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Abstract. Decreasing gate closure times on the electricity stock exchange market and the rising share of re-
newables in today’s energy system causes an increasing demand for very short-term power forecasts. While the
potential of dual-Doppler radar data for that purpose was recently shown, the utilization of single-Doppler li-
dar measurements needs to be explored further to make remote-sensing-based very short-term forecasts more
feasible for offshore sites. The aim of this work was to develop a lidar-based forecasting methodology, which
addresses a lidar’s comparatively low scanning speed. We developed a lidar-based forecast methodology using
horizontal plan position indicator (PPI) lidar scans. It comprises a filtering methodology to recover data at far
ranges, a wind field reconstruction, a time synchronization to account for time shifts within the lidar scans and
a wind speed extrapolation to hub height. Applying the methodology to seven free-flow turbines in the offshore
wind farm Global Tech I revealed the model’s ability to outperform the benchmark persistence during unstable
stratification, in terms of deterministic as well as probabilistic scores. The performance during stable and neutral
situations was significantly lower, which we attribute mainly to errors in the extrapolation of wind speed to hub
height.

1 Introduction

With the increasing penetration of renewable energies in
the power system, the demand for very short-term power
forecasts is continuously rising. Transmission system opera-
tors (TSOs) need to ensure grid stability by balancing supply
and demand of power at all times. In this regard, very short-
term forecasts are an important tool to support power sys-
tem management and reduce curtailment costs (Liang et al.,
2016). Further, minute-scale forecasts hold significant value
for energy market applications (Cali, 2011), especially with
gate closure times today being as short as only 5 min, for ex-
ample in Germany, Belgium and France (EPEXSPOT, 2020).
Also, the provision of ancillary services, e.g. the supply of
reserve power by wind farms (50Hertz et al., 2016), would
benefit from improved very short-term forecasts. Probabilis-
tic forecasts additionally provide uncertainty information and
are thus especially useful to support decision-making pro-
cesses (Dowell and Pinson, 2016).

While for forecast horizons of several hours or days phys-
ical models such as numerical weather prediction (NWP)
models are typically used, on shorter timescales, i.e. lead
times ranging from minutes to several hours, statistical mod-
els are applied (Giebel et al., 2011). For lead times of a few
to several hours, this includes mainly time series models,
Kalman filters and model output statistics (MOS) (Sweeney
et al., 2019). The simplest statistical model for even shorter
lead times is persistence, which assumes the future value will
be equal to the current one. Persistence is often referred to
as a benchmark in very short-term forecasting (Würth et al.,
2019). Other statistical models such as ARMA (autoregres-
sive moving average) take a higher number of past values
and past forecasting errors into account (Torres et al., 2005).
ARIMA (autoregressive integrated moving average) models
additionally difference the time series to achieve stationarity
(Grigonytė and Butkevic̆iūtė, 2016). Further, spatial correla-
tion approaches, machine learning algorithms and neural net-
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works are gaining importance for very short-term forecasts
(Lenzi et al., 2018; Huang and Kuo, 2018). To overcome the
limitations of individual models, combinations of different
methodologies, so-called hybrid models, are being increas-
ingly researched (Zhou et al., 2018).

As a promising alternative to statistical methods, recently
very short-term forecasts based on remote sensing measure-
ments have gained attention (Sweeney et al., 2019). The ba-
sic concept is to measure incoming wind fields in far dis-
tances upstream and thus several minutes before reaching
the turbine or wind farm, allowing the derivation of wind
speed and power forecasts in the very short term. Lidar-based
forecasts (LFs) have for example been used by Valldecabres
et al. (2018b) to predict nearshore wind speeds, and they out-
performed the benchmark persistence. Würth et al. (2018)
used lidar measurements at an inland location to predict wind
power; however, they were not able to outperform persis-
tence, which the authors attributed to the complex terrain. A
skilful probabilistic power forecast was recently developed
by Valldecabres et al. (2018a), utilizing dual-Doppler radar
measurements performed by a radar system located at the
shoreline, scanning the flow around an offshore wind farm.
Using the same radar set-up Valldecabres et al. (2020) more-
over detected and probabilistically forecasted ramp events at
free-stream as well as waked wind turbines.

While Doppler radars are capable of measuring in dis-
tances of up to 32 km (Nygaard and Newcombe, 2018) with
high temporal and spatial resolution and provide volumetric
2D wind field information in the case of a dual set-up (Hirth
et al., 2017), such devices are also rather expensive, compar-
atively large and thus not easily deployable at far-offshore
sites (Würth et al., 2019). Studies also indicated their reduced
data availability in comparison to lidars, especially during
clear-air situations (Vignaroli et al., 2017; Hirth et al., 2017).
Therefore, the use of Doppler lidar measurements instead of
Doppler radar measurements is considered an interesting and
probably more feasible alternative, especially with regard to
offshore applications. Today, compact industrial scanning li-
dar systems are able to measure at distances of up to 10 km
(Leosphere, 2018). Hereby, the maximal measuring distance
is closely related to the measurement accumulation time. To
enlarge the maximal range of the measurements, the accumu-
lation time needs to be increased and thus the overall scan-
ning speed is reduced. While radars can perform volumetric
measurements, i.e. measurements with several different el-
evation angles, with a repetition time of the order of a few
minutes, the slow scanning speed of current lidars restricts
measurements to a single elevation angle when aiming to per-
form scans within a time frame of approximately 1 to 2 min.
Consequently, depending on the positioning of the lidar sys-
tem and the choice of elevation angle, the device’s measur-
ing height does not match the hub height of the turbine. Also,
platform or turbine movements can contribute to a static as
well as dynamic misalignment (Bromm et al., 2018). Us-
ing such lidar measurements for wind speed and power pre-

diction thus necessitates the use of a wind speed correction
to hub height. As opposed to dual-Doppler radar measure-
ments, the use of a single lidar device only allows the re-
trieval of one-dimensional wind speed information. Reasons
for single-Doppler lidar measurements are for example cost
reduction or a wind farm layout that does not favour a dual
set-up. Consequently, a reliable wind speed reconstruction
methodology is essential to retrieve horizontal wind speed
information from single-lidar measurements.

Our objective in this paper is to investigate whether and
how one can use long-range single-Doppler lidar measure-
ments to forecast the power of offshore wind turbines on
short time horizons in a probabilistic manner. We adapt a
remote-sensing-based forecast methodology to meet the re-
quirements of single-Doppler lidar measurements. We es-
pecially implement adjustments to account for (i) low data
availability in far ranges, (ii) time shifts within the lidar
scans and (iii) deviations between measuring height and hub
height. We validate the method by means of a case study
based on measurements at an offshore wind farm and by
distinguishing between different atmospheric conditions. To
address their performance, we compare lidar-based forecasts
against the benchmark persistence.

The paper is structured as follows: Sect. 2 describes li-
dar scans used for minute-scale forecasting. In Sect. 3 the
forecasting methodology is developed. Section 4 provides an
overview of the case study analysed here, evaluates the pro-
posed methodology and presents the results of probabilistic
and deterministic power forecasts. In Sect. 5 we discuss pos-
sible sources of uncertainty and the impact of atmospheric
stability and the measurement set-up on the results before
the conclusions (Sect. 6) are drawn.

2 Planar long-range lidar measurements

For the purpose of forecasting, typically horizontal plan po-
sition indicator (PPI) lidar scans, i.e. with an elevation angle
of ϕ = 0◦, are used. Hereby, the lidar device can be placed ei-
ther on the nacelle or transition piece (TP) of a wind turbine
or a nearby platform. The aim is to cover an area upstream of
the wind farm, preferably in the main wind direction. Scan
parameters, i.e. averaging time and azimuthal resolution, are
chosen to maximize the measurement distance while keeping
the scanning time as short as possible. Scan orientations need
to be adjusted according to the wind direction. For each mea-
surement, typically the line-of-sight (LOS) velocity, carrier-
to-noise ratio (CNR) as well as azimuth angle, range gate,
and time information are available.

