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Abstract. A new method is described to identify the aerodynamic characteristics of blade airfoils directly from
operational data of the turbine. Improving on a previously published approach, the present method is based on
a new maximum likelihood formulation that includes errors in both the outputs and the inputs, generalizing the
classical error-in-the-outputs-only formulation. Since many parameters are necessary to meaningfully represent
the behavior of airfoil polars as functions of angle of attack and Reynolds number, the approach uses a singular
value decomposition to solve for a reduced set of observable parameters. The new method is demonstrated by
identifying high-quality polars for small-scale wind turbines used in wind tunnel experiments for wake and wind

farm control research.

1 Introduction

Most simulation models of wind turbine rotors, from the low
to the high end of the fidelity spectrum, rely on polars, i.e., on
the aerodynamic characteristics of the airfoils used on the
blade. Clearly, irrespectively of its sophistication, the quality
of the results that a simulation can deliver is bound to many
details of the underlying mathematical model and numerical
methods but also to the accuracy of the polars. Unfortunately,
it is often difficult to have a precise knowledge of such a cru-
cial ingredient. In fact, whereas polars are typically charac-
terized by ad hoc experiments or simulations conducted on
isolated airfoils, there are many reasons why the actual po-
lars of a specific blade can differ from the nominal ones. To
address this need, this paper describes a new procedure for
the tuning of polars based on turbine operational data.
Airfoil polars are used for modeling the aerodynamics of
rotors using lifting lines in conjunction with blade element
momentum (BEM), free vortex wake (FVW), and computa-
tional fluid dynamic (CFD) models. BEM methods are rou-
tinely used for the aeroservoelastic analysis of wind turbines
and provide most of today’s industrial-level simulation ca-
pabilities for load analysis, design, and control development
activities (Manwell et al., 2009; Burton et al., 2011; Open-
Fast, 2020). FVW methods (Sebastian and Lackner, 2012;

Shaler et al., 2019) are not yet routinely used because of
their higher computational costs but offer promising alterna-
tives by removing some of the assumptions of BEM theory.
On the higher end of the spectrum, the large-eddy simula-
tion actuator line method (LES-ALM; Troldborg et al., 2007;
Churchfield and Lee, 2012; Churchfield et al., 2012; Wang et
al., 2019) is currently the main approach for the modeling of
wakes, including the hot topic of wind farm control (Fleming
et al., 2013; Gebraad et al., 2016).

In all of these approaches, a lifting line models the blade
from the aerodynamic point of view. A generic lifting line is a
three-dimensional curve running along the blade, which may
be prebent and swept. The local chord, twist, airfoil type,
and its relative position (for example, in terms of the chord-
wise offset of the aerodynamic center) are specified along the
curve. The lifting line is attached to the structural model of
the blade and moves with it following its travel around the
rotor disk and its deformation. At each instant of time dur-
ing a simulation, the local flow relative to a generic point of
the lifting line can be computed. The local flow accounts for
the wind inflow, for the motion of the blade, and for the lo-
cal induction generated by the rotor, whose details depend
on the specific aerodynamic model (BEM, FVW, or CFD).
Given the local flow, the angle of attack of the airfoil and the
Reynolds number can be readily obtained. This allows one
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to compute the lift, drag, and moment aerodynamic coeffi-
cients at that location along the blade, typically by interpo-
lating within look-up tables that store the aerodynamic prop-
erties of the airfoil. Possible corrections are applied to take
into account tip and root losses, unsteady aerodynamics, dy-
namic stall, Coriolis-induced delayed stall, and other effects,
in turn producing the local aerodynamic force exerted on the
blade at that location. By the principle of action and reaction,
an equal and opposite force is applied to the flow, and, again
depending on the specific formulation, this closes the loop
between blade motion and fluid flow. A new estimate of the
local flow is therefore produced, and the process is repeated
until convergence.

For several years, the group of the senior author has been
developing scaled and controlled wind turbine models for
wind tunnel testing (Bottasso et al., 2014b; Bottasso and
Campagnolo, 2020). Applications have considered both wind
turbine (Bottasso et al., 2014b) and wind farm control (Cam-
pagnolo et al., 2016, 2020; Frederik et al., 2019). In addi-
tion to the collection of valuable data sets in the known, re-
peatable, and controllable environment of the wind tunnel,
the development and validation of digital copies of these
experiments have been main ambitions of this research ef-
fort. Both aeroelastic BEM (Bottasso et al., 2014b) and LES-
ALM (Wang et al., 2019) models of the experiments have
been developed, in the latter case including not only the wind
turbines but also the wind tunnel and the passive genera-
tion of a sheared and turbulent flow. Results collected to date
demonstrate an excellent ability of the simulation models in
reproducing the experiments, including multiple wake inter-
actions and conditions relevant to wind farm control (Wang
et al., 2019, 2020a,b,c).

