtered
turbulence in wake situations (circle and star markers) de-
creases at farther beams, where larger probe volume averag-
ing effects are expected for the CW lidar (Dimitrov et al.,
2019). The main discrepancy is found for filtered and un-
filtered turbulence estimates in wake conditions, where the
latter are significantly lower. We do not observe significant
induction effects on the estimated σu values, as they affect
the velocity variance to a much lower extent (Simley et al.,
2016; Mann et al., 2018). A slight wake recovery can also
be noticed, specifically in full-wake situations (red markers),
where lower σu values are estimated moving downstream.

The estimated shear exponent through the PL and CW li-
dar for free and wake conditions is shown in Fig. 6c. As
wakes expand both horizontally and vertically, wake effects
can be related to a decrease in the shear exponent compared
to free-wind flow and even negative values in full wakes. The
differences between the PL and CW lidar-estimated shear are
most pronounced in full wakes, where the CW measures at
multiple points in the vertical direction. The fitted shear can
also be used as an indicator of wake influence on inflow mea-
surements.

4.2 Wake effects on turbulence spectral properties

In addition to the wake-induced effects on the average flow
properties, turbulence spectral properties are also affected in
wake regions. Earlier work on this subject showed a shift of
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Figure 6. Comparison of the slope of a linear regression model between lidar-estimated and mast-measured inflow characteristics including
mean wind speed (a), the standard deviation of wind speed (b), and shear (c), when the turbine is operating in wake-free (black), partial-wake
(blue), and full-wake (red) conditions and the met mast measures free-wind conditions. Results are shown as a function of lidar measuring
distances in front of the rotor and normalized over rotor diameter. The results for the PL lidar are shown by the dashed line with circle
markers, whereas those for the CW lidar are shown by the dotted line with star markers. The triangle markers show unfiltered turbulence
obtained from the ensemble-average Doppler spectrum of the CW lidar.

the wake spectrum towards low length scales, compared to
the free-wind spectrum, in both wind tunnel and field exper-
iments (Vermeer et al., 2003). Although large variations in
length scales occurred due to atmospheric stability, it was
generally observed that wake-induced turbulence is charac-
terized by a significantly smaller length scale than that for
ambient turbulence (Chamorro et al., 2012). Furthermore,
wake-added turbulence can be modelled using a synthetic
turbulence field with a small length scale, as done for the
DWM model (Larsen et al., 2008).

Based on these findings, we extract the turbulence spec-
tra parameters of the Mann model, with focus on the length
scale L, in free-, partial-, and full-wake situations. By com-
paring lidar spectra to spectra from a sonic anemometer in
wake-free conditions at NKE, it was found that lidar mea-
surements can qualitatively represent turbulence spectra, al-
though differences increase for turbulence length scales com-
parable to the probe volume length (Peña et al., 2017; Dim-
itrov et al., 2019). We ensemble-average lidar radial veloc-
ity spectra using the central beam (B0) of the PL lidar. As-
suming that the turbine is aligned with the inflow wind di-
rection, the central beam pointing upstream at hub height
is ideally measuring the wind fluctuations of the horizon-
tal velocity component. In this case, minimal contamination
effects from other velocity components are expected. Typi-
cally, three auto-spectra of the wind velocity components as
well as one point cross-spectrum are fitted simultaneously to
the theoretical spectra to derive the Mann model parameters.
However, as we measure a single LOS spectrum, we assume
0 = 3, which is suitable for the terrain and climate for free-
wake conditions (Peña et al., 2017). Although 0 impacts load
predictions, the influence of the turbulence length scale was
found to be predominant (Dimitrov et al., 2017, 2018).

