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Abstract. Analysis of data from wind turbine supervisory control and data acquisition (SCADA) systems has
attracted considerable research interest in recent years. Its predominant application is to monitor turbine con-
dition without the need for additional sensing equipment. Most approaches apply semi-supervised anomaly de-
tection methods, also called normal behaviour models, that require clean training data sets to establish healthy
component baseline models. In practice, however, the presence of change points induced by malfunctions or
maintenance actions poses a major challenge. Even though this problem is well described in literature, this con-
tribution is the first to systematically evaluate and address the issue. A total of 600 signals from 33 turbines are
analysed over an operational period of more than 2 years. During this time one-third of the signals were affected
by change points, which highlights the necessity of an automated detection method. Kernel-based change-point
detection methods have shown promising results in similar settings. We, therefore, introduce an appropriate
SCADA data preprocessing procedure to ensure their feasibility and conduct comprehensive comparisons across
several hyperparameter choices. The results show that the combination of Laplace kernels with a newly intro-
duced bandwidth and regularisation-penalty selection heuristic robustly outperforms existing methods. More
than 90 % of the signals were classified correctly regarding the presence or absence of change points, result-
ing in an F1 score of 0.86. For an automated change-point-free sequence selection, the most severe 60 % of all
change points (CPs) could be automatically removed with a precision of more than 0.96 and therefore without
any significant loss of training data. These results indicate that the algorithm can be a meaningful step towards
automated SCADA data preprocessing, which is key for data-driven methods to reach their full potential. The
algorithm is open source and its implementation in Python is publicly available.

1 Introduction

Wind energy plays a major role in the decarbonisation of en-
ergy systems around the world. It has developed into a ma-
ture technology over the past decades and its levelised cost of
electricity (LCOE) has reached a competitive level (IRENA,
2019). At the same time costs for operation and maintenance
(O&M), which account for approximately one-quarter of the
LCOE, have seen only minor reductions (IRENA, 2019). An
effective strategy to further reduce O&M costs is to switch
from a scheduled maintenance scheme to condition-based

maintenance. Under such a scheme maintenance decisions
are based on information about the turbine’s actual condition
rather than on periodic inspections. The necessary informa-
tion can be acquired through dedicated condition monitor-
ing (CM) systems which can be for instance vibration-, oil-,
or acoustic-emission-based (for a comprehensive review of
state-of-the-art wind CM systems please refer to Coronado
and Fischer, 2015). On the other hand, each wind turbine is
equipped with a variety of sensors in its supervisory control
and data acquisition (SCADA) system. Utilisation of oper-
ational SCADA data for CM has attracted considerable re-
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search interest since it provides insights with no need for ad-
ditional equipment. A wide range of methods have proven to
be able to detect developing malfunctions at an early stage,
often months before they resulted in costly component fail-
ures (see e.g. Zaher et al., 2009; Schlechtingen and Santos,
2011; Bangalore et al., 2017; Bach-Andersen et al., 2017).
For a comprehensive review refer to Tautz-Weinert and Wat-
son (2016). SCADA data-based condition monitoring, there-
fore, represents a cost-efficient and effective complement to
state-of-the-art CM-solutions.

Its primary task is to classify the state of a turbine or one
of its components as either healthy or faulty. However, the
available SCADA data represent predominantly healthy op-
eration with no or only comparatively few instances of faulty
condition. In such a setting semi-supervised anomaly detec-
tion, often called normal behaviour modelling, has proven to
be useful (Chandola et al., 2009). Normal behaviour mod-
els (NBMs) are trained on healthy data to represent the class
corresponding to the normal state. Subsequently, deviations
between model output and the measured sensor values can
be processed and evaluated to identify anomalies (compare
Fig. 1). For wind turbines, performance and temperature
monitoring can be distinguished. The former aims to detect
abnormal deviations from the turbine’s usual power output,
whereas the latter aims to detect deviations from the healthy
thermal equilibrium conditions. We will focus on tempera-
ture monitoring which is better suited for detecting malfunc-
tions in the components along the drivetrain, which account
for the majority of turbine downtime (compare Dao et al.,
2019). Zaher et al. (2009) were among the first to apply
the approach in the wind domain and prove its feasibility.
Many publications with successful early detection of mal-
functions followed (compare e.g. Butler et al., 2013; Kusiak
and Verma, 2012; Sun et al., 2016; Bangalore et al., 2017;
and Bach-Andersen et al., 2017.

Despite the promising NBM examples reported in liter-
ature, scaling the method to large fleets of wind turbines
comes with practical challenges. Leahy et al. (2019) anal-
ysed 12 studies that apply the concept of NBM to wind tur-
bine SCADA data and found that all but one reported signif-
icant manual efforts in data preprocessing due to data qual-
ity and data-access-related issues. That is why researchers
have developed different filtering methods to ensure healthy
training data without traces of malfunctions. They can be
divided into domain-knowledge-based-, alarm-based-, work-
order-based-, or statistical approaches (Leahy et al., 2019).
Manual selection of representative operational patterns from
the SCADA data sets would be an example of domain-
knowledge-based filtering and can be found for instance in
Zaher et al. (2009). Another common procedure is to filter
NBM data against a certain threshold of active power pro-
duction to exclude transitions between operational and non-
operational states as well as corrupted sensor measurements
during standstill (compare e.g. Sun et al., 2016; Bangalore
et al., 2017; Tautz-Weinert, 2018). Schlechtingen and San-

tos (2011) were among the first to describe a more system-
atic semi-automated data preprocessing procedure. It con-
sists of a domain-knowledge-based parameter range check,
data scaling, handling of missing values, and lag removal.
These measures have been extended by multivariate statisti-
cal filtering methods to automatically remove outliers (com-
pare e.g. Bangalore et al., 2017).

However, a much more severe problem than missing,
invalid, or poorly processed data is caused by structural
changes in sensor measurements which have been reported in
different publications (e.g. Schlechtingen and Santos, 2011
or Tautz-Weinert and Watson, 2017). They can be caused
by sensor or component malfunctions as well as by mainte-
nance actions. In an ideal setting, all potential causes would
be quickly detected and corrected with the corresponding in-
formation being available to the respective data analyst. Un-
fortunately, this is rarely the case in practice (Tautz-Weinert
and Watson, 2017, and Leahy et al., 2019), which has severe
implications for NBMs. Trained on data containing abrupt
changes in the underlying data-generating regime at a spe-
cific point in time (change point), NBMs are fit to multiple,
potentially even faulty, states of operation, causing them to
fail their intended task. Since change points (CPs) can make
the NBM approach infeasible in practice, this has been iden-
tified as the most serious issue for their application (Tautz-
Weinert and Watson, 2017).

