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Abstract. The most intermittent behaviour of atmospheric turbulence is found for very short timescales. Based
on a concatenation of conditional probability density functions (cpdf’s) of nested wind speed increments, in-
spired by a Markov process in scale, we derive a short-time predictor for wind speed fluctuations around a
non-stationary mean value and with a corresponding non-stationary variance. As a new quality this short-time
predictor enables a multipoint reconstruction of wind data. The used cpdf’s are (1) directly estimated from his-
torical data from the offshore research platform FINO1 and (2) obtained from numerical solutions of a family of
Fokker–Planck equations in the scale domain. The explicit forms of the Fokker–Planck equations are estimated
from the given wind data. A good agreement between the statistics of the generated and measured synthetic wind
speed fluctuations is found even on timescales below 1 s. This shows that our approach captures the short-time
dynamics of real wind speed fluctuations very well. Our method is extended by taking the non-stationarity of the
mean wind speed and its non-stationary variance into account.

1 Introduction

The transition of our energy system, formerly strongly rely-
ing on gas and coal, to a decarbonised one, mainly based on
wind, solar and hydropower, is still ongoing work, but great
progress has been made. From 2005 to 2017 the share in in-
stalled capacity of wind (solar) has been increased from 6 %
(0.3 %) to 18 % (11.5 %) in the European Union (WindEu-
rope, 2018). The downside of this increasing share of fluc-
tuating renewable energy sources is their integration into the
power grid. By analysing measurements of fed-in wind and
solar power, it could be shown that their fluctuations strongly
deviate from Gaussian behaviour on timescales ranging from
hours to seconds (Anvari et al., 2016) and for wind power
even for scales below 1 s (Haehne et al., 2018). This survival
of the atmospheric intermittency in the power grid poses the
grid operators with the great challenge to ensure stable power
supply, even under highly volatile conditions. Within this
context the term intermittency is used in the spirit of Kol-
mogorov (1962) to describe the characteristic heavy-tailed
shape of pdf’s often found at small scales in time series of
turbulent systems (Frisch, 2004).

To aid the design of our future energy systems, for exam-
ple to size the needed energy storage or the power generation
capacity of conventional power plants, much work has been
done in the field of long-term wind speed and power mod-
elling, utilising Markov chain models. Whereas simple first-
order Markov chain models cannot grasp the characteristics
of long-term correlations of wind speeds (Brokish and Kirt-
ley, 2009), higher-order Markov chain models perform bet-
ter, but will require more input data for estimating the tran-
sition matrices or some simplifications (Pesch et al., 2015;
Brokish and Kirtley, 2009; Papaefthymiou and Klockl, 2008;
Weber et al., 2018).

Despite their dramatic effect of long-range correlation and
fluctuations of wind speeds on the power generation (and
thus the grid stability), wind speed fluctuations are known
to be most intermittent on short timescales (Boettcher et al.,
2003). With short timescales we refer to timescales in the
range of seconds to minutes. As can be seen in Boettcher
et al. (2003), the effect of intermittency is most prominent
at timescales < 1 s, but as the timescales increase, the pdf’s
broaden. Models considering time steps ranging from min-
utes to seconds or even below are of course not suited for
energy system analysis on national levels, but they are useful
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tools for wind turbine operators. For a time step of 10 min
Carpinone et al. (2010) presented a higher-order Markov
chain model for wind power, and Milan et al. (2013) showed
a stochastic power model based on a conditional Langevin
equation to work even in the range of seconds.

The knowledge of full three-dimensional wind fields for
all three velocity components and the pressure in all details
would be desirable. The lack of basic understanding, the im-
practicability of handling such huge data sets and the com-
plexity of the wind energy conversion process often lead to
the demand for simplified models for wind speed. Common
approaches for the design of wind turbines are the so-called
Mann uniform shear and the Kaimal spectral and exponential
coherence model (IEC, 2005). Both models take spectral and
coherence aspects of turbulent velocity fluctuations into ac-
count, thus handling the fluctuations as Gaussian distributed
and stationary. Higher-order statistical effects like the promi-
nent intermittency effect of turbulence and non-stationarities
are not taken into account; see for example Mücke et al.
(2011). Another approach is to use one-dimensional effective
wind speed time series, representing for example the wind
field together with the rotor aerodynamics as it impacts the
drivetrain or can be used to model the above-discussed en-
ergy conversion process (Wächter et al., 2011).