For the case study presented in Sect. 4 of this paper, such
a typical set-up was used. Without loss of generality of the
methodology introduced in Sect. 3, we are describing the
main parameters of this lidar campaign to provide a real-
istic example. Lidar scans were performed at the offshore
wind farm Global Tech I (GT I) located in the German North
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Figure 1. (a) Position of the offshore wind farm Global Tech I (GT I) in red. Other wind farms in the North Sea, which were operational
during the measurement campaign, are shown in black. In (b) the layout of GT I is depicted with turbines marked as black dots. The lidar is
positioned on the transition piece (TP) of turbine T2 marked in red and defined as the origin of the coordinate system. The four measuring
trajectories are depicted in colour. Forecasts were generated for turbines T1–T7.

Sea from August 2018 until February 2020 with a Leosphere
Windcube 200S (serial no. WLS200S-024) lidar system po-
sitioned on the transition piece of the westerly located tur-
bine T2 as depicted in Fig. 1. The lidar was placed at a height
of about 24.6 m a.m.s.l. (above mean sea level). Scans were
performed with an azimuthal resolution of 2◦, an averaging
time of 2 s per measurement, a pulse length of 400 ns and
range gates ranging from 500 to 8000 m with 35 m spacing.
The lidar scan spanned a sector of 150◦; thus the duration
of one scan was Ttot = 156 s, i.e. measuring time Tϑ = 150 s
plus a measurement reset time of approximately Tr = 6 s.
One of four different scan orientations (Fig. 1b) was chosen
manually according to the wind direction. A more detailed
analysis of the lidar data will follow in Sect. 4.1.

Besides horizontal PPI lidar scans (ϕ = 0◦), high-elevation
scans with ϕ = 13.57◦, measuring the inflow of turbine T2,
were performed. Here, it was measured with an azimuthal
resolution of 1◦ and an averaging time of 0.2 s per measure-
ment. At hub height, measurements were performed with
a distance to the rotor larger than 2.4 D and therefore out-
side of the induction zone, as recommended by the Inter-
national Electrotechnical Commission’s (IEC) standard for
power curve measurements (IEC, 2017). A total azimuth
range of 180◦, varying from 134 to 313◦, was spanned, which
means it took about 36 s to perform one scan and approxi-
mately 8 s to reset the measurement. Mean wind speeds and
wind directions with an averaging period of 44 s at hub height
were determined by applying a velocity azimuth display
(VAD; see Sect. 3.1) algorithm to each scan. Only situations
with wind directions ranging from 180 to 270◦ were consid-
ered for further analysis. The 44 s mean wind speeds were
used to construct a probabilistic power curve in Sect. 3.5.

3 Methodology

Figure 2 gives an overview of the proposed lidar-based fore-
cast methodology. First, a wind field reconstruction algo-
rithm was applied to retrieve horizontal wind field informa-
tion from line-of-sight measurements of the angular scans
(Sect. 3.1). To keep as many data from far ranges as pos-
sible, a dynamic data filtering approach was used. The low
scanning speed required time synchronization within each
lidar scan, which was realized by means of a propagation
algorithm (Sect. 3.2). Subsequently, an advection technique
was applied to determine a wind speed forecast with lead
time k (Sect. 3.3). The wind speed forecast was defined by
selecting wind vectors arriving within a predefined area of
influence (AoI). This set of wind vectors formed the basis of
the probabilistic wind speed and power forecast. In the next
step, wind vectors were extrapolated from measuring height
to hub height (Sect. 3.4). Finally, hub height wind speeds
were translated into a probabilistic power forecast utilizing a
probabilistic power curve (Sect. 3.5).

3.1 Lidar data filtering and wind field reconstruction

When performing lidar measurements several factors such
as meteorological conditions, hard targets and device lim-
itations can lead to invalid measurements. Typically, the
carrier-to-noise ratio (CNR) is used as an indicator for the
backscattered signal’s quality. Low CNR values hereby indi-
cate low data quality and are commonly neglected by means
of threshold filters (Aitken et al., 2012). However, when
applying a CNR-threshold filtering approach, a significant
number of valid data, especially from far distances, are ex-
cluded (Valldecabres et al., 2018b). As long measurement
distances are most important for this work, we combined
a CNR-threshold filter and a dynamic filtering approach.
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Figure 2. Schematics of the lidar-based forecast methodology. Line-of-sight wind speed measurements uLOS,n measured within a time
interval [tn, tn+1− Tr] were filtered and a wind field reconstruction was performed. Using two consecutive lidar scans, the horizontal wind
speeds uh,n were then synchronized at time tsyn. A propagation technique was applied to propagate wind vectors to tn+1− Tr+ k with end
time of the scan tn+1, measurement reset time Tr and lead time k. Wind speed forecasts umeas were further extrapolated to hub height and
transferred to power forecasts by means of a probabilistic power curve.

Our choice of CNR thresholds is hereby based on simi-
lar ones suggested in literature (Valldecabres et al., 2018b;
Würth et al., 2018). All measurements with CNR> 0 dB
and CNR<−30 dB were neglected, measurements with
−26.5dB< CNR<−5dB were always considered valid,
and remaining values were filtered using the dynamic den-
sity filter developed by Beck and Kühn (2017). Here, CNR
and line-of-sight (LOS) wind speed measurements were first
normalized and sorted in a 2D plane before a 2D Gaussian
function with standard deviations σCNR and σLOS and mean
values µCNR and µLOS was fitted to the normalized values.
Finally, those values positioned outside of an ellipse defined
by the semi-axes 2.75σCNR, 2.75σLOS and the centre posi-
tion µCNR and µLOS were discarded.

After filtering, the global wind direction was determined
by performing a VAD-like fit individually for each range gate
in a certain scan. To do so, homogeneity across range gates
was assumed and the vertical wind speed component ne-
glected (Werner, 2005). Range gates with fewer than 15 valid
lidar measurements were discarded. A one-dimensional wind
speed projection on the prevailing wind direction of the range
gate r was performed using

uh(r,ϑ)=
uLOS(r,ϑ)

cos(ϑ −χ (r))
. (1)

Values with

75◦ < |ϑ −χ |< 105◦, (2)

where ϑ denotes the azimuth angle of the lidar’s scanner and
χ the wind direction, were neglected as they show large error
values due to the almost perpendicular orientation of wind di-
rection and azimuth angle. We will refer to those as critical
angles or the critical region in the following. Apart from that,
remaining outliers with values deviating more than 2.75σ
from the mean wind speed of the scan were neglected (Felder
et al., 2018). Only scans with an overall data availability of at
least 80 % were considered for the forecast. For further anal-
ysis, the results were interpolated onto a Cartesian grid with
25 m spacing. Figure 3 shows an example of a reconstructed
wind field.

3.2 Time synchronization of lidar scans

When the time shift within a lidar scan is larger than the
averaging time (1 min) of the forecasted values, one cannot
assume the scan to be quasi-instantaneous, which is com-
monly done when considering wind speed averages from li-
dar scans. Several approaches to account for the time shift
within the scan have been tested, all aiming to synchronize
the scan in time before applying the propagation methodol-
ogy (Sect. 3.3). We found the most accurate results applying
a time synchronization developed by Beck and Kühn (2019),
which is visualized in Fig. 4. Here, lidar scans were propa-
gated by means of a semi-Lagrangian advection technique.
Propagated scans were generated with a temporal resolution
of 1T . Each propagation was a combination of a forward-
and a backwards-propagated scan, weighted according to
a trigonometric function following the suggestion of Beck
and Kühn (2019). The weighting was dependent on the time
passed since the initialization of the original scan. Hereby,
backward propagations were only taken into account after
one-fifth of the total scanning time Ttot. The total scanning
time consists of the measuring time Tϑ and the measurement
reset time Tr. A 3D natural-neighbour interpolation (Sibson,
1981) was applied to the sequence of propagated scans, de-
termining the horizontal wind speed uh across the scanned
domain and at time tsyn. Figure 4 shows the current lidar
scan initialized at time tn and the previous one initialized
at tn−1 = tn− Ttot in blue. The scanning domain is visual-
ized as azimuth angle ϑ over time. The propagation steps in
between the two scans, performed with the temporal reso-
lution 1T , are shown in grey. Backward and forward prop-
agations are indicated as orange and green arrows. The red
line indicates the synchronization time step tsyn at which
the natural-neighbour interpolation was performed. For the
purpose of forecasting, tsyn should be chosen to stay within
the region of the weighting function that puts no weight to
backwards-propagated scans that were measured after the
forecast’s initialization time; thus tsyn ∈ [tn, tn+a1T ]. Here
a denotes the maximal number of propagation steps possible,
while avoiding backwards propagation. That means the time
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Figure 3. Time synchronization and wind speed forecast of an exemplary scan. Panels (a) and (b) depict two consecutive lidar scans at
GT I with black dots indicating the positions of the turbines. In (c) the time-synchronized scan, determined as a combination of the forward-
propagated scan (a) and the backwards-propagated scan (b), is shown. In (d) a point cloud of wind vectors that will reach T3 marked in red
after a forecasting horizon of 5 min± 30 s is visualized. The mean wind direction of the scan is shown in black.

