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Abstract. Greater blade lengths and higher tip speeds, coupled with a harsh environment, have caused blade
leading edge erosion to develop into a significant problem for the offshore wind industry. Current protection
systems do not last the lifetime of the turbine and require regular replacement. It is important to understand the
characteristics of the offshore environment to model and predict leading edge erosion. The offshore precipitation
environment has been characterised using up-to-date measuring techniques. Heavy and violent rain was rare and
is unlikely to be the sole driver of leading edge erosion. The dataset was compared to the most widely used droplet
size distribution. It was found that this distribution did not fit the offshore data and that any lifetime predictions
made using it are likely to be inaccurate. A general offshore droplet size distribution has been presented that can
be used to improve lifetime predictions and reduce lost power production and unexpected turbine downtime.

1 Introduction

The offshore wind industry’s need for larger rotors and
higher tip speeds has caused blade leading edge erosion to
develop into a major problem for the industry. Leading edge
erosion is caused by raindrops, hailstones and other parti-
cles impacting the leading edge of the blade and removing
material. This degrades the aerodynamic performance of the
blade and requires operators to perform expensive repairs.
The issue has grown in prominence recently with reports that
Ørsted had to make repairs to up to 2000 offshore wind tur-
bines after just a few years of operation (Finans, 2018).

The industry attempts to prevent the onset of leading edge
erosion by applying protection systems, such as coating and
tapes, to the blade leading edge. However, currently these do
not last the lifetime of the turbine and require regular replace-
ment.

Several analytical models that aim to estimate the ex-
pected lifetime of a protection system have been developed
(Eisenberg et al., 2018; Slot et al., 2015; Springer et al.,
1974). Finite-element models that can predict the stresses

and strains in a protection system from an impinging wa-
ter droplet have also been produced (Keegan et al., 2012;
Doagou-Rad and Mishnaevsky, 2020). To model leading
edge erosion, it is important to understand the characteris-
tics of the impinging hydrometeors and, as rain is the most
frequent hydrometeor, the droplet size distribution (DSD) of
the impinging rain.

The aim of the industry is to develop a methodology that
can predict the lifetime of a protection system on a wind
turbine from rain erosion tests. The DNV GL project CO-
BRA aims to address this, and Eisenberg et al. (2018) pro-
pose using the Springer model. Due to the lack of an off-
shore dataset, the project uses the onshore Best distribution
published in 1950 (Best, 1950). However, the manual mea-
surement techniques used by Best are outdated and have been
found to provide inaccurate results (Kathiravelu et al., 2016).
The lack of an offshore dataset introduces uncertainty into
lifetime predictions, and, as a result, inaccuracies may exist.
In this work, state-of-the-art measurement techniques have
been used to characterise the offshore precipitation environ-
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ment and provide the required offshore dataset. A general
offshore DSD is presented.

2 The Best distribution

The most widely used DSD is the Best distribution. Best
takes the work of several authors and converts them into a
common DSD defined as

1−F = exp
[
−

(x
a

)n]
, (1)

where F is fraction of liquid water in the air comprising
drops with diameters of less than x; I is the rate of precipita-
tion; and

a = AIp, (2)

where A= 1.30, p = 0.232 and n= 2.25. Best concluded
that the constant n is independent of the precipitation inten-
sity.

This is commonly presented in the literature as

F (x)= 1− exp
[
−

( x

1.3I 0.232

)2.25
]
. (3)

Data were predominantly collected by two manual methods;
the “stain” method and the “flour pellet” method. In the stain
method, a sheet of absorbent paper is exposed to the rain
for a short time. The stains made by the droplets are ren-
dered permanent by previously treating the paper with a suit-
able powder dye. Then, the stains are counted, measured and
interpreted in terms of drop sizes. A calibration curve spe-
cific to the filter paper is used to relate the stain diameter to
the droplet diameter. The spread factor relationship is depen-
dent upon the physical properties of the fluid, drying con-
ditions and the impact velocity of the droplet (Sommerville
and Matta, 1990). In the flour pellet method, rain is allowed
to fall into pans of silted flour. The resulting dough pellets
are baked and subsequently sized by being passing through
graded sieves.