The 10 min time series of radial velocity are classified
into free-, partial-, and full-wake situations and the spectra

are ensemble-averaged over all conditions within each class.
Then, the parameter L is fitted to the ensemble-averaged
spectrum. The comparison is based on the energy spectra of
the u-velocity component (along-wind) in free-, partial-, and
full-wake situations. The measured and theoretical spectra,
normalized over the relative variance, are shown in Fig. 7a.
The aggregated measured spectra in wakes show a shift of
spectrum peak towards higher wave numbers, as expected,
which indicates high energy content at low turbulence length
scales. The deviations between the modelled and the mea-
sured spectra increase under wake situations. This follows
from the limitations of the Mann model, which was devel-
oped for homogeneous wind flow and near-neutral atmo-
spheric conditions; the constraints of the adopted fitting pro-
cedure; and the uncertainty of the lidar-measured spectra. In
fact, the derived length scale values are critically affected by
the probe volume filtering effects, atmospheric stability con-
ditions, sampling frequency, and measurement location in the
wake region. Resulting length scales of approximately 35,
15, and 7 m are estimated, respectively, for free-, partial-, and
full-wake conditions. These values are used to generate syn-
thetic turbulence fields for load simulations.

The small-scale turbulence generated within wake flows
generally leads to a significantly larger broadening of the
Doppler spectrum compared to that in the ambient flow
(Branlard et al., 2013; Held and Mann, 2019). We show an
example of a 10 min ensemble-average Doppler spectrum ob-
tained from the radial velocity of the CW lidar using bins b3
and b8 (see Fig. 2 for notation) at 1.3D in partial-wake
and full-wake conditions in Fig. 7b, c. We also provide the
ensemble-average Doppler spectrum in free wind for refer-
ence. For this comparison, we select three 10 min periods
with similar inflow conditions measured at the mast; thus
uhub ∼ 9 m s−1 and σu/uhub ∼ 0.11. It can be noticed that
broadening effects are present only in b3 (solid blue line) in
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Figure 7. (a) Comparison of the normalized ensemble-average uLOS spectrum based on measurements with the central beam of the PL lidar
(dashed line and markers) against the fitted theoretical Mann spectra using Eq. (11) (solid line). (b, c) Normalized ensemble-average Doppler
spectrum measured over a 10 min period by the CW lidar using bins b3 (solid line) and b8 (dash line).

the partial-wake situation and in both bins (solid and dashed
red lines) in full-wake conditions.

4.3 Reconstructed inflow parameters for load
simulations in wake situations

We select around 500 10 min samples for each of the free-,
partial-, and full-wake scenarios, which are distributed within
the wind speed range 4–14 m s−1. We select 10 min periods
within the narrow sector (97–109◦) for free-flow conditions
and periods of south-west directions (235–265◦) for wake sit-
uations. The main limitation of the current dataset is given
by the concurrent availability of both lidars and by the few
10 min periods at high wind speeds in full-wake situations.

The comparison of the reconstructed wind field character-
istics in partial-wake conditions using PL and CW lidar mea-
surements from all ranges is presented in Fig. 8. A very good
agreement can be observed for the mean wind speed; the line
fits yield slopes of nearly unity and an R2 of almost 100 %.
The filtered turbulence from the PL lidar is∼ 2 % lower than
that from the CW lidar. The differences can be partly ex-
plained by the larger amount of filtering occurring for far-
ther beams of the CW lidar as well as due to the distinct
scanning patterns measuring an inhomogeneous wind flow.
When compared to the filtered turbulence, the unfiltered esti-
mations show a significant reduction by∼ 6 % (blue markers
in Fig. 8b). A large scatter appears for the shear, veer, and
yaw (the latter two are not shown), which are subjected to a
high level of uncertainty and highly depend on the scanning
patterns. Similar results are found for the full-wake situation
as presented in Fig. 9. The main discrepancy is in the estima-
tion of the shear exponent.

4.4 Load validation procedure

The load validation analysis is conducted on the dataset de-
scribed in Sect. 4.3. We analyse about 500 10 min samples
distributed between 4 and 14 m s−1, for free-, partial-, and
full-wake scenarios. The quality of load predictions is evalu-

ated through one-to-one comparisons against load measure-
ments. The resulting statistics from HAWC2 simulations are
denoted by (ỹ) and the corresponding measured statistics
from the turbine on-board sensors by (ŷ). Three uncertainty-
related indicators are assessed, where the symbol E(.) de-
notes the mean value and 〈.〉 the ensemble average.

– coefficient of determination R2
= 〈(ỹ−E(ŷ))2

〉/〈(ŷ−
E(ŷ))2

〉;

– uncertainty XR =
√
〈(ỹ/ŷ−E(ỹ)/E(ŷ))2〉;

– bias 1R = E(ỹ)/E(ŷ).