Figure 4. Time synchronization of the lidar scan initialized at tn shown in blue to time tsyn = tn+ a1T shown in red. The scanning
domain is here visualized as azimuth angle ϑ over time. The synchronized scan is interpolated using propagated lidar scans with a temporal
resolution of 1T . The measurement reset time Tr is indicated as the dashed blue line. Propagated scans, which are shown in grey, are a
combination of a forward and backward propagation weighted according to a trigonometric function. Green and orange arrows above the
figure indicate to which of the propagated scans both forward and backward propagation and to which only a forward propagation contributes.
The synchronized scan at tsyn can thus be reconstructed using only the two consecutive lidar scans initialized at tn and tn−1. tsyn should be
chosen to minimize the wind vector advection period to the forecast time tn+1− Tr+ k with lead time k, indicated as a black arrow. Figure
adapted from Beck and Kühn (2019).
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synchronization can be performed by two consecutive lidar
scans only, avoiding the need for a future scan. We chose the
maximal tsyn = tn+a1T to minimize the wind vector advec-
tion period as indicated by the black arrow in Fig. 4.

3.3 Wind speed forecast

To generate a wind speed forecast the methodology devel-
oped by Valldecabres et al. (2018a) was utilized. A La-
grangian advection technique, based on the assumption that
wind vectors propagate with their local horizontal wind
speed and wind direction (Germann and Zawadzki, 2002),
was applied. It was thus assumed that the wind field vectors
do not change their trajectory with time. As a consequence
of the wind field reconstruction explained in Sect. 3.1, the
direction of wind vectors was the same for all azimuth an-
gles and varied only with range gate. Apart from that, we ne-
glected vorticity, mass conservation and diffusion (Germann
and Zawadzki, 2002; Valldecabres et al., 2018a). To develop
a wind speed forecast with lead time k, wind field vectors
were propagated in time and space from their original posi-
tion at the synchronized time step tsyn to the last time step of
the scan tn+1− Tr and further to tn+1− Tr+ k.

Vectors arriving within a previously defined area of influ-
ence around the turbine of interest and within a time interval
of tn+1− Tr+ k± 30 s were selected and used for the wind
speed forecast. Hereby, wind vectors originating inside of the
wind farm area were neglected. Further, we considered vec-
tors to be able to only contribute to one turbine, i.e. the first
turbine they reached. An example of such a point cloud is
shown in Fig. 3d. The AoI was defined as a circle centred
around the turbine’s position, and its radius was optimized by
minimizing the average continuous ranked probability score
(crps; see Sect. 4.4.1) (Gneiting et al., 2007) of a 1 min ahead
wind speed forecast at a reference free-flow turbine as sug-
gested by Valldecabres et al. (2018a). That means the fore-
cast was optimized with respect to its probabilistic rather
than its deterministic scores. Further, the minimum required
number of wind vectors reaching the turbine was determined
by applying the same methodology. Forecasts based on fewer
vectors were considered invalid.

At this point, two orders of the methodological steps are
possible, i.e. propagating wind vectors at varying heights that
are different from the height of interest to the target turbines
before extrapolating to hub height or performing the extrap-
olation prior to the wind vector propagation. Each of the two
possibilities is associated with specific errors. In this case
study, we chose to propagate wind vectors before the wind
speed extrapolation as this yielded more accurate results. The
consequences of this approach will be discussed in Sect. 5.1.

3.4 Wind speed extrapolation to hub height

As the lidar was positioned at TP height, an extrapolation to
the hub height was needed. A logarithmic wind profile in-

cluding a stability correction 9( z
L

) (Peña et al., 2008) was
used to do so.

uh =
u∗

κ

(
ln
(
z

z0

)
−9

( z
L

))
(3)

u∗ =

√
z0g

αc
(4)

The wind profile includes the horizontal wind speed uh,
roughness length z0, height z, gravitational acceleration g
and Obukhov length L. The friction velocity u∗ is expressed
in terms of the Charnock parameter αc, which describes the
relation between wind speed and roughness of the sea surface
and was set to αc = 0.011 as suggested by Smith (1980) for
far-offshore conditions. The von Kármán constant is defined
as κ = 0.4.

The atmospheric stability for each lidar scan was deter-
mined using the methodology described by Sanz Rodrigo
et al. (2015). Air and sea surface temperature, pressure and
relative humidity values were used to determine the virtual
potential temperature difference 12=2TP−20 between
TP height 2TP and the sea surface 20 as well as the vir-
tual temperature at sea level Tv. The wind speed uTP was
defined as lidar measurements at the closest range gate of
500 m. The stability estimation was performed using 30 min
moving averages of all variables. Here, first the bulk Richard-
son number Rib was calculated, which was then transferred
into the stability parameter ζ as defined by Grachev and
Fairall (1997) and finally the Obukhov length L according
to Eqs. (5)–(7).

Rib =
g

Tv

0.5zTP12

u2
TP

(5)

ζ =

{ 10Rib
1−5Rib

Rib > 0
10Rib Rib ≤ 0

(6)

L=
0.5zTP

ζ
(7)

For the calculation of the stability correction term 9 the
definition (Paulson, 1970; Holtslag and De Bruin, 1988)
shown below was used.

9 =

{
2ln

(
1+x

2

)
+ ln

(
1+x2

2

)
− 2arctan(x)+ π

2 L < 0, where x =
(
1− γ z

L

)1/4
−β z

L
L≥ 0

, (8)

with β = 6 and γ = 19.3 as suggested by Högström (1988).
The roughness length z0 was determined by fitting the wind
speed profile to the wind speed measurements uTP, using the
calculated Obukhov length L.

With the height of the measurement zmeas the wind speed
at hub height uhh can then be expressed as

uhh = umeas

ln
(
zhh
z0

)
−9

(
zhh
L

)
ln
(
zmeas
z0

)
−9

(
zmeas
L

) = umeasch. (9)

In the following, we will refer to ch as the height extrapola-
tion factor.
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Figure 5. Normalized probabilistic power curve of wind turbine T2
with average power and its standard deviation in black for each wind
speed interval.

3.5 Probabilistic wind power forecast

The forecasted wind speed distribution was finally trans-
formed into a wind power distribution. To do so, a probabilis-
tic power curve constructed using high-elevation lidar scans
(Sect. 2) and high-frequency SCADA power data of tur-
bine T2 (Sect. 4.1) was applied. Usually, 10 min wind speed
and power averages are used to construct power curves; how-
ever, we used 44 s mean values, in accordance with the mea-
surement time per scan, to capture the power curve’s asso-
ciated uncertainties more accurately (Gonzalez et al., 2017).
Wind speed values were air density corrected as described by
Ulazia et al. (2019) and according to IEC 61400-12-1 (IEC,
2017). Air pressure and temperature values were hereby cor-
rected to hub height, applying temperature gradients of the
ISO standard atmosphere as suggested by ISO2533 (ISO,
1987). The mean value and standard deviation of power
within wind speed intervals of 0.5 m s−1 width were deter-
mined (Gonzalez et al., 2017). These values were further
used to define a normal cumulative distribution function (cdf)
of power for each wind speed interval. Figure 5 shows the
normalized probabilistic power curve with standard devia-
tions of power indicated by error bars. For each value of the
forecasted wind speed distribution, i.e. for each wind vec-
tor reaching the area of influence, one power value was ran-
domly selected using the normal cdf of its corresponding
wind speed interval. A resampling technique with replace-
ment (Efron, 1979) was applied to the resulting power dis-
tribution, randomly selecting 10 000 power values, as sug-
gested by Valldecabres et al. (2018a).