Within this work we propose a novel stochastic generator
of one-dimensional wind speed fluctuations with a sampling
interval of 0.1 s. One main novelty is that we show how to
grasp by this model multipoint statistics of wind structures in
time. While commonly applied methods, like spectral analy-
sis and two-point correlations, limit themselves to two-point
statistics, here we extend the methodology to more than two
points in time. We obtain generalised correlations between
multiple points in time, in terms of probability density func-
tions (pdf’s), for the occurrence of a whole sequence of wind
speeds. Those pdf’s we denote multipoint pdf’s, and they
constitute the basic concept of our approach. Such a stochas-
tic multipoint approach should in principle be able to grasp
wind structures like gusts as well as clustering of wind fluctu-
ations. The method was initially developed by Nawroth and
Peinke (2006) in the context of homogeneous isotropic tur-
bulence and later on applied to the modelling of log-return
rates of current exchange rates (Nawroth et al., 2010) and ve-
locity increments of idealised homogeneous isotropic turbu-
lence (Stresing and Peinke, 2010). The successful application
to ocean gravity waves (Hadjihosseini et al., 2016) showed
that structures of monster waves can be grasped by this ap-
proach correctly (Hadjihoseini et al., 2018). For a recent re-
view see (Peinke et al., 2019). Finally we want to point out
that we also show how to handle the aspect of non-stationary
wind conditions.

We will continue as follows. In the first part we discuss
the method for a subset of wind data characterised by its
mean wind speed and its standard deviation. For such data
it is shown how, arising from a Langevin process in scale, a
predictor for the upcoming wind speed fluctuation around a

mean value can be derived by a nesting of conditional prob-
ability density functions. Afterwards we check for Marko-
vian properties of the wind speed fluctuations in scale and set
up a Fokker–Planck equation, corresponding to the Langevin
process in scale, and we show how it contributes to the im-
provement of our stochastic prediction method. Finally, in
the second part, the non-stationary mean wind speed and its
non-stationary variance are incorporated into our approach to
achieve more realistic wind speed time series.

2 Method

In this section we present the stochastic framework used
for our multipoint reconstruction scheme. As a simplifica-
tion we start this discussion for blocks of wind data U (t),
with the time t , which share the same mean wind speed U
and the same standard deviation σU , as suggested in Morales
et al. (2012). Fixing U and σU one would generate quasi-
stationary subsets of data. We follow this idea, but instead of
creating quasi-stationary subsets, we aim at creating quasi-
stationary time series. With U (t) we refer to the result-
ing wind speed from the horizontal components. The quasi-
stationary wind speed u(t) is then obtained fromU (t) by nor-
malising it with the meanU and standard deviation σU within
blocks of 1 min length. We use measured data from the off-
shore research platform FINO1: the data were recorded at a
sampling frequency of 1 Hz between calendar weeks 1 and
10 in 2007 with an ultrasonic anemometer, mounted at 80 m
height, resulting in approximately 6× 106 samples. The use
of our method for non-stationary time series is outlined in
Sect. 3.

2.1 Multipoint statistics

Since we assume wind speeds to emerge from a turbulent
cascade, increments will play a key role in our method. Hav-
ing a time series of wind speeds u(t), the corresponding in-
crement time series1u(τ ), depending on a certain scale τ , is
given by

1u(τ )= u(t)− u(t − τ ). (1)

This is the definition of so-called right-sided increments.
Note that the calculation of 1u(τ ) after this definition de-
pends on the current wind speed u(t) and a past value u(t−τ ),
whereas the use of left-sided increments 1u(τ )= u(t+ τ )−
u(t) would premise the knowledge of future values u(t + τ ),
creating a contradiction as we aim at producing synthetic
wind speed time series. To ease readability we use the short-
hand notations ui := u(t−τi) and1ui := u(t)−u(t−τi) with
τi = i · τ (i = 1,2,3, . . .) in the following.

As a further remark we note that although we consider in
this work time series of wind speed, we often talk of multi-
point statistics. 1u(τ ) is considered to be a statistical two-
point quantity, which more correctly could be denoted as a

Wind Energ. Sci., 5, 1211–1223, 2020 https://doi.org/10.5194/wes-5-1211-2020



C. Behnken et al.: Multipoint reconstruction of wind speeds 1213

two-time quantity. Based on the commonly used hypotheses
on frozen turbulence by Taylor, for short-time fluctuations
time and space statistics are related linearly by the mean wind
speed (see also Peinke et al., 2019).

