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Abstract. We present the first synthetic aperture radar (SAR) offshore wind atlas of the US East Coast from
Georgia to the Canadian border. Images from RADARSAT-1, Envisat, and Sentinel-1A/B are processed to wind
maps using the geophysical model function (GMF) CMOD5.N. Extensive comparisons with 6008 collocated
buoy observations of the wind speed reveal that biases of the individual systems range from −0.8 to 0.6 m s−1.
Unbiased wind retrievals are crucial for producing an accurate wind atlas, and intercalibration of the SAR obser-
vations is therefore applied. Wind retrievals from the intercalibrated SAR observations show biases in the range
of to −0.2 to 0.0 m s−1, while at the same time improving the root-mean-squared error from 1.67 to 1.46 m s−1.
The intercalibrated SAR observations are, for the first time, aggregated to create a wind atlas at the height
10 m a.s.l. (above sea level). The SAR wind atlas is used as a reference to study wind resources derived from
the Wind Integration National Dataset Toolkit (WTK), which is based on 7 years of modelling output from the
Weather Research and Forecasting (WRF) model. Comparisons focus on the spatial variation in wind resources
and show that model outputs lead to lower coastal wind speed gradients than those derived from SAR. Areas
designated for offshore wind development by the Bureau of Ocean Energy Management are investigated in more
detail; the wind resources in terms of the mean wind speed show spatial variations within each designated area
between 0.3 and 0.5 m s−1 for SAR and less than 0.2 m s−1 for the WTK. Our findings indicate that wind speed
gradients and variations might be underestimated in mesoscale model outputs along the US East Coast.

1 Introduction

Offshore wind energy has been established on the continen-
tal shelf of northern Europe since 2001 with a total installed
capacity of 15 780 MW (Wind Europe, 2018). The US East
Coast is similar in water depths and population density and
could thus be well-suited for offshore wind farms (Kempton
et al., 2007). During the past decade, the Bureau of Offshore
Energy Management (BOEM) has leased out areas desig-
nated for offshore wind farm development along the US East
Coast (BOEM, 2018), and the first wind plant became oper-

ational in 2016 (Block Island Wind Farm, Rhode Island1).
Accurate and long-term wind statistics across broad geo-
graphic areas (i.e. wind atlases) are needed to support off-
shore wind energy deployment. Wind atlases can be devel-
oped from local in situ measurements, i.e. buoys or meteoro-
logical masts (Troen and Petersen, 1989); numerical weather
prediction models; (Dvorak et al., 2013; Hahmann et al.,
2015); or satellite-based remote sensing (Christiansen et al.,
2006; Hasager et al., 2015).

1http://dwwind.com/project/block-island-wind-farm/ (last ac-
cess: 20 May 2020).
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Offshore wind resource data for the US East Coast are
available from the Weather Research and Forecasting (WRF)
model (Draxl et al., 2015b; Dvorak et al., 2013). For off-
shore wind energy, locations close to shore are most attrac-
tive because installation costs increase with the distance from
shore because of increased water depth and longer cables.
The BOEM lease areas are mainly located in coastal waters
less than 70 km from shore where influences from upstream
land masses are still substantial (Barthelmie et al., 2007),
and mesoscale models can result in high uncertainties (Hah-
mann et al., 2015). These models need validation. Colle et
al. (2016) point out that observations at turbine hub heights
around 100 m are lacking and provide case-study-based val-
idation using observations from aeroplanes. Long-term ref-
erence wind climates at broad geospatial scales are missing
because observations from ocean buoys are sparse.

Scatterometers and synthetic aperture radar (SAR) on
board satellites provide coverage over several hundred kilo-
metres, and it is possible to retrieve wind speeds at 10 m from
radar backscatter of the ocean surface. SAR is better suited
for resolving winds in coastal zones because of its higher spa-
tial resolution (Christiansen et al., 2006). It has been shown
that SAR-derived winds can accurately depict wind speed
gradients measured by ground-based lidars near the coast-
line (Ahsbahs et al., 2017) and that SAR wind fields show
similar mean wind speed variations as those experienced by
wind turbines (Ahsbahs et al., 2018).

Wind resources can be assessed from SAR (Christiansen
et al., 2006) and studies have been performed at different lo-
cations (Doubrawa et al., 2015; Hasager et al., 2011). For
the US East Coast, a SAR-based wind atlas has been cre-
ated from RADARSAT-1 (RS1) data for a small area off
the coast of Delaware (Monaldo et al., 2014). Expanding
this study to the entire US East Coast with RS1 data is
not possible because the images were acquired specifically
for this atlas and coverage outside this region is limited.
Here, we have collected additional data from Envisat (ENV),
Sentinel-1A (S1A), and Sentinel-1B (S1B), which are dis-
tributed via Copernicus services. These data are openly avail-
able to public research, which is not the case for data from
other SAR missions such as TerraSAR-X, Cosmo SkyMed,
or RADARSAT-2.

The objective of this study is to create and validate a
satellite-based offshore wind atlas for the US East Coast
and compare it to outputs from numerical weather prediction
models.

The objective of this article is to produce and validate a
SAR-based wind atlas for the US East Coast by merging ob-
servations from four different satellites. We will remove pos-
sible offsets between wind retrievals from the different SAR
sensors and validate the intercalibrated dataset through com-
parisons with observations from the well-established ocean
buoy network on the US East Coast. The SAR-based wind
atlas will be compared to data from the Wind Integration Na-
tional Dataset Toolkit (WTK) produced by the National Re-

newable Energy Laboratory (NREL) from 7 model years of
outputs from the Weather Research and Forecasting (WRF)
model (Draxl et al., 2015b). The WTK is a state-of-the-art
mesoscale model run with a specific focus on parameters
important for wind energy production. We focus on coastal
wind speed gradients and determine how they are represented
in wind atlases from SAR and WTK. Lastly, the spatial vari-
ation in mean wind speeds on the kilometre scale is investi-
gated for BOEM lease areas designated for wind farm devel-
opment.

The article is structured as follows: Sect. 2 provides an
overview of the data and the area of interest for this study.
Section 3 describes the methods used to create a SAR-based
wind atlas. Section 4 presents wind climatologies and mea-
surement artefacts of the SAR wind atlas. Section 5 focuses
on using the SAR wind atlas to investigate wind variations
and compares to the WTK. Section 6 contains a discussion
of the results, and in Sect. 7, we draw conclusions on the
potential use of the wind atlas.

