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Abstract. The performance of an open-loop wake-steering controller is investigated with a new unique set of
wind tunnel experiments. A cluster of three scaled wind turbines, placed on a large turntable, is exposed to a
turbulent inflow and dynamically changing wind directions, resulting in dynamically varying wake interactions.
The changes in wind direction were sourced and scaled from a field-measured time history and mirrored onto
the movement of the turntable.

Exploiting the known, repeatable, and controllable conditions of the wind tunnel, this study investigates the
following effects: fidelity of the model used for synthesizing the controller, assumption of steady-state vs. dy-
namic plant behavior, wind direction uncertainty, the robustness of the formulation in regard to this uncertainty,
and a finite yaw rate. The results were analyzed for power production of the cluster, fatigue loads, and yaw
actuator duty cycle.

The study highlights the importance of using a robust formulation and plant flow models of appropriate fidelity

and the existence of possible margins for improvement by the use of dynamic controllers.

1 Introduction

Wakes produced by upstream wind turbines have a pro-
found influence on the performance of downstream ma-
chines. Compared to clean isolated conditions, waked tur-
bines produce less power, approaching a 50 % reduction for
full-wake interaction (Mechali et al., 2006), and they experi-
ence increased loading (Madjidian et al., 2011; Bustamante
et al., 2015; Vera-Tudela and Kiihn, 2017). The impact in
terms of both lost production and increased loading is sig-
nificant and has cascading effects on operation and main-
tenance (O&M) and lifetime. Probably one of the most di-
rect indications of the impact of wakes outside of the scien-
tific literature is given by the press announcement issued by
QOrsted (formerly DONG) in October 2019. In this announce-
ment, Prsted, the largest offshore wind energy developer in
the world, warned investors that it will not be able to meet its
long-term financial targets. Next to market issues, “...the neg-
ative impact of two effects across our asset portfolio, i.e., the
blockage effect and the wake effect” was listed as the main
reason. In addition, @rsted stated that ...underestimation of

blockage and wake effects is likely to be an industry-wide
issue” (Arsted, 2019).

Wind farm control is widely recognized as one of the
main solutions to mitigate wake effects (Gebraad et al., 2016;
Fleming et al., 2016; Vali et al., 2017; Fleming et al., 2017;
Raach et al., 2018; Fleming et al., 2019). In wind farm con-
trol, the turbines in a wind farm operate in a coordinated, col-
laborative fashion. This stands in direct contrast to the stan-
dard, locally greedy approach in which each machine works
independently from the others to maximize its own power
output — even if this is detrimental to the output of its neigh-
boring turbines. A number of wind farm control strategies
are currently being investigated, including static and dynamic
induction control (Frederik et al., 2020) and wake steering
(Knudsen et al., 2015; Fleming et al., 2016). Among these,
wake steering is probably the most promising technique for
practical field deployment, and reports of field tests have al-
ready been published (Fleming et al., 2017, 2019; Howland
et al., 2019). This control technology is also offered as a fea-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.




1274

ture for offshore wind farms by one of the leading wind tur-
bine manufacturers (Siemens Gamesa, 2019).

Although a field demonstration is clearly the final litmus
test for any technology, simulations with high-fidelity models
and scaled testing in wind tunnels offer some unique oppor-
tunities to improve knowledge and understanding. Bottasso
et al. (2014) pioneered wind tunnel testing beyond pure aero-
dynamic investigations by developing several experimental
applications based on actively controlled scaled wind tur-
bines. Campagnolo et al. (2016¢) followed up with an exper-
imental demonstration of closed-loop wake steering. In ad-
dition to their own scientific advances, these works provided
comprehensive opportunities for the validation of simulation
models (Wang et al., 2019).

The present paper follows in these same tracks. Here three
scaled turbines are tested in a large boundary layer wind tun-
nel, where dynamic wind direction changes are generated by
using a turntable. The three machines are governed by an
open-loop wake-steering controller, while each machine is
operated by its own closed-loop yaw, pitch, and torque con-
troller. The known, repeatable, and controllable environment
of the wind tunnel offers the opportunity to address some key
questions:

— What are the effects of neglecting the dynamics of wake
interaction by using a steady-state controller? And what
are the additional effects caused by a limited yaw rate
and a finite sampling time of the controller?

— What are the effects on performance of the fidelity of
the underlying model used for control synthesis? Does
it pay off to use a better model, and what are the mar-
gins for improvement? Are conclusions different when
looking at power, loads, or actuation effort?

— What are the benefits of using a formulation that is ro-
bust in the face of uncertainties, as opposed to a naive
deterministic approach? And is there a minimum wake
interaction threshold below which it might be better not
to use a wake-steering controller?

This study is an initial effort to try and answer these ques-
tions.

The paper is organized as follows. Section 2 describes the
experimental setup, including the scaled turbines, the tun-
nel sheared and turbulent inflow, and the generation with a
turntable of dynamic wind direction changes that mimic ac-
tual field measurements. Since the ground truth wind direc-
tion is known in the case of the experiment, a filtering ap-
proach is described to provide the controller with a tunable
level of uncertainty, with the goal of characterizing its ef-
fects on performance. Section 3 describes the control formu-
lation and implementation. A model-based robust formula-
tion is used here, which first derives look-up tables (LUTs)
by an offline optimization and then interpolates within the
LUTs at run-time based on the detected operating conditions.
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Figure 1. Experimental setup, showing the three model turbines
mounted on the wind tunnel turntable. The x—y—z frame is fixed
with respect to the tunnel and does not rotate with the turntable.

To explore the effects of varying model fidelity, three differ-
ent farm flow models are considered. The first is a MAT-
LAB implementation of the FLORIS model developed by
TU-Delft (Doekemeijer et al., 2019), which differs from the
latest release (NREL, 2020) and lacks the effects of sec-
ondary steering and nonuniform inflow. The second is an
improved version of the same model based on the learning
of correction terms from operational data, termed FLORIS-
Augm (Schreiber et al., 2020). The third farm flow model is
a purely data-driven model that, based on the accurate mea-
surements that are possible in the wind tunnel, can be consid-
ered an exact steady-state representation of the experiment.
Section 4 presents an analysis of the experimental results.
The non-robust formulation is analyzed first in terms of the
effects on performance of uncertainty level, finite yaw rate,
neglected dynamics, and model fidelity. Next, the robust for-
mulation is considered and compared to the non-robust one,
looking at the metrics of power, fatigue loading, and actuator
duty cycle. Section 5 concludes the work and provides some
initial answers to the questions posed above.

2 Experimental setup

The experimental setup is shown in Fig. 1: a small cluster
composed of three scaled wind turbines is installed on the
13 m diameter turntable of the atmospheric test section of
the wind tunnel of the Politecnico di Milano (Bottasso et al.,
2014). The turntable can be rotated by the angle ® to simu-
late different wind directions. This is achieved by first lifting
the turntable with an air cushion by approximately 20 mm
and then rotating it by means of a friction wheel. A dedi-
cated controller is used to track the user-prescribed rotation
time history. An optical encoder with an accuracy of +0.1°
is used as feedback. The turntable was in the lifted position
throughout the course of each experiment.

The three turbines are aligned in a row with a longitudinal
spacing of five rotor diameters (5 D), and they are termed
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WT1 (upstream), WT2 (center), and WT3 (downstream).
The wind direction ® is zero when the turbine row is parallel
to the wind tunnel centerline. In this position, the row of tur-
bines is located —1.5D to the left of the centerline when look-
ing upstream. Angle @ is positive for a clockwise rotation of
the turntable viewed from the top (see Fig. 1); this means that
a positive @ corresponds to the wind blowing from the left
of the row of turbines when looking upstream.