4 Results

In the following, we will first introduce the case study at the
offshore wind farm Global Tech I, then analyse the method’s
advantages and limitations, and afterwards assess the quality

of a 5 min ahead lidar-based deterministic as well as proba-
bilistic wind power forecast of the free-flow turbines T1–T7,
based on the mentioned case study.

4.1 Case study at the offshore wind farm Global Tech I

Power forecasts at Global Tech I were analysed as a case
study. The wind farm consists of 80 wind turbines of the
type Adwen 5-116 with a rotor diameter ofD = 116 m, a hub
height of zhh = 92 m and a rated power of Pr = 5 MW. The
total capacity of the wind farm is Ptotal = 400 MW. The 1 Hz
SCADA data, including power and wind direction values of
all wind turbines, as well as information regarding the tur-
bines’ operational status, were available for the period of the
measurement campaign. Wind speed values were not mea-
sured but estimated by the SCADA system based on power,
pitch angle and the turbine power curve. Further, information
regarding the SCADA data quality was available and used to
remove low-quality data. In the following analysis, we used
1 min mean values of wind speed and power within the in-
terval t ± 30 s to validate wind speed as well as power fore-
casts for seven wind turbines in the first south-westerly row
marked in Fig. 1. We refer to those turbines as T1–T7 in the
following.

A forecast was generated for each lidar scan, thus with
a temporal resolution of approximately 2.5 min. Forecasts
within the interval from 8 March to 31 May 2019 were eval-
uated. Here, we only considered situations in power pro-
duction mode below rated wind speed. For further analysis,
only scans with a total spatial availability of at least 80 %
after applying the filtering algorithms (Sect. 3.1) were con-
sidered. The total availability was considered to be 100 % if
data at all measured range gates and azimuth angles between
140 and 300◦ were valid. Missing data beyond these azimuth
limits were considered not to impact the quality of the fore-
cast gravely and were thus neglected when determining the
total spatial availability. In total, 17 024 lidar scans with a
mean availability of 89.7 % were used for the analysis. The
wind speed and direction distribution of those situations con-
sidered are visualized in Fig. 6. North-westerly winds from
250 to 320◦ were identified as the prevailing wind direction.
Wind speeds mainly lay between 6 and 12 m s−1. As a con-
sequence of the wind farm’s layout, we only used scans with
wind directions 130◦ < χ ≤ 350◦, indicated as grey shaded
area in Fig. 6.

To perform the time synchronization an interpolation time
step 1T = 6 s was chosen. With a scanning time of Ttot =

156 s, we chose the synchronization time as tsyn = tn+

51T = tn+ 30 s in order to avoid the need for a backwards
propagation as explained in Sect. 3.2. Time-synchronized
wind vectors were propagated with a lead time of k = 300 s
to generate a wind speed forecast. For a forecast to be
valid, at least a number of Z = 20 wind vectors needed to
be available. The radius of the area of influence was set
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Figure 6. Wind speed and direction distribution of the used data
set at the wind farm Global Tech I. Shown are mean wind speed
and direction values for all lidar scans with a data availability of at
least 80 % within the period from 8 March to 31 May 2019. The
grey shaded area indicates wind directions that were considered for
further analysis.

to RAoI = 0.2D = 23.2 m, following the methodology de-
scribed in Sect. 3.3, with T2 as the reference turbine.
L was determined using meteorological measurements:

air pressure, humidity and air temperature measurements
were performed using two sensors (Vaisala PTB330 and
Vaisala HMP155) from July 2018 until February 2020, both
positioned at the height of the lidar at about 24.6 m. Addi-
tionally, sea surface temperature (SST) data, which showed a
good agreement with on-site buoy measurements performed
at an earlier time (Schneemann et al., 2020), were available
from the OSTIA data set (Good et al., 2020). SST data are
available at noon every day and were linearly interpolated to
match the timestamps of the lidar scans. Interpolations were
performed utilizing both past and future values with respect
to the initialization time. The interpolated SST data are in this
context understood as an artificial buoy measurement. L was
then used to extrapolate wind vectors from measuring height
to hub height following Sect. 3.4.

During the measurement campaign, a slight elevation mis-
alignment of the lidar was detected. Using a so-called sea
surface levelling method, the magnitude of pitch and roll of
the lidar, i.e. the tilt of the geographical coordinate system,
was determined as proposed by Rott et al. (2017). The in-
clinations were hereby found to be related to the mean wind
speed and wind direction, i.e. the thrust and the yaw orien-
tation of the turbine. Pitch and roll, defined as clockwise ro-
tations around the x and y axes, were 0.02 and −0.11◦ re-
spectively for the turbine in idling mode and 0.02◦± 0.15◦

and −0.11◦± 0.11◦ respectively during power production,
depending on the mean wind speed. As even small errors in

the elevation will lead to large differences in the measure-
ment height, especially for far measurement distances, we ac-
counted for the misalignment by means of a correction func-
tion. The correction function used the power production of
the turbine and the mean wind direction to determine pitch
and roll. These values were then used to estimate the cor-
rected measuring height across the scanned area. Height dif-
ferences due to the curvature of the Earth were considered as
well. An additional uncertainty was introduced by the tide,
which varied approximately ±0.6 m. For simplicity, we ne-
glected this influence.

The measuring height zmeas in Eq. (9) therefore varied
with range gate and azimuth for each scan. Heights of wind
vectors contributing to wind speed forecasts in this analysis
spanned between a height of 20 and 65 m, with a mean height
of 36 m.

Wind vectors extrapolated to hub height were transformed
in a final step to wind power values using the methodology
and power curve introduced in Sect. 3.5. For the evaluation
of the probabilistic wind power forecasts, we distinguished
between stable or neutral and unstable atmospheric stratifi-
cation. Situations with values of −1000 m<L< 0 m were
classified as unstable, while those with 0 m<L< 1000 m
were defined as stable (Van Wijk et al., 1990). All other cases
were defined as neutral.

4.2 Evaluation of methodology

Here, we aim to present the results of the individual method-
ical steps introduced previously. We assessed how the use
of single-Doppler lidar measurements and the low scanning
speed affected the lead time, availability and skill of the fore-
cast. Further, the impact of the extrapolation to hub height
was analysed (Theuer et al., 2020).

The data availability of all valid lidar scans dependent
on range gate, applying different filtering methodologies, is
compared in Fig. 7. Clearly, the availability of data was in-
creased for far ranges when applying the density filter (red
line) compared to a CNR-threshold filter (blue line) with
−26.5 dB<CNR<−5 dB. While the data availability at a
range gate of 7 km has already decreased to 42 % for the
threshold filter, it still lies at 73 % when using the density
filter. Also at close range gates from 500 to 1450 m, the avail-
ability was increased from about 95 % to almost 100 %. The
green line depicts the data availability after applying the den-
sity filter and additionally neglecting all other invalid data.
That included the removal of wind speed outliers; however,
the dominant effect was the omission of values within the
critical region as described in Sect. 3.1. For the given mea-
surement set-up and range gates up to 6 km, the availability
was reduced to approximately 85 % of the density-filtered
data. At 7 km it decreased to 61 %. As the data availability
was already reduced for far distances, the impact of further
filtering was smaller compared to near ranges with higher
data availability.
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Figure 7. Data availability dependent on range gate when apply-
ing the threshold filter (blue) and the density filter (red). In green
the availability after applying the density filter and neglecting the
critical angles and wind speed outliers is depicted.