2 Data and area of interest

2.1 Area of interest

We focus this study on coastal waters off the US East Coast
from Georgia to the Canadian border. The area of interest
is defined as between 30.7 and 45◦ latitude and −63 and
−81.3◦ longitude extending 400 km offshore, as shown in
Fig. 1. The positions of ocean buoys within the area are
shown as well (see also Sect. 2.3).

2.2 Synthetic aperture radar

Satellites carrying SAR instruments have been operational
for decades, and extensive image archives exist. Portions of
these archives can be used by the scientific community, and
the European Space Agency (ESA) archives are becoming in-
creasingly open via Copernicus2 services. SAR sensors usu-
ally operate in different modes depending on the desired spa-
tial resolution of the images. We focus on modes that of-
fer the widest possible swaths, because our aim is to cre-
ate broad-scale wind resource maps. Co-polarized images in
VV and HH modes from Envisat’s wide swath mode (WSM),
Sentinel-1’s extra wide (EW) and interferometric wide (IW)
modes, and RADARSAT-1’s ScanSAR wide (WD1) mode
are used throughout this study (Table 1). The number of im-
ages can be misleading when assessing the coverage of each
sensor, because of the length of the swath varies. Envisat im-
ages tend to be more than 10 times longer than Sentinel-1
images. Sentinel-1A and B are operational at the moment,
and data until May 2018 are included.

2https://www.copernicus.eu/de (last access: 20 May 2020).
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Figure 1. Area of interest for this study and ocean buoy positions from the National Data Buoy Center.

Table 1. Overview of SAR sensors and the respective imaging modes and properties. The period of operation and number of images included
in this study are also shown.

Satellite Mode Polarization Incidence Swath Period Number
(◦) width of

(km) images

Envisat WSM VV 18–45 405 2002–2012 2198
HH 18–45 405 513

Sentinel-1A IW VV 30–45 250 2015–2018 2403
EW HH 30–45 400 27

Sentinel-1B IW VV 30–45 250 2015–2018 517

RADARSAT-1 WD1 HH 20–45 400 1996–2008 924

2.3 Buoy data

High-quality wind and temperature measurements are avail-
able on the US East Coast from the buoy centre of the
National Oceanic and Atmospheric Administration (NOAA)
(National Data Buoy Center, 1971). Wind measurements at
the buoy stations are obtained at various heights between
2 and 7 m a.s.l. (above sea level). The buoy observations are

used here as reference measurements. We only use buoys
located more than 5 km from the shoreline to avoid possi-
ble land contaminations in the corresponding SAR images.
A total of 31 buoys fulfil this criterion, and their approxi-
mate locations are shown in Fig. 1. The majority of the buoys
are located within 100 km from the shoreline. Locations and
measurement heights are recorded annually in the buoy data

https://doi.org/10.5194/wes-5-1191-2020 Wind Energ. Sci., 5, 1191–1210, 2020



1194 T. Ahsbahs et al.: US East Coast synthetic aperture radar wind atlas for offshore wind energy

files, but changes can occur within a year. Additional meta-
data on buoy positions and measurement heights are avail-
able and represent the most accurate information according
to NOAA (National Data Buoy Center, 2015). We use the
information given in the metadata. Buoy wind speeds and di-
rections are measured every hour for 8 min, and data are au-
tomatically quality controlled (National Data Buoy Center,
2009). We perform additional quality control through man-
ual inspection of data points where the difference between
SAR and buoy wind speeds exceeds 10 m s−1. This leads to
removal of four periods from specific buoys that show unre-
alistically low wind speeds for several months and one short
period where the buoy measurements are unreasonably high.

2.4 WIND toolkit

The WTK was originally developed to support the next gen-
eration of wind integration studies with input from experts
at NREL in production cost modelling and atmospheric sci-
ence. In its core lies a large dataset calculated with the WRF
model. The WRF model version 3.4.1 was used to create the
meteorological dataset, using ERA-Interim reanalysis data
as inputs. The meteorological dataset has a spatial resolu-
tion of 2 km× 2 km and 5 min temporal resolution. It covers
7 years (2007–2013) and is available over the 48 contiguous
US states, including the outer continental shelf. The WTK
has been used by various research centres within NREL and
by universities in multiple studies. A validation report is
available for six onshore sites and three offshore sites (Draxl
et al., 2015a). We will use the abbreviation WTK throughout
this paper when referring to this particular dataset.

3 Methods

3.1 Synthetic aperture radar wind retrievals

SAR wind retrievals from the database of the Technical Uni-
versity of Denmark are used for this study and their pro-
cessing is described in the following. SAR images are mea-
sures of the radar backscatter from the Earth’s surface. The
intensity of this backscatter is commonly referred to as the
normalized radar cross section (NRCS). Level-1 SAR data
are downloaded from the data providers, and calibration is
applied to obtain the NRCS. The processing is done using
the SAR Ocean Products System (SAROPS) software pack-
age (Monaldo et al., 2014). Radar backscatter and thus the
NRCS of the ocean surface are determined by Bragg scatter-
ing (Valenzuela, 1978). This scattering mechanism is most
sensitive to wave lengths on the order of 10 cm. At this scale,
waves can be assumed to be in local equilibrium with the
wind speed, and therefore the NRCS and the wind speed are
correlated. An empirical geophysical model function (GMF)
can link the NRCS and additional radar parameters to the
wind speed at 10 m height above the sea surface.

For C-band radars, the C-band model (CMOD) family
of functions is most widely used, and CMOD5.N (Hers-
bach, 2010) is chosen here for SAR wind retrievals. The
retrieved wind speed is the equivalent neutral wind at 10 m
above the sea surface. CMOD5.N is tuned for co-polarized
vertical (VV) SAR observations, and an incidence-angle-
dependent polarization ratio is applied before processing co-
polarized horizontal (HH) images (Mouche et al., 2005). For
SAR wind retrievals, the wind direction needs to be known
a priori. Wind directions are taken from global weather mod-
els from 10 m wind vectors and are interpolated spatially to
match the SAR images. Two sources of wind directions are
used for the SAR wind retrieval: until 2010, wind directions
come from the National Center for Atmospheric Research
Climate Forecast System Reanalysis (CFSR) reanalysis data,
and from 2011 onwards, wind directions from the Global
Forecast System (GFS) are used. The switch in wind direc-
tion input is present in the database of derived SAR wind
maps due to a change to near-real-time processing.