Rotating the turntable does not exactly correspond to a
change in wind direction with respect to fixed ground. In fact,
the scaled turbines experience a translational movement pro-
portional to the angular speed of the turntable and to their
distance from the center of rotation. This generates an addi-
tional flow velocity relative to the rotor, on average equal to
approximately 0.04ms~!. In turn, this creates a small extra
local wind direction change, quantified to less than 0.5° for
the current setup and testing conditions. Other differences
with respect to a real wind direction change are caused by
the slight horizontal shear present in the wind tunnel flow.
The translational movement exposes the turbines to different
flow speeds as they move laterally in the tunnel during the
turntable rotation. This effect is not negligible, but it can be
accounted for if the horizontal shear is known, as discussed
later.

2.1 Wind turbine model

Three identical G1 scaled models with a rotor diameter, hub
height, and rated rotor speed of 1.1 m, 0.825 m, and 850 rpm,
respectively, were used in the experiments. The models, al-
ready used in previous research projects (Campagnolo et al.,
20164, c, b), are equipped with active pitch, torque, and yaw
control. Strain gauges measure loads on the shaft and at the
tower base. Further details about the G1 design, its aero-
dynamic performance and several of its applications can be
found in Bottasso and Campagnolo (2020).

Each wind turbine is controlled with a dedicated real-
time Bachmann M1 system, where supervisory control
logic, pitch—torque—yaw control algorithms, and all neces-
sary safety, calibration, and data-logging functions are im-
plemented. Demanded reference values for torque, pitch, and
yaw are computed by the wind turbine controller and then
sent to the actuator control boards, where low-level control
functions are executed. The M1 system acquires torque, shaft
bending moments, and rotor azimuth position with a sample
rate of 2.5 kHz, whereas all other measurements (tower base
loads, blade pitch angles, and wind speed and direction) are
acquired with a sample rate of 250 Hz.

A standard power controller is implemented based on
Bossanyi (2000), with two distinct control regions (Burton
et al., 2011). Below rated wind speed (region II), the blade
pitch angle is held constant, while the generator torque is a
quadratic function of the rotor speed that enforces a constant
tip speed ratio (TSR). Above rated wind speed (region III),
the generator torque is kept constant, while a proportional-
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integral (PI) controller changes the collective pitch of the
blades to enforce a constant generated power.

The nacelle orientation yy, is positive for a counterclock-
wise rotation when viewed from the top (see Fig. 1) and can
be varied at will with respect to the base. The positioning is
achieved with a PI controller executed on the control board
of the yaw motor. A yaw brake can be engaged once the na-
celle reaches the desired position within a tolerance of £0.2°.
Whenever the reference orientation is changed, the brake and
the motor are simultaneously actuated to ensure smooth tran-
sitions.

The wind farm controller was implemented on a desktop
PC, communicating with the turbine controllers through the
MODBUS protocol. This plant-level controller sets a desired
misalignment angle y with respect to the wind for each tur-
bine. A positive y corresponds to a counterclockwise mis-
alignment looking down onto the model, i.e., the opposite
direction of ®. The relationship between wind direction, na-
celle orientation, and yaw misalignment angle is

Y = Vnac — P. @))

Figure 2 shows the behavior of the G1 rotor thrust coeffi-
cient Ct and power coefficient Cp with respect to the rotor-
effective wind speed Urgws (top row of the figure) and with
respect to the misalignment angle y (bottom row of the fig-
ure).

The behavior of the thrust and power coefficients vs. rotor-
effective wind speed was obtained by closed-loop simula-
tions with FAST (Jonkman and Jonkman, 2018), using tur-
bulent flow conditions similar to the ones generated in the
wind tunnel in terms of speed and turbulence intensity. The
blade aerodynamic model uses Reynolds-dependent airfoil
polars tuned as described in Wang et al. (2020). Figure 2b
shows that the wind turbine Cp is affected by the Reynolds
dependency of its airfoil polars in region II (i.e., for wind
speeds lower than approximately 5.7ms™"). At low winds,
and hence at low rotational speeds, the blade airfoil efficiency
is reduced because of the low chord-based Reynolds number,
resulting in a reduction of Cp. However, the Reynolds num-
ber has only a modest effect on the lift coefficient (Wang
et al., 2020), thus resulting in an approximately constant C
(see Fig. 2a).

The behavior of the thrust and power coefficients vs. mis-
alignment angle was characterized with dedicated wind tun-
nel tests, conducted for y € 31° with the turbine operat-
ing in region II. The results are reported in Fig. 2c, d. The
best-fitting cosine-law power-loss exponents equal 2.174 and
1.425 for the power and thrust coefficients, respectively.

2.2 Inflow characteristics

Spires placed at the inlet of the test section passively gener-
ate an atmospheric-like boundary layer. The flow was charac-
terized with three-component constant-temperature hot-wire
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Figure 2. C (a) and Cp (b) vs. rotor-equivalent wind speed Urgws. CT (¢) and Cp (d) vs. misalignment angle y.

probes (CTA), scanning a vertical line 4 D upwind of WT1I.
The vertical profiles of the longitudinal wind speed U (nor-
malized by the speed at hub height zy) and the turbulence
intensity (TI) are shown in Fig. 3a, b, respectively. The top
and bottom points of the rotor are indicated with solid black
lines, while a dashed black line indicates hub height. The
vertical wind profile within the rotor disk is best-fitted by a
power law with an exponent equal to 0.144, while turbulence
intensity at zy is approximately equal to 6 %, mimicking typ-
ical neutral, offshore conditions (Hansen et al., 2012).

For a correct interpretation of the wind farm control re-
sults, the small lateral nonuniformity of the wind tunnel flow
needs to be taken into account (Wang et al., 2017). In fact,
as the turntable is rotated, the turbines are also displaced lat-
erally, thereby encountering slightly different ambient condi-
tions. The ambient wind speed was measured by a pitot tube
installed at hub height, laterally shifted 1.5D to the left of
the wind tunnel centerline and 3 D upwind of WT1. The pitot
tube is, therefore, in front of the turntable and remains fixed
with respect to the wind tunnel as the turntable is rotated.
This means that the pitot tube is exactly in front of WT1 only
for ® = 0, whereas it is laterally displaced with respect to the
front turbine in all other cases. Hence, given the nonunifor-
mity of the wind tunnel boundary layer, when the turntable is
rotated the turbines are exposed to a local ambient flow that
differs slightly from the one measured by the pitot tube.

To characterize this effect, one G1 was positioned at sev-
eral different lateral locations y across the wind tunnel (see
Fig. 1). The local rotor-effective wind speed Urgws was
computed directly from the torque measured on the turbine
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for each location. The resulting lateral profile of the wind
speed is reported in Fig. 3c. This diagram shows the pres-
ence of a horizontal shear with changes in wind speed up to
+4 %, for both left and right shifts with respect to the pitot
tube. These changes will clearly cause significant changes in
power, due to its cubic dependency on speed.