The number of observations at each measurement point
in the polar coordinate system of the lidar before filtering
is shown in Fig. 8a. Clear differences in the number of ob-
servations are visible as a consequence of the four scanning
trajectories of the lidar (Fig. 1b). In accordance with the wind
direction distribution (Fig. 6), north-westerly sectors were
covered more frequently than southerly sectors. Figure 8b
visualizes the number of observations after filtering not only
dependent on range gate, but also on the azimuth angle. The
single-Doppler lidar set-up caused the need to apply a VAD
fit and as a consequence to filter certain regions of the scan,
earlier referred to as critical regions. As an effect, data avail-
ability was significantly reduced. For instance, for the vicin-
ity of the prevailing wind direction of approximately 300◦

(Fig. 6) the critical region defined by Eq. (2) ranges from
15 to 45◦ and 195 to 225◦, i.e. the sectors perpendicular
to the wind direction. Consequently, at an azimuth of 220◦

the availability was degraded from 1 085 000 observations to
only 732 200, thus by about 32 %. Figure 9a shows how the
availability of measurements impacted the number of valid
forecasts for turbines T1–T7, depending on the scan’s mean
wind direction. The black line indicates the total number of
valid scans, and thus the maximal number of possible fore-
casts, available for the wind direction intervals. Compared to
this, the number of valid forecasts is much lower for wind
directions larger than 250◦ for turbines T5–T7. The fore-
cast’s quality, i.e. the mean absolute error (MAE; Sect. 4.3.1),
is also decreased for those wind directions, especially for
T6 and T7 (Fig. 9b). Here, the lidar scans mainly covered
the north-westerly inflow direction of the wind farm. Con-
sequently and due to the layout of the wind farm, the area
from which wind vectors are propagated to turbines T5–T7
in particular was not covered well by the lidar scan, resulting
in reduced forecast availability and quality.

Also for wind directions ranging from 160 to 200◦, the
quality of forecasts at T5–T7 is lower compared to the other
turbines. A similar problem occurred here as the turbines are
placed within the scan area (Fig. 8). For the mentioned wind
directions the area from which wind vectors can be prop-
agated is thus considerably smaller, resulting in fewer avail-
able vectors and consequently higher forecast errors. Further-
more, vectors contributing to the wind speed forecast origi-
nate from far range gates. Typically, in higher range gates
the lidar has larger measurements errors, and additionally the
tangential distance between measurements is greater, result-
ing in less accurate interpolations to the Cartesian grid.

For wind directions larger than 310◦ an increasing MAE
and a decreasing number of valid forecasts can be observed
for turbines T2–T7. This is likely related to the interference
with wakes. Due to the wind farm layout, some vectors were
advected through the wind farm area before reaching the tar-
get turbine. Even though wind vectors blocked by other tur-
bines were not considered here, this simple advection tech-
nique cannot represent the more complex flow within the
wind farm. A similar problem occurs for wind directions
smaller than 150◦, in this case mainly affecting T1–T5.

The application of the time synchronization method intro-
duced in Sect. 3.2 extended the wind vector propagation time
of the 5 min ahead forecast from 300 to 420 s. The synchro-
nization time tsyn was set to 30 s after the initialization of the
scan (Sect. 4.1). That means, to reach the last time step of the
scan at 150 s, not considering the measurement reset time, a
propagation of an additional 120 s was required. The total
scanning time hereby determines the additional propagation
time. That means low scanning speeds reduce the maximal
forecast lead times, in this case by 2 min.

Based on the data availability at different range gates,
the maximal possible lead time of the forecast was deter-
mined. Even though we only considered partial load situa-
tions, i.e. situations with mean wind speeds up to 12 m s−1,
higher wind speeds may have contributed to the wind speed
distribution. Excluding those by choosing a too large lead
time would thus falsify the results. Considering 15 m s−1

wind speeds, the measuring range needs to extend to 4500 m
for 5 min ahead forecasts and to 9000 m for predictions with a
lead time of 10 min. Taking into account the additional prop-
agation time of 120 s, the measuring range would even need
to be extended to 6300 and 10 800 m respectively. Due to the
layout of the wind farm, turbines are often placed inside the
scan, which can – depending on wind direction – lead to a
reduction of the maximal possible advection distance. Tak-
ing this into account, combined with the fact that the data
availability decreases with range, it is not possible to gen-
erate forecasts with lead times larger than 5 min using the
available lidar scans.

The wind speed extrapolation to hub height is, follow-
ing the method introduced in Sect. 3.4, mainly dependent
on stability. Figure 10 shows the dependence of the height
extrapolation factor ch, calculated with Eq. (9), on Obukhov
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Figure 8. Distribution of measurements across the measurement domain as a result of varying lidar trajectories. The number of observations
at each measurement point in the polar coordinate system of the lidar is visualized (a) before and (b) after data filtering. Filtering includes
the density filter, the exclusion of critical regions and filtering of wind speed outliers.

Figure 9. Number of valid forecasts (a) and mean absolute error (MAE; see Sect. 4.3.1), (b) for turbines T1–T7 as a function of wind
direction χ sector of 10◦ width. The black line in (a) depicts the maximal number of possible forecasts, i.e. the number of valid scans,
available for each wind direction.

lengths L assuming an extrapolation from a height of 24.6 m
to 92 m and a roughness length of z0 = 0.0002 m. While
the slope of the curve becomes small when approaching
Obukhov lengths L with large magnitudes, thus neutral situ-
ations, especially for very stable cases L→ 0, the change of
the correction factor with L is considerably larger. This con-
sequently means mis-estimations of Obukhov length L have
a larger impact on the wind speed extrapolation in stable situ-
ations. In order to determine this effect, we distinguished be-
tween stability cases in the following analysis. While during
55.5 % of the valid scans unstable atmospheric stratification
was observed, in 18.2 % the atmosphere was defined as neu-
tral. Stable situations were observed in 26.3 % of the cases.
To be able to evaluate unstable cases, during which we ex-
pect the highest errors in persistence compared to stable and

neutral ones, separately and to level the number of analysed
cases, we chose to combine stable and neutral situations for
the analysis.

4.3 Deterministic wind power forecast

4.3.1 Deterministic forecast evaluation

Wind speed point forecasts were calculated as the mean
of the predicted wind speed distributions. Forecasts (fc)
were verified with 1 min mean SCADA data (obs) and us-
ing the root-mean-squared error (RMSE), mean absolute er-
ror (MAE) and bias. N denotes the total number of forecasts
considered.
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Table 1. Number of valid forecasts N , RMSE, MAE and bias for turbines T1–T7 for the lidar-based forecast and persistence during unstable
stratification for all available forecasts and all simultaneously available ones. Scores are given in percent of the turbines’ nominal power with
the lowest values in bold.

T1 T2 T3 T4 T5 T6 T7

N 2510 2840 2948 2710 2048 640 297

RMSE (%)
lidar-based 7.20 8.81 8.63 9.54 11.39 13.87 21.07
persistence 8.37 9.99 10.80 10.95 12.09 10.94 11.35

MAE (%)
lidar-based 5.02 6.20 6.17 6.91 8.53 10.53 16.67
persistence 5.45 6.75 7.34 7.72 8.63 8.28 8.88

Bias (%)
lidar-based −1.16 0.86 0.52 −0.24 −1.65 4.81 10.37
persistence 0.41 0.36 0.31 0.26 0.09 −1.54 −1.69

N 45 45 45 45 45 45 45

RMSE (%)
lidar-based 9.26 9.75 7.91 7.73 8.23 10.54 14.08
persistence 10.52 9.80 12.78 10.14 12.10 9.94 12.28

MAE (%)
lidar-based 6.77 6.84 5.92 6.28 5.97 7.63 11.00
persistence 8.08 6.97 9.72 8.10 10.08 7.92 9.32

Bias (%)
lidar-based −4.31 −1.20 −2.69 −1.01 −2.37 −0.29 −2.45
persistence −1.78 0.10 −3.88 −0.31 −2.28 −2.08 −3.75

Figure 10. Dependence of the height extrapolation factor ch on the
Obukhov length L. In this example an extrapolation from 24.6 to
92 m with a roughness length of z0 = 0.0002 m is shown.

RMSE=

√√√√ 1
N

N∑
i=1

(fci − obsi)2 (10)

MAE=
1
N

N∑
i=1

|(fci − obsi)| (11)

Bias=
1
N

N∑
i=1

(fci − obsi) (12)

As a reference, the benchmark persistence was used,
which assumes the future value at t + k equals the current
value at time t , i.e. fc(t + k)= obs(t).