RADARSAT-1 was one of the early operational SAR sys-
tems, and some of the images have problematic distortions
(Vachon et al., 1999), i.e. when stitching the subswaths to-
gether or there are issues with the geolocation. These typi-
cally cause overestimated NRCS values and thus wind speeds
that are too high. Because these problems are easy to detect
visually but hard to formalize, RADARSAT-1 data have been
visually checked, and problematic images are excluded. Ad-
ditionally, NRCS values above 44◦ incidence angle are re-
moved because of frequent unrealistically high NRCS val-
ues.

3.2 Merging synthetic aperture radar wind fields from
different sensors

SAR wind speeds should correctly represent the wind con-
ditions compared to in situ observations, but validation of
SAR-derived wind speeds routinely leads to biases that are
not consistent between studies (Christiansen et al., 2006;
Horstmann et al., 2002; Lu et al., 2018; Takeyama et al.,
2013). Deviations between studies can partially be explained
by different GMFs that are used but also by inconsistent cal-
ibration of the NRCS. Biases in the SAR wind speeds are
problematic here because they translate to biases in the de-
rived wind atlas. It is particularly problematic to have offsets
in the biases between sensors, because these will introduce
variability where spatial coverage of sensors changes over
the study area. To date, SAR wind atlases have used a sin-
gular sensor, or – if multiple sensors were merged – inherent
differences have not been taken into account (Hasager et al.,
2015; Karagali et al., 2018).

Badger et al. (2019) found systematic differences in the
bias when comparing wind speeds retrieved from Envisat
and Sentinel-1A/B against in situ observations. Biases for
Envisat showed a strong incidence angle dependency and
a bias drift over the sensor’s lifetime. Badger et al. (2019)

Wind Energ. Sci., 5, 1191–1210, 2020 https://doi.org/10.5194/wes-5-1191-2020



T. Ahsbahs et al.: US East Coast synthetic aperture radar wind atlas for offshore wind energy 1195

found that these biases can be corrected through a calcula-
tion of NRCS from the modelled winds that are used for the
SAR wind inversion (see Sect. 2.4) followed by a compar-
ison to the observed NRCS from the SAR. A linear fit of
the NRCS differences depending on the incidence angle is
then subtracted from the SAR observations before retriev-
ing the SAR wind speeds. We apply the reported correc-
tion factors for Envisat and Sentinel-1A/B, which also ac-
count for the initial calibration problems of Sentinel-1A be-
fore 25 November 2015 (Miranda, 2015). Sentinel-1A data
are split into two periods: before calibration (BC) and af-
ter calibration (AC). Corrections for RADARSAT-1 are not
available in Badger et al. (2019), and, therefore, we calculate
adjustment factors from the available RADARSAT-1 data us-
ing the same methodology. In accordance with recommen-
dations from Badger et al. (2019), we exclude Envisat data
acquired at incidence angles below 20◦ because of increased
scatter and bias in the adjustment method.

Synthetic aperture radar and buoy comparisons

Comparisons between SAR and buoy measurements are
conducted to confirm whether results found in Badger et
al. (2019) for northern Europe are consistently present in this
dataset from the United States and whether the suggested ad-
justment method can remove biases between the sensors. Im-
ages during three storms with SAR wind speeds exceeding
30 m s−1 have been removed from the comparison because
co-polarized SAR wind retrievals are expected to perform
poorly in these conditions.

Comparisons between the wind speed from buoys and
SAR need to account for inherent differences in the mea-
surements. SAR images are matched with the closest buoy
time stamp with a maximum difference of 30 min (Monaldo,
1988). SAR winds are instantaneous, and they are averaged
spatially to a 3 km by 3 km cell to better match the temporal
average of buoy measurements. Anemometers on buoys are
typically mounted at heights between 3 and 7 m while SAR
winds are tuned to the height 10 m above the sea surface.
Buoy wind speeds are therefore extrapolated to 1 m equiva-
lent neutral winds using the Coupled Ocean–Atmosphere Ex-
periment COARE 3.0 algorithm using temperature measure-
ments from the buoys (Fairall et al., 2003). In this algorithm,
atmospheric stratification is described using the difference
between the air and sea temperature together with empiri-
cally found constants. The wind speed is then extrapolated
considering atmospheric stability and roughness as described
by Charnock’s relation (Charnock, 1955).

Figure 2 shows comparisons between SAR and buoys
as scatter plots for SAR winds processed as described in
Sect. 3.1. We call this “default” processing as no inter-
calibration of the SAR sensors is performed prior to wind
retrieval processing. SAR wind speeds are split into 1 m s−1

bins according to the buoy wind speed. The SAR mean wind
speed and standard deviation around this mean are calcu-

lated and plotted as well. Comparisons for all collocations
in Fig. 2a show a slight bias for SAR to overestimate wind
speeds by 0.30 m s−1. The RMSE of 1.67 m s−1 is within
the targets for satellite wind speed accuracies of 2 m s−1

(Figa-Saldaña et al., 2002). Distinguishing between sensors
shows that biases vary. Large biases towards overestima-
tion of 0.62 and 0.82 m s−1 are respectively found in Envisat
(Fig. 2b) and Sentinel-1A BC (Fig. 2e), while RADARSAT-
1 (Fig. 2c) underestimates wind speeds by 0.89 m s−1. Both
Sentinel-1A AC (Fig. 2f) and Sentinel-1B (Fig. 2d) have ne-
glectable biases. The results for Envisat and the two Sentinels
are in line with findings in Badger et al. (2019).

Figure 3 shows comparisons between SAR and buoy
wind speeds after applying the intercalibration process de-
scribed in Sect. 3.2. Results for all satellites improved the
bias from 0.30 to −0.04 m s−1 and the RMSE from 1.67 to
1.46 m s−1. Considering each of the sensors separately, bi-
ases lie between −0.2 and 0.03 m s−1, which is a drastic
improvement compared to biases in Fig. 2 ranging between
−0.89 and 0.82 m s−1. Large improvements are found for
Envisat, RADARSAT-1, and Sentinel-1A BC in terms of both
biases and RMSE. The two largest datasets, Envisat (Fig. 3b)
and Sentinel-1A AC (Fig. 3e), show a higher mean wind
speed from SAR when the buoy wind speed is less than
7 m s−1 and vice versa lower mean wind speeds from SAR
when buoy wind speeds exceed 9 m s−1. For Envisat, these
opposing biases are averaged to nearly zero in the overall
bias. Altogether, the intercalibrated SAR winds have smaller
biases than the individual datasets and small differences be-
tween the sensors compared to the default processing. The
following analysis will therefore be based on the intercali-
brated SAR wind maps.