In both measurement techniques, sampling can only oc-
cur in short intervals. Best performs measurements using the
stain method for a maximum of 2 min. During prolonged pe-
riods of sampling, the droplet stains and pellets can overlap,
making it difficult to accurately measure and count individ-
ual drops. Furthermore, the techniques have a low resolu-
tion. Best registers droplet sizes in 0.5 mm intervals. Given
that the distribution predicts that for a rain rate of 1 mm h−1,
most droplets are between 0 and 2 mm, it is clear that a higher
resolution is required for effective analysis.

3 Offshore measurement technique

Two Campbell Scientific PWS100 disdrometers have been
installed onto Offshore Renewable Energy Catapult’s off-
shore anemometry hub, which is located 3 nautical miles

(5.56 km) from the coast of Blyth, Northumberland. Figure 1
shows the position of the two disdrometers, with the first
mounted on the existing platform 25 m a.s.l. (above sea level;
disdrometer A) and the second mounted 55 m a.s.l. (disdrom-
eter B). Each disdrometer consists of two photodiode-sensing
heads, one near-infrared diode laser head, and one CS215
temperature and humidity sensor. The sensor heads are posi-
tioned 20◦ off-axis to the system unit axis, introducing a time
lag between the two sensors that enables the fall velocity and
size of particles to be calculated.

Optical disdrometers are non-intrusive and do not influ-
ence drop behaviour during measurement. They have also
been shown to successfully resolve droplet break-up and
splatter problems experienced by other measurement tech-
niques (Kathiravelu et al., 2016). Agnew (2013) explored the
performance of the PWS100 at a site in southern England,
finding that the device slightly underestimates the number of
droplets with a diameter below 0.8 mm. However, the mea-
surement of larger, more damaging droplets was found to
be accurate. Montero-Martínez et al. (2016) compared the
performance of the disdrometer during natural rain events
in Mexico City to results from a beam occlusion disdrom-
eter and a reference tipping bucket. The PWS100 recorded
greater amounts of precipitation than the reference, but the
study was unable to back this up statistically and no signif-
icant differences in precipitation estimation was found be-
tween the disdrometers. Montero-Martínez et al. (2016) con-
cluded that the two devices performed similarly and that the
PWS100 provides reliable precipitation measurements. Jo-
hannsen et al. (2020) studied the PWS100 against a Thies
CLIMA laser precipitation monitor and an OTT Parsivel at a
site in Austria. In contrast to Montero-Martínez et al. (2016),
the PWS100 recorded less than the reference rain gauge in
all but two events. The PWS100 recorded 3 % less total pre-
cipitation than the rain gauge across the measurement period,
outperforming the Thies and the Parsivel instruments which
recorded 20 % and 30 % less, respectively, and the PWS100
was consistently closest to the rain gauge reading through-
out the period. Similar drop sizes were recorded between
the PWS100 and the Parsivel, with Johannsen et al. (2020)
noting that the PWS100 tended to record slightly faster and
larger drops. The studies show that there are uncertainties in
the accuracy of all disdrometers, with the PWS100 used in
this study performing comparatively with or better than the
other examined disdrometers.

DSD data from 1 September 2018 up to and including the
31 August 2019 are presented to provide a 12-month period
for analysis. This allows analysis to also be completed sea-
sonally. Hydrometeor diameters have been recorded with a
resolution of 0.1 mm. Data are available with a time interval
of 1 min.
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Figure 1. The optical disdrometers mounted to the platform (a) and at 55 m a.s.l. (above sea level) (b).