Based on the findings described above this study aims to
be the first to conduct a systematic analysis regarding the
presence of CPs in SCADA signals. Moreover, an approach
for robust detection of structural changes in SCADA mea-
surements will be suggested. Non-parametric kernel-based
change-point detection (CPD) methods will be adapted to
the problem at hand. This includes recommendations for the
choice of respective hyperparameters and useful signal pre-
processing steps based on evaluation across a large range of
SCADA signals from multiple wind farms. The result rep-
resents a step towards scalability of SCADA-based NBM,
which is essential for the promising method to reach its full
potential. The remainder of this paper is organised as fol-
lows: Sect. 2 presents the SCADA data used in this study and
evaluates the presence and characteristics of CPs. Section 3
presents the method utilised in this study by formalising the
CPD problem and introducing kernel-based CPD algorithms
and their respective evaluation metrics. Section 4 specifies
the CPD algorithm with its preprocessing steps and the selec-
tion of hyperparameters. Section 5 presents the performance
over a range of hyperparameter configurations concerning
different evaluation objectives followed by a discussion of
results. Section 6 concludes with a summary and outlook.

2 Change points in wind turbine SCADA data

Wind turbine SCADA systems record measurements from
sensors placed all over the turbine. Available signals usu-
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Figure 1. Scheme of normal behaviour model-based anomaly detection with offline model preparation and online application.

ally include temperature measurements, electrical measures,
pressure values, speed counters, timers, status parameters,
and environmental conditions. Modern SCADA systems of-
ten record more than 100 different signals at sampling rates
of 1 Hz. However, the typical temporal resolution available
for analysis is 10 min average values due to data storage limi-
tations and access restrictions. Change points in wind turbine
SCADA signals can be induced by various causes. Generally,
they can be sensor-, component-, or maintenance-related.
Sensor-related structural breaks are often caused by sensor
drifts, sensor failures, or malfunctions in the communication
system. Component-related CPs can originate from changes
in component physics or component failure. While sensor-
and component-related CPs can be considered genuine faults,
specific maintenance activities, such as changes in set points,
are another common cause. The following sections first de-
scribe the SCADA data used in this study, the signal selec-
tion, and the CP annotation process. Subsequently, qualita-
tive CP characteristics, their relation to potential causes, and
their implications for detection are discussed. Finally, the
presence of CPs in the data sets is evaluated quantitatively.

2.1 Data set and change-point annotation

For the current study SCADA data from 33 multi-megawatt
turbines from different manufacturers were used. All turbines
are equipped with gearboxes and double-fed induction gen-
erators and were commissioned later than 2013. They are lo-
cated at three different sites of moderate complexity. For each
turbine, SCADA data representing more than 2 full years of
continuous operation within the first 5 years after commis-
sioning were present. Each turbine’s SCADA system records
between 30 and 100 signals in the typical 10 min resolution.
From the almost 2000 time series, 600 were selected for CPD
based on the signal’s potential for temperature monitoring
using NBMs. Therefore, all power-train-related temperature
and oil pressure values were selected. Additionally, tempera-
tures from the pitch system, the electrical system, and ambi-
ent conditions were chosen. The pie chart on the left in Fig. 2
shows the allocation of the 600 analysed signals to the re-
spective components. Generator and gearbox-related signals

represent half of the overall selection. These components are
also typically targeted by SCADA-based NBMs for tempera-
ture monitoring (compare Tautz-Weinert and Watson, 2016).
The high number of pitch-related signals is due to the avail-
ability of multiple sensors in each blade’s pitch system. A full
list of the analysed signals and their mapping to the respec-
tive components can be found in Appendix B1. Next to the
sensor time series, SCADA log files and information about
major maintenance activities were present. They were com-
bined with a visual inspection of all analysed signals to man-
ually annotate CPs. The raw signals, their de-trended and
normalised transformations (compare Sect. 4.1), and their
summary statistics were compared using different temporal
resolutions. The comparison of all signals related to the same
component often led to coherent findings in the case of CP
presence, which further increased confidence in the annota-
tion. Moreover, signals were compared to their equivalent
from at least five neighbouring turbines in the farm. This
so-called trending approach is well known in SCADA analy-
sis for monitoring wind turbines (compare Tautz-Weinert and
Watson, 2016) and helped to highlight the difference between
normal signal behaviour and abrupt changes. The results of
this tedious task were reviewed by fellow researchers to se-
cure the utmost objectivity and reduce the number of false
annotations to a minimum.

2.2 Qualitative change-point evaluation

Structural changes in SCADA signals manifest themselves in
a wide range of different signal behaviours. This is due to the
multitude of potential causes in combination with the unique
statistical nature of each signal. Often the cause of a change
point is closely related to how it manifests itself in the signal.
Changes in signal behaviour can, for instance, be classified
as permanent or temporary. Temporary changes consist of
two CPs, where signal behaviour returns to its original pat-
tern after a limited period (usually not longer than an interval
of periodic inspections). For such changes, it is very com-
mon that the first CP was caused by a malfunction or fault
which was consecutively fixed by a corrective maintenance
action. A permanent change in signal behaviour, on the other

https://doi.org/10.5194/wes-5-1375-2020 Wind Energ. Sci., 5, 1375–1397, 2020



1378 S. Letzgus: Change-point detection in wind turbine SCADA data for robust condition monitoring

Figure 2. Number of signals per component (a), number of CPs per signal (b), and share of signals with CPs per component (c) for the full
2-year time horizon.

hand, is not reverted and more likely to be attributed to a
preventive maintenance action or control changes. However,
there still is the possibility of a permanent change being in-
duced by a fault which has either not been discovered or has
not been considered to be severe enough to fix. Another dis-
tinction can be made between gradual and abrupt changes.
Gradual changes can almost exclusively be attributed to be
fault-related whereas abrupt changes could be either. Fur-
thermore, some physics of failure considerations might ex-
plain the nature of an observed change. For temperature mea-
surements, for instance, it is rather unlikely that a component
failure manifests itself in overall lower temperatures. For sen-
sors like oil pressure measurements, the exact opposite would
be the case. Figure 3 shows three exemplary types of struc-
tural changes in different SCADA signals. To highlight the
changes, non-operational data were excluded, and the sig-
nals were normalised with their respective median to facili-
tate a comparison. Figure 3a shows a gearbox bearing tem-
perature. The CP in February of the depicted year is easy to
recognise. It occurred after a scheduled maintenance during
which a cooling fluid was exchanged, and the bearing conse-
quently operates at clearly elevated temperatures. Figure 3b
displays a turbine’s hydraulic oil temperature for 2 years. A
hydraulic fault in October of the second depicted year of op-
eration causes the temperature to steadily rise compared to
pre-CP conditions. Lastly, Fig. 3c shows a gear oil pressure
signal over 1 year. The signal shows a temporary decline of
a turbine’s gear oil inlet pressure and its return to the initial
level. This was caused by an issue with the lubrication oil
filter which was fixed during a scheduled maintenance ac-
tivity. A unifying framework to detect changes in SCADA
measurements has to account for this diversity of signals and
changes.

