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Abstract. Calculations of annual energy production (AEP) from a wind power plant – whether based on pre-
construction or operational data – are critical for wind plant financial transactions. The uncertainty in the AEP
calculation is especially important in quantifying risk and is a key factor in determining financing terms. A
popular industry practice is to assume that different uncertainty components within an AEP calculation are un-
correlated and can therefore be combined as the sum of their squares. We assess the practical validity of this
assumption for operational-based uncertainty by performing operational AEP estimates for more than 470 wind
plants in the United States, mostly in simple terrain. We apply a Monte Carlo approach to quantify uncertainty
in five categories: revenue meter data, wind speed data, regression relationship between density-corrected wind
speed (from reanalysis data) and measured wind power, length of long-term-correction data set, and future in-
terannual variability. We identify correlations between categories by comparing the results across all 470 wind
plants. We observe a positive correlation between interannual variability and the linearized long-term correc-
tion; a negative correlation between wind resource interannual variability and linear regression; and a positive
correlation between reference wind speed uncertainty and linear regression. Then, we contrast total operational
AEP uncertainty values calculated by omitting and considering correlations between the uncertainty compo-
nents. We quantify that ignoring these correlations leads to an underestimation of total AEP uncertainty of, on
average, 0.1 % and as large as 0.5 % for specific sites. Although these are not large increases, these would still
impact wind plant financing rates; further, we expect these values to increase for wind plants in complex terrain.
Based on these results, we conclude that correlations between the identified uncertainty components should be
considered when computing the total AEP uncertainty.
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1 Introduction

Calculations of wind plant annual energy production (AEP) –
whether based on preconstruction data before a wind power
plant is built or on operational data after a wind plant has
started its operations – are vital for wind plant financial trans-
actions. Preconstruction estimates of AEP are needed to se-
cure and set the terms for new project financing, whereas op-
erational estimates of long-term AEP are required for im-
portant wind plant transactions, such as refinancing, pur-
chasing/selling, and mergers/acquisitions. The need for AEP
analyses of wind plants is increasing because global wind ca-
pacity increased to 539 GW in 2017, representing 11 % and
91 % increases over 1- and 5-year periods, respectively; ca-
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pacity is expected to increase by another 56 %, to 841 GW,
by 2022 (Global Wind Energy Council, 2018). In the United
States, wind plants generated more than 300 000 GWh in
2019, about 7.5 % of the total US electricity generation from
utility-scale facilities that year, with a 50 % increase over a
6-year period (Energy Information Administration, 2020).

This rapid growth of the wind energy industry is putting
an increased spotlight on the accuracy and consistency of
AEP calculations. For preconstruction AEP estimates, there
has been considerable movement toward standardization.
The International Electrotechnical Commission (IEC) is cur-
rently developing a standard (IEC 61400-15:draft, 2020), and
there have long been guidance and best practices available
(Brower, 2012). By contrast, long-term operational AEP es-
timates do not have such extensive guidance or standards.
Only limited standards covering operational analyses ex-
ist; IEC 61400-12-1:2017 (2017) addresses turbine power
curve testing, and IEC 61400-26-3:2016 (2016) addresses
the derivation and categorization of availability loss metrics.
However, to our knowledge, there are no standards and very
limited published guidance on calculating long-term AEP
from operational data. Rather, documentation seems to be
limited to a consultant report (Lindvall et al., 2016), an aca-
demic thesis (Khatab, 2017), and limited conference pro-
ceedings (Cameron, 2012; Lunacek et al., 2018).

Documentation and standards for preconstruction AEP
methods are of limited use for operational-based AEP meth-
ods given the many differences between the two approaches.
In general, operational AEP calculations are simpler than
preconstruction estimates because actual measurements of
wind plant power production at the revenue meter replace
the complicated preconstruction estimate process (e.g., me-
teorological measurements, wind and wake-flow modeling,
turbine performance, estimates of wind plant losses). How-
ever, the two methods do share several similarities, including
regression relationships between on-site measurements and
a long-term wind speed reference, the associated long-term
(windiness) correction applied to the on-site measurements,
estimates of future interannual variability (IAV), and esti-
mates of uncertainty in the resulting AEP calculation. The
shared components between operational AEP calculations
and preconstruction estimates (IEC 61400-15:draft, 2020)
are listed in Table 1.