Our idea is to predict a wind speed u∗(t∗) only by knowl-
edge of its N past values {u1(t∗−τ1), . . .,uN (t∗−τN )}. The
probability of an event u∗ to happen at time t∗ can then be ex-
pressed by the conditional probability density function (cpdf)

p(u∗, t∗|u1, t
∗
− τ1; . . .;uN , t

∗
− τN )=

p(u∗, t∗;u1, t
∗
− τ1; . . .;uN , t

∗
− τN )

p(u1, t∗− τ1; . . .;uN , t∗− τN )
, (2)

using the definition of conditional probabilities. Note this
cpdf is the key quantity to estimate a new wind speed value
u∗, and it can be used iteratively to generate new time series,
as we show below.

Now we link Eq. (2) to the idea of an underlying turbu-
lent cascade, which can be described by means of a Markov
process. Thus we assume that there exists a scale separation
1τME = τj − τi (j > i), after which the Markov condition
is fulfilled for all greater scales. This scale separation 1τME
is often called the Markov–Einstein length (Einstein, 1905).
It enables us to express the multiple cpdf p(u∗, t∗|u1, t

∗
−

τ1; . . .;uN , t
∗
− τN ) by a multiplication of a simpler double

cpdf and marginal pdf’s:

p(u∗, t∗|u1, t
∗
− τ1; . . .;uN , t

∗
− τN )=

p(u∗)
p(u1)

·
5N−1
i=1 p(1ui |1ui+1;u

∗)

5N−1
i=2 p(1̃ui |1̃ui+1;u1)

·
p(1uN |u∗)

p(1̃uN |u1)
, (3)

with 1̃ui := u(t∗−τ1)−u(t∗−τi) with the timescale τi−τ1.
For details we refer the reader to Appendix A.

It is known that the evolution of cpdf’s of a Markov pro-
cess can be described by the famous Kramers–Moyal expan-
sion (Risken, 1996), which notes for our stochastic process
in scale 1ui

−τi
∂

∂τi
p(1ui |1uj ;u∗)=

∞∑
n=1

(
−

∂

∂1ui

)n [
D(n)(1ui,τi,u∗)p(1ui |1uj ;u∗)

]
, (4)

requiring τj − τi ≥1τME and with the Kramers–Moyal co-
efficients D(n) being defined as

D(n)(1ui,τi,u∗)=

lim
1τ→0

τi

n!1τ
〈
[
1u′i(τi −1τ,u

∗)−1ui(τi,u∗)
]n
〉. (5)

In contrast to the Kramers–Moyal expansion in time domain,
a minus sign on the left-hand side (lhs) of Eq. (4) has to be
added for scale processes, since during evolution of the pro-
cess the scale τ is decreasing. According to the Pawula the-
orem, the Kramers–Moyal coefficients vanish for n≥ 3, if

D(4)
= 0 (Risken, 1996); thus the Kramers–Moyal expansion

reduces to the Fokker–Planck equation (FPE):

−τi
∂

∂τi
p(1ui |1uj ;u∗)=

−
∂

∂1ui

[
D(1)(1ui,τi,u∗)p(1ui |1uj ;u∗)

]
+

−
∂2

∂1u2
i

[
D(2)(1ui,τi,u∗)p(1ui |1uj ;u∗)

]
, (6)

with the drift function D(1) accounting for the deterministic
evolution of the stochastic process, whereas the so-called dif-
fusion functionD(2) scales the amplitude of the noise term of
the corresponding Langevin equation

−
∂

∂τ
1u(τ,u∗)=

1
τ
D(1)(1u,τ,u∗)+

√
1
τ
D(2)(1u,τ,u∗) ·0(τ ) (7)

with the Gaussian noise 0(τ ), fulfilling 〈0(τ )〉 = 0 and also
〈0(τ )0(τ ′)〉 = 2δττ ′ . This equation directly describes the
evolution of a single trajectory along the scale τ .

As can be seen, the FPE can be used to determine the
factorised pdf’s from Eq. (3) if the process is Markovian
and higher-order Kramers–Moyal coefficients are zero. This
equivalence between a cpdf with N conditions and a nested
chain of several cpdf’s with only two conditions, stemming
from the three-point closure of a cascade process, is ex-
tremely helpful if one aims at estimating the pdf’s from mea-
surements, since the high-dimensional pdf’s in Eq. (2) would
require a tremendous number of realisations in order to be
estimated well. For a more detailed discussion of this multi-
point approach we refer to Peinke et al. (2019).