When formalising the CP detection problem in the next
chapter it will become clear that the individual CP charac-
teristics translate into how statistically distinct and therefore
how easy to detect a CP is. Next to the decisive ratio between

the magnitude of change and the individual signal variance or
noise level (Garreau, 2017), qualitative characteristics play
a major role too. Permanent changes are for example eas-
ier to detect than short temporary ones. Also, abrupt changes
are generally easier to detect than slowly developing gradual
changes, especially when it comes to exact temporal locali-
sation.

2.3 Quantitative CP evaluation

Figure 2 shows the results of the quantitative CP evaluation.
The central chart represents a histogram over the number
of CPs per signal. Exactly one-third of the analysed signals
were affected by changes over the approximately 2.5-year
period. Generally, only a few CPs were found per signal.
Less than 5 % of the affected signals exhibit three or more
CPs. Figure 2c compares the share of signals corrupted by
changes for each component category. Gearbox-related sig-
nals are most affected, with more than half the signals con-
taining CPs. For pitch-related and ambient condition signals
around 30 % of the time series were found to be affected.
The high number of pitch-related CPs were caused by sys-
tematic disturbances in the pitch motor temperature sensors
in one of the wind farms. In the case of ambient conditions,
a range of temperature sensors was found to be affected by
severe drifts. Even though these findings might vary across
different turbine types, ages, and site conditions, the order
of magnitude of CP presence found in this study highlights
the necessity of a robust CPD methodology. The presented
figures reflect the CP summary statistics across the selected
signals for the full period where data were available. Addi-
tionally, each of the 600 signals was divided exactly in the
middle, resulting in 1200 sub-signals each covering approxi-
mately 1 year of operation. A 2-year signal that contains only
one CP, therefore, results in one signal with and one signal
without a CP. The respective summary statistics of the 1-year
signals can be found in Appendix A1. The algorithm will be
evaluated on both the 2-year and the 1-year signals to en-
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Figure 3. Exemplary SCADA signals exposing different structural changes. Each change in background colour indicates a CP.

sure its generalisation abilities over different signal lengths.
Moreover, a period of 1 year seems to be closer to the current
practice of NBM training data selection which represents the
algorithm’s target application (compare Letzgus, 2019).

3 Method for change-point detection

The detection of CPs in time series is a well-studied problem
in statistics, signal processing, and machine learning (ML).
The goal is to detect time instants at which the underlying
data generation process and therefore the marginal distri-
bution of the observations change abruptly. In other words,
the time series is to be split into statistically homogeneous
segments (Brodsky and Darkhovsky, 1993). First works date
back to the 1950s (e.g. Page, 1955), but the topic has stayed
the subject of active research until today, with methods being
further refined and applied to many different domains, such
as remote sensing (Touati et al., 2019), audio signal process-
ing (Rybach et al., 2009), or medical condition monitoring
(Malladi et al., 2013). Refer to Aminikhanghahi and Cook
(2017) for an overview of time series CPD methods. The fol-
lowing section will describe, classify, and formalise the CP
problem at hand based on Brodsky and Darkhovsky (1993).

3.1 Problem formulation

Conceptually, the CPD problem can be divided into online
and offline detection. The former, sometimes also referred to
as sequential CP detection, aims to identify changes in real-
time settings as early and confidently as possible. In contrast,
the latter, also known as signal segmentation, aims to deter-
mine the CP a posteriori with the data acquisition process
being completed at the time that the homogeneity hypothe-
sis is checked. Offline CP problems can be further classified
with respect to the a priori knowledge of the respective task.
Complexity is significantly lower if the number of true CPs
is known, which reduces the task to the precise estimation of
their location. In most real-world applications, however, the

number of CPs itself has to be estimated. The same applies
for a priori information about the statistical characteristics of
the respective signals. Prior knowledge allows for assump-
tions regarding the family of underlying distributions. There-
fore, CPs can be detected by identifying a change in the pa-
rameters describing the distribution. Non-parametric meth-
ods, on the other hand, require no such prior information,
which makes them more flexible and therefore often better
suited for real-world problems. The present task of ensuring
CP-free training data sets represents an offline CPD prob-
lem, where the number of true CPs is unknown. Even though
it is expected that many SCADA signals are not affected by
structural changes, more than one statistically homogeneous
segment per signal may exist (compare Fig. 2b). Lastly, the
SCADA data set consists of various statistically different sig-
nals which do not allow for unifying assumptions regard-
ing their family of distributions. Therefore, non-parametric
methods will be applied.

Let us formalise the given problem under the prevailing
conditions. We assume X = {X1,X2, . . . ,XT } to be a piece-
wise stationary time series signal in Rd consisting of T ob-
servations. Piece-wise stationarity implies that X can be di-
vided into N (N ≥ 1) segments where each segment is well
described by some distribution which might differ for con-
secutive segments. The segments therefore represent homo-
geneous sets s which are characterised byN−1 CPs at some
unknown instants in time τ ∗1 < τ

∗

2 < .. . < τ ∗N−1 (compare
Eq. 1). Now, CP detection can be formulated as a model
selection problem where the CPs τ are the model parame-
ters to be estimated. This can be achieved by defining a cost
functionC(τ ) that quantifies intra-segment dissimilarity with
respect to the chosen CPs τ (compare Eq. 2). A naive min-
imisation of this cost function would result in a segmentation
intoN segments of unit size. Therefore, a regularisation term
(P(τ )) was proposed for example by Lavielle (2005) which
penalises for every additional CP and therefore reduces com-
plexity of the segmentation (compare Eq. 2).
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s = {s1, s2, . . . , sN } = {{X0, . . . ,Xτ1},

{Xτ1+1, . . . ,Xτ2}, . . . , {XτN−1 , . . . ,XT }} (1)

τ̂ ε argmin
τ

C(τ )+P(τ ) where C(τ )=
N∑
n=1

C(sn) (2)

Since the complexity of the optimisation problem grows
quadratically with the number of data points, a naive ap-
proach for minimising the cost function C(τ ) can be com-
putationally expensive. Several approximate search methods
like a sliding window or binary segmentation were developed
(compare Truong et al., 2020). They come with benefits re-
garding computing time but naturally compromise on pre-
cision. The optimal solution can still be obtained efficiently
by applying an algorithm based on dynamic programming.
It was originally introduced in 1958 (Bellman, 1958) for
solving a shortest-path problem for traffic networks. Since
then the algorithm has been developed further (see e.g. Gué-
don, 2013) and was successfully applied in the context of
CPD. The method utilises the additive structure of the cost
objective to recursively compute optimal CPs for multiple
sub-signals among which the global minimum is then se-
lected. An implementation of the algorithm is publicly avail-
able as part of the CP detection library ruptures in Python
(Truong et al., 2020) and was utilised within this study.