4 The offshore dataset

4.1 Quality control

Raw data were received from the disdrometers, and, there-
fore, detailed quality control was completed before subse-
quent analysis in line with recommendations from Hasager
et al. (2020), Chen et al. (2016) and Vejen et al. (2018).
Duplicate records were assessed by comparing timestamps,
with any identical timestamps eliminated from the dataset.
The meteorological parameters were also evaluated to re-
move entire duplicate records. It may be possible for a few
parameters to be the same; however an entire row of iden-
tical parameters is extremely unlikely, and consequently du-
plication has almost certainly occurred. A gross value check
was completed to remove unrealistic and impossible values.
Certain parameters are constrained within limits, such as rel-
ative humidity, which is given as a percentage, whereas other
parameters, such as droplet size, can be evaluated against
sensible threshold values. Furthermore, precipitation events
where the disdrometer recorded a rain rate of 0 mm h−1 but
hydrometeors were recorded were removed, as were events
within the bounds of disdrometer error, such as those with a
duration of 1 min or where fewer than 10 total hydromete-
ors were recorded. Particle type classification is determined
by the C215 sensor on the disdrometer, which distinguishes
particles based on an algorithm using the temperature, wet-
bulb temperature and relative humidity. The outputs from the
sensor were evaluated against an air temperature threshold,
commonly used to distinguish between snow and rain events
(Jennings et al., 2018), with any errors being manually in-
spected.

The consistency between disdrometers was also explored.
No sensible results were recorded by disdrometer A from
23 November 2018 until its repair at the start of May 2019,
whilst disdrometer B remained in operation throughout the
year with short, infrequent gaps in data gathering. Of the
available recordings, the two disdrometers agreed on the oc-
currence of precipitation 97.40 % of the time, with this in-
creasing to 99.74 % when evaluating precipitation intensi-
ties above 0.5 mm h−1. Between the two disdrometers, 0.9 %
of the data recorded a difference in precipitation intensity
greater than 1 mm h−1, with differences almost exclusively
occurring in the higher precipitation intensities. A manual
inspection of the greatest differences found that where large
values were recorded in one disdrometer, the other recorded a
comparable value in the surrounding minutes. This indicates
that the large differences are correct and may suggest a small
time discrepancy between the disdrometers, only noticed in
the short, high-intensity events.

The comparable data gathered by disdrometer A and B en-
abled some gaps in disdrometer B’s dataset to be filled with
the respective data from disdrometer A, where available. In
total, 34.25 h were gap filled, of which 229 min experienced
precipitation and 111 min experienced a precipitation greater
than 0.5 mm h−1.

Table 1 presents the percentage of available quality-
controlled data for each month and the percentage of the
available data in which precipitation was recorded. An es-
timation of the actual percentage of precipitation can be ob-
tained by assuming that the same proportion of precipitation
occurred across the unavailable data. A total of 82.89 % of
the data were available during the entire measurement pe-
riod. Precipitation was recorded in 8.71 % of the available
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Figure 2. Precipitation intensity during the measurement period.

Figure 3. Cumulative distribution of precipitation for the respective seasons.

Table 1. Percentage of available data for each month.

Month Percentage Percentage Estimation of
of available of time with total time with
values (%) precipitation precipitation

(%) (%)

September 2018 88.84 5.81 6.54
October 2018 98.55 8.57 8.70
November 2018 96.29 10.30 10.70
December 2018 90.11 9.73 10.80
January 2019 81.42 10.69 13.13
February 2019 68.43 7.35 10.74
March 2019 75.94 7.82 10.30
April 2019 91.24 4.83 5.29
May 2019 72.50 11.19 15.43
June 2019 83.28 13.31 15.98
July 2019 53.43 5.53 10.35
August 2019 94.66 9.35 9.88

Total 82.89 8.71 10.50

data, giving a yearly precipitation estimate of 10.50 %. Win-
ter had the highest estimation of total time with precipitation
with 12.07 %, whilst spring saw the lowest with an estimation
of 8.65 %. Including the missing data provides an annual ac-
cumulation of 500 mm, which is lower than the 650 mm aver-
age annual precipitation reported in Northumberland (Weath-
erSpark, 2020), indicating that the measurement year was a
relatively dry year for the area.

Table 2. Precipitation intensity distribution for seasons and inten-
sity categories.