2.3 Dynamic wind direction changes

Testing at scale implies not only different physical dimen-
sions of the model, but also a scaling of time with respect
to the original system. Specifically, the time speedup fac-
tor is defined as n; = f\/tp, Where fy is the time of the
scaled system and fp the time of the full-scale system (Bot-
tasso et al., 2014; Canet et al., 2020; Bottasso and Cam-
pagnolo, 2020). If n; = Iy /Ip is the scale factor, i.e., the ra-
tio between the characteristic lengths of the model /y; and
of the physical system /p, then dimensional analysis gives
that tv = tpny Vp/ VM, where Vi and Vp are the wind veloc-
ities in the two cases. For testing in a boundary layer wind
tunnel, n; = O(10~! = 1072) and Vp/Vy = O(10°), imply-
ing that time flows O(10' — 10%) times faster in the exper-
iment than in the physical full-scale reality. In this specific
case, the G1 turbine represents a n; = 1/160 scaled model of
an 8 MW full-scale machine (Desmond et al., 2016), while
Vp/ VM = 2. Therefore, time flows faster by a factor of 80 in
the wind tunnel than at full scale. Thus, 1h of testing in the
tunnel corresponds to about 3.3d in the field, an additional
valuable side effect of testing at scale. A simple example of
the acceleration of time is provided by the wake advection

https://doi.org/10.5194/wes-5-1273-2020



F. Campagnolo et al.: Wind tunnel testing of wake steering with dynamic wind direction changes 1277
(a) 15 (b) (C) 1.05*
%  Experimental data LM * *
[[]= = =Powerlaw o =0.144 ** **— *
;%i 1.025 *
*¥
1 5
& *
) . — AN [ R S —— = x
S g@b Z *
4 e
0.5 X? * S * %
B * g 0.975 l
% %
0 0.95
0.8 0.9 1 11 5 7 8 -1 0.5 0 0.5 1
Ucra/Ucta(z1) [-] TI [%) y [D]

Figure 3. Characteristics of the wind tunnel boundary layer: vertical profiles of wind speed (a) and turbulence intensity (b), measured with
CTA probes; lateral profile of the wind speed (c¢), measured using the rotor as a sensor.

time, which is the time necessary for a flow perturbation to
travel from an upstream turbine to a downstream one. As a
first approximation, the wake advection time is equal to the
ratio of the distance between the two machines and the flow
speed. If the wind tunnel and full-scale inflow speeds are in a
ratio of 1/2, as in the present case, it is clear that in the wind
tunnel the wake advection time is much shorter than at full
scale, because the distance between the two turbines is much
smaller (by a factor of 160).

In order to obtain results that can be up-scaled, changes in
wind direction simulated in the wind tunnel should realisti-
cally mimic full-scale variations. To this end, a wind direc-
tion time history was measured at 1 Hz at an onshore test site
located in northern Germany using a wind vane installed at a
height of 89.4 m on a met mast (Bromm et al., 2018). Within
the available dataset, 5 d of measurements were selected and
scaled by n;, obtaining a time history used for driving the
turntable rotation. The data selection criteria were as follows:

— met mast always fully out of the wakes of neighboring
machines;

— wind direction variations within the range +15° as,
given the experimental setup, wake interactions within
the cluster are expected only for ® € £15°;

— enough data to draw statistically meaningful conclu-
sions, using Fleming et al. (2019) as a guideline.

Figure 4a reports the frequency spectrum of the scaled
(i.e., sped-up) field-measured wind direction time series
®met- The plot also shows the spectrum of the wind direc-
tion changes ®cta already naturally present (without using
the turntable) in the wind tunnel flow due to the generated
turbulence, as measured with the CTA probes. The figure
shows that there is a very good match at the high frequen-
cies between the real flow and the one in the wind tunnel.
On the other hand, it is also evident that the wind tunnel
boundary layer completely misses the large-amplitude fluc-
tuations present in the field at scaled frequencies below about
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0.66 Hz. Taking into account the time scaling factor, this
means that wind direction fluctuations characterized by a pe-
riod above approximatively 2 min are missing from the tun-
nel flow. Since these are the dominant wind direction changes
for wind farm control (Simley et al., 2020), a way is needed
to fill the lower band of the spectrum.

With the turntable, these missing low-frequency wind di-
rection fluctuations can be filled in. Unfortunately, an exact
reproduction of the complete spectrum is not possible due
to hardware limitations. In fact, the rotational acceleration of
the turntable is limited by the maximum force that can be ex-
erted with the driving friction wheel. At higher accelerations,
inertial effects on the models would also have to be taken into
account. To obtain a time series that could be followed by
the turntable, piecewise cubic splines were used to best fit a
2 min moving average of the wind direction time history, un-
der the constraints of maximum achievable acceleration and
velocity. The resulting time series @,y is compared to the
sped-up 2 min average of ®ye; in Fig. 4c.

Figure 4b shows the spectrum of the resulting wind di-
rections obtained by combining the natural changes present
in the wind tunnel flow with the artificial ones generated by
the turntable. A comparison with the field-measured spec-
trum shows that the two match very well at the lowest and
highest frequencies. On the other hand, the combined wind
tunnel flow has a gap in the range 0.04-0.66 Hz, which cor-
responds to direction changes between 2 and 30 min at full
scale. Filling this gap would require a modification to the ac-
tuation system of the turntable, which was unfortunately not
possible within the scope of the present work.

3 Open-loop wake-steering controller

The wind farm control strategy is the open-loop algorithm
sketched in Fig. 5. The algorithm consists of a model-based
optimization that produces a look-up table (LUT) of discrete
set points, followed by an interpolation within the precom-
puted table at given instantaneous ambient conditions.
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Figure 4. (a) Spectrum of the sped-up field-measured wind direction time series ®pje¢ (solid blue), the turbulence-induced wind direction
changes in the tunnel ®cTp (dashed red), and the turntable rotation ® gy (dashed—dotted orange). (b) Spectrum of the sped-up wind direction
changes in the field ®pjeq (solid blue) and the combined wind direction changes in the wind tunnel ®cta + Purn (dashed green). (¢) Time
history of the 2 min average of the sped-up field-measured wind direction (blue), compared to the time history used to drive the turntable

rotation (dashed—dotted orange).

A wind farm flow model is first calibrated with the use of
preexisting data (and possibly retuned online during opera-
tion, although the present work did not make use of this pos-
sibility). Based on this model, an optimization is performed
offline to compute the optimal set points of each machine
in the farm that minimize a cost function for given ambient
conditions. In this work, the set points consist of yaw offsets
of each turbine with respect to the ambient flow direction;
a more general implementation could be additionally sched-
uled in terms of wind speed and turbulence intensity. To un-
derstand the effects of model fidelity on the controller per-
formance, LUTs were computed based on the three different
flow models described in Sect. 3.1.

During operation, filtered ambient wind conditions are
computed, including wind direction, wind speed, and tur-
bulence intensity (because of its effect on wake recovery).
These conditions can be estimated from the operational data

Wind Energ. Sci., 5, 1273-1295, 2020

of the turbines (Schreiber et al., 2018), or simply by a met
mast (Fleming et al., 2019). Based on the ambient wind con-
ditions, the control logic interpolates within the LUT to com-
pute the current set points, which are then dispatched to each
individual wind turbine. The process of ambient condition
estimation, LUT interpolation, and dispatching is repeated
with a desired frequency.

Similar controllers have been recently implemented and
tested in the field (Fleming et al., 2019). However, the im-
plementation in a wind tunnel experiment has some specific
features, which are discussed next.

The ambient conditions in the experiment are character-
ized by constant mean wind speed and turbulence intensity
but variable low-frequency wind direction changes generated
by the turntable. Figure 6a shows the combined wind direc-
tion time history ®cta + P, its 1.5 s moving average, and
the turntable rotation @y, In the experiments, the true wind
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Figure 5. Wind farm control scheme. The option to update the
model at runtime to recompile the LUTs (dashed line) was not used
in the present work.

direction is therefore known through the turntable encoder
with a high accuracy and signal-to-noise ratio, something
that is hardly possible in the field.

The turntable signal is filtered and provided as wind direc-
tion input to the controller. By filtering this signal, the con-
troller reacts only to low-frequency fluctuations and neglects
higher-frequency turbulent changes, which is desirable for
yaw-based control (Simley et al., 2020; Fleming et al., 2019).
However, increasing the filtering action generates longer de-
lays, which has the effect of changing the wind direction seen
by the controller with respect to the true one. This fact was
exploited here to generate a variable level of uncertainty and
study its effects on the controller performance. To assess the
effects of filtering (i.e., uncertainty), three values of the mov-
ing average time window were considered and used as input
for the controller, namely Tmayg = 1.5, 7.5, and 15 s, which
correspond to 2, 10, and 20 min at full scale. The effects
of the filter on the wind direction time series are shown in
Fig. 6b.