3.2 Kernel-based change-point detection

Equation (2) represents a general cost function for solving
the signal segmentation task at hand but the result heav-
ily depends on an appropriate measure for the intra-segment
similarity. Harchaoui and Cappé (2007) proposed a kernel-
based approach which does not rely on parametric assump-
tions but can detect changes in the high-order moments of the
signal distribution. Kernel methods use mapping functions
8 : Rd→H to implicitly project a signal into a potentially
much higher-dimensional reproducing kernel Hilbert space
(Schölkopf and Smola, 2002). With the well-known kernel
trick, the distance or similarity of two data points in the high-
dimensional feature space can be calculated by directly ap-
plying the kernel function (compare Eq. 3). Harchaoui and
Cappé (2007) used this property to evaluate the adequacy of
τ . They define a kernel least-squares criterion that measures
the intra-segment scatter (see Eq. 4). Intuitively, the second
term of Eq. (4) increases if the chosen segments are more
similar to each other and in return maximises dissimilarity
between segments due to the negative sign. Note that the
intra-segment scatter requires the calculation of the kernel-
gram matrix Gi, j =K(Xi, Xj ), which implies a quadratic
computational complexity and therefore restricts the method
regarding the size of the data sets. By minimising the crite-
rion the best segmentation for a known number of CPs can
be obtained. Conceptually, any positive semi-definite kernel
can be applied in this framework. Popular candidates are

the linear (i), Laplacian (ii), or Gaussian (iii) kernel (com-
pare Eq. 5). Note that Laplacian and Gaussian kernels need
the selection of an appropriate bandwidth parameter h. Arlot
et al. (2019) expanded the method to an unknown number of
CPs by applying the concept of penalising for additional CPs
(compare Eq. 2). Since then the kernel-based algorithm has
been successfully applied to multiple real-world time series
CPD problems (compare with Arlot et al., 2019).

k(x, x′)= 〈8(x),8(x′)H〉 and k(x, x)= ‖8(x)‖2H (3)

C(τ )=
1
T

T∑
t=1

k(Xt , Xt )

−
1
T

N∑
n=1

 1
τn− τn−1

τn∑
i=τn−1+1

τn∑
j=τn−1+1

k(Xi, Xj )


τ0 = 0 (4)

(i) klin(x, y)= 〈x, y〉 (ii) klp(x, y)= exp
(
−‖x− y‖

h

)
(iii) krbf(x, y)= exp

(
−‖x− y‖2

h

)
(5)

3.3 Performance evaluation

The performance of CPD algorithms can be evaluated us-
ing the classic notation of true positives (TPs), false posi-
tives (FPs), true negatives (TNs), and false negatives (FNs).
To appropriately interpret the evaluation results, the impli-
cations of false classifications have to be considered. In the
case of NBMs, a FN translates into a risk for model qual-
ity and a FP into loss of potentially valuable training data.
However, the individual impact depends on the severity of
the change, meaning the degree of distinction from normal
signal behaviour as well as the duration of its presence. This
goes well with the concept of the presented CPD algorithm
since the notion of severity directly translates into a cost re-
duction by segmentation. For the concrete evaluation of CPD
results two different evaluation objectives are distinguished:

1. automatic training data validation (detect the presence
of CP in a given processed signal) and

2. automatic training sequence selection (detect the num-
ber and exact location of CPs in the processed signal).

Automatic training data validation answers whether a CP is
present in a given SCADA signal or not. Therefore, the CP
detection result is evaluated once for each signal. If the al-
gorithm indicates one or more CPs for a signal containing
at least one CP, the result is evaluated as a true positive. No
CP detection in a CP-free signal represents a true negative.
In practice, this means that a CP detection result is evalu-
ated as a true positive, even if the number and location of
indicated CPs do not necessarily represent the ground truth.
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Nevertheless, this can be useful information for validating
signals against the presence of CPs. In particular, since the
alternative is a full manual inspection of all signals. Auto-
matic training data validation, therefore, preselects the sig-
nals for visual inspection in which the actual locations of
the CPs are subsequently determined. The next step towards
a fully automated NBM approach is automated training se-
quence selection. This requires a more precise evaluation for
each CP and each CP indication individually. Therefore, an
acceptable margin is selected around each true CP in which
a detection is evaluated as a TP. While for automatic training
data validation this margin was practically set to infinity, a
fixed number of days has to be chosen for automatic train-
ing sequence selection. A CP which is present in the signal
but not indicated by the algorithm is evaluated as a FN. De-
tection outside the margin boundaries represents a FP. A TN
represents a CP-free signal with no detection. The concept is
visualised in Fig. 4 where a TP, FP, and FN are depicted. Note
that a CP indicated just outside the margin already leads to
a “double” punishment by evaluating the indication as a FP
and the true CP as not detected (FN). Intuitively, the over-
all detection result depends on the selected acceptable mar-
gin. Moreover, the margin corresponds to the amount of data
around the detected CP to be automatically cut off in auto-
mated training data selection and therefore to a trade-off be-
tween data loss and accuracy. In this paper, the acceptable
margin was selected to be ±60 d around the true CP. The
choice is motivated by the fact that missing a dominant true
CP can be more critical for many applications, such as NBM
for example, than a reduction of training data by the given pe-
riod. Moreover, this is attributed to potential inaccuracy dur-
ing the manual annotation process in the case of uncertainty
about the exact temporal localisation of the change (compare
Sect. 2.1). With the classification of each detected CP into
true or false positive or negative, the well-known evaluation
metrics accuracy, precision, recall, and F1 score can be cal-
culated (compare Eqs. 6–7).

Accuracy=
#TP+ #TN

#TP+ #TN+ #FP+ #FN

Precision=
#TP

#TP+ #FP

Recall=
#TP

#TP+ #FN
(6)

F1 score= 2 ·
precision · recall

precision+ recall
(7)

4 Algorithm for change-point detection

This section describes the detailed steps of signal processing
applied to detect the CPs in this study. Signal preprocessing,
as well as the choice of hyperparameters, is discussed.

4.1 Data preprocessing

Wind turbine operation is highly volatile due to intermittent
ambient conditions. This is reflected in the high variance
of raw SCADA measurements and complicates CP detec-
tion because the change in signal behaviour might be small
in relation to regular signal behaviour. Signal preprocess-
ing methods can help to reduce the signal to its most valu-
able components for CP detection and therefore facilitate the
process. Tautz-Weinert and Watson (2017) suggest compar-
ing monthly maximums and percentiles to detect structural
changes. This was found to be too granular to attribute for
temporary changes of less than 1 month. Additionally, such
an approach does not reduce seasonality, which was found
to be an important factor for successful kernel CPD. Instead,
the following preprocessing steps were taken in this study:

– removal of non-operational periods,

– normalisation with operational state and ambient condi-
tions,

– resampling with reduced temporal resolution.