Percentage of precipitation category (%)

Median Light Moderate Heavy Violent
precipitation

intensity
(mm h−1)

Autumn 0.3492 89.42 10.09 0.46 0.03
Winter 0.2217 96.43 3.49 0.08 0
Spring 0.2778 98.56 1.44 0 0
Summer 0.4321 89.87 8.85 1.16 0.12

Total 0.3111 92.58 6.89 0.50 0.03

4.2 Precipitation intensity frequency

The average precipitation intensity was recorded every
minute. Figure 2 presents its variation across the measure-
ment period, and Fig. 3 presents the cumulative frequency of
the recorded intensities. The median precipitation intensity
for the measurement period was 0.311 mm h−1.

Precipitation is classified according to its intensity with the
following categories defined by the Met Office (2007):

– light – precipitation intensity less than 2.5 mm h−1,

– moderate – precipitation intensity between 2.5 and
10 mm h−1,

– heavy – precipitation intensity between 10 and
50 mm h−1,

– violent – precipitation intensity greater than 50 mm h−1.
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The seasonal breakdown of precipitation categories is
shown in Table 2. Summer had the highest median precipita-
tion intensity with the highest amount of recorded heavy and
violent precipitation. In contrast, winter and spring saw min-
imal heavy precipitation and no violent precipitation. Light
precipitation dominated across the entire measurement pe-
riod, accounting for 92.58 % of all precipitation. Further-
more, 78.31 % of the recorded minutes had an intensity
lower than 1 mm h−1. Moderate precipitation was recorded
in 6.89 % of all cases, whilst heavy and violent rain occurred
in 0.50 % and 0.03 % cases, respectively. This corresponds
to a total of 151 min of heavy precipitation and only 9 min
of violent precipitation across the year. This gives a total of
193 min yr−1 of heavy and violent rain once the unavailable
data are factored in.

Therefore, a wind turbine in this location would experi-
ence less than 3.5 h yr−1 of precipitation with an intensity
greater than 10 mm h−1. Without corresponding erosion data,
it is not possible to conclude if erosion damage is predomi-
nantly caused by heavy and violent precipitation. However,
given that erosion can occur within just a few years of in-
stallation and assuming that heavy and violent precipitation
occurs with the same frequency as found in this dataset, a
turbine would experience less than a day of high-intensity
rain before erosion occurs. When considering the Springer
model, this suggests that erosion damage is not driven solely
by heavy and violent precipitation, disagreeing with current
research theories (Bech et al., 2018).

4.3 Hydrometeor frequency

Figure 4 presents the number of recorded hydrometeors by
type during the data collection period. The hydrometeor type
is clearly dominated by rain droplets. “Errors” and “un-
known” particles accounted for 17.93 % of the hydrometeors
recorded. These may be caused by insects, particles between
states or equipment failures and have been ignored in the
subsequent analysis, with any records where they were the
modal hydrometeor removed. Drizzle and rain droplets make
up a combined 98.45 % of all hydrometeors recorded. The
number of ice pellets, hail and graupel particles recorded was
low, accounting for only 0.49 % of hydrometeors recorded.

As expected, ice- and snow-based hydrometeors occurred
most frequently in winter. Ice pellets, hail and graupel ac-
counted for 0.94 % of the hydrometeors recorded in the sea-
son with snow grains and snowflakes accounting for 3.56 %.
In contrast, only 0.16 % of hydrometeors recorded in sum-
mer were ice pellets or hail, with no graupel, snow grains or
snowflakes. Spring and autumn recorded 0.31 % and 0.57 %,
respectively, of ice pellets, hail and graupel.

4.4 Hydrometeor velocity

The severity of a hydrometeor impact is governed by its ki-
netic energy. Whilst the blade speed provides most of the

Figure 4. Number and type of hydrometeors recorded during the
total measurement period.

Figure 5. Relationship between size and velocity for the modal hy-
drometeor at each minute.

impact velocity, the hydrometeor fall velocity and mass are
important. For each minute, the average diameter and veloc-
ity was plotted for the modal hydrometeor type. This is pre-
sented in Fig. 5.