3.3 SAR wind atlas methods

A wind atlas is a map of statistical representations of the
wind speed over a designated area. The wind climate is typ-
ically represented by a Weibull distribution of wind obser-
vations that is characterized by the Weibull scale parameter
(A, m s−1) and a shape parameter (k, unitless). They are re-
lated to the mean energy density (E, W m−2) by

E =
1
2
ρA30

(
1+

3
k

)
, (1)

where ρ is the air density and 0 the gamma function. A
typical approach in wind energy is to use the Wind Atlas
Analysis and Application (WAsP) programme that imple-
ments methods from the first European Wind Atlas (Troen
and Petersen, 1989). Wind atlases are normally generated
from long time series, but it is also possible to use the quasi-
instantaneous wind fields derived from SAR (Christiansen et
al., 2006). A special version of WAsP developed for satellite-
based inputs (S-WAsP) is used here. The Weibull fitting uses
second moments as recommended in Pryor et al. (2003).
SAR wind images are projected on a regular WGS84 grid
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Figure 2. Scatter plots of SAR versus buoy winds at 10 m with default SAR wind processing for (a) all data, (b) Envisat, (c) RADARSAT-1,
(d) Sentinel-1 BC, (e) Sentinel-1 AC, and (f) Sentinel-1B. The black curves indicate the mean within each 1 m s−1 bin, and the vertical lines
around the mean value indicate 1 standard deviation within this bin.

with 0.02◦ cell spacing before processing the data to a wind
atlas. The mean wind speed can be defined as the arithmetic
mean of the available samples.

U =
1
F

∑
n

un, (2)

with the wind speed of the individual image un averaged on
the 0.02◦ grid and the total number of observations F .

Results from a SAR-based wind atlas can be noisy because
of the high resolution of wind fields and the relatively few
samples. Therefore, we apply a Gaussian filter using a stan-
dard deviation of 0.03◦ with a cut-off at 0.06◦ to smooth the
mean wind fields.

Properties of the satellite data acquisition such as tem-
porally fixed overpasses, relatively low sampling, and data
truncation lead to uncertainty in a SAR-based wind atlas
(Barthelmie and Pryor, 2003). Advanced methods for clas-
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Figure 3. Scatter plots of intercalibrated SAR versus buoy winds at 10 m for (a) all data, (b) Envisat, (c) RADARSAT-1, (d) Sentinel-1A BC,
(e) Sentinel-1A AC, and (f) Sentinel-1B. The black curves indicate the mean within each 1 m s−1 bin, and the vertical lines around the mean
value indicate 1 standard deviation within this bin.

sifying SAR wind maps are available (Badger et al., 2010),
but we choose to apply random sampling considering all
images available, which is recommended where more than
400 images are available (Pryor et al., 2003). This approach
is also used in earlier SAR-based wind atlases (Hasager et
al., 2011). The influence of diurnal cycles is investigated in
more detail in Sect. 4.1.1.

SAR images may be acquired for other purposes than wind
resource assessment, e.g. sea ice monitoring, and this can in-

fluence the temporal coverage of acquisitions. Sea ice detec-
tion will mainly occur during the winter months (Sandven et
al., 1999). The study domain is located in the mid-latitudes
and winds are expected to change with the seasons. We there-
fore check for seasonal biases in the data acquisition (see also
Sect. 4.1.2). For the arithmetic mean wind speed in Eq. (2),
the seasonal bias can be corrected by calculating mean wind
speeds Um by month (Monaldo, 2011):

https://doi.org/10.5194/wes-5-1191-2020 Wind Energ. Sci., 5, 1191–1210, 2020
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Um =
1
Fm

∑
n

un,m, (3)

with the number of observations Fm for each month m and
un,m the SAR wind speeds occurring in this month. Monthly
mean wind speeds are then averaged to a seasonally corrected
mean wind speed Usc:

Usc =
∑
m

Fm

F
Um. (4)

S-WAsP is not able to account for seasonal biases in the
Weibull parameter estimation. Therefore, no seasonally cor-
rected Weibull parameters or energy densities are available.

4 Results

4.1 Wind resource statistics

In the following, we present the first wind atlas for the
US East Coast based on intercalibrated SAR wind fields
from four different sensors. Figure 4 shows wind statistics at
10 m: the arithmetic mean wind speed from Eq. (2) calculated
from SAR (Fig. 4a) and the mean wind speed from modelled
data (WTK) (Fig. 4b). A visual comparison shows similar
features. WTK wind speed contours are smoother than those
from SAR for two reasons: (i) SAR wind speeds are based on
high-resolution observations that can resolve sub-kilometre-
scale variation in the wind fields, and (ii) SAR-derived mean
winds are derived from fewer samples while WTK winds are
based on 7 full years of hourly modelled wind speeds. Wind
speeds are lower close to the coast and increase with the dis-
tance from shore for both SAR and WTK. A band of high
winds is located off the coast of North Carolina and extends
to the northwest with higher mean wind speeds in SAR than
in the WTK. Horizontal variations in the SAR wind speed
are higher than for WTK. The mean wind speeds are lower
for SAR than WTK in a region close to the shores of Virginia
and Delaware. Another clear difference is the wind speed in
the Gulf of Maine. WTK data show mean wind speeds less
than 7.5 m s−1 while SAR winds go up to 8.5 m s−1. In both
datasets, a feature of lower mean wind speed is present to
the southeast of Nantucket but more pronounced in the SAR-
derived map.

North of 34◦ latitude, more than 350 samples are used, but
fewer than 250 are used off the coast of Georgia (Fig. 4c).
The energy density ranges from 200 W m−2 close to shore to
800 W m−2 far offshore (Fig. 4d). The Weibull shape param-
eterA (Fig. 4e) shows similar features as the wind speeds and
the energy density. The scale parameter, k (Fig. 4e), ranges
between 2 and 3 in the south and 1.75 and 2.5 in the north
of the domain. High k values are associated with a narrow
Weibull wind speed distribution.