At runtime, the controller outputs the optimal yaw mis-
alignment angle y; for WT1 and y, for WT2 at each time step
(equal to 0.75s, which corresponds to 1 min at full scale),
whereas the downstream turbine WT3 adopts a standard
wind-tracking yaw strategy with the same time step. To guar-
antee a more precise yaw misalignment (Bossanyi, 2018),
a direct control of the nacelle orientation was preferred to
the indirect approach used by Fleming et al. (2017, 2019).
In this method, the required absolute nacelle orientation is
computed from Eq. (1) as ypac = ¥ + Pmeas, Where O peys 1S
the measured wind direction (i.e., the filtered turntable en-
coder signal). The nacelle is then actuated with a maximum
yaw rate Ymax = 10°s7! (0.125° s~! at full scale) to limit gy-
roscopic loads on the G1. As discussed later, the maximum
yaw rate has a significant effect on performance; it should be
noted that the value chosen here is lower than the 0.3°s~!
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at full scale used in other publications (Bak et al., 2013;
Jonkman et al., 2009).

3.1 Wind farm models

Three different wind farm models of different fidelity were
used for the synthesis of the LUTs: the lower level of
fidelity is provided by the FLORIS model, described in
Sect. 3.1.1; the intermediate level by a data-augmented ver-
sion of FLORIS, described in Sect. 3.1.2; and the higher fi-
delity level is given by a purely data-driven model, described
in Sect. 3.1.3.

For consistency with the wind tunnel experiments, a wind
direction change was accounted for in the models as a rota-
tion of the wind farm. A variation in the wind direction is
therefore also associated with a slight variation in the ambi-
ent speed sensed by each wind turbine, because of the hori-
zontal shear of the inflow shown in Fig. 3. The extra velocity
component caused by the motion of the turbine and its effect
on the local wind direction were not included in the models
because they are negligible.

3.1.1 FLORIS model

Given a set of ambient wind conditions, the FLORIS model
computes the steady-state flow within a wind farm and, in
turn, the power output of the individual turbines (Doeke-
meijer et al., 2019). The present results were obtained with
the MATLAB implementation available online (Doekemei-
jer and Storm, 2018), using the selfSimilar velocity deficit,
the rans deflection, the wake model of Bastankhah and
Porté-Agel (2016), the quadraticRotorVelocity wake combi-
nation, and the crespoHernandez added turbulence (Crespo
and Herndndez, 1996). To improve accuracy at the cost of a
slightly increased computational effort, the power of a tur-
bine is computed by integrating the flow at the rotor disk us-
ingP=1/2pf 4 V3CpdA (where p is air density, V the local
wind speed, and A the rotor disk area), instead of the orig-
inal implementation based on the rotor-average wind speed.
The speed dependency of the thrust and power coefficients
and the yaw-dependent power losses reported in Fig. 2 were
implemented as well. The ambient wind field in the model
is horizontally sheared to match the wind tunnel inflow. The
model was tuned based on wake measurements of one iso-
lated G1 turbine, as discussed in Campagnolo et al. (2019),
obtaining the parameters reported in Table 1; notice that, hav-
ing been tuned with ad hoc measurements, the values of these
parameters differ from the ones provided by Bastankhah and
Porté-Agel (2016) and Crespo and Herndndez (1996). The
wind speed at y =0 was set to 5.25m s~! while the turbu-
lence intensity was set to 6.1 %.
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Figure 6. (a) Time history of the combined wind direction changes experienced by the farm (blue), its 1.5 s moving average (orange), and
the measured turntable rotation (red). (b) Effect of the increasing time-averaging window Tpayg on the wind direction time series.

Table 1. FLORIS parameters calibrated according to Campagnolo et al. (2019).

o

B ka ky,

TL, Tl Tl Tly

0.9523  0.2617 0.0892  0.027

0.082 0.608 —0.551 —0.2773

3.1.2 Data-augmented FLORIS model

An improved level of fidelity is obtained by an augmented
version of the baseline FLORIS model (termed FLORIS-
Augm), following the approach described in Schreiber et al.
(2020). The central idea of model augmentation is to sur-
gically insert additional terms into the governing equations
to represent expected errors or effects lacking in the model
(for example, secondary steering, which is very relevant in
the present context and not present in the version of FLORIS
used here). The correction terms are expressed in terms of
parametric functions that are identified (or learned) from op-
erational data. Since a baseline performance is provided by
the underlying FLORIS model, learning is limited to small
errors, which somewhat eases the requirements on the data.
On the contrary, a purely data-driven approach, which does
not use a reference model as a baseline, poses more stringent
requirements on the training dataset; indeed, a data-driven
model only “knows” what is in the data and nothing else. In
practical field applications, it is possibly difficult to generate
a rich-enough dataset to identify a model of high quality and
wide generality.

The model augmentation method was demonstrated with
the use of standard SCADA (supervisory control and data
acquisition) data in Schreiber et al. (2020). Here, a simi-
lar approach was followed, by adding to FLORIS correction
terms for nonuniform inflow and secondary steering (Flem-
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ing et al., 2018). The errors were then identified based on the
power output of the three turbines in a variety of conditions,
including different wind directions and different yaw mis-
alignments, using a subset of the data used for the derivation
of the data-driven model described in the following. Further
details are given in Schreiber et al. (2020).

Although the FLORIS-Augm model is more accurate than
the baseline FLORIS, it is still not perfect. Therefore it is
interesting to verify whether an even higher-fidelity model
might improve the performance of the wind farm controller.
To answer this question, yet another unique ability of wind
tunnel testing was exploited here. An extensive, high-quality
dataset covering all operating conditions of interest was ob-
tained in the wind tunnel. Based on this dataset, a high-
fidelity, purely data-driven model is derived next.

3.1.3 Data-driven model

A dataset was generated by measuring the power out-
put of the three turbines for the 11 wind directions & =
[0, £2.29, £4.58, £6.89,+£9.21, +11.54]°. For each wind
direction, the two upstream turbines were operated at various
steady misalignment angles y in the range +10° around the
optimal misalignments that, according to the FLORIS model,
maximize the total plant power.

The data-driven model was obtained by best-fitting a re-
sponse surface to the resulting set of data points, using
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shape functions inspired by experimental observations and
the wake superimposition models used in FLORIS. The for-
mulation of the interpolating shape functions is presented in
Appendix A.

3.1.4 Normalized power

The normalized power P, ; of the jth wind turbine is defined
as
P

P . 2
w 1/2pAU? @

where U; is the ambient wind speed at the location of that
turbine. Here, the ambient speed is measured by the reference
pitot tube and then corrected for the tunnel horizontal shear.
The total normalized wind farm power is defined as P, wr =
3 j Py, j.

For a turbine operating in undisturbed inflow, normalized
power is equal to the standard power coefficient Cp. How-
ever, normalized power and the power coefficient differ for a
turbine operating in the wake of an upstream machine. Nor-
malized power is preferred to the power coefficient in the
present analysis, because it reveals the reduced power extrac-
tion of a waked turbine when compared to an unwaked one,
a difference that is lost to the classical power coefficient. In
fact, two turbines — one in the wake of the other — might be
operating in region II at the same power coefficient, although
the downstream machine would have a much reduced power
output than the front one, which would result in a lower nor-
malized power compared to the upstream turbine.

3.1.5 Comparison of the three models

Figure 7 shows the normalized power of the individual tur-
bines and the whole cluster for the case & =0° (i.e., with
the wind blowing parallel to the row of turbines). Results are
plotted versus the misalignment angles y; and y, of the two
front turbines WT1 and WT?2. Measured data points are indi-
cated with red dots, while smooth surfaces show the predic-
tions of the baseline FLORIS (left), FLORIS-Augm (center),
and data-driven (right) models. A quantitative overall mea-
sure of the quality of the fits is given by the root-mean-square
(rms) errors erms, expressed in percent of the available free-
stream wind power and included in the legends.