The R2, XR , and 1R indicators are computed for free-,
partial-, and full-wake situations. The 10 min wind turbine
statistics investigated hereafter include the mean power pro-
duction (Powermean), the extreme loads, and 1 Hz damage-
equivalent fatigue loads of fore–aft tower bottom bending
moment (MxTBmax , MxTBDEL ) and flapwise bending moment
at the blade root (MxBCmin , MxBCDEL ). Note that given the
strain gauge convention, the increasing flapwise bending mo-
ment results in negative loading; thus we refer to MxBCmin as
the extreme loads (Dimitrov et al., 2019). Therefore, time se-
ries of 600 s are simulated in the aeroelastic code HAWC2,
and load statistics are derived at the location where the strain
gauges are installed. A turbulence seed with statistical prop-
erties matching those of the measured 10 min conditions is
input to the load simulations.

The rain flow counting algorithm is used to compute the
1 Hz damage-equivalent fatigue loads with a Wöhler expo-
nent ofm= 12 for blades andm= 4 for the tower. The same
approach is used to post-process measured loads. We run
simulations using wind field characteristics listed in Table 1,
which are derived from both the PL and CW lidars as well
as the mast measurements. A more detailed analysis is con-
ducted for partial- and full-wake situations. Here, we inves-
tigate how power and load predictions are influenced by fil-
tered and unfiltered turbulence estimates derived in Sect. 4.3,
characteristic turbulence length scales derived in Sect. 4.2,
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Figure 8. Comparison of the CW and PL lidar 10 min reconstructed wind speed (a), filtered and unfiltered turbulence in black and blue
colour, respectively (b), and shear exponent (c) for partial-wake conditions. We show a 1 : 1 line for guidance, the slope of a linear regression
model, and the coefficient of determination R2.

Figure 9. Same as Fig. 8 but for full-wake conditions.

and wind parameters derived from lidar measurements at sev-
eral ranges.

We provide detailed scatter plots of measured and pre-
dicted load sensors used in the analysis in Figs. C1–C5. The
prediction uncertainties for power production and extreme
loads are presented in Table 2 and for fatigue loads in Table 3.
We define the lidar-based power and load predictions in free
wind as the reference case. Thus, we compare the relative
error between the uncertainty indicators derived from wake
situations with that from the free-wind case. Generally, we
observe lower prediction accuracy in partial- and full-wake
situations compared to the free-wind scenario, while in some
cases similar uncertainty levels are obtained. The following
sections describe the results in detail.

4.4.1 Power predictions

Power production levels are overestimated in the partial wake
but underestimated in the full wake by approximately 4 %
compared to the free-wind case. Larger XR values are found
in the full wake compared to the reference case, although
R2 is above 96 %, which indicates a good correlation. We do

not observe a significant influence of turbulence intensity lev-
els on power predictions, i.e. by comparing the uncertainties
in the full wake between simulations performed with filtered
and unfiltered turbulence estimates from the CW lidar in Ta-
ble 2. In a similar way, small turbulence length scales derived
in wakes have a negligible effect on power production levels.
The power prediction deviations in the partial wake drop to
approximately 1 %, when the PL lidar-estimated wind char-
acteristics using measurements up to 1.3D are used in the
simulations. This result indicates the sensitivity of the recon-
structed wind field characteristics to the upstream ranges in
a strongly inhomogeneous wind field as a partial-wake situa-
tion.

4.4.2 Extreme load predictions

The extreme loads (MxTBmax , MxBCmin ) are affected by both
the turbulence levels and the turbulence length scale. We ob-
tain similar deviations in partial- and full-wake conditions to
the free-wind conditions, when using unfiltered turbulence
estimates and length scales extracted in free-wind conditions
(see Table 2). However, simulations based on filtered tur-
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Table 2. List of accuracy and uncertainty values for power and extreme load validation procedures. The marker ∗∗ indicates unfiltered
turbulence obtained from the ensemble-average Doppler spectrum of the radial velocity at 1.3D.