2.2 Preliminary analysis of wind speed data

Next we check if wind speed data are suitable for the re-
construction method just described. According to the right-
hand side (rhs) of Eq. (3) the estimation of the double cpdf’s
p(1ui |1ui+1,u

∗) is necessary. However, to reduce compu-
tational costs or the number of data points, it would be much
more convenient to use the single cpdf’s p(1ui |1ui+1) by
excluding the condition on the wind speed u∗ to be predicted
(Nawroth et al., 2010; Peinke et al., 2019). Thus the equality

p(1ui |1ui+1;u
∗)= p(1ui |1ui+1) (8)

must hold. As can be seen from Fig. 1, Eq. (8) holds for u∗ ≈
0 but shows a significant shift for u∗ ≈ 2.5. From this we rea-
son that the equality in Eq. (8) cannot generally be assumed,
so we have to stick to the double cpdf’s p(1ui |1ui+1,u

∗).
Similar results have been reported for idealised turbulence
(Stresing and Peinke, 2010) and sea waves (Hadjihosseini
et al., 2016). On derivation of our final formula for the re-
construction of time series (see Eq. 3) an essential step was to
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premise the underlying scale process to be Markovian. Thus
it has to be shown that for 1τ = τi+1− τi ≥1τME

p(1ui |1ui+1; . . .;1uN ;u
∗)= p(1ui |1ui+1;u

∗) (9)

is a valid assumption. As the verification of this expression
is not feasible in its generality, we limit ourselves by reduc-
ing the number of dimensions involved and just check the
equality of

p(1ui |1ui+1;1ui+2;u
∗)= p(1ui |1ui+1;u

∗). (10)

To check this we utilise the Chapman–Kolmogorov equation
(CKE) (Friedrich et al., 2011). The cpdf p(1ui |1ui+2;u

∗)
is estimated directly from observational data and afterwards
compared with the cpdf p̃(1ui |1ui+2;u

∗) obtained numeri-
cally by use of the CKE

p̃(1ui |1ui+2;u
∗)=∫

p(1ui |1ui+1;u
∗) p(1ui+1|1ui+2;u

∗), (11)

whereas the two cpdf’s within the integral on the rhs are also
directly estimated from data. Figure 2 shows that Eq. (11)
only holds for 1τ ≥1τME. We find a Markov–Einstein
length of 1τME ≤ 0.1 s, which we are going to use hence-
forth.

2.3 Parameterisation of the Fokker–Planck equation

As was mentioned in Sect. 2.1 the FPE may be used to gen-
erate solutions for the needed cpdf’s in Eq. (1). Aiming for
this, one needs a parameterisation of the FPE reflecting the
scale process of the real-world wind speed data. No general,
physical formulation for a FPE describing the scale process
of wind speeds is known; thus we use the possibility to es-
timate a parameterisation directly from the given data (com-
pare Eq. 5 and Reinke et al., 2018; Peinke et al., 2019).

This way we obtain estimations of the drift and diffusion
functions D(1)(1u,τi,u∗), D(2)(1u,τi,u∗) along the scale
τi and for every wind speed value u∗. From these estimations
one then usually finds parameterisations of the FPE by fitting
appropriate polynomial surfaces to the estimated functions,
which then may be used to obtain numerical solutions of the
FPE.

To match the functional shape of the estimated
D(1)(1u,τi,u∗) andD(2)(1u,τi,u∗) (see Fig. 3), we require
the polynomials to be of the order of 3 and 2 respectively. We
find a significant shift, denoted with γD(1) (τi,u∗), depending
on u∗ and τi for the drift along all scales τi which has to be
taken into account for a parameterisation suitable to the given
data.

We set for D(1)(1u,τi,u∗)

D(1)(1u,τi,u∗)=

d10(τi,u∗)+ d11(τi,u∗)
[
u− γD(1) (τi,u∗)

]
+

d13(τi,u∗)
[
u− γD(1) (τi,u∗)

]3 (12)

and for D(2)(1u,τi,u∗)

D(2)(1u,τi,u∗)=

d20(τi,u∗)+ d21(τi,u∗)u+ d22(τi,u∗)u2. (13)

Similar findings were obtained for other systems (Hadjihos-
seini et al., 2016; Stresing and Peinke, 2010), where the
dependence on u∗ was limited only to the drift function
D(1)(1u,τi,u∗). For wind speed data the contribution of u∗

is clearly more complex.
Furthermore we check the validity of the Pawula theo-

rem, requiring D(4)
= 0. As one can see in Fig. 4, the fourth

Kramers–Moyal coefficient is slightly larger than zero, but
negligible compared to the magnitude of the diffusion func-
tion D(2).