The uncertainty values from each component listed in
Table 1 must be combined to produce a total estimate of
AEP uncertainty. While general guidelines on how to com-
bine (measurement) uncertainty components exist (JCGM
100:2008, 2008) and can be applied to this task, we found no
specific guidance in the literature for combining uncertainty
components in an operational AEP estimate. On the other
hand, considerable guidance exists for combining precon-
struction AEP uncertainties (Lackner et al., 2008; Brower,
2012; Vaisala, 2014; Kalkan, 2015; Clifton et al., 2016). In
every case, recommended best practices assume that all un-
certainties, σi , are uncorrelated and can therefore be com-

bined using a sum of squares approach to give the total AEP
uncertainty, σtot,uncorr:

σtot,uncorr =

√√√√ N∑
i=1

σ 2
i . (1)

To better understand how uncertainties are combined in
long-term operational AEP calculations, we reached out to
several wind energy consultants who regularly perform these
analyses. These conversations revealed that uncertainties in
a long-term operational AEP calculation are also assumed
uncorrelated and combined using Eq. (1).

1.1 Goal of study

The purpose of this study is to examine the extent to which
the assumption of uncorrelated uncertainties – and, there-
fore, the combination of those uncertainties through a sum
of squares approach – is accurate and appropriate for opera-
tional AEP calculations. Specifically, this study aims to iden-
tify potential correlations between AEP uncertainty compo-
nents using data for over 470 wind plants. While in the analy-
sis we focus on operational AEP calculations, we expect that
the results from this analysis – namely, the potential identifi-
cation of correlated uncertainty components – can be equally
relevant for informing and improving preconstruction AEP
methods.

In Sect. 2, we first describe the data sources used in this
analysis (wind plant operational data and reanalysis prod-
ucts), the Monte Carlo approach to quantify single uncer-
tainty components in operational AEP, and the approaches
used to combine these uncertainty components. Section 3
presents the main results of our analysis in terms of un-
certainty contributions and correlations among the different
components. We conclude and suggest future work in Sect. 4.

2 Data and methods

2.1 Wind plant operational data and reanalysis products

Operational wind plant energy production data for this analy-
sis are obtained from the publicly available Energy Informa-
tion Administration (EIA) 923 database (EIA, 2018). This
database provides reporting of monthly net energy produc-
tion from all power plants in the United States, including
wind plants. More than 670 unique wind plants are available
from this data set.

Long-term wind speed data (needed to perform the long-
term or windiness correction in an AEP estimate) are used
from three reanalysis products over the period of Jan-
uary 1997 through December 2017:

– Version 2 of the Modern-Era Retrospective analysis for
Research and Applications (MERRA-2) (Gelaro et al.,
2017). We specifically use the M2T1NXSLV data prod-
uct which provides diagnostic wind speed at 50 m above
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Table 1. Main sources of uncertainty in an AEP estimate.

Uncertainty component Description

On-site measurements Measurement error in met mast wind speeds (preconstruction) or power at the
revenue meter (operational)

Reference wind speed data Measurement or modeling error in measured or modeled long-term reference
density-corrected wind speed data

Losses Error in estimated or reported availability and curtailment losses

Regression Sensitivity in the regression relationship between on-site power measurements
and reference wind speeds

Long-term (windiness) correction Sensitivity in the long-term correction applied to the regression relationship
between on-site measurements and reference wind speeds

Interannual variability of resource Sensitivity in future energy production because of resource variability

ground level (a.g.l.), interpolated from the lowest model
level output (on average about 32 m a.g.l.), using Monin
Obukhov similarity theory1. Data are provided at an
hourly time resolution.

– The European Reanalysis Interim (ERA-Interim) data
set (Dee et al., 2011). We specifically use output at the
58th model level, which on average corresponds to a
height of about 72 m a.g.l. Data are provided at a 6-
hourly time resolution.

– The National Centers for Environmental Prediction v2
(NCEP-2) data set (Saha et al., 2014). We specifically
use diagnostic wind speed data at 10 m a.g.l. Data are
provided at a 6-hourly time resolution.

The wind speed data are density corrected at their native
time resolutions to correlate more strongly with wind plant
power production (i.e., higher-density air in winter produces
more power than lower-density air in summer, wind speed
being the same):

Udens,corr = U

(
ρ

ρmean

)1/3

, (2)

where Udens,corr is the density-corrected wind speed, U is the
wind speed, ρ is air density (calculated at the same height as
wind speed), ρmean is the mean density over the entire period
of record of the reanalysis product, and the exponent 1/3 is
derived from the basic relationship between wind power and
wind speed cubed (Manwell et al., 2010). To calculate air
density at the same height as wind speed, we first extrapolate
the reported surface pressure to the wind speed measurement
height, assuming hydrostatic equilibrium (ISO 2533:1975,
1975):

p = psurf exp
[
gz

RTavg

]
, (3)

1Please note that this product is provided in MERRA-2 directly
and no further interpolation was performed.

where p is the pressure at the wind speed measurement
height, psurf is the surface pressure, g is the acceleration
caused by gravity, z is the wind speed measurement height,
R is the gas constant, and Tavg is the average temperature
between the reported value at 2 m a.g.l. and that at the wind
speed measurement height.