There is a clear distinction between water particles and
snow particles, with snow particles occurring across a wider
range of diameters and lower velocities than rain particles.
For the few cases where ice pellets were the model hydrom-
eteors, they all occurred to the right of the rain droplet scat-
ter, indicating that they have a lower fall velocity than rain
droplets. There were no cases where hail or graupel were
the modal hydrometeor, and they were found to be mixed
in with rain particles. The presented velocities for water par-
ticles are in line with those predicted in models by Gossard
et al. (1992) and Brandes et al. (2002). The data presented in
the above figure are used in the subsequent analysis to esti-
mate the number of droplets that impact the blade per second
and inform lifetime prediction models.
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Figure 6. Evaluation of Eq. (4) for precipitation intensities 0.1058,
1.2708, 4.9865 and 10.2624 mm h−1.

5 Offshore rain distribution

To inform lifetime prediction models, a general equation for
an offshore DSD is required. The Best DSD has been re-
produced, both seasonally and non-seasonally, with updated
constants for the offshore rain data presented. Only data
where rain particles were the modal hydrometeor were ex-
amined.

5.1 Constant derivation

For each recorded minute, the cumulative function, F , has
been evaluated.

Rearranging Eq. (1) gives

ln ln
(

1
1−F

)
= n lnx− n lna. (4)

Values of n and a for the average precipitation intensity over
the minute can therefore be determined by plotting Eq. (4).
Figure 6 presents the evaluation of Eq. (4) across a range of
precipitation intensities.

Rearranging Eq. (2) gives

lna = p lnI + lnA. (5)

By plotting Eq. (5), the constants A and p can be obtained.
Figure 7 evaluates Eq. (5) across the whole dataset.

The constants A and p are determined as 1.0260
and 0.1376, respectively.

Best concluded that the constant n is independent of the
precipitation intensity. However, for the data presented, n has
dependence on the rain rate. The following relationship ap-
plies:

n=NI q . (6)

This can be evaluated as

lnn= q lnI + lnN. (7)

Figure 7. Evaluation of Eq. (5) to derive the constants A and p.

Figure 8. Evaluation of Eq. (7) to derive the constants N and q.

Figure 8 presents the plot of Eq. (7) from which the con-
stants N and q can be obtained.

The constants N and q are determined as 2.8264
and−0.0953, respectively. Figure 8 shows substantial scatter
in determining these constants. However, as q is small there
is only a slight dependence of n on the precipitation rate, and
whilst the scatter is likely to introduce some error, it does not
have a significant effect on the resulting DSD. Table 3 sum-
marises the constants for the non-seasonal distribution along-
side the constants for seasonal DSDs. For detailed modelling
and lifetime predictions it may be favourable to use season-
dependent DSDs.

Reproducing Eq. (1) with the derived non-seasonal con-
stants gives a general non-seasonal offshore DSD:

F (x)= 1− exp
[
−

( x

1.03I 0.138

) 2.83
I0.0953

]
. (8)

This is presented for various precipitation intensities in
Fig. 9.
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Table 3. Determined constants for the non-seasonal and seasonal
offshore DSDs.

Season Data A p N q

used
(%)

Non-seasonal 100.00 1.0260 0.1376 2.8264 −0.0953
Autumn 27.62 0.9723 0.1335 2.7762 −0.0911
Winter 24.95 0.9831 0.1338 2.6581 −0.1136
Spring 20.43 1.0393 0.1270 2.8282 −0.1065
Summer 27.00 1.0937 0.1410 2.9657 −0.0893

Figure 9. The non-seasonal offshore DSD at different precipitation
intensities.

5.2 Sensitivity analysis

The sensitivity of the constants to the data selected has been
evaluated. The following cases have been examined:

– Low and high precipitation intensity have been individ-
ually and collectedly neglected. Precipitation intensi-
ties below 0.1 mm h−1 and above 10 mm h−1 were ne-
glected.

– Precipitation intensities that account for a small number
of the recorded intensities have been individually and
collectively neglected. These are the bottom 1 % and the
top 1 %.

Minutes where the measured precipitation intensity is low
generally record fewer droplets than those with higher pre-
cipitation intensities. Conversely, a significant number of
droplets are generally seen in heavy precipitation. Low- and
heavy-intensity rain may, therefore, have a high scatter that
could influence the determined constants. Figure 3 presents
the cumulative distribution of the recorded precipitation in-
tensities. The bottom and top 1 % of precipitation intensi-
ties may also skew the data by providing a point significantly
different to the trend. The impact of these conditions on the
constants is shown in Table 4.