Wind resources and wind roses are compared between
SAR, WTK, and in situ buoy measurements for three exam-

ple locations along the coast in Fig. 5. Buoy 44029 is lo-
cated in the Gulf of Maine, buoy 44009 is located off the
Delaware coast, and buoy 41038 is located off North Car-
olina; see Fig. 1 for detailed positions. Buoy data are filtered
to cover full years (at least 80 % available data) to avoid sea-
sonal sampling biases. Between 7 and 10 years of measure-
ments are available at the buoy locations. WTK covers 7 full
years, and the SAR winds are sampled over the entire period
from 1998 to 2018 but less frequently. SAR wind speeds are
expressed as equivalent neutral winds while the 10 m wind
speeds from WTK are stability-dependent wind speeds. Buoy
wind speeds are extrapolated accordingly but stability effects
are small (less than 0.2 m s−1 differences for the mean wind
speed).

SAR-based results show good agreement at buoy 44009,
but distributions are skewed towards higher wind speeds
at 44029 and lower at 41038, while WTK distributions gener-
ally agree well with the buoy data. Wind directions for SAR
show more winds from the northwest for buoy 44029 and
agree well with buoy data otherwise. Wind directions from
the WTK show most deviations for buoy 41038. There are
large deviations ranging from −136 to 72 W m−2 between
wind resources as measured from buoys and SAR that merit
closer investigation in the following.

4.1.1 Diurnal cycle

As noted in Sect. 3.3, SAR sensors acquire data at fixed times
of the day. We investigate influences of this on the wind re-
trieval by investigating the diurnal cycle at five buoys located
across the study domain. In addition to the three buoys in
Fig. 5, we consider a New York buoy (44065) and a Chesa-
peake Bay buoy (44072). All buoys are within 20 km of the
shoreline with the exception of buoy 44009, which is located
approximately 60 km offshore. The diurnal variation in the
mean wind speed is similar between these buoys with min-
ima between 10:00 and 12:00 LT (local time); see Fig. 6.
Buoy 44009 shows less diurnal variation, which might be
due to the buoy location further offshore. Overlaid in Fig. 6
is a histogram of the satellite acquisition times showing that
images are not randomly sampled due to the polar orbits of
satellites. We note that the morning times of ENV overpasses
coincide with the minima in the mean wind speeds, while
S1A, S1B, and RS1 overpasses are outside this time interval.

4.1.2 Seasonal sampling bias

We investigate seasonal sampling biases in SAR for four re-
gions of 2◦ by 2◦ along the US East Coast. Figure 7 shows
the spatial average of monthly acquisition frequency Fm/F

and monthly mean wind speed Um from Eqs. (3) and (4)
at four areas. Acquisitions are unevenly distributed over the
year. More data are available during the winter in the Gulf
of Maine while Delaware and North Carolina are biased to-
wards late summer to early autumn. Um shows considerable
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Figure 4. Wind atlas at 10 m a.s.l. (above sea level): (a) arithmetic mean wind speed from SAR, (b) mean wind speed from WTK, (c) number
of SAR samples, (d) SAR energy density, (e) SAR Weibull scale parameter A, (f) SAR Weibull shape parameter.
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Figure 5. Weibull fits and wind roses for buoys 44029 (a–c), 44009 (d–f), and 41038 (g–i). SAR on the left (a, d, g), WTK in the mid-
dle (b, e, h), and wind roses for buoy, SAR, and WTK on the right (c, f, i). Key characteristics are given in the tables: number of observa-
tions (N ), Weibull shape (A) in metres per second, Weibull scale (k), and the energy density (E) in watts per square metre.

seasonal changes with generally lower winds in summer and
higher winds in winter.

Figure 7 shows considerable seasonal sampling biases. A
seasonally corrected SAR (SAR_SC) mean wind speed map
is calculated from Eq. (4) and shown in Fig. 8a together
with the differences with respect to uncorrected maps from
Fig. 8b. The seasonal correction reduces wind speeds in the
north, while it increases wind speeds in the south of the study
domain.

Two SAR-based mean wind speed maps in Figs. 4a and 8a
have been calculated. The one better representing the long-
term wind conditions is determined from comparison to long-
term mean wind speeds from the ocean buoys. Buoys are re-
quired to have at least 7 full years (more than 80 % recovery
rate) of measurements. It is necessary to use a representa-

tive position for the buoys because buoy positions can change
over time and SAR or WTK is not collocated in time. This
requires that buoy positions do not change significantly dur-
ing the measurement period. Buoys 41002 and 44018 are re-
moved because their location changes by more than 100 km.
Sixteen buoys fulfil these criteria and statistics on compar-
isons to the SAR mean wind speed in Fig. 4a, WTK mean
wind speed in Fig. 4b, and the seasonally corrected SAR
mean wind speed in Fig. 8 are presented in Table 2.

The seasonally corrected mean wind speed from
SAR (SAR_SC) shows a lower RMSE, MAE, and bias than
the uncorrected SAR dataset. We consider SAR_SC a better
representation of the seasonality, and it will therefore be used
for comparisons with the WTK in Sect. 4.2.
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Figure 6. Mean wind speed of selected buoys in local time
(UTC−5). The bars indicate the number of satellite observations
for RADARSAT (RSA), Envisat (ENV), Sentinel-1A (S1A), and
Sentinel-1B (S1B).

Table 2. Mean absolute error (MAE), root-mean-square er-
ror (RMSE), and bias between mean wind speeds from buoys versus
SAR, seasonally corrected SAR (SAR_SC), and WTK.

MAE RMSE Bias

SAR 0.51 0.63 0.34
SAR_SC 0.3 0.39 0.09
WTK 0.24 0.30 0.15

4.2 Spatial wind variability from SAR and WTK

To compare SAR_SC and WTK mean wind speeds in the
coastal zone, we define transects perpendicular to the gener-
alized coastline of the United States up to 100 km from the
shoreline. Because of the complexity of the shoreline, a com-
promise needs to be found between perpendicular transects,
avoiding crossing transects, and the definition of distance to
shore for convex corners. The resulting transects are shown
in Fig. 9 and are labelled with unique identifiers (transect_id)
ranging from 0 in the north to 650 in the south.

Wind speeds are linearly interpolated along each transect
every 2 km. Figure 10 shows the wind speeds per transect ID
and as a function of distance to shore. These plots can be seen
as a horizontal sheet of mean wind speeds along the coastline
perpendicular and parallel to shore. The white areas are land
contamination in SAR wind maps originating from islands
not accounted for in the generalized coastline. Again, we can
see similarities in the features on large scales with a band of
high wind speed between transect_id 500 and 600 but also
smaller features like an increased wind speed at the mouth of
the Delaware River around transect_id 350.