To lessen the impact of limited and/or poor-quality data
on the results of our analysis, we filter for wind plants with a
moderate-to-strong correlation with all three reanalysis prod-
ucts (R2 > 0.6). About 25 % of the EIA wind plants are
discarded with this filter. We also impose a threshold of
8 months of wind plant data availability in order to investi-
gate uncertainty as it relates to a low number of data points –
but not so low as to make the use of a regression relationship
questionable. A total of 472 wind plants are kept for the fi-
nal analysis, and their locations are shown in Fig. 1. Because
obtaining an accurate representation of wind data in complex
terrain by reanalysis products is challenging (Shravan Ku-
mar and Anandan, 2009), most of the selected wind plants
are located in the Midwest and Southern Great Plains. No-
tably, no wind plants in California pass the filtering criteria
because they are predominately located in areas with ther-
mally driven wind regimes, such as Tehachapi Pass, where
coarse-resolution reanalysis products are poor predictors of
wind energy production.

The fundamental step in an AEP calculation involves a re-
gression between density-corrected wind speed (here, from
the reanalysis products) and energy production (here, from
the EIA-923 database). To investigate whether a simple linear
function can be assumed to express the relationship between
density-corrected wind speed and wind plant energy produc-
tion when considering monthly data, we show a scatterplot
between MERRA-2 density-corrected monthly wind speed
and monthly energy production across all 472 sites in Fig. 2.
For each site, data have been normalized by the respective
site mean. We show best-fits using a linear, quadratic, and
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Figure 1. Map of the 472 wind plants that were considered in this study.

Figure 2. Scatterplot between normalized MERRA-2 density-
corrected monthly wind speed and monthly energy production
across all 472 selected sites, as well as linear, quadratic, and cubic
best-fit lines.

cubic function and calculate the mean absolute error (MAE)
of each fit.

We find that the difference between the normalized MAE
values from the considered functions is less than 0.7 %.
Therefore, the uncertainty connected with the choice of us-
ing a linear regression in the operational AEP methodology
at a monthly time resolution appears minimal. Moreover,
through conversations with wind industry professionals, we
found that a linear regression based on monthly data is the
standard industry approach when performing bankable2 op-
erational AEP analyses.

2Results are accepted by banks, investors, and so on for use in
financing, buying/selling, and acquiring wind plants.

2.2 Operational AEP methodology

Given the lack of existing guidelines for a standard approach
for operational AEP calculations, we base our methodology
on conversations with four major wind energy consultants
who represent most of the operational market share in North
America. These conversations overwhelmingly revealed the
following characteristics for operational AEP analysis, and
we follow the same approach in our analysis.

1. Wind speed data (measured or modeled) are density cor-
rected at their native time resolution using Eq. (2).

2. Monthly revenue meter data, monthly average availabil-
ity and curtailment losses, and monthly average wind
speeds from a long-term wind resource product are cal-
culated.

3. Monthly revenue meter data are normalized to 30 d
months (e.g., for January, the revenue meter values are
multiplied by 30/31).

4. Monthly revenue meter data are corrected for monthly
availability and curtailment (i.e., monthly gross energy
data are calculated).

5. A linear regression between monthly gross energy pro-
duction and concurrent density-corrected monthly aver-
age wind speeds is performed.

6. Long-term density-corrected monthly average wind
speed is then calculated for each calendar month (i.e.,
average January wind speed, average February wind
speed, and so forth) with a hindcast approach using 10–
20 years of the available long-term reference monthly
wind resource data (reanalysis products, long-term ref-
erence measurements, etc.).

7. Slope and intercept values from the regression relation-
ship are then applied to the long-term density-corrected
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Figure 3. Long-term AEP estimation process using operational
data under a Monte Carlo approach; sources of uncertainty and
points of Monte Carlo sampling are denoted by probability distri-
bution images. Note that IAV denotes interannual variability.

monthly average wind speed data using the long-term
or so-called windiness correction. A long-term data set
of monthly (January, February, etc.) estimated gross en-
ergy production is obtained.