4.3.2 Unstable stratification

Figure 11 compares 1 min mean SCADA wind power val-
ues of turbine T3 with persistence and the lidar-based fore-
casts (LF) in unstable atmospheric conditions. Both methods
show an overall good agreement between forecast and obser-
vation with R2

= 0.80 and R2
= 0.86, with the LF’s scatter

being slightly smaller than that of persistence. The LF out-
performs persistence in terms of RMSE and MAE. The lidar
forecast’s bias of 0.52 % is slightly larger than that of per-
sistence with 0.31 %. The magnitude of the error is increas-
ing with increasing power for both persistence and the lidar-
based forecast. As the wind speed forecasting error was not
found to increase with wind speed, the increase in error with
power is attributed solely to the cubic nature of the power
curve.

Table 1 summarizes the results of turbines T1–T7 for un-
stable situations for all valid forecasts and also shows the
scores for only simultaneously available forecasts. During
unstable atmospheric stratification and for all available fore-
casts, the LF outperforms persistence for turbines T1–T4 in
terms of RMSE and MAE, with the lowest RMSE observed
for T1 and the largest improvement compared to persistence
for T3 with 20.1 %. The bias of those turbines is slightly
larger than of persistence but rather small and not suggest-
ing a systematic over- or underestimation of power caused
by the model. T5 shows lower forecast skill and outperforms

https://doi.org/10.5194/wes-5-1449-2020 Wind Energ. Sci., 5, 1449–1468, 2020



1460 F. Theuer et al.: Minute-scale power forecast of offshore wind turbines

Figure 11. Comparison of 5 min ahead power forecasts at turbine T3 with 1 min mean SCADA data for (a) persistence and (b) the lidar-based
forecast for unstable stratification. Values are given as a fraction of the turbine’s nominal power.

Figure 12. Comparison of 5 min ahead power forecasts at turbine T3 with 1 min mean SCADA data for (a) persistence and (b) the lidar-based
forecast for stable and neutral stratification. Values are given as a fraction of the turbine’s nominal power.

persistence only in terms of RMSE. The quality of the LF
at T6 and T7 is below that of T1–T4 with a strongly reduced
number of valid forecastsN . We attribute this to the turbines’
position in an area not covered well by the lidar scans, which
means fewer wind vectors can be propagated to the target
turbines (Sect. 4.2). In Fig. 8b it can be observed that espe-
cially regions close to these turbines have low data availabil-
ity. Low wind speeds, possibly originating from those areas,
are thus not represented well in the wind speed distributions,
causing an overestimation of wind speed and power. Also
for only simultaneously available forecasts, the LF outper-
forms persistence for all turbines except T6 and T7. The dif-
ference in quality is less distinct in that case, with the RMSE
increasing by a factor of 1.8 instead of 2.4 from T3 to T7.
While some of the quality differences observed for all avail-
able cases can thus be explained by the varying time intervals

considered, this also confirms that forecast accuracy depends
on the availability of wind vectors.

4.3.3 Stable and neutral stratification

Figure 12 shows the comparison of SCADA data and LF
as well as persistence forecasts for stable and neutral atmo-
spheric conditions at turbine T3. While the overall agreement
between observation and forecast is good for persistence,
larger scatter, a higher RMSE and MAE are observed for
the LF. The plateaus, which can be observed in Fig. 12b, are
an artefact of the transformation from wind speed to power.
In cases where most wind vectors are placed within the same
wind speed bin, the forecasted power will be close to the av-
erage power value of the corresponding wind speed interval
(Fig. 5). Generally, persistence clearly outperforms the LF
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Table 2. Number of valid scans N , RMSE, MAE and bias for turbines T1–T7 for the lidar-based forecast and persistence during stable and
neutral stratification. Scores are given in percent of the turbines’ nominal power with the lowest values in bold.

T1 T2 T3 T4 T5 T6 T7

N 2013 2197 2209 2102 1273 1219 554

RMSE (%)
lidar-based 12.57 12.23 12.51 13.16 13.52 14.61 16.01
persistence 6.87 6.90 6.85 7.29 7.78 6.56 6.36

MAE (%)
lidar-based 8.77 8.64 8.95 9.46 9.72 10.77 11.88
persistence 4.56 4.80 4.75 5.08 5.14 4.64 4.26

Bias (%)
lidar-based 1.26 1.39 0.18 0.01 1.05 2.85 6.66
persistence 0.56 0.55 0.39 0.78 0.55 0.44 0.35

during stable and neutral conditions in terms of RMSE and
MAE as summarized in Table 2. While the lidar forecast’s
bias for T3–T5 is lower than that of persistence, it shows
a large overestimation of power, especially for T6 and T7.
Similar to unstable cases, the quality and number of valid
lidar-based forecasts decrease for turbines positioned in ar-
eas not well covered by the lidar scan. As in particular areas
close to the turbines are not represented well (Fig. 8b), wind
speed and power are being overestimated.

The quality of persistence is much better compared to un-
stable situations, due to lower wind speed fluctuations char-
acteristic in stable situations (Stull, 2017). The lidar fore-
cast’s skill, however, is considerably lower compared to un-
stable situations. We attribute this to the extrapolation of
wind speed to hub height. Variations in Obukhov length L
and measuring height zmeas have a larger impact on the height
extrapolation factor for stable situations compared to unsta-
ble situations, leading to larger errors in the case of mis-
estimations. We will discuss this in more detail in Sect. 5.1.

4.4 Probabilistic wind power forecast

4.4.1 Probabilistic forecast evaluation

Probabilistic forecasts are generally evaluated by means
of their sharpness and calibration. Sharpness describes the
broadness of its distribution, while calibration estimates the
consistency between the statistics of forecasts and observa-
tions (Gneiting et al., 2007). Both calibration and sharpness
are estimated with the average crps:

crps=
1
N

N∑
i=1

∞∫
−∞

[
Fi(x)−H

(
x− x0,i

)]2dx. (13)

Here, F denotes the cdf of the forecasted wind power, x0 the
observed wind power andH the Heaviside step function with
H (x− x0)= 0 for x < x0 and H (x− x0)= 1 otherwise.

To assess the forecast’s calibration, quantile–quantile reli-
ability diagrams (Hamill, 1997) were used. A reliability dia-
gram determines what percentage of the observations lie be-
low a certain quantile of the forecasted distribution. Ideally,

j % of the observation should lie below the j th percentile
of the forecasts. Additionally, confidence intervals were es-
timated by means of a resampling technique to account for
the varying number of values per bin and the varying num-
ber of valid forecasts for the different turbines (Hamill, 1997;
Wilks, 2011). Again, forecasts were verified with 1 min mean
SCADA data.

Also, for the evaluation of probabilistic forecasts, persis-
tence was used as a reference. Here, we generated a proba-
bilistic persistence forecast by adding the errors of the 19 pre-
vious time steps to the forecast, as suggested by Gneiting
et al. (2007).

4.4.2 Unstable stratification

In Table 3 the average crps of persistence and the LF are
compared for turbines T1–T7 for unstable situations for all
available forecasts as well as all simultaneously available
ones. Here, forecasts of turbines T1–T4 are sharper and bet-
ter calibrated than persistence, while for T6 and T7 persis-
tence outperforms the LF. When considering only simulta-
neously available forecasts, persistence only outperforms the
LF forecast for T7. These results are in good agreement with
the deterministic scores, indicating that the LF achieves bet-
ter quality in unstable conditions as long as sufficient wind
field data are available.

An exemplary time series of the lidar forecast for unsta-
ble stratification is shown in Fig. 13. The turbine’s 1 min
mean SCADA power, the LF’s mean values and persistence
are plotted in blue, red and green respectively. Each marker
represents one forecast, generated with a temporal resolution
of about 2.5 min. Shaded grey areas around the lidar fore-
cast’s mean indicate 5 % to 95 % prediction intervals in 10 %
steps. Generally, the LF is able to follow the observed power
more accurately than persistence does. Starting at 15:09 UTC
a ramp event occurs, with a power drop from 92 % to 42 %
within a time interval of 13.5 min. The LF predicts the ramp
event quite accurately. Another extreme power drop of 40 %
within 5 min can be observed at 16:21 UTC, also captured
well by the lidar forecast. For both cases, persistence strongly
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Table 3. Number of valid forecasts N and average crps for turbines T1–T7 for the probabilistic lidar-based forecast and persistence during
unstable stratification for all available forecasts and all simultaneously available ones. The crps is given in percent of the turbines’ nominal
power with the lowest values in bold.