Table 4. Sensitivity of constants to the selected cases.

Precipitation Data A p N q

intensities used
(mm h−1) (%)

I 100 1.0260 0.1376 2.8264 −0.0953
I > 0.1 77.68 1.0218 0.1249 2.8132 −0.1067
I < 10 96.85 1.0269 0.1382 2.8227 −0.0961
0.1< I < 10 6.89 1.0219 0.1252 2.8071 −0.1090
I > 0.0158 99 1.0245 0.1350 2.8223 −0.0979
I < 6.95 99 1.0280 0.1388 2.8192 −0.0969
0.0158< I < 6.95 98 1.0263 0.1360 2.8144 −0.0997

In general, the constants are consistent across all the ex-
amined cases. The constant p is the most sensitive to the data
included. Neglecting low precipitation intensities reduces its
value, whilst neglecting higher intensities increases its value.
Removing precipitation intensities below 0.1 mm h−1 has the
greatest effect on the constants. However, ignoring these in-
tensities loses 22.32 % of the data available. It can be con-
cluded that the proposed constants are acceptable.

5.3 Comparison to Best DSD

The general offshore DSD has been compared to the Best
DSD at various precipitation intensities in Fig. 10. The pre-
cipitation intensities 0.1, 1, 2.5, 5, 10 and 20 mm h−1 were
selected to enable comparison of the two DSDs across a
range of intensities. To account for variability in the recorded
results, minutes which recorded an intensity within ±5 % of
the selected intensity were included. For each data group,
the intensities were averaged and the offshore DSD and Best
DSD for the average intensity were plotted against them.

Figure 10 reveals that the Best DSD significantly overesti-
mates the diameter of droplets. This is particularly true at the
higher precipitation intensities. The goodness of fit of the off-
shore and Best DSDs has been evaluated across the range of
precipitation intensities in Fig. 11. The offshore DSD aligns
well with the raw data and possesses a high coefficient of
determination (R2) across the precipitation intensity range.
The slight reduction in R2 at higher intensities can be at-
tributed to the reduced amount of heavy and violent precipi-
tation recorded. The coefficient of determination of the Best
DSD reduces significantly as the precipitation intensity in-
creases.

5.4 Limitations

The offshore DSD presented has two main limitations.
Firstly, the presented measurement period may be a limit-
ing factor. As the disdrometer continues to collect data, the
DSD can be further refined. Secondly, data have only been
collected at one point. Offshore DSDs may vary from lo-
cation to location. To address this, a disdrometer has been
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Figure 10. Comparison between the offshore DSD and the Best DSD at precipitation intensities (a) 0.10005, (b) 0.99612, (c) 2.501,
(d) 4.9818, (e) 10.0194 and (f) 19.9687 mm h−1.

positioned at ORE Catapult’s Levenmouth offshore demon-
stration turbine for future comparison and validation.

6 Impact of DSD on leading edge erosion lifetime
prediction

The implications of the offshore DSD have been assessed
using the Springer model, which is used by Eisenberg et
al. (2018) to predict a protection solution’s in situ life-
time from leading edge erosion. The model uses the median
droplet diameter for a given rain rate to determine the num-
ber of impacts to failure, Nic, and the number of impacts on

the blade per square metre per second, Ṅ . The number of
impacts to failure is found from

Nic =
8.9
d2

(
Sec

σo

)5.7

, (9)

where Sec is the effective strength of the protection system
found from rain erosion test results and σo is the pressure at
the interface between the droplet and protection system and
is a function of the droplet diameter and the properties of the
system relative to the substrate it is applied on. The number
of impacts on the blade per square metre per second is given
as
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Figure 11. Coefficient of determination of the offshore DSD and
the Best DSD across a range of precipitation intensities.