By looking at the plots and at the fitting RMS errors, it ap-
pears that the quality of the models degrades when moving
downstream along the row of turbines, as expected, consid-
ering the increasing role of wake interactions. A comparison
of the plots by column reveals the increasing level of fidelity
of the models, where FLORIS-Augm is better than FLORIS,
and data-driven is better than FLORIS-Augm.

3.2 Look-up table computation

In general, the LUTs for an open-loop wake-steering con-
troller should depend on wind direction, wind speed, and tur-
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bulence intensity (because of its effect on wake recovery).
However, in the present wind tunnel experiments the last two
parameters are kept constant, so that the LUTs were sched-
uled only with respect to wind direction. A resolution of 0.2°
was used for wind directions ® € +2°, whereas a lower res-
olution of 1° was used outside of this range.

For robustness, wind direction and yaw uncertainties
should be taken into account in the calculation of the LUTs
(Quick et al., 2017; Rott et al., 2018; Simley et al., 2020).
Here only uncertainties in wind direction were considered,
because yaw uncertainties due to possible sensor errors are
negligible for the calibrated Gls.

Steady-state models such as the ones used in this work al-
ready include the effects of the higher-frequency wind direc-
tion changes of the spectrum. For example, the wake profiles
measured by Campagnolo et al. (2019) and used to identify
the model parameters of Table 1 represent mean steady val-
ues, whereas the actual instantaneous wake undergoes me-
andering fluctuations. In this sense, it is important to realize
that the wake model already contains the effects of the wind
direction changes naturally present in the wind tunnel flow,
whose spectrum is reported in Fig. 4a in red. However, steady
models lack the flow dynamics at the lower frequencies and
the delays caused by the advection downstream with a finite
travel speed. These models are therefore only capable of pre-
dicting slow changes of wind turbine power (Simley et al.,
2020). A robust control formulation (Rott et al., 2018) should
take into account the uncertain knowledge of the wind direc-
tion at these slower timescales.

Here again, wind tunnel testing presents some opportuni-
ties that are hardly available when testing in the field. In fact,
the actual turntable rotation represents the “ground truth”,
while the controller takes as input the filtered signal (shown
in Fig. 6b). It follows that wind direction uncertainties are
known in this case and are represented by the difference A®
between these two quantities. Therefore, one can change the
value of the uncertainties (which is challenging in reality at
full scale, since the ground truth is typically unknown) by
simply changing the filtering of the turntable rotation. This
approach was used here to study the effects that uncertain-
ties have on the performance of the controller. Figure 8 re-
ports the distribution of A® for two values of Tyavg equal to
7.5 and 15s. The fitted Gaussian normal distributions have
standard deviations o = 2.01 and 3.42°, respectively. For
Tmave = 1.5 s wind direction uncertainties are negligible.

For each flow model, robust LUTs were computed based
on the approach of Rott et al. (2018) forogp = [0: 2 : 6]°. The
MATLAB pattern-search algorithm was used to solve the re-
sulting bounded optimization problem. For each considered
wind direction @, the optimal yaw misalignments y;* and
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Figure 7. Normalized power of WT1 (first row), WT2 (second row), WT3 (third row), and the wind farm (fourth row), as functions of
the misalignment angle y of the two front turbines WT1 and WT2, for the wind direction ® = 0°. Red dots: experimental measurements.
Smooth surfaces: baseline FLORIS (left), FLORIS-Augm (center), and data-driven (right) models.
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Figure 8. Distribution of wind direction uncertainties, i.e., difference between the actual turntable position and its filtered value (which is
the wind direction input to the controller) for Tyvjayg = 7.5s (a) and Tyayg = 15 (b).
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for WT1 and WT2 were computed as

9
[7 (@), v3' (®)] = argmax > " Pu(® + Ady,
Y1,Y2 =0

Y1 — ADp, 2 — ADp, —ADy) F(ADp), (3a)
such that: [y, y2] € £30°, (3b)

where A®; = (4k/9 —2)o¢ is the wind direction uncer-
tainty varying in the range +20¢, f ~ N(0, 0¢) is the Gaus-
sian normal distribution, and Pn (D, y1, ¥2, ¥3) is the wind
farm power predicted by the wind farm model.

The LUTs obtained with the baseline FLORIS model for
different values of o¢ are shown in Fig. 9a and b. The effect
of an increasing uncertainty is that of generating a smoother
transition around ® = (°, and in general smaller misalign-
ment of the turbines with respect to the wind.

Figure 9c and d compare the LUTs obtained with the three
models for op = 0°. Considering the front turbine misalign-
ment y; (Fig. 9c), the main difference among the LUTs is
in the position of the transition point between positive and
negative yaw offset, which is 0, —0.5, and —0.8° for the
baseline FLORIS, FLORIS-Augm, and data-driven models,
respectively. The nonzero transition point predicted by two
of the models can be ascribed to the nonsymmetric behav-
ior of power for the cluster of turbines, shown in Fig. 10a
for the greedy policy, i.e., no wake-steering control. Indeed,
the figure shows that the minimum of the wind farm normal-
ized power is at about —0.8°, i.e., for a wind blowing slightly
from the right of the row of turbines when looking upstream.
This is due to the combined effects of the tunnel horizontal
shear and the slight lateral deflection for null yaw misalign-
ment created by the vertically sheared flow.

Looking at the second turbine misalignment y» (Fig. 9d),
there is a significant difference among the three models. In
fact, the baseline FLORIS does not include secondary steer-
ing, which is on the other hand represented to a different
level of fidelity by the FLORIS-Augm and data-driven mod-
els. This effect leads to smaller misalignments for the sec-
ond compared to the front machine, in agreement with other
recent wind tunnel studies (Campagnolo et al., 2016c; Bas-
tankhah and Porté-Agel, 2019).

4 Results

4.1 Maximum theoretical performance of the controllers

Before considering the behavior of the controllers in the ex-
periments, it is interesting to establish a theoretical upper
limit to their performance, neglecting dynamic effects, lim-
ited yaw rates, and uncertainties. To this end, the data-driven
model was used as plant, being essentially an exact represen-
tation (except for measurement errors) of the wind farm be-
havior for a constant mean wind speed. The wind farm power
output was computed using the greedy control policy and the

https://doi.org/10.5194/wes-5-1273-2020

LUTSs for o = 0°. The total power output of the cluster is
shown in Fig. 10a, while panel (b) shows the percent power
gain with respect to the greedy policy.

Results indicate that all models lead to positive gains for
all investigated wind directions, up to about 25 % in the
best conditions. The gains for the baseline FLORIS model
are only slightly smaller than for the FLORIS-Augm and
the data-driven model. This appears to indicate that the cost
function of problem (3a) is rather insensitive to the details of
the underlying model in the absence of uncertainties. How-
ever, these results might be misleading, because uncertain-
ties are indeed present in reality and play a significant role,
as shown later.

The results of Fig. 10 can be used to compute the max-
imum possible performance of the controllers for the wind
direction time series used in the experiments and shown
in Fig. 4. Under the assumption of an exact knowledge of
the wind direction, an instantaneous realization of the re-
quired yaw misalignments, and the absence of any flow dy-
namics, the power gains of the baseline FLORIS, FLORIS-
Augm, and data-driven LUTs are respectively equal to
10.73 %, 11.41 %, and 11.84 %. These figures establish a
non-achievable maximum theoretical performance of the
controllers for this particular farm layout and wind direction
time history.