T1 T2 T3 T4 T5 T6 T7

N 2510 2840 2948 2710 2048 640 297

crps (%)
lidar-based 6.86 8.78 8.25 9.01 11.54 12.35 19.22
persistence 7.53 9.17 10.11 10.62 11.58 11.49 11.61

N 45 45 45 45 45 45 45

crps (%)
lidar-based 10.37 11.51 10.14 10.94 12.08 12.09 18.54
persistence 11.41 12.57 12.93 14.23 14.03 12.41 12.60

overestimates the power. The width of the prediction inter-
vals ranges from 18 % to 48 %. Broader intervals might be an
indicator of higher uncertainties associated with the forecast.
At all times except for two time steps, the intervals are able to
capture the true power fluctuations. In 26 of the 37 depicted
forecasts, the observed power lies within the 25 %–75 % in-
terval and in five cases within the 45 %–55 % interval.

In Fig. 14 the reliability diagram of turbines T1–T7 is de-
picted for persistence as well as the lidar-based forecast for
the unstable cases. For none of the seven turbines is persis-
tence well calibrated, but it shows large discrepancies with
the diagonal black line, which would indicate a perfect cali-
bration. For T3 about 27 % lie below the 5 % quantile, while
only 73 % lie below the 95 % quantile. All turbines have very
similar reliability. The calibration of the LFs is in general
better than for persistence, especially for turbines T2 to T4.
For low quantiles, for all turbines 7 %–14 % of the LFs lie
below the 5 % quantile. Also taking the narrow confidence
intervals assigned to those values into account, here the fore-
casts are comparatively well calibrated. For high quantiles,
the turbines show large differences in reliability. While T3 is
relatively well calibrated with 86 % below the 95 % quantile,
T7 is hardly calibrated with a value of 77 %. The generally
too low values for large quantiles suggest that a higher prob-
ability needs to be assigned to higher power values (Hamill,
1997).

4.4.3 Stable and neutral stratification

We compare the average crps for stable and neutral con-
ditions of persistence and the LF in Table 4. Here, persis-
tence is generally more accurate than the LF. Again, persis-
tence’s quality is considerably better compared to unstable
situations, while that of the LF is strongly reduced. The re-
liability diagrams depicted in Fig. 15 demonstrate that per-
sistence is also better calibrated in stable and neutral cases;
however, still about 20 % of the forecasts lie below the 5 %
quantile while only about 80 % lie below the 95 % quantile.
Again, all turbines show similar results. Using the LF, espe-
cially at high quantiles, fewer observations than expected lay

below the respective quantiles, indicating that higher proba-
bilities need to be assigned to larger values (Hamill, 1997).
T2–T4 are best calibrated with 79 %–80 % below the 95 %
quantile. For all other turbines, in particular those positioned
in areas with low lidar scan coverage, results are worse than
for persistence.

5 Discussion

We introduced a minute-scale forecasting methodology for
long-range single-Doppler lidar measurements and used it to
predict the power of seven free-flow turbines of the offshore
wind farm Global Tech I. The proposed model was developed
as an extension of and an alternative to existing methods and
is applicable to far-offshore sites. Emphasis was hereby put
onto the use of single-Doppler lidar measurements compared
to dual-Doppler radar set-ups. In the following, we discuss
the model’s ability to skilfully predict power under different
atmospheric conditions. Moreover, limitations, possibilities
and necessary adjustments concerning the forecast horizon
are assessed. Finally, we qualitatively analyse the forecast
uncertainty.

5.1 Forecasting skill for different atmospheric conditions

While the LF was able to predict wind power more reli-
ably than persistence for unstable situations, the methodol-
ogy failed when applied during stable stratification. Gener-
ally, we would expect the assumptions of a homogeneous
wind field and negligible vertical wind speed component,
which are the basis of the wind field reconstruction, to be less
applicable during unstable situations when high amounts of
thermal buoyancy cause strong vertical mixing (Stull, 2017).
Also, the Lagrangian advection technique is expected to be
more accurate for stable cases as during unstable situations
vertical mixing considerably impacts the flow (Würth et al.,
2018). Valldecabres et al. (2018b), for instance, found that
for far ranges the applied wind field reconstruction methods,
more specifically the higher arc length, could act as a low-
pass filter and consequently smooth out the wind speed fluc-
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Figure 13. An example 1.5 h time series of the 5 min ahead lidar power forecast for unstable stratification at turbine T3 shown in red.
Confidence intervals are visualized as shaded grey areas from 5 % to 95 % in 10 % intervals. The blue curve shows 1 min mean SCADA data
of T3 and the green curve persistence.

Figure 14. Reliability diagrams of all free-flow turbines of (a) the lidar-based forecast and (b) persistence for unstable stratification. The
95 % confidence intervals are visualized as error bars.

Table 4. Number of valid forecasts N and average crps for turbines T1–T7 for the probabilistic lidar-based forecast and persistence during
stable and neutral stratification. The crps is given in percent of the turbines’ nominal power with the lowest values in bold.

T1 T2 T3 T4 T5 T6 T7

N 2013 2197 2209 2102 1273 1219 554

crps (%)
lidar-based 10.93 10.46 10.61 11.14 15.16 12.78 22.80
persistence 6.13 6.63 6.60 6.98 6.83 6.46 3.89
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Figure 15. Reliability diagrams of all free-flow turbines of (a) the lidar-based forecast and (b) persistence for stable and neutral stratification.
The 95 % confidence intervals are visualized as error bars.

tuations. This implies that in particular unstable situations
cannot be predicted well. We, therefore, suppose that the low
forecast skill observed during stable and neutral stratification
is not related to the wind field reconstruction, but to the dif-
ferences of measuring height and target height. That includes
in particular errors in the extrapolation of wind speed to hub
height. In Sect. 4.2 we have already shown that due to the
nature of the stability-corrected logarithmic wind profile a
mis-estimation of the Obukhov length L may have a strong
impact on the forecast quality in stable situations. Other er-
rors are possibly caused by an inaccurate estimation of the
roughness length, a wrong estimation of the actual measur-
ing height or a general inapplicability of the logarithmic wind
profile. A more detailed analysis of errors associated with
wind speed extrapolation of long-range lidar measurements
by Theuer et al. (2020) supports this interpretation.

Further, the height difference causes errors in wind vector
advection. We chose to propagate wind vectors to the target
turbines prior to the wind speed extrapolation. Vectors were
thus propagated with lower wind speed at measuring height
compared to that at hub height. This suggests wind vectors
arrive at the turbines slightly delayed, with the extent of the
delay related to the measuring height. We assume this re-
duces the forecast skill. As the increase in wind speed with
height is larger during stable stratification, we expect the ef-
fect to be more distinct for those cases. In this case study, the
alternative, i.e. extrapolating wind speed before propagation,
caused even larger errors compared to the ones presented in
Sect. 4. That means, here the propagation of wind vectors
associated with large errors due to wind speed extrapolation
has a stronger impact on the forecast accuracy than the ad-
vection at lower heights.

For future applications, a more accurate description of the
wind profile, especially in stable situations, is required to fur-

ther improve the forecast skill. That also includes a more
accurate estimation of stability and therefore demands reli-
able meteorological measurements. We thus suggest using
buoy measurements for future applications instead of relying
on OSTIA SST data (Sect. 4.1). Also, accurate and undis-
turbed air temperature measurements at at least two heights
might be a good alternative to determine atmospheric stabil-
ity. Both approaches would incur additional equipment and
operational costs. Additional profile information could, for
example, be collected using range height indicator (RHI) li-
dar scans or data from a nearby met mast.