Ṅ = qVsβ, (10)

where q is the number of droplets in a cubic metre of air; Vs is
the velocity of the drop impact; and β is the impingement
efficiency of the droplets, which is dependent on the aero-
foil geometry and droplet diameter. The number of droplets
per cubic metre is found from geometry and is presented by
Springer et al. (1974) as

q = 530.5
I

Vtd3 , (11)

where Vt is the terminal velocity of the droplets.
The rate of damage, Ḋ, from a given precipitation intensity

is found from

Ḋ =
Ṅ

Nic
. (12)

The analysis presented here has shown that the Best DSD
currently used in the Springer model overestimates the size
of impinging offshore droplets.

The exact number of impacts to failure is dependent on
the protection system and substrate used. For a commercial
erosion-resistant polyurethane coating system, the offshore
DSD has been applied to the above equations, and the rela-
tive effect on leading edge erosion prediction of the DSD in
relation to the Best DSD is presented in Fig. 12.

The smaller median droplet diameter for precipitation in-
tensities above 0.15 mm h−1 requires a greater number of im-
pacts to reach initiation. However, the equations show that
there are a far greater number of droplet impacts per second,
giving a higher damage rate for precipitation intensities, with
the difference becoming substantial at the higher intensities.
The impact of this is dependent on the site conditions and fre-
quency of precipitation intensities. However, for the dataset
presented here and the above material properties, the imple-
mentation of the offshore DSD causes the Springer model to

Figure 12. Percentage change in leading edge erosion damage val-
ues from implementing the offshore DSD relative to implementing
the Best DSD.

predict a 23.7 % reduction in lifetime in comparison to when
the Best DSD is implemented. As a result, employing the
Best DSD in leading edge erosion prediction models under-
estimates the severity of the offshore environment in terms
of leading edge erosion. Therefore, the lifetime of protection
systems installed offshore is greatly overestimated, resulting
in earlier than expected maintenance and ultimately a higher
cost of energy.

This dataset can be used to help to inform the lifetime of
leading edge erosion protection systems installed offshore,
helping to ensure maintenance is conducted early and further
leading edge erosion can be combatted. The dataset can also
be used to inform droplet impact models and rain erosion
testing with the greater understanding of the environment fa-
cilitating the development of improved protection systems.

7 Conclusions

DSDs are important in predicting and modelling leading edge
erosion. Currently, there is a lack of an offshore dataset and
the industry uses onshore distributions in lifetime predic-
tions. In this work, a disdrometer has been positioned 3 nau-
tical miles (5.56 km) offshore to collect and characterise the
offshore precipitation environment and to provide an off-
shore DSD for lifetime prediction models.

Heavy and violent precipitation was rare in the measure-
ment period, accounting for less than 3.5 h of precipitation
across the year. Therefore, erosion damage is not likely to be
driven exclusively by heavy and violent precipitation. Rain
was the most frequently occurring hydrometeor, whereas
snow, ice and hail particles were scarce. A clear distinction
was visible in the diameter–velocity plots for each hydrom-
eteor, with snow particles occurring across a wider range of
diameters and lower average velocities. The majority of rain-
drops observed had a diameter below 2 mm.
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A general offshore DSD has been presented. The raw data
were compared to the presented DSD and the most widely
used DSD proposed by Best. A statistical R2 analysis found
that the offshore DSD aligned well with the data, whereas
the Best DSD significantly overestimated the diameters of
droplets. The implication of the offshore DSD was evaluated
with the Springer model, where it was found the inaccura-
cies in the Best DSD greatly underestimate the severity of
the offshore environment in terms of leading edge erosion.
As a result, the Best DSD is not a suitable distribution to
use in lifetime prediction models for protection systems po-
sitioned offshore, and therefore predictions determined using
it are unlikely to be accurate.

The results presented address the lack of an offshore
dataset and provide a general offshore DSD that can be used
to inform lifetime prediction models for the offshore envi-
ronment. A disdrometer has been placed at ORE Catapult’s
Levenmouth offshore wind turbine to provide further infor-
mation about the precipitation environment and validate the
presented DSD. The offshore dataset can be used to improve
prediction and modelling techniques, helping to inform the
design of new protection solutions and to combat leading
edge erosion whilst reducing lost energy production and un-
expected turbine downtime.
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