Case Sensor/ranges Mann’s Powermean MxTBmax MxBCmin

length R2 XR 1R R2 XR 1R R2 XR 1R
scale
L (m)

Wake-free Mast 35 0.99 0.09 1.01 0.97 0.09 0.97 0.96 0.09 0.99
PL (0.7–2.5D) 0.99 0.09 1.01 0.97 0.09 0.98 0.96 0.09 1.01
CW (1.0–2.5D) 0.99 0.09 0.98 0.97 0.09 0.95 0.97 0.08 1.01

Partial wake PL (0.7–2.5D) 35 0.99 0.10 1.05 0.91 0.12 1.00 0.91 0.12 1.05
PL (0.7–1.3 D) 0.99 0.09 1.02 0.92 0.11 0.98 0.92 0.11 1.02
CW (1.0–2.5D)∗∗ 0.99 0.10 1.03 0.92 0.11 0.97 0.92 0.10 1.01
PL (0.7–2.5 D) 15 0.99 0.09 1.06 0.91 0.11 0.97 0.91 0.11 1.02
CW (1.0–2.5D)∗∗ 0.99 0.10 1.04 0.92 0.11 0.96 0.93 0.10 0.99

Full wake PL (0.7–2.5D) 35 0.97 0.19 0.95 0.92 0.14 0.99 0.91 0.12 1.06
CW (1.0–2.5D) 0.96 0.17 0.96 0.89 0.14 0.98 0.89 0.12 1.05
CW (1.0–2.5D)∗∗ 0.96 0.18 0.95 0.90 0.14 0.95 0.89 0.12 1.01
PL (0.7–2.5D) 7 0.97 0.18 0.95 0.90 0.14 0.92 0.91 0.12 0.98
CW (1.0–2.5D) 0.97 0.15 0.96 0.92 0.13 0.91 0.91 0.10 0.97
CW (1.0–2.5D)∗∗ 0.97 0.16 0.95 0.91 0.14 0.89 0.91 0.11 0.94

Table 3. List of accuracy and uncertainty values for fatigue load validation procedures. The marker ∗∗ indicates unfiltered turbulence obtained
from the ensemble-average Doppler spectrum of the radial velocity at 1.3D.

Case Sensor/ranges Mann’s MxTBDEL MxBCDEL

length R2 XR 1R R2 XR 1R
scale
L (m)

Wake-free Mast 35 0.86 0.19 0.93 0.84 0.22 1.01
PL (0.7–2.5D) 0.85 0.20 0.97 0.83 0.23 1.09
CW (1.0–2.5D) 0.86 0.18 0.91 0.84 0.21 1.01

Partial wake PL (0.7–2.5D) 35 0.81 0.18 0.95 0.83 0.23 1.04
PL (0.7–1.3D) 0.82 0.18 0.93 0.83 0.22 1.02
CW (1.0–2.5D)∗∗ 0.80 0.17 0.92 0.85 0.19 1.00
PL (0.7–2.5D) 15 0.83 0.17 0.94 0.83 0.21 0.98
CW (1.0–2.5D)∗∗ 0.83 0.16 0.90 0.86 0.17 0.94

Full wake PL (0.7–2.5D) 35 0.78 0.19 1.11 0.84 0.24 1.22
CW (1.0–2.5D) 0.74 0.18 1.08 0.81 0.20 1.19
CW (1.0–2.5D)∗∗ 0.73 0.17 1.01 0.80 0.19 1.12
PL (0.7–2.5D) 7 0.82 0.15 1.09 0.85 0.18 1.07
CW (1.0–2.5D) 0.79 0.16 1.05 0.84 0.16 1.02
CW (1.0–2.5D)∗∗ 0.79 0.16 0.97 0.84 0.15 0.97

bulence consistently overestimate extreme load levels (3 %–
7 %). The effect of a low value for the length scale is notice-
able in full-wake situations, where L= 7 m leads to biases of
the order of −7 % compared to the reference case. Overall,
higher XR values are derived in wakes compared to the ref-
erence, while R2 remains above 89 % in all analysed cases.
It should also be noticed that the maximum loads do not in-

crease significantly in wake situations, since the wind speed
in the wakes is lower than the free wind (Larsen et al., 2013).