The removal of non-operational periods is a routine pre-
processing step in SCADA data analysis (compare e.g. Sun
et al., 2016; Bangalore et al., 2017; Tautz-Weinert, 2018) and
was motivated by the reasoning that changes in operational
conditions will become most apparent when the turbine is
in operation. Also, it was observed that sensor values dur-
ing non-operational periods, e.g. during maintenance, some-
times take predefined standard values. To exclude such dis-
torting effects, all data points where the turbine is operating
on less than 10 % of its rated power were excluded. Further-
more, the signal measurements were normalised based on
the prevailing operating conditions. Active power production
and rotor rotational speed were found to be the most domi-
nant to characterise the turbine’s operational state. Ambient
temperature was identified to be a good regressor to exclude
seasonality from the sensor measurements. Therefore, each
signal was normalised using these three input variables in
a linear regression (compare Eq. 8). The model was found
to adequately subtract the influences of external conditions,
is computationally cheap, and due to its simplicity does not
allow overfitting of the sensor signals. In a last step, the nor-
malised signal was averaged over each day, if at least 3 h of
operational data were available. This allows the extraction
of the normalised signal characteristics and additionally re-
duces the number of data points, which facilitates the com-
putation of the kernel gram matrix. An exemplary result of
the preprocessing procedure is shown in Fig. 5. It displays
the three signals shown earlier (compare Fig. 3), after pre-
processing. Note in particular how the method facilitates a

https://doi.org/10.5194/wes-5-1375-2020 Wind Energ. Sci., 5, 1375–1397, 2020



1382 S. Letzgus: Change-point detection in wind turbine SCADA data for robust condition monitoring

Figure 4. Exemplary evaluation of a CP detection result with one FN (December, first year), FP (September, second year), and TP (February,
second year).

clear identification of the CP in the hydraulic oil temperature
compared to the raw signal.

signal∗ = f (XP , Xrpm, XTamb )

= w1 ·XP +w2 ·Xrpm+w3 ·XTamb + c (8)

A minor disadvantage of this approach is that the regress-
ing signals, meaning active power, rotor speed, and ambi-
ent temperature, cannot be preprocessed the same way. In
fact, abrupt change in one of the regressors can induce a CP
in highly correlated signals. In this study, such a case oc-
curred a few times when the ambient temperature sensor of a
turbine was corrupted. However, regressing the inputs them-
selves with signals from neighbouring turbines first and then
running the algorithm on them to check for CPs can exclude
those cases. Alternatively, a simple rule checking for simul-
taneous CP detections in all signals particularly correlated to
the same regressor can do the trick as well.

4.2 Choice of hyperparameters

The CPD method described in Sect. 3 requires adequate se-
lection of several hyperparameters, namely the type of ker-
nel, its respective bandwidth, and the penalty term for addi-
tional CPs. All three were found to have a profound impact
on the CPD performance. Choosing an appropriate kernel is
a well-studied problem by itself in many applications. In the
context of CPD the widely used linear, Gaussian, and Lapla-
cian kernels have been used (Garreau, 2017). Therefore, all
three will be compared within this study. The choice of an
adequate bandwidth h is another problem often encountered
when working with kernel methods. Looking at the defini-
tion of the Gaussian and the Laplacian kernels (see Eq. 5), it
becomes clear that a bandwidth chosen too large or too small
will make the entries of the gram matrix go towards zero or 1
respectively, and therefore valuable information will be lost.
A common approach is therefore to choose the bandwidth in
the range of the calculated distances. Gretton et al. (2012) for

example suggest a median heuristic in the context of a ker-
nel two-sample test (compare Eq. 9). This heuristic is heavily
used in ML literature (Garreau, 2017) and is also applied in
the CPD settings (Truong et al., 2020). Arlot et al. (2019)
on the other hand suggest using the empirical standard devi-
ation of the signal itself as the bandwidth. Both choices of
bandwidths, hmedian and hSD, are tested and compared in this
paper (compare Eq. 9). Furthermore, it is argued here that es-
timation of an appropriate bandwidth based on a signal with
abruptly changing properties might lead to a non-optimal
choice. Therefore, a third approach is being introduced and
tested where the signal is divided into k different segments
Sbw = {{X0 . . .Xt }, . . . , {X(k−1)·t+1 . . .Xk·t }} of equal length
t , and the empirical standard deviation is calculated for each
segment. The bandwidth is consequently chosen as the max-
imum of the k standard deviations. In this study, k is selected
to be 20. Consequently, each segment consists of roughly 3 to
5 weeks of operational data. For the remainder of the paper,
approach (c) is referred to as batch-SD bandwidth.

h=median(‖Xi −Xj‖n) (9a)
h= SD(X) (9b)
h=max(SD(Sbw)) (9c)

Another crucial hyperparameter choice is the selection of
an appropriate penalty term (compare Eq. 2) which controls
the number of CPs to be detected by the algorithm. If the
penalty is selected too low, too many CPs will be detected
and vice versa. A data-driven approach for choosing the
penalty in the context of minimisation of a penalised criterion
is the so-called slope heuristic (Birgé and Massart, 2007).
It was shown that the optimal penalty to avoid overfitting
is approximately proportional to a minimal penalty which
can be obtained based on a regression between the penalised
quantity and the associated cost function without penalisa-
tion. In the context of CP detection this was firstly described
by Lebarbier (2002), further refined by Baudry et al. (2012)
and applied by Arlot et al. (2019). They suggest a minimal
penalty based on two constants s1 and s2 which are obtained
by regressing the cost function C(τn) against log

(
T−1
n−1

)
) as
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Figure 5. Exemplary SCADA signals after preprocessing (compare Fig. 3). Each change in background colour indicates a CP.

Figure 6. Absolute (a) and normalised (b) cost reduction of healthy
signals by imposing one CP versus average cost.

well as n
T

. T corresponds to the total number of data points
and n ∈ [0.6 ·Nmax,Nmax], where Nmax is an estimation of
the maximal number of segments N (compare Eq. 1). Based
on our findings from Fig. 2, we chose Nmax = 6. Finally, the
minimum penalty is multiplied with the factor α to obtain the
final optimal penalty (compare Eq. 10). Even though the op-
timal choice of α is problem specific, α = 2 was reported as
a suitable choice by Arlot et al. (2019).

penopt−slope(τn)= αslope ·
1
T
· (−s1 · log

(
T − 1
n− 1

)
−s2n) (10)

In this study, the slope heuristic is compared to a simpler
approach chosen based on the following consideration: sig-
nals which are inherently similar to themselves are by de-
fault characterised by a relatively low initial cost value and
vice versa. This means that each CP by default leads to a
larger cost reduction for more dissimilar signals. Therefore,
the penalty term is chosen based on the sum of costs without
any CP (compare Eq. 11). Figure 6 supports this reasoning.
Here, a CP was enforced on all signals without changes. The
resulting reduction in the cost function is shown over the ini-
tial average cost (panel a). An approximately quadratic rela-
tion between cost reduction and initial average cost can be

observed. Figure 6b shows the relative reduction normalised
with C(τ = 0)2. Consequently, the normalised cost reduc-
tions are distributed much more uniformly and facilitate the
selection of a single penalty value over all signals. Moreover,
the penalty term can now be easily calculated from the signal
characteristic itself. This is considered an advantage over the
more complex methods found in literature. The findings indi-
cate that a reasonable choice of the penalty factor αcost would
be in the range between 75 and 150 for a Laplace kernel with
a bandwidth selected according to the batch-SD heuristic. A
penalty factor larger than 200 can be considered a conserva-
tive choice with only a few false positives. Conversely, the
reduction of the cost function induced by a CP can be inter-
preted as a confidence measure. Note that these values de-
pend on the kernel configuration.

penopt−cost(τ )= αcost ·C(τ = 0)2 (11)

5 Results for change-point detection

The result section presents the algorithm’s performance on
automatic training data validation and selection. For both
evaluation objectives, different hyperparameter configura-
tions in terms of kernel-, bandwidth-, and penalty selection
are compared. Additionally, the effect of signal length is in-
vestigated to ensure the algorithm’s generalisation abilities.
Results are analysed on a cumulative as well as on a compo-
nent level. Finally, the results are discussed and implications
for the algorithm’s practical application derived.