Next, we check if the parameterisation of the FPE, given
by Eqs. (12) and (13), performs well in describing the un-
derlying scale process, before one uses it for the reconstruc-
tion scheme presented in Sect. 2.1. This can easily be done
by comparing cpdf’s estimated directly from the data and the
ones obtained from numerical solutions of the FPE. The latter
one is not carried out by common finite-difference schemes
but by an iterative approach (for first works see Renner et al.,
2001; Wächter et al., 2003). For a (very) small step size in
scale 1τ the functions D(1)(1u,τi,u∗) and D(2)(1u,τi,u∗)
can be assumed to be constant in τ , leading to an exact solu-
tion (see Risken, 1996) for the cpdf

p(1uj ,τi −1τ |1ui,τi,u∗)=
1

2
√
πD(2)(τi,u∗)1τ

·

exp

[
−

(
1uj −1ui −D

(1)(τi,u∗)1τ
)2

4D(2)(τi,u∗)1τ

]
, (14)

describing the transition between wind speed increments
of a larger scale τi and a smaller scale τi −1τ . By itera-
tively combining this so-called short-time propagator (STP)
with the CKE (see Eq. 11), one is able to obtain cpdf’s
p(1uj ,τj |1ui,τi,u∗) for arbitrary large-scale differences
τi − τj �1τ . In theory this procedure would lead to exact
solutions of the FPE, but since one is limited to finite step
sizes 1τ , this method of course only provides numerical ap-
proximations of the true cpdf’s.

Comparing cpdf’s estimated directly from the data
and from the numerical solution, we see (Fig. 5) that
our proposed estimation in terms of D(1)(1u,τi,u∗) and
D(2)(1u,τi,u∗) is well suited to describe the underlying
scale process. Thus we use this parameterisation for the re-
construction scheme.
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Figure 1. Comparison of single cpdf’s p(1u1|1u2) (black) and double cpdf’s p(1u1|1u2;u
∗) (red) for u∗ ≈ 0 (a, c), u∗ ≈ 2.5 (b, d),

τ1 = 1 s and τ2 = 2τ1. Dashed lines indicate cuts through the cpdf’s at 1u2 ≈ 1.2. The levels of the contour plots are given in natural
logarithmic scale.

Figure 2. Comparison of the double cpdf’s p(1u1|1u3;u
∗) (estimated from data) and p̃(1u1|1u3;u

∗) (obtained from CKE) for τ1 =
0.1 s (a) or 1 s (b) and τ2 = 2τ1, τ3 = 3τ1, 1τ = τ2− τ1 = τ3− τ2 and u∗ = 0.

2.4 Results of the multiscale reconstruction

Alternatively to the presented approach to obtain the cpdf’s
from numerical solutions of the FPE, it is of course possible
and much less cumbersome to estimate them directly from
observational data. (Note that due to the use of the FPE, the
obtained pdf’s are less noisy and extend to large values as
seen in Fig. 5.) In this section we will present the results for
the multipoint reconstruction achieved for u∗, yielded from
both approaches.

To start the reconstruction scheme, we provided a short
piece of the original time series of N wind speeds to the al-
gorithm to compute the pdf p(u∗|u1, . . .,uN ), from which the
first point of our simulation can be drawn. The reconstruction
scheme is then shifted by one time step τ and applied again.
By iteratively applying our method a new artificial time se-
ries of arbitrary length can be generated. After N iterations
of the reconstruction scheme no data from measurements are
required any more to generate new values of u∗. From visual
comparison in Fig. 6 one finds a realistic looking simulated
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Figure 3. Exemplary estimations of the drift and diffusion functions D(1)(1u,τi ,u∗) and D(2)(1u,τi ,u∗) for τ = 65 s and u∗ ≈−1.58
(red), ≈ 0 (black) and ≈ 1.58 (blue). Fits for D(1) and D(2) were achieved by applying Eqs. (12) and (13).

Figure 4. Exemplary estimations of the second and fourth Kramers–Moyal coefficients D(2)(1u,τi ,u∗) and D(4)(1u,τi ,u∗) for τ = 65 s.

time series of u∗, retaining the characteristics of dynamics on
the smaller scales as well as the ones of the larger scales.

To confirm this visual impression in a quantitative way, we
compare the increment pdf’s p(1ui,τi) obtained from the re-
constructed and the measured time series. The synthetic time
series were generated by using the cpdf’s estimated directly
both from data and from numerical solutions of the FPE.

As shown in Fig. 7 the increment pdf’s yielded from both
stochastic simulations nicely coincide with the pdf’s from
observations. This attests that the presented reconstruction
scheme is able to capture the complex dynamics of wind
speeds, characterised by a gradual shift of increment pdf’s
of a Gaussian-like shape (larger scales) to increment pdf’s of
a heavy-tailed shape (smaller scales).