The presentation of wind speeds in Fig. 10 represents spa-
tial structures of the mean winds along the coast but it is hard
to assess differences visually. We will focus on wind speed
variations in two directions: along-shore and perpendicular to
the coastline. The latter is commonly referred to as a coastal
wind speed gradient.

4.2.1 Along-shore variation

Figure 11 shows wind speed transects along the shore aver-
aged over distances to shore of [10, 20], [20, 30], [40, 60],
and [60, 100] km. From transect_id 0 to 300 the two tran-
sects closest to shore (Fig. 11a and b) show remarkably good
agreement, both absolute and in shape. Further offshore, in
Fig. 11c and d, the positions of local maxima and minima
are similar but the amplitude of these features is larger for
SAR_SC than WTK. From transect_id 300 onward (south-
ward), SAR_SC gives consistently lower wind speeds with
the exception in Fig. 11d around transect_id 570 and 650.

The region closer than 60 km to shore is most relevant
for wind farm development. Here, SAR observations suggest
high wind speeds in the north up to transect_id 250, while
WTK consistently shows higher wind from transect_id 500
southward.

4.2.2 Coastal gradients

Wind speeds averaged over the distance to shore for six re-
gions are shown in Fig. 12. All regions show coastal gra-
dients with the typical increase in mean wind speed with
distance from the shoreline. For Fig. 12a, around Nantucket,
there is very good agreement both in the gradient and in the
absolute value. Figure 12b, c, and f show similar behaviours,
with SAR_SC exhibiting lower wind speeds closer to shore
but higher gradients resulting in higher wind speeds further
offshore. Gradients are similar for Fig. 12d, but SAR_SC
winds are offset by 0.7 m s−1 toward lower wind speeds.
The most pronounced differences in terms of wind speed
gradients are found around Pamlico Sound (Fig. 12e) with
SAR_SC winds up to 1.5 m s−1 lower close to shore and a
steep gradient from 40 to 100 km offshore.

The transects show consistently higher wind speed gradi-
ents with the exception of the most northern region around
Nantucket (Fig. 12a). The wind speed gradient is defined as

grad=
dU
dx
,

where U is the mean wind speed and x is the distance to
shore. The wind speed gradient is averaged for each tran-
sect resulting in 650 mean gradients for SAR_SC and WTK
and the distribution is shown in Fig. 13. Mean gradients are
mostly positive, indicating higher wind speeds further off-
shore as expected. For WTK, the distribution is almost sym-
metric with a mean of 0.91 m s−1 per 100 km. The distribu-
tion from SAR_SC is more skewed and clearly separated
from the WTK. The mean of the distribution is 1.40 m s−1

per 100 km, which is considerably higher than for the WTK.

4.2.3 Wind resource variation within bureau of offshore
energy management areas

Wind farm development is allowed within the limits of the
offshore lease areas defined by the BOEM; see Fig. 14. Be-
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Figure 7. Frequency of data acquisition (Fm/F ) and mean SAR wind speeds (Um) averaged by month over four regions close to (a) Gulf of
Maine, (b) New York, (c) Delaware, and (d) North Carolina.

Figure 8. (a) Seasonally corrected SAR wind speed; (b) difference between seasonally corrected and original SAR map.

cause lease areas are typically several hundred square kilo-
metres large, wind resources are expected to vary within each
of the areas. Information on the magnitude of this variation
is needed for wind farm development.

We select mean wind speeds from SAR_SC and the WTK
at all grid points within a given lease area. The distribution
of mean wind speeds within each area is then calculated and
presented as a violin plot in Fig. 15. The variation in mean
wind speeds is higher from SAR for all areas except Cape
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Figure 9. Seasonally corrected SAR mean wind speed maps (SAR_SC) with transects perpendicular to shore (every fifth transect is plotted).
Starting at transect_id 0 in the Gulf of Maine going to transect_id 650 off North Carolina.

Figure 10. Mean wind speeds at 10 m a.s.l. (above sea level) for all transects as a function of the distance to shore. (a) SAR_SC; (b) WTK.

Wind and Kitty Hawk. The average of the differences be-
tween minimum and maximum is 0.2 m s−1 for the WTK
and 0.47 m s−1 from SAR_SC. This indicates that the WTK
predicts much less variation in wind resources within a po-
tential wind farm site than SAR_SC. Note that a mesoscale

numerical weather prediction model, such as the model be-
hind WTK, is unable to pick up wind speed variations on the
order of 0.5 m s−1, and their RMSEs are typically more than
0.5 m s−1.
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Figure 11. Along-shore variation in the mean wind speeds for distance to shore intervals of (a) [10, 20], (b) [20, 30], (c) [40, 60], and
(d) [60, 100] km.

Figure 12. Mean wind speeds averaged over several transects covering six different regions. The panels are as follows from north to south:
(a) Nantucket, (b) Long Island, (c) state of New York, (d) Virginia to Delaware, (e) Pamlico Sound, (f) southern part of North Carolina.
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Figure 13. Density plot of wind speed gradients from SAR and
WTK. Dashed lines indicate the mean values.

5 Discussion

In the following, we discuss the results from the evaluation
of the SAR wind atlas and the associated artefacts from the
sampling. The representation of wind speed variations in the
coastal zone is discussed as retrieved from SAR and mod-
elled in the WTK.

5.1 Validation of intercalibrated SAR wind archive with
buoys

This study presents the first SAR wind atlas merging archives
from four sensors into a consistent dataset. Extensive com-
parisons with buoys show that even though data are pro-
cessed consistently with CMOD5.N, biases between the sen-
sors range from −0.89 to 0.62 m s−1 (see Fig. 1), which is
similar to results from northern Europe. Badger et al. (2019)
suggested intercalibration to remove biases by adjusting the
NRCS as a linear function of the incidence angle using mod-
elled wind speed and direction inputs. Those adjustments de-
crease the difference in biases between sensors to 0.2 m s−1.
Overall, a tendency to overestimation for low wind speeds
and underestimation for high wind speeds remains in the
SAR wind maps, which influences the Weibull fitting per-
formed here. Two findings speak for the generality of this
approach: (i) intercalibration tables derived over northern
Europe can be applied for the US East Coast; (ii) apply-
ing the suggested intercalibration method to RADARSAT-
1 data reduces the bias to 0.03 m s−1. The intercalibration
should in no way substitute efforts to better understand scat-
tering mechanisms in order to improve the calibration of
NRCS as well as GMFs for wind retrieval (Troitskaya et
al., 2018). Tuning NRCS values is an application-driven ap-
proach, which is necessary at present in order to produce
wind maps with consistently low biases. This approach is
significantly different from previous and current efforts to
determine the most suitable GMF for SAR wind retrievals
(Christiansen et al., 2006; Takeyama et al., 2013).