4.4.3 Fatigue load predictions

The biases of fatigue load predictions in the partial wake, us-
ing unfiltered turbulence statistics and L= 35 m, are compa-
rable with the deviations observed in free-wind conditions,
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as seen in Table 3. The error increases when filtered turbu-
lence from the PL lidar is used for the simulations, leading to
an underestimation of fatigue loads between 2 % and 5 %.
The most significant deviations are observed for MxTBDEL

and MxBCDEL in full-wake conditions. The simulations based
on filtered turbulence measures and L= 35 m lead to an
overestimation of blade-root and tower-bottom predictions
by 21 % compared to the free-wind case. The filtered turbu-
lence statistics are predicted with the use of the spectral ve-
locity tensor model and are found to be approximately 11 %
higher compared to unfiltered turbulence derived from the
Doppler radial velocity spectrum (see Fig. 9b). The bias of
fatigue load predictions drops to approximately 11 %, when
unfiltered turbulence measures from the CW lidar are simu-
lated. Overall, extreme and fatigue load predictions show low
uncertainty when unfiltered turbulence estimates are used as
input in simulations.

Fatigue loads are found to correlate significantly better
when a synthetic turbulent field characterized by small length
scales is used (i.e. L= 7 m). This is demonstrated by im-
proved XR and R2 indicators compared to those resulting
from simulations with L= 35 m. Besides, reducing L from
35 m (free-wind conditions) to 7 m (fitted in full-wake con-
ditions) reduces fatigue blade-root load levels by 15 %. The
simulations with low length scales and unfiltered turbulence
measures provide the lowest deviations in full-wake condi-
tions compared to the reference case, as the error drops to
−4 % for MxBCDEL , indicating underprediction (see Table 3).
These results demonstrate the improved accuracy of load
predictions when unfiltered turbulence measures are simu-
lated and validate the importance of characterizing turbu-
lence spectral parameters for load analysis, as previously
demonstrated in Thomsen and Sørensen (1998), Sathe et al.
(2012), and Dimitrov et al. (2017).

4.5 Sensitivity of inflow parameters on load predictions

We use a first-order polynomial response surface for evalu-
ating the sensitivity of the predictions with respect to input
wind variables. We consider uhub, σu/uhub, α, 1ϕ, ϕ, and
L in the analysis. The first-order polynomials are separately
fitted for free-, partial-, and full-wake conditions based on the
PL lidar-measured wind field parameters. We ensure close to
850 10 min samples for each case. Besides, L is assumed to
randomly vary between 7 and 30 m in full-wake conditions
and between 15 and 35 m in partial-wake and free-wake sit-
uations. We normalize the input variables such that their val-
ues are scaled between zero and 1 to allow the sensitivity
study.

The obtained linear regression coefficients for Powermean,
MxBCDEL , and MxTBmax responses are presented in Fig. 10.
Similar trends are obtained for MxBCmin and MxTBDEL (not
shown). The power predictions are strongly driven by the
reconstructed mean wind speed at hub height as shown in
Fig. 10a. This indicates that the observed 1R values in Ta-

ble 2 are mostly explained by the uncertainty in the wind
speed reconstruction. The mean wind speed and turbulence
intensity have the largest influence on the fatigue load pre-
dictions (see Fig. 10b). In comparison to the wake-free sce-
nario, we observe the increased effect of turbulence inten-
sity and reduced influence of shear exponents in wake situ-
ations. This is due to the significantly high turbulence lev-
els measured inside the wakes (up to 1.8 times higher than
under free-wind conditions) and relatively low shear expo-
nent values (see Fig. 6). The former is a well-known fatigue
load driver. The latter implies small velocity gradients within
the rotor area, which lead to lower blade-root fatigue loads
(Sathe et al., 2012; Dimitrov et al., 2015). The effects of α,
1ϕ, ϕ, and L are secondary compared to uhub and σu/uhub.
We observe slightly higher sensitivity of L in full-wake con-
ditions compared to partial-wake and free-wind conditions.
However, according to the results in Table 3, the length scale
parameter has a significant impact on loads when assessed
independently. Finally, uhub and σu/uhub have the largest in-
fluence on the extreme tower bottom loads in Fig. 10c. Over-
all, the order of importance of the analysed inflow parame-
ters are comparable with the more detailed sensitivity studies
provided in Dimitrov et al. (2018).