A striking difference between the increment pdf’s from
the stochastic simulation can be noted. Whereas the tails of
the original pdf’s are systematically underestimated by the
reconstruction using the directly estimated pdf’s, the recon-
struction from the numerically obtained cpdf’s is able to keep
track of the tails of the original pdf. This stems from the fact,

mentioned above, that by estimating a pdf from observational
data one in general underestimates the outer tails, since there
are only a few measured points available. Considering the
estimation of cpdf’s, the estimation error of course worsens,
which is even more severe when additional conditioning is
applied, like in our case in terms of the additional condition
on u∗.

The tails of cpdf’s p(1ui,τi |1uj ,τj ;u∗) computed from
the family of FPEs can be extrapolated to areas where no
measurement points are available. This effect is a direct con-
sequence of the CKE (Eq. 11), as the tails are the product of
quite well-estimated less probable but not rare events.

Certainly this approach indirectly suffers from the limited
number of observations as well, as the estimation of the func-
tions D(1)(u,r,u∗) and D(2)(u,r,u∗) is based on observa-
tional data, too (see Eq. 5). Furthermore the parameterisation
of these functions is always only a approximation of the real
drift and diffusion functions, introducing deviations from the
real-world system.

Wind Energ. Sci., 5, 1211–1223, 2020 https://doi.org/10.5194/wes-5-1211-2020
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Figure 5. Isoline plots of a cpdf p(1ui ,τi |1uj ,τj ;u∗) estimated from the data (black) and from the numerical solution of the FPE (red)
for τi = 1.6 s and τj = 3.2 s and for u∗ ≈ 0 and u∗ ≈ 2.

Figure 6. Comparison of original wind speed time series u∗ (black, a) with the reconstructed one using Eq. (8) (red, b). The vertical line
marks the transition from the N = 128 starting values to the simulated wind speeds.

But we see from Fig. 7 that the majority of increments are
well grasped; only the occurrence of a few rare events are
underpredicted. A more detailed investigation of the pdf’s
shows the pdf’s obtained by the FPE deviate from the original
shape for the largest scale τ =N ·1τME but performs better
in the outer wings of the pdf.

From Fig. 8 a better understanding of the reconstruc-
tion method can be gained. The pdf used for the simulation
p(u∗|u1, . . .,uN ) is not stationary, even though it is computed
from completely stationary cpdf’s (see Eq. 8) and changes
sensitively with respect to the N past values. While the snap-
shot pdf (shown as black circles) at the time marked by the
black vertical line has a rather clear shape, it undergoes a
change, becoming broader (red line and red circles). Due to

the spreading of the wings of the pdf, values of u∗ of larger
magnitude become more likely to be drawn. This may lead
to a distinct shift of the wind speed values to u∗ ≤ 0 as seen
in this example. After this transition the broadness decreases
(blue line and circles) again and a tendency to relax back to
u∗ = 0 can be seen. Furthermore the increased broadness of
the red pdf (red line) can be seen as an early warning signal
that the wind speed is prone to fluctuate in a stronger way.

3 Extension to non-stationary wind speeds

In the preceding part for the reconstruction scheme, block-
wise normalised wind speeds with a window length of 1 min
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1218 C. Behnken et al.: Multipoint reconstruction of wind speeds

Figure 7. Comparison of the marginal increment pdf’s computed from the empirical data (black), the simulated data using the directly
estimated pdf’s (red) and the simulated data using the cpdf’s obtained from numerical solution of the FPE (blue). The scales range from
1τME to N ·τME; they are explicitly: 2i ·1τME with (i = 0,1, . . .,7) and1τME = 0.1 s. For better visualisation the pdf’s were shifted along
the vertical axis.

Figure 8. Evolution of p(u∗|u1, . . .,uN ) during reconstruction. Horizontal lines indicate snapshots of the pdf used for drawing the next
sample of u∗. The colours of the horizontal lines correspond to the snapshot pdf’s.

were used. These blocks were defined by common mean
wind speed U and standard deviation σU . For the normalised
wind speed u, we showed how to generate new time series;
see Fig. 9.

There are different methods to generate more general non-
stationary wind data. Knowing the slow variation in U (t) and
σU (t), the drift and diffusion coefficients D(i) are taken as a
slowly changing function of D(i)(1u,τ,u∗,U,σU ). If due
to the normalisation of U to u the coefficients D(i) are in
a good approximation independent of U and σU , the slow
variation in the real wind conditions can be incorporated over
the back-transformation of the newly estimated values U∗ =

(σU · u∗)+U . The slow dynamics of U (t) and σU (t) may
be given from measured data, meteorological simulations or
other modelling.