5.2 SAR wind atlas for the US East Coast

We have produced a SAR-based wind atlas of the US East
Coast covering the coast from Georgia to the Canadian bor-
der. An alternative to SAR measurements are scatterometers
(Stoffelen and Anderson, 1997). From a wind resource per-
spective, their main advantage is the higher temporal resolu-
tion, but it comes at the cost of a lower spatial resolution of
typically 25 km. Merging SAR and scatterometer wind data
to create a wind atlas has been done (Doubrawa et al., 2015;
Hasager et al., 2015), but this approach needs further refine-
ment to fully utilize the high temporal coverage from scat-
terometers and the high spatial resolution from SAR.

We have estimated the Weibull parameters A and k, en-
ergy densities, and mean wind speeds from all the available
SAR wind maps; see Fig. 4. The energy density, Weibull
shape (A), and mean wind speed generally increase with the
distance from shore. The Weibull scale parameter (k) is high
in the south and lower in the north. The Weibull k parameter
requires more samples than wind speed or shape parameter
to be correctly estimated (Barthelmie and Pryor, 2003). The
area with high shape parameters coincides with a low num-
ber of samples and significant seasonal biases in the sam-
pling, which casts doubt on the accuracy of results in these
instances.

For the purpose of comparing the SAR-based wind atlas
to the WTK, it is desirable to keep the SAR data as indepen-
dent from modelling results as possible. Therefore, we have
not utilized any information from the WTK dataset to per-
form stability correction of the SAR winds. The buoy obser-
vations used in this analysis indicate that for heights of 10 m
or less above the sea surface, atmospheric stability effects
on the wind speed are smaller than 0.2 m s−1 on average. It is
however possible that larger deviations from the neutral wind
profile occur for specific instances.

The presented SAR wind atlas is calculated at a 10 m
height above the sea surface. However, for wind energy ap-
plications, estimates closer to turbine hub heights at 100 m or
higher above sea level would be more desirable. Extrapola-
tion of the wind atlas results presented here is possible using
model-derived stability corrections to the long-term average
wind profile (Badger et al., 2016). The extrapolation would
first require a careful validation of the model outputs against
buoy observations and is therefore beyond the scope of this
study. The vertical extrapolation would increase the applica-
bility of the SAR-derived wind speeds for wind energy pur-
poses and will be considered in the future. Our wind atlas
and comparisons at the 10 m level represent a valuable first
step, which helps us assess differences between datasets and
gain insight into the horizontal variation in wind resources.

5.3 Wind resource comparisons

This study shows a comparison between SAR and WTK, as-
suming that both are representative for the wind climatology.
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Figure 14. Bureau of Offshore Energy Management lease areas for the US East Coast. Colour codes are used to differentiate different areas.

Figure 15. Violin plot for wind speeds from seasonally corrected SAR and WTK. Potential lease sites are ordered from north (left) to south
(right).
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A method to sample SAR winds according to wind classes
based on modelled climatology is available to reduce the
number of samples necessary for wind resource assessment
(Badger et al., 2010). This has the advantage of choosing
SAR images that are more representative for the large-scale
wind conditions but comes with the disadvantage of weaken-
ing the independence of the SAR-derived results. Combining
data with other in situ observations as done in Doubrawa et
al. (2015) is an option, but the density of measurements on
the US East Coast is lower than in the Great Lakes, where
the method was developed.

SAR-derived wind resources overestimate the energy den-
sity by 72 W m−2 at buoy 44029 and underestimate them by
136 W m−2 for buoy 41038. Sampling of the SAR images
shows considerably uneven sampling between different sea-
sons (Fig. 7). In the region of buoy 44029, the winter months
with high wind speeds are overrepresented. Wind resource
estimates derived from these data will retain a bias to higher
wind speeds and thus overestimate the wind resource, which
is in line with our observations. For buoy 41038, an oppos-
ing bias towards summer and early autumn associated with
low wind speeds could explain the underestimation of wind
resources. The resource estimate from SAR shows little dif-
ference in Weibull parameters and the energy density for
buoy 44009. In this region, seasonal sampling is more evenly
distributed and oversampling occurs between the extrema.
Wind resource estimates from the WTK have been made at
the same buoy locations. Generally, the wind resources are
estimated more accurately than from SAR, but overestima-
tions of 69 W m−2 occur at buoy 44029.

SAR wind atlases for other regions have generally not re-
ported seasonal dependency in the data coverage (Hasager
et al., 2011; Karagali et al., 2014). We have implemented
a simple method to overcome this problem using weighted
monthly averages to calculate the mean wind speed (Eq. 4)
(Monaldo, 2011). This seasonally corrected mean reduces
wind speeds in the north, while increasing them in the
south of the study domain. Differences frequently exceed
0.5 m s−1, which are substantial for a product that should
be used in the context of wind energy. The seasonally cor-
rected mean wind agrees better with long-term means from
buoy observations (Table 2), in terms of both mean errors and
RMSE, and we consider them a better choice when estimat-
ing a wind climatology. Using monthly weights in the estima-
tion of SAR-derived Weibull parameters should be possible,
but implementing and validating such a method is beyond the
scope of this article.

5.4 Influences of diurnal variability

SAR satellites operate on orbits with fixed times for ascend-
ing and descending tracks 12 h apart. This sampling pat-
tern influences results in our wind atlas. The time of day
of the observations from Envisat is approximately 10:00 and
22:00 LT, while Sentinel-1A/B and RADARSAT-1 observe

around 05:00 and 17:00 LT. Envisat contributes the most ob-
servations in this study, and thus its temporal bias will largely
influence results. For buoy 44072 located in the Chesapeake
Bay, both Envisat acquisition times are close to a local min-
imum of the wind speed. Therefore, a bias towards under-
estimating the climatological mean wind speed is expected
here. For SAR mean winds at the remaining buoy locations
displayed in Fig. 6, the effect from diurnal variability will be
smaller but still present. Adding more Sentinel-1 acquisitions
will even out the diurnal sampling bias from Envisat.