4.2 Impact of different non-robust controller
implementations

Next, wind tunnel tests were performed to characterize the
effects of the following aspects of open-loop wake steering:

— uncertainty level (which, in the present context, is re-
lated to the filtering of the wind direction, i.e., of the
turntable rotation);

— effect of a finite yaw rate and of neglected wake dynam-
ics;

— model fidelity, according to the three considered models
FLORIS, FLORIS-Augm, and the data-driven model.

The analysis is conducted first for a non-robust controller
implementation, i.e., for the formulation expressed by prob-
lem (3a) with o = 0°, while the performance of a robust
controller is considered later in the paper.

Dynamic changes in wind direction were obtained by ac-
tuating the wind tunnel turntable, as described in Sect. 2.3,
in the offshore inflow conditions described in Sect. 2.2. Each
test was performed for a total of 90 min divided into nine
intervals of 10 min each. This allowed for the periodic cal-
ibration of the wind tunnel and the wind turbine sensors, to
guarantee the highest possible accuracy of the measurements.

Tests with the greedy control strategy were repeated four
times, dispersed over the course of the experimental cam-
paign. The averaged power values for the 90 min wind direc-
tion time series were normalized with the results of the first
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Figure 10. (a) Wind farm power output as a function of wind direction for different control policies. (b) Maximum theoretical percent power

gain with respect to the greedy policy for the three flow models.

test and are shown in Fig. 11 for the whole wind farm and
for each wind turbine. The standard deviation of these values
across the four repetitions is equal to 0.98 % of the available
free-stream wind power for the whole cluster, and to 0.15 %,
0.42 %, and 0.51 % for WT1, WT2, and WT3, respectively.
These uncertainties, which can be mainly ascribed to errors
of the pitot transducer and shaft torque meter, are acceptable
considering the purpose of this analysis and are well below
the differences caused by the various effects studied herein.

4.2.1 Effect of wind direction uncertainties

Experimental tests were performed with non-robust LUTs
obtained from the baseline FLORIS model for the three filter-
ing values Tyavg = 1.5 (09 =0°), 7.55s (0p = 2.01°), and
15s (09 = 3.42°), which correspond to the three wind direc-
tion time histories shown in Fig. 6b.

Wind Energ. Sci., 5, 1273-1295, 2020

The power gains with respect to the greedy policy are
shown in Fig. 12. Average values aggregated over the whole
wind direction time history are shown at wind farm level and
for the single turbines. As expected, results indicate a pro-
gressive degradation of performance for an increasing level
of uncertainty (i.e., for increasing Tvayg and hence o¢). The
effects on the front turbine are very limited, whereas they are
more pronounced for the second and third turbines due to
the effects caused by wake interactions. Indeed, power vari-
ations at the front turbine caused by a non-exact alignment
with the wind are rather small according to the cosine law
shown in Fig. 2d; on the other hand, a non-exact misalign-
ment has a much amplified effect on the location of the wake
downstream of the rotor, which may induce large losses on
the downstream turbines. Such losses could be even larger
for a greater spacing between turbines than the 5D of the
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present experiment. The impact on the overall farm power
output is substantial: increasing og from 0 to 3.42° cuts the
power gain by more than half.

4.2.2 Effect of yaw rate and neglected wake dynamics

Even in the absence of wind direction uncertainties (Tvavg =
1.5s, 0p =0°), the farm-level power gain (about 6.7 %,
Fig. 12a) is much lower than the established theoretical up-
per limit (10.73 %, Sect. 4.1). This difference is caused by the
limited yaw rate of the turbines and by having used a steady
model and controller, which implies neglecting the dynamics
of wake interaction (including the intrinsic dynamics of the
wake, its slow-scale meandering fluctuations, and the advec-
tion downstream of any change with a finite travel speed).
Figure 13 establishes the impact of these effects on the
performance of the controller. The plot reports plant-level
power gains with respect to the greedy policy, as functions
of wind direction. To reduce noise in the figure, each point
in the plot represents the average power gain for a wind di-
rection bin with a width of 2.5°. The solid orange line with
* symbols reports the gains measured in the experiment. The
solid blue line with o symbols indicates the theoretical up-
per limit when using the baseline FLORIS model, obtained
by binning the data shown in Fig. 10b. The dashed—dotted

https://doi.org/10.5194/wes-5-1273-2020

green line with A symbols shows the gains computed by a
simulation conducted with the data-driven model, using the
yaw misalignment angles M measured in the experiment.
Since the data-driven model can be assumed to be an exact
steady-state representation of the experiment, the green line
of the figure shows the impact of a limited yaw rate on the
maximum theoretical performance. Finally, the dashed red
line with 0 symbols shows the gains when using the yaw
misalignment angles y* requested by the controller, com-
puted with the data-driven model, i.e., without considering
limits in the yaw rate.

These curves allow for the quantification of the following
effects:

— The difference between the lower orange curve and the
green curve can be attributed to neglected wake dynam-
ics; this non-negligible difference could in principle —
at least in part — be regained by using a dynamic con-
troller, instead of the steady-state controller considered
here.

— The difference between the green and the red curves is
due to a finite yaw actuation rate. This difference in-
dicates that another non-negligible power capture im-
provement could be gained by a faster actuation, which
however would have to be traded against increased load-
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Figure 13. Wind farm power gains with respect to the greedy policy
vs. wind direction ®. Tests were performed with zero wind direc-
tion uncertainty (o = 0°), and LUTs were synthesized from the
baseline FLORIS model.

ing and actuator duty cycle (ADC). This gain is limited
to relatively small misalignments (about ® € £6° in the
figure).

— Finally, the difference between the red and the upper
blue curve is due to remaining effects, such as the finite
sampling time of the controller. This small difference
indicates that these effects are negligible with respect to
the others.

4.2.3 Effects of wind farm model fidelity

The influence of wind farm models with an increasing level
of fidelity was assessed for the case of negligible wind direc-
tion uncertainties (Tmavg = 1.5s, 0 = 0°). Figure 14 shows
the averaged wind farm power gains aggregated over the
whole time history for the three different models. The ex-
perimentally measured gains are reported in Fig. 14a, while
Fig. 14b shows the gains obtained by simulations with the
data-driven model as plant and the misalignment angles
yMeas measured in the experiments. The maximum theoret-
ical power gains of Sect. 4.1 are shown in Fig. 14c. Again,
the lower gains of Fig. 14b compared to Fig. 14c can be at-
tributed to the limited yaw rate. The lower power gains of
Fig. 14a compared to Fig. 14b can be attributed to neglected
dynamics.

The figures show that LUTs synthesized with better wind
farm models lead to higher power gains. In fact, for the wind
tunnel experiments, employing the FLORIS-Augm and data-
driven LUTs increases the power gain by 5.1 % and 16.7 %,
respectively, compared to the baseline FLORIS case. The
simulation results of Figs. 14b and c show a similar trend.
However, the benefits of the highest-fidelity model over the
lower-fidelity ones for both simulation cases (10.1 % and
10.4 %) are smaller than in the experiments (16.7 %). This
might be due to dynamic effects, which could affect the con-
troller performance in different ways depending on the un-
derlying flow model.
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4.3 Robust implementation accounting for wind
direction uncertainties

Further experiments were conducted using robust LUTs
computed according to problem (3a) for op =[0:2:6]°
based on all three models. For all tests, the wind direction
(i.e., the turntable encoder signal) was filtered with a mov-
ing average with Tyjavg = 7.5 s. This corresponds to 10 min
at full scale, similarly to typical 10 min SCADA data. As
shown in Fig. 8, this means that the simulated wind direc-
tion uncertainty in the experiments had a standard deviation
oo =2.01°.