4.5.1 Uncertainty distribution as a function of wind
speed

We analyse the bias and uncertainty of Powermean, MxBCDEL ,
and MxTBmax predictions with respect to the inflow wind
speed in Fig. 11. We observe larger deviations of the se-
lected sensors at low wind speeds, which gradually decrease
for higher winds. The deviations in the reference case (black
line) and wake situations are a combination of uncertainty
in the reconstructed wind profiles, aeroelastic model uncer-
tainty, load measurement uncertainty, and statistical uncer-
tainty (Dimitrov et al., 2019). Although there is not suffi-
cient information to distinguish among the various uncer-
tainty sources, we assume that the deviations are due to the
error in the wind field representation only.

The power prediction uncertainties with respect to mean
wind speed in free-, partial-, and full-wake situations are
plotted in Fig. 11a. We observe a consistent overprediction of
power levels in partial-wake conditions (blue line) and under-
prediction in full-wake conditions (red line) for the full range
of wind speeds. The predictions of MxBCDEL with respect to
the mean wind speeds in free- and full-wake conditions are
plotted in Fig. 11b. The predictions based on the unfiltered
turbulence (green line) show better agreement with the ref-
erence compared to results based on filtered turbulence (red
line). It is also found that the largest deviations occur at low
wind speeds (u < 8 m s−1). Finally, we show the results us-
ing unfiltered turbulence and a low length scale (purple line),
which provide the lowest error. The residual deviations can
be partly explained by the uncertainty in turbulence statistics
and spectral property representation. Figure 11c shows that
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Figure 10. Regression coefficients of a linear response surface model identifying the sensitivity of wind field parameters to (a) mean power
production, (b) fatigue flapwise bending moment at the blade root, and (c) extreme fore–aft tower bottom bending moment.

comparable deviations are obtained for tower extreme loads
in partial- and full-wake situations as for the reference case.

5 Discussion

Wind field parameters used as inputs for aeroelastic simula-
tions are derived from PL and CW lidar measurements of the
wake field behind an operating wind turbine. Although the
two lidars follow different scanning patterns and the wake
flow field is strongly inhomogeneous, we find a very good
agreement between the PL and CW lidar-estimated horizon-
tal wind speed and filtered turbulence in partial- and full-
wake situations. The estimation of the wind veer, yaw error,
and shear exponent using nacelle-mounted lidars is prone to
a high level of uncertainty and is affected by the scanning
patterns. This is demonstrated by the larger scatter between
the estimated parameters by the PL and CW lidars in wake
compared to free-wind conditions (not shown). However, we
demonstrate that the influence of these parameters on the
loads and power predictions is minor compared to mean wind
speed, turbulence intensity, and length scale.

Although the present work does not focus on details of
the performance of the two lidar systems, the findings indi-
cate that the main sources of uncertainty in load predictions
are related to flow modelling assumptions. The wind veloc-
ity gradient in the wake is characterized by the combined
effect of the atmospheric shear and the wake deficit. The for-
mer can be explained by a power-law profile, while the latter
is often approximated in the far wake by a bivariate Gaus-
sian shape function, whose depth and width depend on ambi-
ent conditions and turbine operation regimes (Trujillo et al.,
2011; Aitken et al., 2014). Further, the 10 min average wind
velocity gradient, observed from a fixed point, will be largely
influenced by wake meandering in the lateral and vertical di-
rections, increasing the complexity of the velocity field in the
wake region. The results of the power prediction’s deviations
in Table 2, in both partial- and full-wake situations, indicate a
less accurate reconstruction of the wind field when compared
to wake-free conditions. Although we demonstrate a low sen-

sitivity of the loads to the shear exponent for all the analysed
sensors (see Fig. 10), it is envisioned to more appropriately
account for wake-affected velocity gradient profiles, which
include a wake shape function and the contribution of the
meandering, and determine whether or not this will signifi-
cantly improve the accuracy of power and load predictions.