Sea breeze phenomena present in this region contribute
to diurnal wind speed variations (Hughes and Veron, 2015).
The influence of the diurnal cycle is more pronounced closer
to shore. SAR images that happen to oversample the wind
speed minimum of the diurnal cycle would cause a stronger
bias towards lower wind speeds closer to shore than farther
offshore. Wind observations sampled in such a way would
artificially increase the coastal gradient.

5.5 Wind speed gradients from SAR and WTK

Mean wind speed maps from SAR and WTK have been
compared in this study. Mesoscale models are known to
have higher uncertainties offshore if winds come from land
(Hahmann et al., 2015). For the buoy locations in Fig. 5,
westerly winds come across land, and the wind roses show
that these directions occur frequently. For these directions,
coastal wind speed gradients occur, caused by the roughness
change between land and sea. Coastal gradients from SAR
have been shown to agree well with lidar wind speeds for the
first few kilometres from shore (Ahsbahs et al., 2017). The
SAR-based wind atlas has a resolution of 0.02◦ that makes it
ideal for investigating horizontal variations in the mean wind
speed and serving as a reference for modelled wind speed
gradients from the WTK.

Wind speeds from SAR are typically lower than those
from the WTK close to shore but gradients from SAR are
higher than from the WTK for most regions (Fig. 12b, c, e,
and f). At 100 km from the shoreline, SAR tends to give
higher winds than WTK. Wind speed gradients show that
SAR winds, on average, show an increase of 1.40 m s−1 per
100 km. For the WTK, this value is only 0.91 m s−1 per
100 km. Fixed times of the satellite tracks could influence
wind speed gradients if they show diurnal variability. This
cannot easily be investigated from buoy measurements be-
cause they lack the spatial coverage, which was the initial
motivation for this study. The influence of sampling biases is
unlikely the sole source for the observed differences in the
wind speed gradients.

A long-standing challenge in SAR wind analysis has been
that neutral stratification of the surface layer must be as-
sumed. The effect of this assumed neutral stratification of
the surface layer is a wind speed bias that depends on the
stability of the atmospheric surface layer. The SAR-derived
wind speeds are too low in regions where the surface layer
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is stable, because wind speed must compensate for the too
high (i.e. neutral rather than stable) drag coefficient assumed.
Likewise, the SAR-derived wind speeds are too high in re-
gions where the surface layer is unstable, because wind speed
must compensate for the too low (i.e. neutral rather than un-
stable) drag coefficient assumed. Basically, the SAR-derived
wind has to compensate for the lack of the stability depen-
dence of the vertical mixing of momentum in the surface
layer. This is reflected in our study in the observation that
SAR winds are faster than buoy winds over the Gulf Stream
(where the atmospheric surface layer is destabilized by the
warm underlying water) and slower than the buoy winds over
the cold waters north of the Gulf Stream (where the atmo-
spheric surface layer is stabilized by the cool underlying wa-
ter). Results from earlier resource assessments in Dvorak et
al. (2013) using WRF show that wind resources generally in-
crease going from south to north in our investigated domain
but show less variability than both SAR and WTK.

Spatial variations in the mean wind speed within lease ar-
eas for wind farm development were investigated using the
SAR and WTK data (Fig. 15). For most areas, WTK shows
less variation than SAR. For example, mean wind speeds
from the WTK for “New Jersey South” range from 6.8 to
7.0 m s−1. Low variation like this might lead a developer to
neglect horizontal wind speed gradients at their site, i.e. dur-
ing the planning of a measurement campaign. At the same
location, SAR wind speeds range from 6.3 to 7.1 m s−1. This
variation is substantially larger, suggesting that wind speed
variation within this area should be considered. SAR wind
maps resolve more variation than mesoscale models or scat-
terometers, which can explain part of the increased varia-
tion (Karagali et al., 2014). Another reason could be speckle
noise in the SAR images themselves, but spatial and tempo-
ral averaging, as performed in this study, will greatly reduce
this effect. Variations found here are in line with previous
studies from the Anholt wind farm in Denmark, which is lo-
cated downstream of a complex coastline and can experience
strong wind speed gradients (Ahsbahs et al., 2018; Peña et
al., 2018).

5.6 Future work

This study has utilized the COARE 3.0 bulk flux algorithm
to account for the effects of atmospheric stability on the ver-
tical extrapolation of buoy winds. This same stability correc-
tion could be used to convert the SAR-derived surface stress
to stability-aware SAR winds given that the air–sea temper-
ature difference for any point in the area of interest can be
obtained from the WTK dataset. The neutral drag law could
be used to convert the neutral-equivalent SAR-derived winds
to surface stress, and then the equations from the COARE 3.0
bulk flux algorithm could be applied to convert that surface
stress back to a stability-aware 10 m wind. This would be a
major advance for SAR wind analysis and represents a nat-

ural next step for our analysis of wind resources along the
US East Coast.

With an increasing archive of Sentinel-1 data, future wind
atlases will be based on samples, which are more distributed
over the time of day. The rapid growth of our SAR data
archives over time will in itself improve the accuracy of wind
resource statistics. Further, a weighting of the SAR scenes by
month could partly overcome seasonal biases and give better
estimations of the Weibull parameters while retaining the ob-
servational character of a SAR-based wind atlas.

6 Conclusion

Using a large number of collocated buoy measurements, we
have shown that SAR wind fields from different sensors can
be intercalibrated. The derived SAR wind atlas is novel in
two regards: (1) it ensures consistent calibration towards
wind retrievals from different sensors, and (2) it covers the
US East Coast where a similar product has not been available
before. The presented sensors show seasonal sampling biases
that are inconsistent over the study domain, but mean wind
speeds can be down to a bias of 0.09 m s−1 and an RMSE of
0.39 m s−1 relative to long-term buoy observations.

Comparisons of the long-term mean wind speeds at 10 m
between SAR and WTK indicate that: (1) the model could
under-predict the horizontal wind speed gradient with re-
spect to the distance to shore, and (2) wind speed variations
within areas designated for offshore wind farm development
are lower in the WTK than with SAR. These findings raise
awareness that spatial variations in wind resources might be
underestimated in this mesoscale model. SAR-derived wind
atlases can serve as independent data sources most useful in
the early planning phase of an offshore wind farm project.
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