Figure 15 reports the power gains with respect to the
greedy case for the baseline FLORIS model for varying un-
certainty levels o¢ in the formulation of the LUTs (i.e., for
increasing robustness). To reduce noise, the plot was gener-
ated with average values according to wind direction bins
with a width of 2.5°. The figure shows that, with an in-
creasing level of uncertainty, power is shifted from the most
downstream machine (bottom left plot) to the upstream one
(top left plot), whereas the turbine in between is substan-
tially unaffected (top right plot). This makes intuitive sense:
with large uncertainties in the wind direction, the power out-
put of downstream machines becomes more uncertain; there-
fore, the controller tries to lose less power upstream, where
changes in wind direction have a more limited impact on
the local capture. This clearly comes at a cost, and the total
power output at the farm level decreases (bottom right plot).
With small uncertainties, the opposite happens: since the lo-
cation of the wakes is more certain, it pays off to deflect the
wake of the front machines in order to try to boost capture
downstream.

It should also be noted that wind farm power gains may be
negative away from conditions with strong wake interactions.
This is indeed the case here for wind directions ® < —10°
and @ > 8°. This suggests that wake steering should only
be applied in cases where strong enough interactions are ex-
pected, and switched off elsewhere.

Figure 16a shows the overall experimental power gains
with respect to the greedy case for the various models and
for increasing robustness. Additionally, Fig. 16b and c re-
port simulation results with the data-driven model as plant
and the effectively realized misalignment angles y ™ or the
demanded misalignment angles y*, respectively. The power
gain change with respect to the FLORIS LUTs with og = 0°
is reported above each column. If one looks at the experi-
mental data, shown in Fig. 16a, the power gains are equal to
about 4 %—6 %, a range that is considerably lower than the
theoretical maximum reported in Fig. 14c. Moreover, gains
are higher and less affected by uncertainties for the better-
fidelity model. From this point of view, it appears that a
higher-fidelity model could provide better and more robust
results than a lower-fidelity one.

The situation considered here is indeed much more realis-
tic than the one discussed in Sect. 4.2, and the lower gains
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of the LUTs.

observed in this case are due to wind direction uncertain-
ties, limited turbine yaw rate, and wake propagation dynam-
ics. The best performance in the experiments is obtained with
the data-driven model for o = 6°. Additionally, the exper-
imental results of the FLORIS-Augm model are better than
the ones of the baseline FLORIS. For both the data-driven
and the FLORIS-Augm models, lower gains are obtained
when neglecting uncertainties (op = 0°), which points to the
importance of using a robust formulation. Surprisingly, the
baseline FLORIS model exhibits just the opposite behavior.
The maximum gains in the experiments are obtained for
o¢p =4 and 6° for the FLORIS-Augm and data-driven mod-
els, respectively. These values are significantly higher than
the actual uncertainty in the wind direction signal (equal to
o¢p = 2.01°). This is probably due to the limited yaw rate. In
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fact, Fig. 16b shows that with a limited rate even the simula-
tion results yield the best gains for o = 4°, while Fig. 16¢
shows that without rate limits the optimal performance is ob-
tained for the effective uncertainty og = 2° present in the
driving signal. This makes intuitive sense: LUTs computed
with a lower uncertainty result in higher gradients of the
misalignment angle with respect to wind direction changes,
which are less likely to be achieved by a limited yaw rate.
These results allow for some interesting considerations.
First, if the model is strongly biased, as in the present base-
line FLORIS case, introducing robustness in the formulation
may decrease performance. This is in contrast to the results
reported by Rott et al. (2018), who, however, did not consider
biased models. On the contrary, robustness increases perfor-
mance if the underlying models have better fidelity, which is

Wind Energ. Sci., 5, 1273-1295, 2020
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the case here for the FLORIS-Augm and data-driven mod-
els. Moreover, the impact of a limited yaw rate should cer-
tainly be taken into account in the calculation of the LUTs,
as proposed by Simley et al. (2020). More importantly, better
models and robust LUTs lead to better performance.

4.4 Impact on actuator duty cycle and loads

The wind tunnel experiments were also used to evaluate the
impact of wake steering on yaw control effort and fatigue
loads.

The average wind farm yaw ADC is defined as

Nwr 1

ADCwr = NWF Z

’Vnac ](t)‘

Vmax

“

Where Ynac, j(¢) is the time rate of change of the orientation of
the jth wind turbine, and Nwg = 3 is the number of turbines.

Wind Energ. Sci., 5, 1273-1295, 2020

The average wind farm ADC is an indicator of the usage of
the yaw actuators and could therefore be used to quantify the
impact of wake-steering control on the maintenance cost of
the yaw drives.

Figure 17 shows the increase AADCwg with respect to
the greedy control policy. The effect of filtering the wind di-
rection signal is shown in Fig. 17a for the non-robust LUT
baseline FLORIS formulation. As expected, a longer averag-
ing window smooths the signal, resulting in less yaw activity
(but also less power and more fatigue damage, as shown in
Figs. 12 and 18a). The increase in ADC with respect to the
greedy control case is, however, very substantial.

The results obtained with robust LUTs based on the three
models are shown in Fig. 17b, for a wind direction signal fil-
tered with Tyavg = 7.5 s. Comparing Fig. 17b with Fig. 17a
shows that a robust formulation decreases ADC, as expected
by the reduced misalignments prescribed by the controller
(see Fig. 9a, b). Increasing robustness has a dramatic ef-
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fect on ADC, which however is still much higher than in
the greedy case even for oy = 6°. There is a clear tradeoff
in wake steering between the benefits of an improved power
capture and the detriments caused by an increased ADC. Ad-
ditionally, the figure also shows that model fidelity has only
a relatively minor effect on ADC.

Damage Equivalent Loads (DELs) were computed from
bending moments measured on the rotating shaft and at the
tower base. Load signals were first filtered above the 6P rotor
frequency to remove high-frequency mechanical vibrations.
In addition, tower loads were corrected from 1P harmonics
generated by the small inertial and aerodynamic imbalance
of each rotor. A similar correction was applied to the fixed-
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frame hub loads computed from the rotating shaft compo-
nents. Once cleaned of the 1P component, the fixed-frame
loads were projected back onto the shaft frame, obtaining ro-
tating loads corrected for rotor imbalance.

Bending DELs of the rotating shaft are reported in Fig. 18,
while tower base bending DELs are given in Fig. 19. In both
cases, combined DELs were obtained by projecting the two
measured orthogonal bending components on the direction
associated with the maximum DEL, and normalizing by the
temporal average of 1/2pm R3 Ugm, where R is the rotor ra-
dius. The loads for WT1 for varying Tyave and for the base-
line FLORIS cases are not reported in the figure, due to a

Wind Energ. Sci., 5, 1273-1295, 2020
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problem with the recording of the rotor azimuth of that tur-
bine during these tests.

A few observations can be made from the results for
the shaft DELs. First, as expected and as clearly visible
in Fig. 18a, load mitigation with non-robust LUTs worsens
rapidly for increasing uncertainty (i.e., increasing Tmavg),
since more wake interactions are taking place downstream.
Second, when using robust LUTSs, model fidelity seems to
have only a modest effect on DELs, as shown in Fig. 18b.
Third, by pointing the rotor away from the wind, the DELs
of the front machine have a moderate increase, which is again
an expected behavior. However, it is particularly interesting
to look at the effect of varying robustness. Indeed, only a
marginal increase in DELs is observed for 0 = 6°, which
still corresponds to significant power gains (cf. Fig. 16).
Moreover, wake steering is particularly beneficial for the
DELs of the second and third turbines, with reductions vary-
ing between 7 % and 12 %, depending on the LUTs. In gen-
eral, DEL reductions seem to be correlated with power gains:
robust LUTs with the largest power gains also generate the
maximal load reductions.