8. The resulting long-term monthly gross energy esti-
mates, which are based on 30 d months, are then denor-
malized to the actual number of days in each calendar
month (e.g., for January, the obtained value is multiplied
by 31/30).

9. Long-term estimates of availability and curtailment
losses are finally applied to the denormalized long-term
monthly gross energy data, leading to a long-term cal-
culation of operational AEP.

In the EIA-923 database, availability and curtailment data
are not available. Therefore, in our analysis, we omit steps 4
and 9 of the list and only perform calculations on net energy
data.

2.3 Monte Carlo analysis

To quantify the impact of the single uncertainty components
on the long-term operational AEP estimate obtained using
the methodology described in the previous section, we im-
plement a Monte Carlo approach. In general, a Monte Carlo

method involves the randomized sampling of inputs to, or
calculations within, a method which, when repeated many
times, results in a distribution of possible outcomes from
which uncertainty can be deduced. This is usually calcu-
lated as the standard deviation or the coefficient of variation
(i.e., standard deviation normalized by mean) of the resulting
distribution (JCGM 100:2008, 2008; Dimitrov et al., 2018).
Monte Carlo methods have been used in different applica-
tions for uncertainty quantification within the wind energy
industry, ranging from the prediction of extreme wind speed
events (Ishihara and Yamaguchi, 2015), to offshore fatigue
design (Müller and Cheng, 2018), and to the economic anal-
ysis of the benefits of wind energy projects (Williams et al.,
2008). Here, we apply this approach to derive a distribution
of long-term operational AEP values from which the un-
certainty can be calculated. Using a Monte Carlo approach
provides a direct estimate of AEP uncertainty by sampling
the relevant parameters connected to the various uncertainty
components. By contrast, traditional approaches to assessing
uncertainty are often less direct. For example, wind resource
interannual variability is often calculated and then converted
to AEP uncertainty through an “energy / velocity” (EV) ratio
estimated from the wind and energy data. A Monte Carlo ap-
proach avoids this intermediate ratio and any uncertainty or
error associated with it.

In our analysis, we separately consider five operational-
based uncertainty components so that only the sampling of
one parameter is performed in each Monte Carlo configura-
tion. The following uncertainty components are included in
our proposed Monte Carlo methodology for long-term oper-
ational AEP.

– Revenue meter measurement error. To incorporate this
uncertainty component in the Monte Carlo simulation,
we sample monthly revenue meter data from a synthe-
sized normal distribution centered on the reported value
and a 0.5% imposed standard deviation. In fact, a value
of 0.5 % is consistent with what is typically assumed
in the wind energy community as revenue meter uncer-
tainty (IEC 60688:2012, 2012; ANSI C12.1-2014).

– Reference wind speed data modeling error. Quantifying
the uncertainty of the long-term wind resource data used
in the operational AEP assessment is challenging be-
cause it can vary based on the location, long-term wind
speed product used, or instrument from which reference
observations are taken. To include this uncertainty com-
ponent in a systematic way across the 472 locations con-
sidered in our analysis, we adopt an ensemble uncer-
tainty approach (Taylor et al., 2009; Zhang et al., 2015)
and use as proxy the variability of the wind resource be-
tween different reanalysis products. Therefore, at each
Monte Carlo iteration at each site, we randomly select
wind resource data from one of the three considered re-
analysis products.
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Figure 4. Sampling set of regression lines corresponding to the slope and intercept values derived from their standard errors in the Monte
Carlo approach for two stations in the EIA data set.

– Linear regression model uncertainty. We adopt a novel
way, directly enabled by the use of Monte Carlo, to
incorporate this uncertainty component in the opera-
tional AEP assessment. We sample the regression slope
and intercept values from a bivariate normal distribu-
tion centered on their best-fit values and covariance ma-
trix equal to 1 of the best-fit parameters. The diagonal
terms in the covariance matrix are given by the square of
the slope and intercept standard errors. For a regression
model between an independent variable, x, and a depen-
dent variable, y, the standard error of the regression is
defined (JCGM 100:2008, 2008) as follows:

ey =

√∑(
yi − ŷi

)2
n− 2

, (4)

where ŷi is the regression-predicted value for yi and n
is the number of data points used in the regression. The
standard error of the regression slope is

ea =
ey∑

(xi − xi)2 , (5)

and the standard error of the intercept is

eb = ey ea

√∑
x2
i

n
, (6)

where e2
a and e2

b are the diagonal terms in the covariance
matrix of the bivariate normal distribution of regression
slope and intercept from which Monte Carlo values are
drawn. Slope and intercept values are strongly nega-
tively correlated, which is captured by their covariance
when performing the linear regression. The off-diagonal