A third possibility is a self-adaptive procedure which we
show here. Instead of using given values of U (t) and σU (t),
the intrinsic fluctuation of these quantities are used. Given an
initial pair (U (t),σU (t)) estimated over 1 min from measured
data, a time series of non-stationary wind speeds U∗(t) is ob-
tained by applying the above-mentioned back-transformation
to the generated wind speeds u∗ from our algorithm. For the
upcoming simulation window of 1 min length, a new pair
(U (t ′),σU (t ′)) is estimated from the just generated block of
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Figure 9. (a, b) Comparison between measured non-stationary speeds U and reconstructed non-stationary wind speeds. (c, d) Increment and
one point pdf’s of original and reconstructed U .

wind speed data U∗(t). This procedure is carried out until a
time series of non-stationary wind speeds of desired length
is obtained. In Fig. 9 such a time series is shown together
with the statistical analysis of the increment pdf’s and the
marginal pdf of the non-stationary wind speed U . We ob-
serve that the pdf’s of the reconstructed time series match the
shape of the empirical pdf’s for both the increments and the
wind speeds. At this point we would like to emphasise that
we do not aim to create copies of historical wind speeds, but
rather to be able to generate stochastically equivalent time
series.

4 Conclusions

We presented a stochastic approach based on multipoint
statistics to generate surrogate short-time wind speed fluc-
tuations with stochastic processes. Note these stochastic pro-
cesses can be estimated self-consistently from given data. By
using the normalised wind speeds u∗ and wind speed incre-
ments 1u(τi), 1u(τj ) from two separate scales τi and τj , a

three-point closure to the complex systems of wind speeds
was achieved.

It was shown that our method works well in describing
the dynamics of block-wise normalised wind speeds u∗ along
scales τi in terms of a stochastic scale process, governed by
a family of Fokker–Planck equations. This separation of the
fluctuations from the mean values is similar to the Reynolds-
averaged Navier–Stokes (RANS) approach widely used in
fluid dynamics (Frisch, 2004), with the difference that we
have a description of the underlying stochastic process of the
fluctuation and “only” lack the mean values. With the modi-
fied reconstruction (see Sect. 3) we are able to generate mean
values on the basis of past values of the reconstructed time
series, yielding realistic non-stationary wind speed time se-
ries U∗. As the typical response times of wind turbines and
their control systems have duration of seconds to minutes,
our reconstructed wind data are suitable for investigation of
many dynamical effects of the wind energy conversion pro-
cess. Note for these times the wind energy system may be
driven into non-stationary response dynamics. Thus for these
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timescales it is important to have to maximal information on
all statistical details of the driving wind source. The stochas-
tic model presented here is based on multipoint statistics and
is able to capture small-scale intermittency effects, extreme
events and clustering of fluctuations, up to now not addressed
in wind energy research.

For timescales larger than the response times of wind tur-
bines, the turbines operate with fully adapted control systems
in a stationary state. To estimate effects, like loads, of such
stationary states, the temporal order of the states becomes
unimportant. It is sufficient to know how often which wind
situation emerges. Thus the knowledge of the valid Weibull
distribution p(U ) should be sufficient. Note our result here
indicates that it would be better to extend the Weibull distri-
bution to the joint probability p(U,σU ).

Finally we emphasise that the presented stochastic multi-
point approach to small-scale wind speed fluctuations should
encompass automatically extreme short-term wind fluctua-
tions, commonly added to wind investigations in terms of
standard or multi-year gusts. These methods can be applied
easily to other wind quantities like the temporal behaviour
of shears, or wind veers, eventually combined in higher-
dimensional stochastic processes (Siefert and Peinke, 2006).
The results reported in Ali et al. (2019) show that such a
stochastic modelling can also be used for wake flows.

Wind Energ. Sci., 5, 1211–1223, 2020 https://doi.org/10.5194/wes-5-1211-2020



C. Behnken et al.: Multipoint reconstruction of wind speeds 1221

Appendix A: Derivation of simpler cpdf’s

To link Eq. (2) to the idea of an underlying turbulent cascade,
we identify the conditional pdf on the left-hand side (lhs)
with the cpdf p(u∗, t∗|1u1, t

∗
−τ1; . . .;1uN , t

∗
−τN ). Thus

the numerator of the right-hand side (rhs of Eq. 2) can be
rewritten as

p(u∗, t∗;u1, t
∗
− τ1; . . .;uN , t

∗
− τN )=

p(u∗,u∗− u1,τ1; . . .;u
∗
− uN ,τN ) (A1)

and the nominator as

p(u1, t
∗
− τ1; . . .;uN , t

∗
− τN )=

p(u1;u1− u2,τ2− τ1; . . .;u1− uN ,τN − τ1). (A2)