5.1 Evaluation of automated training data validation

In this section, the algorithm’s ability to distinguish between
signals with and without CPs is evaluated. Figure 7 shows
the results achieved by different configurations on the full 2-
year signal length (left) and the 1-year signal length (right).
Both F1 and accuracy scores are compared for different
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Figure 7. Validation F1 score and accuracy for different hyperparameter configurations on 2-year and 1-year signals.

Table 1. Automated training data validation results per component for best configuration (Laplace/batch-SD/ αcost = 145) on 2-year signals.

Component TN TP FN FP Accuracy Precision Recall F1 score

Gearbox 40 57 6 8 0.874 0.877 0.905 0.891
Generator 162 21 11 1 0.938 0.955 0.656 0.778
Pitch system 98 38 13 1 0.907 0.974 0.745 0.844
Electrical system 24 4 2 0 0.933 1.0 0.667 0.8
Ambient conditions 30 16 0 0 1.0 1.0 1.0 1.0
Others 50 11 3 2 0.924 0.846 0.786 0.815

Total 404 147 35 12 0.91 0.925 0.808 0.862

kernels, bandwidth choices, and penalty selection schemes.
A clear ranking can be identified when comparing kernels.
For configurations with cost-based penalties, Laplacian ker-
nels perform best followed by Gaussian kernels. Linear ker-
nels perform much worse. For penalties chosen according
to the slope heuristic, the contrary is the case. Linear ker-
nels perform best, closely followed by Laplace and Gaussian
configurations. In terms of bandwidth selection, the intra-
kernel ranking differs, but the leading Laplacian configura-
tions use the batch-SD heuristic, which outperforms estab-
lished standard deviation or median heuristics. When com-
paring penalty selection schemes, the cost-based penalty esti-
mation suggested in this paper performs better than the slope
heuristic. All discussed qualitative observations hold for both
time horizons. However, a clear performance loss in terms of
F1 score for the shorter signals can be observed. This is at-
tributed to the design of the evaluation scheme. Firstly, there
is a shift in the distribution between affected and not affected
signals (compare Figs. 2 and Appendix A). Secondly, when
the 2-year signal contains multiple CPs, detection of only the
most significant one is enough for the signal to be evaluated

as correctly classified (TP). When splitting this 2-year signal
into two 1-year signals to analyse and evaluate them sepa-
rately, detection of a less severe change in one of the signals
might be required for both signals to be evaluated as correctly
classified (both TP).

In absolute terms, the overall best-performing configura-
tions can classify more than 90 % of the signals correctly re-
garding the presence or absence of CPs. The wrongly classi-
fied signals are approximately one-quarter false positives and
three-quarters false negatives. This translates into F1 scores
of 0.87 and 0.76 for the different signal lengths. This per-
formance is reached for a penalty factor of αcost2 = 145
and αcost1 = 80 respectively. The best results for both time
horizons using the slope heuristic for penalty selection was
achieved for penalty factors of αslope = 12.5, which is much
higher than the αslope = 2 suggested in literature. At the
same time, F1 scores range around 20 % behind the leading
cost-penalty-based configuration. Table 1 displays the over-
all results as well as the results per component for the best-
performing CPD configuration on the 2-year signals in de-
tail. The algorithm reaches high performance across compo-
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Figure 8. Examples of successful CP detection in gear oil pressure (a) and nacelle temperature (b). Each change in background colour
indicates a true CP; each dashed line indicates a detected CP.

Figure 9. Examples of misclassification in gearbox (a) and generator (b) bearing temperature. Each change in background colour indicates
a true CP; each dashed line indicates a detected CP.

nents. Ambient condition signals, as well as gearbox- and
pitch-related signals, were classified with particularly high
accuracy. Correctly classified CPs are often characterised by
sharp transitions between the states and a significant differ-
ence in relation to the regular signal noise. Examples of suc-
cessful detections can be found in Fig. 8. The top chart shows
the correctly classified change in gear oil pressure after main-
tenance. The second chart shows the correctly identified shift
and its return to normal behaviour in a nacelle temperature
signal which was induced by problems in the generator cool-
ing system and its consecutive fix. At the same time, there is a
relatively high number of false positives for gearbox-related
signals. This is mostly caused by bearing temperatures that
are gradually rising due to normal wear (compare Fig. 9a).
The algorithm detects the drift in the signal’s distribution
which, under the given evaluation framework, represents a
false positive. In the broader context of NBM, this informa-

tion is still valuable since it highlights the need for periodi-
cal model retraining. False negatives were mostly caused by
short temporary changes which were not pronounced enough
to compensate for the penalty of two CPs, which would be
required to flag them correctly. An example is shown in
Fig. 9b which depicts a generator bearing with temporary
high temperatures. The detailed results for all configurations
by penalty and time horizon can be found in Appendix C.

5.2 Evaluation of automated training sequence selection

In this section, the algorithm’s ability to automatically select
periods without CPs for each signal is analysed. Therefore,
performance is evaluated for each CP individually rather than
for each signal (compare Sect. 3.3). Figure 10 shows the
CPD results analogously to the results for automated training
validation in the previous section. Qualitatively, the findings

https://doi.org/10.5194/wes-5-1375-2020 Wind Energ. Sci., 5, 1375–1397, 2020



1386 S. Letzgus: Change-point detection in wind turbine SCADA data for robust condition monitoring

Figure 10. Selection F1 score and accuracy for different hyperparameter configurations on 2-year and 1-year signals.

Table 2. Automated training data selection results per component for best configuration (Laplace/SD-max/αcost = 150) on 2-year signals.