terms in the covariance matrix of the bivariate normal
distribution constrain the random sampling of slope and
intercept values to avoid sampling unrealistic combina-
tions. An example of this sampling is shown in Fig. 4
for two projects of different regression strengths. We
sample 500 slope and intercept values from a bivariate
normal distribution centered around the best-fit parame-
ters, as well as with the covariance matrix derived from
the standard errors of slope and intercept and their co-
variance. As shown in Fig. 4, the low standard errors
found for the leftmost regression relationship constrain
the possible slope and intercept values that can be sam-
pled, while the high standard errors in the rightmost re-
gression relationship allow for a much wider sampling.

– Long-term (windiness) correction uncertainty. We in-
corporate this component by sampling the number of
years (randomly picked between 10 and 20) to use as
the long-term wind resource data to which the regres-
sion coefficients are applied to derive long-term energy
production data (the so-called windiness correction).

– Wind resource interannual variability (IAV) uncer-
tainty. We incorporate this uncertainty component in the
Monte Carlo method by sampling the long-term (reanal-
ysis) average calendar-monthly wind speeds (i.e., aver-
age January, average February) used to calculate long-
term monthly energy production data. The sampling dis-
tribution is normal, centered on the calculated long-term
average calendar-monthly wind speed, and with a stan-
dard deviation equal to the 20-year standard deviation of
the long-term average monthly wind speed for each cal-
endar month. In doing so, we assume that wind speeds
in contiguous months are independent.
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Each of the listed sources of uncertainty corresponds to a
Monte Carlo sampling and is highlighted by a probability
distribution in the flowchart in Fig. 3. Note that uncertainty
components related to availability and curtailment losses
are not considered in our approach because the EIA-923
database does not include measurements of these losses.

To calculate these uncertainty components at each wind
plant, we run the Monte Carlo simulation under five differ-
ent setups, each of them having only a single sampling per-
formed (i.e., either revenue meter, reference wind speed data,
IAV, linear regression, or windiness correction). For each
component, we run the Monte Carlo simulation 10 000 times.
We quantify the impact of each single uncertainty compo-
nent on the long-term operational AEP in terms of the co-
efficient of variation of the distribution of operational AEP
resulting from the Monte Carlo simulation run. Convergence
of the AEP distribution within 0.5 % of the true mean after
the 10 000 Monte Carlo runs was verified for all projects with
95 % confidence.

The code used to perform the AEP calculations is pub-
lished and documented in NREL’s (National Renewable En-
ergy Laboratory) open-source operational assessment soft-
ware, OpenOA3. Calculations were performed on Eagle,
NREL’s high-performance computing cluster. Specifically,
each wind plant was assigned a different processor and run
in parallel. Given the general simplicity of the AEP method
used here, computational requirements were moderate de-
spite the 50 000 simulations (10 000 runs times 5 uncertainty
setups) required for each wind plant.

2.4 Combination of uncertainty components

Once the contribution from each uncertainty component to
the long-term operational AEP uncertainty has been quanti-
fied, the different components need to be combined to obtain
the total AEP uncertainty. As stated in the Introduction, it
is common practice for wind energy consultants to assume
that all uncertainty components are uncorrelated and com-
bine them using Eq. (1) to obtain σtot,uncorr. To test the valid-
ity of this assumption, we apply Eq. (1) in which each of the
five considered uncertainty components, σi , is quantified as
the coefficient of variation of the corresponding operational
AEP distribution obtained by running the Monte Carlo sim-
ulation with a single sampling performed. We note that the
same values of σtot,uncorr would be obtained by running the
Monte Carlo simulation with, at each iteration, all of the five
samplings performed independently of each other.

We contrast the total AEP uncertainty calculated assuming
uncorrelated components with what we obtain by taking into
account these correlations in the calculation. Following the
guidance in JCGM 100:2008 (2008), we combine the vari-
ous uncertainty components and calculate the total long-term

3https://github.com/NREL/OpenOA, last access: 1 Octo-
ber 2020

Figure 5. Operational-based AEP uncertainty distributions across
projects for the different uncertainty components; mean values
across projects are shown in the legend. Uncertainty values are
quantified as the percent coefficient of variation of the long-term
operational AEP distribution.

operational AEP uncertainty for each wind plant as follows:

σtot,corr =

√√√√ N∑
i=1

σ 2
i + 2

N−1∑
i=1

N∑
j=i+1

Rijσiσj , (7)

where, in our analysis, N equals 5 and Rij is the correla-
tion coefficient between each pair of uncertainty components
calculated from the results obtained for all 472 wind plants
considered in the analysis.