The identity of the expressions in Eqs. (A1) and (A2) can
mathematically rigorously be shown, as done in Nawroth
et al. (2010), but intuitively speaking the sequences on the
lhs and rhs must yield the same joint pdf, since the incre-
ments on the rhs have a common reference point u∗ or u1.
Next we factorise the joint pdf’s from Eqs. (A1) and (A2) by
iteratively using cpdf’s

p(u∗;1u1,τ1; . . .;1uN ,τN )=

p(1u1,τ1|1u2,τ2; . . .;1uN ,τN ;u
∗)·

p(1u2,τ2|1u3,τ3; . . .;1uN ,τN ;u
∗)· · ·

p(1uN−1,τN−1|1uN ,τN ;u
∗)·

p(1uN ,τN |u∗) ·p(u∗) (A3)

and with 1̃ui := u(t∗− τ1)− u(t∗− τi) with the timescale
τi − τ1:

p(u1; ˜1u2,τ2− τ1; . . .; ˜1uN ,τN − τ1)=

p( ˜1u2,τ2− τ1| ˜1u3,τ3− τ1; . . .; ˜1uN ,τN − τ1;u1)·

p( ˜1u3,τ3− τ1| ˜1u4,τ4− τ1; . . .; ˜1uN ,τN − τ1;u1)

· · ·p( ˜1uN1 ,τN−1− τ1| ˜1uN ,τN − τ1;u1)·

p( ˜1uN ,τN − τ1|u1) ·p(u1). (A4)

A further step in reducing the dimensionality of the involved
pdf’s can be performed upon assuming the scale process to be
Markovian; i.e. there exists a timescale separation 1τME =

τj − τi (j > i), where

p(1ui,τi |1uj ,τi +1τME; . . .;1un,τi + n ·1τME;u
∗)

= p(1ui,τi |1uj ,τi +1τME;u
∗) (A5)

holds. The timescale separation 1τME is often called the
Markov–Einstein length (Einstein, 1905), and for various
systems its existence could be shown empirically, ranging
from jet streams in laboratory experiments (Renner et al.,
2001), (Reinke et al., 2018) to large geophysical systems
such as ocean gravity waves (Hadjihosseini et al., 2016).

Appendix B: Parameterisation of D(1) and D(2)

Here we present the polynomial coefficients used to pa-
rameterise the first and second Kramers–Moyal coefficients
D(1)(1ui,τi,u∗) and D(2)(1ui,τi,u∗) (see Eqs. 12 and 13).

Coefficients for the drift function D(1)(1ui,τi,u∗):

d10 = c0,d10 · τi + c1,d10 · u
∗
· τ
c̃1,d10
i + c2,d10 · τ

c̃2,d10
i

· u∗2+ c3,d10 · u
∗3, (B1)

d11 = c0,d11 · τi + c1,d11 · τ
c̃1,d11
i + c2,d11 · τ

c̃2,d11
i · u∗2, (B2)

d13 = c0,d13 · τ
c̃0,d13
i + c1,d13 · u

∗, (B3)

γD(1) = c1,γ
D(1) · τ

c̃1,γ
D(1)

i · u∗, (B4)

with c0,d10 =−0.006, c1,d10 =−0.888, c̃1,d10 = 0.098,
c2,d10 = 0.137, c̃2,d10 = 0.019, c3,d10 =−10.566,
c0,d11 =−1.656, c1,d11 =−0.018, c̃1,d11 =−8.853e− 05,
c2,d11 =−0.268, c̃2,d11 = 1.671, c0,d13 =−0.005, c̃0,d13 =

0.012, c1,d13 = 1.023, c1,γ
D(1) = 0.341, c̃1,γ

D(1) = 0.247.
And for the diffusion function D(2)(1ui,τi,u∗)

d20 = c0,d20 · τ
c̃0,d20
i + c1,d20 · τ

c̃1,d20
i · u∗+ c2,d20

· τ
c̃2,d20
i · u∗2, (B5)

d21 = c0,d21 · τ
c̃0,d21
i + c1,d21 · τ

c̃1,d21
i · u∗, (B6)

d22 = c0,d22 · τ
c̃0,d22
i + c1,d22 · τ

c̃1,d22
i · u∗, (B7)

with c0,d20 = 0.024, c̃0,d20 =−0.0001, c1,d20 = 0.0002,
c̃1,d20 = 1.076, c2,d20 = 1.573, c̃2,d20 = 1.622, c0,d21 =

0.002, c̃0,d21 =−0.001, c1,d21 = 1.104, c̃1,d21 = 1.395,
c0,d22 = 0.042, c̃0,d22 = 0.002, c1,d22 = 0.555, c̃1,d22 =

0.364.
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