Component TN TP FN FP Accuracy Precision Recall F1 score

Gearbox 40 60 35 18 0.65 0.769 0.632 0.694
Generator 162 22 24 7 0.86 0.759 0.478 0.587
Pitch system 98 82 39 8 0.79 0.911 0.678 0.777
Electrical system 24 3 6 1 0.79 0.75 0.333 0.462
Ambient conditions 30 16 0 0 1 1.0 1.0 1.0
Others 50 12 6 3 0.87 0.8 0.667 0.727

Total 404 195 110 37 0.8 0.841 0.639 0.726

concerning kernel selection and configuration are equivalent.
Laplace kernels with batch-SD bandwidths perform best. In
comparison with the results from the previous section, the
more difficult evaluation objective manifests itself in over-
all lower performance scores. Even though accuracies reach
well above 80 %, F1 scores drop to 0.73 and 0.71 for the
two time horizons. However, the performance between the
two analysed time horizons is very similar, which attributes
for the algorithm’s ability to generalise across different sig-
nal lengths. The optimal penalty factors remain time hori-
zon specific but stable across evaluation metric with αcost2 =

150 and αcost1 = 80. The general advantage of cost-based
penalties is preserved with F1 scores approximately 15 %
above the best slope-heuristic results which are achieved at
αslope2 = 11.5 and αslope1 = 4.

Table 2 displays the overall results as well as the results per
component for the best-performing CPD configuration on the
2-year signals in detail. To explain the drop in F1 score, the
different false classifications of each component were anal-
ysed. Gearboxes show a relatively high number of both FNs
and FPs. Approximately 50 % of the FNs can be attributed

to the coexistence of large and comparatively small changes
in the same signal. An example is shown in Fig. 11a where
an oil temperature signal undergoes two significant changes
with the second one not being detected. The initial dissimi-
larity, based on which the penalty is calculated, is dominated
by the first change, and therefore detection of the second
change cannot compensate for the high penalty value. An-
other 20 % of the gearbox-related FNs are caused by short
temporary changes and a further 20 % by detections outside
the 60 d margin (compare e.g. the gearbox bearing tempera-
ture in Fig. 11b). These represent at the same time approxi-
mately 25 % of the FPs. However, the majority of gearbox-
related FPs are caused by the described signal drifts due
to normal wear in gearbox bearings (compare Fig. 9a). At
the same time around two-thirds of CPs are correctly de-
tected in gearbox-related signals, often representing major
changes such as a drop in gear oil pressure after maintenance
(compare Fig. 8a). For the generator-related signals the main
cause of FNs are relatively short temporary changes, such as
the temporary high temperatures in a generator bearing dis-
played in Fig. 9b. The same reason causes the majority of
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Figure 11. Examples of partially correct classified oil temperature (a), gearbox bearing temperature (b), and pitch motor winding temperature
(c). Each change in background colour indicates a true CP; each dashed line indicates a detected CP.

FNs in pitch-related signals (35 out of the 40 false negatives
were of the kind shown in Fig. 11c). These shifts in pitch
motor winding temperature signals were caused by system-
atic communication problems. At the same time, many shifts
were distinct enough to be detected, which explains the high
number of TPs in pitch-related signals. It can be summarised
that signal changes due to normal wear, temporary changes,
and the coexistence of CPs with different significance levels
represent challenges which have to be addressed in the fu-
ture. Nevertheless, the algorithm gives reasonable results and
was able to identify the majority of CPs present in the signals.
The detailed results per component of all configurations by
penalty and time horizon can be found in Appendix C.

5.3 Discussion of preprocessing, results, and
application

From the presented results it can be concluded that Laplacian
kernels in combination with bandwidths chosen based on the
batch-SD heuristic are best suited for the problem at hand.
This configuration in combination with cost-based penal-
ties clearly outperformed all other configurations. Analysis
showed that correctly classified CPs are often characterised
by a permanent nature, sharp transitions between states, and
a significant difference in relation to the regular signal noise.
The latter two qualities are particularly amplified by the pre-
processing procedure (compare Sect. 4.1). To demonstrate its
importance, the algorithm was run on the database with only

a minimum of signal preprocessing, namely a daily averag-
ing of the measurements to ensure computational feasibility.
Results show a drop in F1 scores from 0.83 to 0.6 for valida-
tion of the 2-year signals and an even more dramatic decline
from 0.73 to 0.27 for the selection task. This highlights the
preprocessing procedure as an essential part of the approach.
The detailed results of the run without preprocessing can be
found in Appendix D1.

However, differentiated considerations are required to ad-
equately interpret the presented results. While the algorithm
is able to judge the signals with an accuracy of at least 80 %
across all evaluation objectives, there is a significant differ-
ence in F1 scores between automated signal validation and
training data selection. The clear maximum of F1 scores for
the validation of 2-year signals suggests that this is the ap-
plication the algorithm is suited best for, but not limited to.
Analysis has shown that the reduction in performance is pre-
dominantly caused by a few challenges common across sig-
nals. One of them being FPs due to drifts induced by nor-
mal wear. A trend-removal step in the preprocessing proce-
dure is suggested to mitigate the effect of regular wear. The
challenge of multiple CPs with different significance levels
can be tackled by an iterative application of the algorithm
to the automatically selected training subsequence. The re-
sults from the two different time horizons have shown that by
dividing the changes of different significant levels into two
sub-signals each can be detected successfully. Lastly, the im-
pact of temporary changes on NBM training depends on the

https://doi.org/10.5194/wes-5-1375-2020 Wind Energ. Sci., 5, 1375–1397, 2020



1388 S. Letzgus: Change-point detection in wind turbine SCADA data for robust condition monitoring

Table 3. Conservative penalty choices and their performance for Laplace kernels and batch-SD.

Evaluation objective Penalty values Time horizon TN TP FN FP Accuracy Precision Recall F1 score

Validation αcost = 200 2 years 412 113 69 4 0.88 0.966 0.621 0.756
Validation αcost = 130 1 year 972 107 109 10 0.9 0.914 0.495 0.643
Selection αcost = 200 2 years 412 142 162 13 0.76 0.916 0.467 0.619
Selection αcost = 130 1 year 972 125 182 17 0.85 0.88 0.407 0.557

significance of the change as well as on the duration of its
presence. Short and significant temporary changes can be re-
moved with existing statistical filtering approaches (compare
e.g. Bangalore et al., 2017). A combined application with the
presented CPD algorithm is recommended. These measures
will help to improve the performance of the algorithm in an
application scenario beyond the presented results.

A more conservative approach would be to aim for max-
imal precision instead of maximal F1 scores. This corre-
sponds to minimal training data loss while still identifying
the most significant CPs. As an example, Table 3 shows the
algorithm’s results for conservative cost-based penalty fac-
tors 50 points above the optimal F1 scores for the Laplace
kernel configuration across the different time horizons and
objectives. The remaining few FPs can be exclusively at-
tributed to normal wear phenomena like shown in Fig. 9a
which can be a useful indicator by itself in an NBM setting,
as discussed before. This means that without significant loss
in training data the algorithm is able to identify and correctly
flag the 62 % (validation recall 2 years) or 50 % (validation
recall 1 year) most severe cases among the affected signals.
When automatically selecting training data with these con-
servative penalty values, the 44 % (selection recall 2 years) or
41 % (selection recall 1 year) most severe CPs are automat-
ically excluded. For illustration, the CPs depicted in Fig. 3
as well as the successful detections depicted in Figs. 8 and
11 were all correctly identified with the conservative penalty
factors. Therefore, the method shows a clear advantage over
classical preprocessing procedures.