The comparison between σtot,uncorr and σtot,corr will give
insights into the error arising from ignoring the correlations
existing between the various uncertainty components.

3 Results

3.1 Operational-based AEP uncertainty contributions

Distributions of each uncertainty component, expressed in
terms of the percent coefficient of variation of the result-
ing AEP distributions, across all 472 wind plants are shown
in Fig. 5. Uncertainty connected to wind resource IAV is
found to contribute the most (average 4.1 % across all wind
plants). The uncertainty in the linear regression model has
the second-largest contribution (1.5 %), followed by the un-
certainty of the reference wind speed data (0.8 %; here, of the
reanalysis products) and revenue meter data (here, imposed
at 0.5 %). The long-term windiness correction has the small-
est uncertainty component (0.4 %). Therefore, the number of
years used for the long-term windiness correction does not
have a large impact on the overall uncertainty in operational
AEP, at least for the sampled range of 10–20 years. Using
as few as 10 years seems sufficient to give stability to the
long-term AEP estimate, and adding additional years does
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Figure 6. Correlation coefficient heat map between operational
AEP uncertainty components, as calculated from each pair of AEP
uncertainty components across the 472 wind plants considered in
the analysis. Note that “Rev.” denotes “Revenue”.

not provide a significant reduction in the uncertainty con-
nected with the long-term estimate. As already mentioned in
Sect. 2, these results are obtained for wind plants in mostly
simple terrain and with a moderate-to-strong correlation be-
tween reanalysis wind resource and wind energy production
and, therefore, with an overall low operational AEP uncer-
tainty. We acknowledge that the inclusion of wind plants
with a weaker correlation with the reanalysis products would
modify the relative contribution of the various uncertainty
components (e.g., the importance of the regression uncer-
tainty would increase).

3.2 Correlation between operational-based AEP
uncertainty components

To be able to assess the validity of the uncorrelated as-
sumption when combining different uncertainty components,
we assess potential correlations between uncertainty compo-
nents by analyzing the Pearson’s correlation coefficients, Rij
(needed in Eq. 7 to calculate σtot,corr), from each pair of AEP
uncertainty components across the 472 wind plants, and we
summarize the results in the correlation matrix in Fig. 6.

To assess which of the obtained correlations have statis-
tical significance, we calculate the p value (Westfall and
Young, 1993) associated with the 10 correlation coefficients.
The test reveals that for three pairs of uncertainty compo-
nents, the probability of finding the observed not-zero corre-
lation coefficients if the actual correlation coefficient were,
in fact, zero (p value) is less than 10−5. Therefore, the fol-
lowing three correlations have strong statistical significance.

– The wind resource IAV and the long-term windiness
correction uncertainties are moderately correlated (R =
0.49, p = 1.9× 10−29).

– The linear regression and reference wind speed data un-
certainties are weakly correlated (R = 0.35, p = 2.5×
10−15).

– The wind resource IAV and the linear regression un-
certainties appear weakly negatively correlated (R =
−0.21, p = 2.6× 10−6).

The first correlation noted earlier (wind resource IAV and
long-term windiness correction) is explained simply by the
fact that both uncertainty components are driven by wind re-
source variability. At a site with large wind variability, IAV
will be large by definition and so will the uncertainty intro-
duced by different lengths of time series used for the long-
term AEP calculation.

The correlation between linear regression and reference
wind speed data uncertainties can be justified given the de-
pendence of both these uncertainty components on the num-
ber of data points used in the regression between energy pro-
duction data and concurrent wind speed data (Fig. 7).

Both the slope and intercept errors (Eqs. 5 and 6), on
which the linear regression uncertainty depends (as described
in Sect. 2.3), are inversely proportional to the number of data
points so that when a regression is performed on only a few
data points, its uncertainty increases. This dependence is ex-
emplified in Fig. 4, in which we have compared the sampling
sets of regression lines for two stations in the EIA data set;
for these two cases, the standard errors of regression slope
and intercept for the station with 8 data points (on the right)
are 30–50 times larger than what is found for the station with
90 data points (on the left).