It is well-established that fatigue loads are dominated by
turbulence levels. However, to extract turbulence parameters
by combining a turbulence model with a model of the spa-
tial radial velocity, averaging of the lidars introduces sig-
nificant uncertainty under wake conditions. Indeed, filtered
turbulence estimates in wakes are 6 %–10 % higher than un-
filtered turbulence measures, derived from the Doppler radial
velocity spectrum, as shown in Figs. 8 and 9. We describe the
wake flow as a homogeneous field by using the Mann spec-
tral tensor model fitted using PL lidar measurements at hub
height. Nonetheless, wake fields are highly inhomogeneous,
and spectral properties vary significantly within the rotor re-
gion (Kumer et al., 2017). We derive turbulence length scales
in wakes and demonstrate the importance of characterizing
turbulence spectra for the load analysis. The observed mag-
nitude of decrease in longitudinal turbulence length scale is
consistent with results reported in Thomsen and Sørensen
(1998) and Madsen et al. (2010), where wake-added tur-
bulence is characterized by length scales within the range
10 %–25 % of the free-wind length scale. However, a detailed
analysis including atmospheric stability effects on both tur-
bulence spectra and wake characteristics can potentially re-
duce the uncertainty of load predictions (Sathe et al., 2012;
Dimitrov et al., 2017). Furthermore, cross-contamination ef-
fects and probe volume averaging effects become larger in
wakes, as the size of turbulence eddies decreases to length
scales comparable to or lower than the lidar probe volume.
These effects increase the uncertainty of extracted turbu-
lence length scales from lidar measurements. Despite this,
fatigue load predictions show significant improvement by us-
ing low turbulent length scales; spectral analysis of measured
and predicted loads is required for a better understanding of
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Figure 11. Comparison of bias (solid line) and uncertainty (error band) of (a) mean power production, (b) fatigue flapwise bending moment
at the blade root, and (c) extreme fore–aft tower bottom bending moment, with respect to inflow mean wind speed. The analysed cases
are shown with coloured lines in each sub-plot. The reference case denotes the mast-based free-wind scenario; PW refers to partial-wake
conditions and FW refers to full-wake conditions. We show results from both PL and CW lidars and different turbulence length scales L.
The marker ∗∗ indicates unfiltered turbulence obtained from the ensemble-average Doppler spectrum of the radial velocity at 1.3D.

the accuracy of the lidar-fitted synthetic turbulence field in
wakes.

We demonstrate that improved fatigue load predictions
are obtained using unfiltered turbulence measures from the
Doppler radial velocity spectrum. However, the estimation
of σ 2

u from the σ 2
LOS relies on flow homogeneity and Tay-

lor’s frozen turbulence hypothesis (Taylor, 1938). These as-
sumptions are sound for large-scale wind fluctuations and
free flow over flat and homogeneous terrain but not valid in
wakes (Schlipf et al., 2010). The current wind field modelling
approach omits the large-scale meandering of wakes, which
has a strong impact on power and load predictions (Larsen
et al., 2013). These uncertainty sources, among others, can
partially explain the observed deviations.

The influence of wake effects on power and load lev-
els depends on the wind farm layout, ambient wind speed
and turbulence, and atmospheric stratification, among oth-
ers. The current state-of-the-art approach to predict wake
flows and their influence on wind turbine operations relies
on engineering-like wake models (Frandsen, 2007; Madsen
et al., 2010). These models ensure an acceptable level of ac-
curacy, robustness, and computational cost. Previous stud-
ies carried out load validation using the effective turbulence
model and the DWM model, which are recommended in
IEC 61400-1. As described in Sect. 1, results from these
studies show deviations of the same or even larger order
of magnitude compared to the results from our load vali-
dation approach. Despite the discussed shortcomings, load
validation under wake conditions based on lidar measure-
ments may already be a viable alternative to the engineering
wake models. We will soon evaluate whether the differences
in the calculated loads using lidar-estimated wind character-
istics in wakes are larger compared to the uncertainties in
the load calculations with state-of-the-art wake models such
as DWM.

6 Conclusions

We demonstrated a procedure for carrying out load vali-
dation in partial- and full-wake conditions using measure-
ments from two types of forward-looking nacelle lidars: a
pulsed- and continuous-wave system. The suggested proce-
dure characterized wake-induced effects by means of lidar-
reconstructed wind field parameters commonly used as input
for load simulations, without applying wake deficit models.

We considered the uncertainty of lidar-based load predic-
tions against wind turbine on-board sensors in free-wind con-
ditions as the reference case. Hence, we quantified the uncer-
tainty of lidar-based load predictions against sensor data in
wake conditions, and we compared it to uncertainty of the
free-wind case. The reconstructed mean wind speed, turbu-
lence intensity, and turbulence length scale in wake condi-
tions were found to be the most influential parameters on the
predictions.