An alternative and potentially even more effective way to
apply the algorithm in the context of NBM is to run it directly
on the training error once a model is considered well trained.
Conceptually it is clear that CPs in the model input or target
induce CPs in the model error. Actually, any CP in the model
training error represents a change in conditions the model
was not able to adapt to and is therefore worth investigating.
The presented preprocessing procedure itself exposes simi-
larities with early approaches of NBM when simple linear
models with basic SCADA inputs were used (compare e.g.
Schlechtingen and Santos, 2011). This suggests that an appli-
cation to the training error should be effective, and the hyper-
parameter suggestions from this study should be applicable.
However, these assumptions need to be confirmed with fur-
ther experiments. A disadvantage of the training error-based
approach is that it requires computationally expensive model

training before validation of the training period. In fact, a
combination of both approaches might be the best practice.

6 Summary and outlook

Literature points out systematic changes in sensor behaviour
as one of the most severe challenges when analysing wind
turbine SCADA data for early failure detection. This is be-
cause most approaches require a clean baseline data set to fit
their respective models. This study therefore systematically
analysed and, for the first time, quantified the presence of
CPs in wind turbine SCADA data. A total of 600 signals from
33 turbines were analysed for an operational period of more
than 2 years. During this time one-third of the signals showed
one or more significant changes in behaviour induced by
sensor and component malfunctions or maintenance actions.
This finding highlights the need for an automated CP detec-
tion method. A kernel-based offline CP detection algorithm
was introduced which consists of a normalising preprocess-
ing procedure and recommendations on how to choose sev-
eral crucial hyperparameters. Performance of the algorithm
was evaluated across linear, Gaussian, and Laplace kernel
configurations, different kernel bandwidths, and penalty se-
lection schemes. Laplace kernels in combination with newly
introduced heuristics for bandwidth and penalty selection
performed best and clearly outperformed existing alternative
approaches. Signals containing a CP were labelled as such
with an F1 score of up to 0.86, which translates into approx-
imately 50 misclassifications among the 600 analysed sig-
nals. Evaluation on a per-CP basis resulted in a maximum
F1 score of 0.73. Despite the reduction in performance, the
algorithm was able to automatically exclude the most signif-
icant 40 % to 60 % of all true CPs without significant loss of
training data. Therefore, the presented algorithm represents
a valuable tool for SCADA data preprocessing and will help
data-driven methods to become more robust despite widely
spread data quality issues. Moreover, an extension of sig-
nal preprocessing, an iterative application of the algorithm,
and the combination with existing statistical filtering meth-
ods hold the potential to further improve the presented al-
gorithm’s performance. Future research has to confirm the
presented results for different SCADA data sets and could
aim to extend the method not only beyond the SCADA sig-
nals selected in this study but also to data from other sensing
equipment for condition monitoring in wind turbines as well.
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In Arlot et al. (2012), for example, kernel CPD has been suc-
cessfully applied to the segmentation of audio signals, which
in terms of structure and time resolution are much closer to
vibration or acceleration data than the SCADA data analysed
in this study. Further development is encouraged by making
the code of the presented algorithm available under the GNU
general public license.
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Appendix A: CP summary statistics for 1-year
signals

Figure A1. Number of signals per component (a), number of CPs per signal (b), and share of signals with CPs per component (c) for the
1-year time horizon.
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Appendix B: List of analysed signals

Table B1. Full list of analysed signals.

Component Signal Number of signals

Gearbox Gear bearing temperature 48
Gearbox Gearbox temperature 18
Gearbox Gear oil temperature 30
Gearbox Gear oil pressure 15
Generator Generator bearing temperature 66
Generator Generator winding temperature 81
Generator Cooling temperature 48
Pitch system Pitch converter temperature 90
Pitch system Pitch motor temperature 45
Pitch system Hydraulic oil temperature 15
Electrical system Transformer temperatures 15
Electrical system Box temperatures 15
Ambient conditions Ambient temperature 33
Ambient conditions Tower temperature 15
Others Shaft bearing temperature 18
Others Nacelle temperature 33
Others Rotor break temperature 18

Total 600
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Appendix C: Detailed results per component

Figure C1. The 2-year signal validation: F1 scores per component for different hyperparameter configurations and penalty values.

Figure C2. The 1-year signal validation: F1 scores per component for different hyperparameter configurations and penalty values.
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Figure C3. The 2-year signal selection: F1 scores per component for different hyperparameter configurations and penalty values.

Figure C4. The 1-year signal selection: F1 scores per component for different hyperparameter configurations and penalty values.
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Table C1. Results validation per component for best configuration (Laplace/SD-max/αcost = 80) on 1-year signals.

Component TN TP FN FP Accuracy Precision Recall F1 score

Gearbox 128 66 8 20 0.874 0.767 0.892 0.825
Generator 349 15 19 7 0.933 0.682 0.441 0.536
Pitch system 220 54 15 11 0.913 0.831 0.783 0.806
Electrical system 45 5 2 8 0.833 0.385 0.714 0.5
Ambient conditions 78 15 1 0 0.989 1.0 0.938 0.986
Others 110 8 8 6 0.894 0.571 0.5 0.533

Total 930 163 53 52 0.91 0.758 0.755 0.756

Table C2. Results selection per component for best configuration (Laplace/SD-max/αcost = 80) on 1-year signals.

Component TN TP FN FP Accuracy Precision Recall F1 score

Gearbox 128 77 18 29 0.81 0.726 0.811 0.766
Generator 349 21 27 13 0.9 0.618 0.438 0.512
Pitch system 220 87 33 24 0.84 0.784 0.725 0.753
Electrical system 45 5 4 8 0.81 0.385 0.556 0.455
Ambient conditions 78 15 1 0 0.99 1.0 0.938 0.968
Others 110 9 10 6 0.88 0.6 0.474 0.529

Total 930 214 93 80 0.87 0.728 0.697 0.712
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Appendix D: Results of algorithm without
preprocessing

Table D1. Performance of the algorithm without preprocessing on 2-year signals.

Evaluation objective Penalty Time horizon TN TP FN FP Accuracy Precision Recall F1 score

Validation αcost = 7 2 years 264 155 38 172 0.67 0.47 0.8 0.6
Selection αcost = 30 2 years 376 101 212 357 0.46 0.22 0.32 0.26

https://doi.org/10.5194/wes-5-1375-2020 Wind Energ. Sci., 5, 1375–1397, 2020
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Code and data availability. The code of the kernel-
based CPD algorithm is publicly available (see
https://doi.org/10.5281/zenodo.3728023, Letzgus, 2020). The
SCADA data set used during this study is proprietary but several
exemplary preprocessed signal samples are published along with
the code.
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