The number of data points used for the regression also
has an impact on the reference wind speed data uncertainty.
In fact, a short period of record of a wind plant’s opera-
tion can lead to different interpretations from the reference
wind resource data sets used as to whether that short period
of record was above, equal to, or below the long-term aver-
age resource. Over a longer period of record, these potential
discrepancies between different wind resource data sets (in
our case, reanalysis products) tend to average out, leading,
therefore, to a reduced uncertainty. We illustrate this phe-
nomenon by exploring the long-term trend of the reanalysis
products for the wind plant with one of the highest reported
reference wind speed data uncertainties (EIA ID 60502 re-
ported a 3.7 % reference wind speed data uncertainty). Fig-
ure 8 shows the result. The period of record for wind plant
operation (shown by a shaded blue area in Fig. 8) was only 12
months. As shown in the figure, the various reanalysis prod-
ucts have very different interpretations of the wind resource
in the short period of record relative to the long term (ERA-I:
4 % above average; MERRA-2: 1 % below average; NCEP-2:
1 % above average). Consequently, the use of each reanalysis
product will lead to different magnitudes (both positive and
negative) in the long-term windiness corrections, leading to
high uncertainty in the resulting operational AEP calculation.
By increasing the period of record (i.e., increasing the num-
ber of data points used in the regression), such discrepancies
tend to average out. This is illustrated in Fig. 9, where we
show how the period of record to long-term wind speed ra-
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Figure 7. Dependence of linear regression uncertainty and reference wind speed data uncertainty on the number of data points in the period
of record for the 472 projects considered in the analysis.

Figure 8. Long-term time series of normalized wind speed for EIA station ID 60502 from the three reanalysis products used in the study.
The period of record (POR) for the wind plant is highlighted in light blue.

tio varies as we extend the period of record by increasing the
number of months while keeping December 2017 as the fixed
ending time. For short periods of record, there is considerable
deviation of this ratio among the different reanalysis products
(i.e., the reference wind speed data uncertainty is high). As
the length of the period of record increases, this ratio tends
to converge to 1.0, and the spread between the three reanal-
ysis products decreases (i.e., the reference wind speed data
uncertainty is low).

Finally, the (weak) negative correlation between linear re-
gression and wind resource IAV uncertainties is linked to the
fact that they respond differently to the R2 coefficient be-
tween the reanalysis wind speed and the energy production
data (Fig. 10). Predictably, the linear regression uncertainty

is inversely proportional to the coefficient of determination
because a stronger correlation between wind and energy pro-
duction will lead to a reduced uncertainty of the regression
between the two variables. On the other hand, wind resource
IAV uncertainty shows a positive correlation with the regres-
sion R2 coefficient. This dependence can be explained be-
cause both quantities are positively correlated with the to-
tal variance of wind speed or, equivalently, produced energy.
Figure 11 shows the relationship between IAV uncertainty
and the total sum of squares, SStot,WS, of reanalysis wind
speed (here, using MERRA-2 monthly data), which is pro-
portional to the variance of the data:

SStot,WS =
∑
i

(WSi −WS)2. (8)
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Figure 9. Ratio of wind speed to the long-term, 20-year average for periods of record of different lengths (all ending in December 2017) for
EIA station ID 60502 using data from the three reanalysis products in the study.

Figure 10. Dependence of linear regression uncertainty and IAV uncertainty on the R2 of the regression between reanalysis wind speed and
energy production data.

A positive correlation between IAV uncertainty and SStot,WS
emerges. At the same time, the linear regression R2 coeffi-
cient also depends on the variance of the produced energy
(and, equivalently, of wind speed) as it is defined as follows:

R2
= 1−

SSres

SStot
, (9)

where SSres is the total sum of the residuals from the lin-
ear regression. Equation (9) shows that when the total sum
of squares SStot increases, so does R2, thus confirming the
positive correlation between R2 and the variance in the data.

3.3 Comparison between total operational-based AEP
uncertainty under different assumptions

After having revealed the correlations existing between dif-
ferent AEP uncertainty components and having explained
their sources, we can compare the total operational AEP
uncertainty calculated when allowing for these correlations
(Eq. 7) with the total uncertainty calculated with the uncor-
related assumption using the conventional sum of squares ap-
proach (Eq. 1). Figure 12 shows the results of this compar-
ison for the 472 wind plants considered as a scatterplot and
also as a histogram of the difference σtot,corr− σtot,uncorr. A
weak bias can be observed with a mean value of +0.1% in
uncertainty difference (and differences up to 0.5 % for spe-
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Figure 11. Relationship between IAV uncertainty and the total sum
of squares, SStot,WS, of MERRA-2 wind speed data for the 472
projects considered.

cific wind plants). In other words, if correlations between the
different uncertainty components are ignored in the calcula-
tion method, the whole operational AEP uncertainty is then,
on average, slightly underestimated.