Power production levels under wake conditions were
strongly driven by the reconstructed wind speed at hub
height, whereas turbulence intensity as well as turbulence
length scales had negligible effects on those levels. Power
predictions were overestimated in partial-wake conditions
but underestimated in full-wake conditions by approximately
4 % compared to on-board sensors, while free-wind condi-
tions were unbiased.

Fatigue loads were affected by turbulence characteristics
inside the wake. The use of a spectral velocity tensor model
to derive turbulence parameters introduced significant uncer-
tainty under wake conditions. The tower-bottom and blade-
root bending moment predictions were overestimated by
21 % in full-wake conditions using filtered turbulence mea-
sures and turbulence length scales typical of free-wind con-
ditions. The bias was reduced to 11 % using unfiltered turbu-
lence measures derived from the ensemble-average Doppler
radial velocity spectrum.
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Overall, the measured and predicted fatigue and extreme
loads were found to correlate significantly better when a syn-
thetic turbulent field characterized by a low turbulence length
scale was used. Furthermore, simulations with low turbu-
lence length scales led to an underestimation of blade-root
fatigue load predictions by 4 % compared to on-board sen-
sors, while free-wind situations were unbiased. However, es-
timating turbulence characteristics under wake conditions us-
ing measurements from nacelle-mounted lidars was prone to
a high level of uncertainty due to probe volume effects and
flow modelling assumptions.

The present work demonstrated the applicability of
nacelle-mounted lidar measurements to extend load and
power validations under wake conditions and highlighted the
main challenges. Further investigation is necessary to ver-
ify that the observed uncertainty of predictions is compara-
ble with results using state-of-the-art wake models recom-
mended by the IEC standard. Future research should apply a
wind deficit model that accounts for the combined effect of
atmospheric shear and wake deficit and quantify the uncer-
tainty of resulting power and load predictions.
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Appendix A: Schematic view of the nacelle-mounted
lidar measurement patterns

Figure A1. Schematic view of the measurement patterns of nacelle-mounted lidars: CW lidar (a) and PL lidar (b).
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Appendix B: Wake detection from mast
measurements

The wake detection algorithm (see Sect. 3.4) is extended to
the mast measurements to classify 10 min periods where the
mast is in free or wake situations. For this purpose, turbu-
lence observations from the cup anemometer at 80 m and
vertical wind shear computed using the measurements from
the cup anemometers at 57.5 and 80 m are used as wake de-
tection parameters. Their 99th percentiles are used as con-
servative thresholds to characterize the limits of the normal
range of the site-specific free-wind conditions. The result-
ing thresholds are TImast,99 = 0.20 and αmast,99 =−0.02. If
one of the two limits is exceeded within a 10 min period, the
mast is considered in wake conditions and shown with green
markers in Fig. B1.

Figure B1. (a, b) The 10 min observations of the turbulence intensity and vertical wind shear at the mast as a function of turbine yaw
position. Free-wind conditions relative to the mast are identified with grey markers, and waked situations are identified with green markers.
(c) PL-estimated 10 min wake detection parameter TILOS,B1. Detected wake situations of turbine T04 are shown with coloured markers:
wake-free (grey), partial-wake (blue), and full-wake (red) conditions. The 10 min periods when the mast is affected by wakes are shown as
green markers.
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Appendix C: Figures with load statistic comparisons

Figure C1. Scatter plots of the normalized measured and predicted power mean realizations used in the analysis.

Figure C2. Scatter plots of the normalized measured and predicted extreme fore–aft tower bottom bending moment realizations used in the
analysis.

Wind Energ. Sci., 5, 1129–1154, 2020 https://doi.org/10.5194/wes-5-1129-2020



D. Conti et al.: Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements 1149

Figure C3. Scatter plots of the normalized measured and predicted extreme flapwise bending moment at the blade-root realizations used in
the analysis.
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Figure C4. Scatter plots of the normalized measured and predicted fatigue fore–aft tower bottom bending moment realizations used in the
analysis.
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Figure C5. Scatter plots of the normalized measured and predicted fatigue flapwise bending moment at the blade-root realizations used in
the analysis.
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