Similar conclusions can be drawn from looking at the re-
sults for the tower base DELSs, despite some differences com-
pared to the shaft loads. Although the absolute loads on the
front turbine never exceed those of the downstream ones, the
tower DELs of WT1 increase much more significantly with
yaw misalignment than the shaft DELs (compare top plot of
Fig. 19b with the one of Fig. 18b). Again the increment be-
comes almost negligible when robust LUTs computed with
o = 6° are used, as shown in Fig. 19b. The tower DELs of
the second turbine are significantly reduced, up to about 30 %
depending again on the LUTSs and on the filtering of the wind

Wind Energ. Sci., 5, 1273-1295, 2020

direction, whereas the load mitigation on the third turbine is
less pronounced and shows a less clear trend.

5 Conclusions

This paper has presented an analysis of the effects of wind
direction changes on the performance of an open-loop wake-
steering controller.

The study was based on the results of a new unique set of
experiments conducted with three scaled turbines operated in
a large boundary layer wind tunnel. Wind direction changes
were simulated with a turntable, driven by actual measure-
ments performed in the field that were scaled to match the ac-
celerated time of the experiment. The filtered wind direction
provided as input to the controller was shown to represent a
realistic approximation of the signal that could be acquired
by a met mast in the field. Three different models of increas-
ing fidelity were used for the synthesis of the control laws.
The control formulation was based on an established robust
approach, which includes a naive deterministic optimization
as a special case.

The unique possibilities offered by testing in the known,
repeatable, and controllable environment of the wind tunnel
were exploited here to

— establish a theoretical upper limit to the performance of
the controller in the absence of dynamics;

— separate the effects of neglected dynamics, model fi-
delity, and actuation rate;

— feed to the controller a variable level of uncertainty, in
order to quantify its effects on performance.
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Based on the results of this study, the following conclu- — There is a non-negligible margin in power capture per-
sions can be drawn: formance that may be attributed to dynamic effects. This
seems to indicate that dynamic controllers, as opposed
to the steady-state ones used here, might lead to a better
performance, at the cost of a higher complexity.

— Higher-fidelity models lead in general to slightly better
results in terms of power capture, whereas the effects
of fidelity on actuator usage and fatigue loads are mod-
est. In addition, higher-fidelity models appear to be less — Yaw rate is an important performance driver, and indeed
susceptible to the effects of uncertainties. higher rates achieve better results in terms of power

output at the farm level. However, this clearly comes
at a large cost in terms of actuator usage and load-
ing. Such tradeoffs can only be quantified by a system-
level design study, which is however turbine- and plant-
dependent and beyond the scope of this paper.

— The use of a robust formulation is beneficial in terms
of power capture but yields even higher payoffs when
looking at other metrics. In particular, the overall plant-
level ADC and the DELSs of the front turbine are greatly
reduced when compared to a non-robust formulation.
The present work could benefit from improvements to the

experimental setup and the control methods. A relatively

straightforward modification to the turntable could allow for
higher accelerations, filling a missing band of frequencies in
the wind direction spectrum. Instead of using the turntable
rotation as an approximation of a met-mast-measured wind
direction, the ambient conditions could be estimated directly
from the wind turbine operational data (Schreiber et al.,

2018). Finally, dynamic closed-loop controllers could be

tested to understand and quantify their potential benefits with

respect to the present simpler approaches.

— The previous statement is however only true if the un-
derlying flow model is accurate enough. In fact, the
use of a robust formulation actually decreased perfor-
mance for the baseline FLORIS model (which lacks
important effects such as secondary steering), in terms
of both power capture and load mitigation downstream.
This seems to indicate that excessively simplified mod-
els should probably be avoided.

— Increasing the robustness of the controller has the ef-
fect of shifting power upstream, as the position of the
wakes is affected by larger uncertainties than the ones
caused on the front turbine by a non-exact alignment
with the wind. This however comes at a cost, as higher
wake interactions are allowed to take place for increas-
ing robustness, in turn leading to a lower power capture
at the plant level.

— A robust implementation may lead to power losses in
conditions with weak or absent wake interactions. This
might suggest the use of wake steering only around
conditions where significant wake effects are expected,
whereas it should be switched off elsewhere.
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Appendix A: Interpolating functions for the
data-driven surrogate model

A surrogate model of the behavior of the cluster of three
turbines is derived based on experimental measurements of
power and wake displacement and on wake superposition
principles.

Figure Ala reports, as a function of the wind direction
@, the measured normalized power Py g, (see Sect. 3.1.4)
of the downstream turbine in a two-turbine cluster operat-
ing below rated wind speed. Both turbines are aligned with
the wind, i.e., Yy = yq = 0, where y, and yq4 are the yaw mis-
alignments of the upstream and downstream turbines, respec-
tively. The measured data points can be interpolated with the
following function:

1—B(l —sin(zCP — D)),

P dy;
~0.dalign .. D—3/21 D+n/2
ol if c <d < = (A1)
P 1, otherwise,

where Cll,I is the power coefficient below rated speed, while
B >0, C > 0, and D are tunable parameters.

Figure Alb reports the lateral displacement 8y, of the
wake of a GI turbine as a function of the wind misalign-
ment angle y, measured 5D downstream of the rotor. The
measured data points can be interpolated with the following
function:

Swe = Esin(Fy), (A2)

where E > 0 and F > 0 are tunable parameters. When the
wake of an upstream turbine is deflected, the wake overlap
at the downstream machine can be approximated with the
overlap that would occur for a wind direction ®+ A ®, where

(SWC E s1n(Fy)
AX AX

AP ~sinAP =

(A3)

and AX is the longitudinal distance between the two tur-
bines.

In region II, the power coefficient of a wind-misaligned
turbine can be expressed as

Cp = Cpcos™ (y +¢), (A4)

where 7 is the power loss exponent, and ¢ is the phase asym-
metry caused by a vertically sheared inflow.

These interpolating functions can be used to express the
normalized power P, 4 at a misaligned downstream machine
as a function of y, for a given wind direction ®q. In fact,
inserting Eq. (A3) into Eq. (A1), considering Eq. (A4), one
gets
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cy (1 .y (1 —sin (nésin(Fyu) — 15)))
cos" (ya + ¢a)
it 22327 _sin(Fy) < D+”/2 (AS)

T
Cpcos™ (ya+ ¢a),
otherwise,

Pn,d=

where C = CE/AX and D = D — 1 C®y, while ng and ¢q
are, respectively, the power loss exponent and phase asym-
metry of the downstream turbine. For a three-turbine cluster,
such as the one described in Sect. 2, Eq. (AS) can be used to
model the normalized power of WT2.

The normalized power at the downstream turbine j af-
fected by the wake released by the upstream turbine i can
also be written as
Poj=CH(1=8:(X)Aim ;) cos™ (v, + ). (A6)
where §;(X ) is the speed deficit of the wake of turbine i
at the downstream distance X ; where turbine j is located,
and A;_, ; is the fractional overlap area of the rotor of j with
the wake of i. Using Egs. (AS5) and (A6), the speed deficits
caused by turbine-to-turbine wake interactions can be readily
obtained. In fact, the deficit at turbine j caused by the wake
released by turbine i is computed as

Si( XA =
A NN TE
1= (1= By (1=sin (zCysin(Fiy - D) ))
Dij —3/2 Dij+7/2
it D32 Ry < 2UE T2 (A7)
7w Cij 7 Cij

0, otherwise,

where B, (:’,- s b,- j» and F; are the corresponding tunable
parameters.

Finally, the method of the sum of energy deficits
(Renkema, 2007) is used for combining the wakes of the two
upstream turbines to get the normalized power of the aligned
third machine:

Pa3=Cp|1- (5;(XAj3)" | - (A8)

2
j=1

J
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Figure A1. Experimental data points and their best fits for the derivation of the interpolating functions. (a) Normalized power of the
downstream turbine in a two-turbine cluster vs. ® for y, = y4 = 0. (b) Wake displacement vs. misalignment y.
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