This difference can be explained by comparing the contri-
butions Rijσiσj from the various uncertainty pairs in Eq. (7)
averaged over the 472 considered wind plants. Figure 13a
shows the mean magnitude (across all wind plants) of these
contributions for all of the considered uncertainty pairs. The
negative correlation between IAV and linear regression has
the largest single impact because this correlation involves the
two largest uncertainty components (Fig. 5). However, the
sum of the contributions from all of the positive correlations
exceeds the sum of the contribution from the negatively cor-
related components (Fig. 13b), thus resulting in the overall
average increase in total operational AEP uncertainty when
the correlations are taken into account in the calculation.

4 Conclusions

Financial operations related to wind plants require accurate
calculations of the annual energy production (AEP) and its
uncertainty prior to the construction of the plant and, often,
in the context of its operational analysis. As wind energy pen-
etration increases globally, the need for techniques to accu-
rately assess AEP uncertainty is a priority for the wind en-
ergy industry. Typically, current industry practice assumes
that uncertainty components in AEP estimates are uncorre-
lated. However, we have shown that this assumption is not
valid for the five components that comprise an operational-
based uncertainty. We used a Monte Carlo approach to as-
sess AEP; this provides quantitative insights into aspects of
the AEP calculation that drive its uncertainty. We have ap-

plied this approach using operational data from 472 wind
plants, mostly in simple terrain, across the United States in
the EIA-923 database in order to study potential correla-
tions between uncertainty components. Three pairs of uncer-
tainty components revealed a statistically significant correla-
tion: wind resource interannual variability (IAV) and long-
term windiness correction (positive correlation); wind re-
source IAV and linear regression (negative); and reference
wind speed data and linear regression (positive). Wind re-
source IAV and long-term windiness correction uncertainties
are correlated because they both depend on wind resource
variability. Wind resource IAV uncertainty is correlated with
linear regression uncertainty because they are both inversely
proportional to the number of data points in the period of
record. Finally, reference wind speed data uncertainty and
linear regression uncertainty show a negative correlation be-
cause they respond oppositely to the R2 coefficient between
the (reanalysis) wind speed and energy production data.

Our results show that ignoring these correlations between
uncertainty components causes an underestimation of the to-
tal operational AEP uncertainty of, on average, about 0.1 %
with peak differences of 0.5 % for specific sites. These dif-
ferences, though not large, would still have a significant im-
pact on increasing wind plant financing rates. Moreover, we
expect differences would become even larger for sites char-
acterized by a more complex wind flow. Therefore, our re-
sults suggest that correlations between uncertainty compo-
nents should be taken into account when assessing the total
operational AEP uncertainty.

Additional components of uncertainty in an operational
AEP were not considered in our study because of lim-
ited reporting in the EIA-923 database. These components
include reported availability, curtailment uncertainty, and
various uncertainties introduced through analyst decision-
making (e.g., filtering high-loss months from analysis and
regression outlier detection). Future studies could include the
impact of these additional sources of uncertainty on the op-
erational AEP assessment. Moreover, our analysis excluded
sites, mostly in complex terrain, with a weak correlation be-
tween reanalysis wind resource data and wind power produc-
tion. Future work could explore the magnitude of operational
AEP uncertainty and the correlation between its components
for such complex flow regimes. Finally, this study focused
on correlations between operational AEP uncertainty com-
ponents. Future work could explore correlations between
the numerous preconstruction AEP uncertainty components
(e.g., wake loss, wind speed extrapolation, wind flow model).

Code and data availability. EIA data used in this study are
accessible from https://www.eia.gov/electricity/data/eia923/ (US
Energy Information Administration, 2020a). Geographical data
of the EIA wind plants are available at https://www.eia.gov/
maps/layer_info-m.php (US Energy Information Administration,
2020b). Software used to assess operational AEP is available from
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Figure 12. (a) Scatterplot of total operational AEP uncertainty values calculated with and without assuming uncorrelated uncertainty com-
ponents for the 472 wind plants considered. Uncertainty is quantified as the percent coefficient of variation of the resulting long-term AEP
distribution. (b) Histogram of difference, σtot,corr− σtot,uncorr, between the total operational AEP uncertainty calculated considering and
ignoring the correlation between its uncertainty components.

Figure 13. (a) Average (across 472 wind plants) contribution of the correlation between single uncertainty pairs to the total operational
AEP uncertainty according to Eq. (7). (b) Comparison of the total contribution from positively and negatively correlated uncertainty pairs,
computed by summing the contributions shown in panel (a).
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