While the benchmark persistence yields good forecasts for
stable and neutral situations, it has obvious shortcomings for
strongly fluctuating situations and ramp events. Its compari-
son to the LF model has shown the latter’s ability to predict
such situations better (Fig. 13). In particular the probabilis-
tic forecast has proven to be more skilful compared to per-
sistence as it provides better-calibrated estimations of pre-
diction intervals. We thus consider the lidar-based forecast a
valuable addition to the benchmark persistence during unsta-
ble situations.

5.2 Forecast horizon and scanning trajectory

In this work, we developed a 5 min ahead power forecast.
In order for remote-sensing-based forecasts to be useful for
power grid balancing and electricity trading, the forecast
horizon needs to be extended further (Würth et al., 2019).
The accuracy of the lidar-based forecasts is expected to de-
crease with increasing lead times; however, Würth et al.
(2018) found the accuracy of the state-of-the-art persistence
to decrease faster. Lidar-based forecasts thus have the po-
tential to bridge the gap between persistence and hour-ahead
forecasts.
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Small lidar systems suitable for offshore campaigns typi-
cally reach measurement distances from 8 km to a maximum
of 10 km (Leosphere, 2018). Assuming a measuring distance
of 9 km from the turbine’s position and not considering re-
ductions of lead time due to time synchronization, LFs can be
used to predict a 10 m s−1 mean wind speed with variations
of ±20 % with a lead time of 12.5 min, and 8 m s−1 mean
wind can be predicted 15.6 min ahead. However, not only the
maximal measurement distance and wind speed but also the
wind farm layout, scan geometry and wind direction have a
significant impact on the lead time and quality of the forecast
of individual turbines. We showed that forecasts for turbines
positioned in an area not covered well by the lidar scan show
low quality, and fewer situations can be forecasted compared
to those placed in a well-covered area. Due to the limited
area, a smaller number of wind vectors can be advected to
the turbine of interest, resulting in lower forecast availabil-
ity and larger biases. This is confirmed by Valldecabres et al.
(2018a), who showed how reduced radar availability reduces
the wind speeds that could be forecasted, the number of valid
forecasts and quality of the forecast’s calibration.

A large disadvantage of single-Doppler lidar data is the
need to exclude a critical region with 75◦ < |ϑ −χ |< 105◦

as a consequence of the VAD fit (Sect. 3.1), which enhances
this effect. The extent to which specific turbines are affected
also depends on wind direction. Additionally, an inaccurate
adjustment of the scanning trajectory to the wind direction
can reduce data availability.

Furthermore, the long duration of the scans in this analy-
sis caused the need for a time synchronization and reduced
the achievable forecast horizon after the end time of the scan
significantly (Sect. 3.3). Possibilities to reduce the scan time
are (i) an increased scanning speed, which reduces the max-
imum measurement distance; (ii) a lower azimuthal resolu-
tion, which introduces errors to the wind field interpolation,
especially for far range gates; and (iii) a reduced total az-
imuth spanned, which further reduces forecast availability
and quality for some of the target turbines. To make reliable
statements regarding the optimal lidar position and scanning
trajectory, a more detailed analysis of forecast quality for dif-
ferent wind directions and scan geometries is necessary. This
should also include a study on the effect of reduced scanning
time on forecast skill.

5.3 Uncertainty estimation and data availability

We already mentioned the errors attributed to the extrapola-
tion of wind speeds to hub height, namely uncertainties in
stability and wind profile estimation as well as an inaccu-
rate determination of measuring height. While measuring at
hub height would reduce the need for a wind speed extrapola-
tion, it would introduce new challenges such as the correction
for significant stationary and dynamic inclination of the scan
plane due to the flexibility of the wind turbine tower and its
dynamic excitation. In our case study, we had to correct for

wind-speed-dependent platform inclination despite the fact
that the lidar was positioned on a comparably stiff platform
on a tripod foundation of the offshore turbine at GT I.

We further have to consider errors during the wind field re-
construction, including the estimation of global wind direc-
tion by means of a VAD fit, assuming a homogeneous flow
and neglecting the vertical wind component. Those wind di-
rection errors; uncertainties in azimuth, elevation and range
gate of the lidar system; and errors of the measured line-
of-sight velocities all contribute to the uncertainties in the
estimation of the horizontal wind field. The use of dual-
Doppler instead of single-Doppler lidar data would allow for
a more accurate estimation of horizontal wind speed compo-
nents and would likely decrease the associated errors signif-
icantly. We further expect the propagation of wind vectors
by means of their local wind speed and direction, both as-
sumed constant along the entire trajectory, to introduce some
uncertainties, enhanced by the errors assigned to its input pa-
rameters. Especially in situations where wind vectors were
partially propagated through the wind farm area and turbines
might have been affected by wakes, large errors were ob-
served. Moreover, recent studies suggest the existence of a
wind farm blockage effect (Bleeg et al., 2018), which might
cause wind vectors to slow down when approaching the wind
farm. Another large contribution to the overall forecast error
is the transformation from wind speed to power values, as
uncertainties in wind speed are magnified due to the cubic
nature of the power curve. As discussed earlier, we found
the above-mentioned uncertainties to depend not only on the
lidar set-up but also on the atmospheric condition. Detailed
knowledge of the forecast uncertainty is important to be able
to further assess the possibilities and limitations of the pro-
posed method and to reduce sources of error.

The variety of uncertainties associated with the model em-
phasize the importance of the probabilistic approach as it
allows us to account for some of them. The area of influ-
ence hereby plays a crucial part to determine the probabilis-
tic forecast. The AoI estimated in this case study is 5 times
smaller than the one Valldecabres et al. (2018a) defined in
their work, despite applying the same methodology. We ex-
plain this by the many factors influencing the crps and conse-
quently AoI, i.e. the lidar wind field, the SCADA time series
and the number of wind vectors available to be propagated.
The difference in AoI suggests that it needs to be determined
individually for each data set.

As already mentioned, the VAD fit caused the estimated
wind direction to be constant across azimuth angles and only
vary with range gates. This likely had an impact on the indi-
vidual wind vectors reaching the area of influence. The uni-
form wind direction across range gates restricted the area
from which vectors could be propagated to the target tur-
bines. We assume this led to a mis-estimation, most likely an
underestimation, of the spread of the observed wind speeds.
Consequently, it is anticipated that the spread of the fore-
casted wind power distribution is too small. When using
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dual-Doppler lidar measurements, wind directions could be
determined individually for each measurement point and the
forecast’s distribution represented more accurately.

Another limitation of the LF is its need for high data avail-
ability. Lidars send out laser pulses and use the backscattered
signal to estimate wind speed. If not enough or too many
aerosols are in the air, the signal becomes noisy (Newsom,
2012). That means for example during rain and fog, no accu-
rate lidar measurements will be available and no forecast can
be generated. One solution might be the development of a
hybrid method that does not solely depend on the availability
of lidar measurements.

6 Conclusions

We developed a methodology to forecast wind power of in-
dividual wind turbines on very short time horizons based on
long-range single-Doppler lidar scans as a feasible alterna-
tive to existing remote-sensing-based forecasts that is appli-
cable to far-offshore sites. The work is based on a proba-
bilistic forecasting model developed for dual-Doppler radar
measurements. It was extended to include a dynamic filter-
ing approach, a time synchronization of the lidar scans and
an extrapolation of wind speeds to hub height. The model
was tested in a case study at the offshore wind farm Global
Tech I. Here, we predicted wind power of seven free-flow
wind turbines with a 5 min horizon. The lidar-based forecast
was able to predict wind turbine power skilfully compared to
the benchmark persistence during unstable atmospheric con-
ditions, as long as sufficient wind field information was avail-
able in the region from which the wind vectors were propa-
gated to the turbine of interest. During stable and neutral con-
ditions the forecast quality was reduced. We mainly attribute
this to higher uncertainties in the wind speed extrapolation to
hub height during stable conditions, as a consequence of the
nature of the stability-corrected logarithmic wind profile. To
outperform persistence for stable situations, a more accurate
description of the wind profile, e.g. using reliable meteoro-
logical information, is required.

Future work aims to include the modelling of wake effects
in the forecast, allowing one to forecast power not only for
free-flow turbines.
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