One crucial component of the simulation chain has been
a method for estimating the polars directly from operational
data of the turbines (Bottasso et al., 2014a). In fact, the blades
of scaled wind turbine models operate in low Reynolds
regimes, where even relatively small changes in the operat-
ing conditions can cause significant changes in the aerody-
namic characteristics of the blade sections. In addition, given
the small size of these models, even modest manufacturing
imperfections and normal wear of the blades can lead to de-
viations from their nominal shape. Using the method of Bot-
tasso et al. (2014a), the nominal airfoil polars are augmented
with parametric correction terms, which are identified us-
ing a maximum likelihood (ML) criterion based on opera-
tional power and thrust measurements. These data points are
collected on the turbine at various operating conditions, se-
lected in order to span a desired range of angles of attack and
Reynolds numbers. Since a large number of free parameters
are necessary to represent the correction terms, the result-
ing problem is ill-posed, and the parameters are collinear. To
address this issue, the original parameters are transformed
into a new orthogonal set by using the singular value decom-
position (SVD). Because the new parameters are uncorre-
lated with each other, one can select an observability thresh-
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old, discard the unobservable set, and solve only for the ob-
servable one. After having solved the identification problem,
which is now well posed, the solution is mapped back onto
the space of the original physical parameters.

Although this method works well in practice, it still suf-
fers from assumptions that limit its effectiveness. Indeed, the
classical ML formulation is based on an input—output model
and assumes errors in the outputs only (Klein and Morelli,
2006; Jategaonkar, 2015). Following this approach, outputs
differ from available measurements because of measurement
errors and model deficiencies. However, errors are not ex-
plicitly accounted for in the inputs, which are assumed to
be equal to their measured values. In the present context, in-
puts represent the operating conditions of the turbines, which
are expressed by the ambient air density and wind speed,
the rotor angular velocity, and the blade pitch setting. Errors
in such quantities have a non-negligible effect on the out-
puts and should be taken into account in a rigorous statistical
sense.

To address this issue, the present paper proposes a new
general formulation of ML identification that includes er-
rors both in the outputs and in the inputs. This generalized
formulation leads to an optimization problem in the model
parameters and the unknown model inputs, which can now
differ from their measured values. The proposed method is
again cast within the SVD-based reformulation of the un-
knowns to deal with the ill-posedness and redundancy of the
parameters. The new formulation is applied to the identifi-
cation of the polars of small-scale controlled wind turbines,
developed to support wind farm control and wake research
(Wang et al., 2019; Campagnolo et al., 2020; Frederik et al.,
2019; Bottasso and Campagnolo, 2020). Results indicate that
the new formulation delivers polars of superior quality with
respect to the original error-in-the-outputs-only formulation.
Specifically, the new polars were able for the first time to
correctly predict the turbine power outputs in derated condi-
tions, which had always defied previous efforts.

The paper is organized according to the following plan.
Section 2 describes first the classical ML approach in
Sect. 2.1 and its reformulation in terms of uncorrelated pa-
rameters in Sect. 2.2; Sect. 2.3 presents the novel ML method
with errors in both outputs and inputs, while Sect. 2.4 dis-
cusses a way to take into account a priori information on
the errors. Section 3 specializes the general formulation of
Sect. 2.3 to the identification of the polars of scaled wind tur-
bines. Finally, Sect. 4 presents the results, and conclusions
are drawn in Sect. 5.
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2 Formulation

2.1 Classical maximum likelihood estimation with errors
in the outputs

Consider a system described by the parametric model
y=h(p.u), 6]

where u € R! are the inputs (or, in the present context, the
operating conditions), p € R” the model parameters, and y €
R™ the outputs. In correspondence to the N inputs U = {u],
uﬁ, . ..,u”,‘v}, N experimental measurements of the outputs
are available and noted ) = {yT, yﬁ,...,y}‘v}. Because of
modeling and measurement errors, the experimental mea-
surements are in general not identical to the outputs predicted
by Eq. (1), a difference that can be quantified by the residual
r = y* — y. The goal of the estimation problem is to find the
model parameters p that minimize the residuals r.

A classical approach to this parameter estimation problem
is the ML method (Klein and Morelli, 2006). The idea of
maximum likelihood estimation is to find the parameters p
that maximize the probability J of obtaining the measure-
ment sample )/, where J is written as

Nm N e
J ==~ InQn)+ = In(detR) + > dSwirlR '@

i
i=1

R being the residual covariance and w; a weight assigned to
the ith residual. In this work, weights are introduced to ac-
count for the fact that not all operating conditions appearing
in the sample ¢/ might have the same importance. For exam-
ple, it might happen that some u;’s represent frequent typ-
ical operating conditions of the system, whereas others are
less frequent or relevant conditions. It might then be desir-
able to better match these more frequent conditions than the
less frequent ones. One way to achieve this behavior from
the ML estimator is to assign weights to the residuals. The
weights could be proportional to the relative frequency of
each operating condition in the lifetime of the system or be
inversely proportional to the distance of that operating con-
dition to some nominal behavior, a concrete example of this
latter case being explained later in the results section.

A robust implementation of this optimization problem
is obtained by the following iteration (Klein and Morelli,
2006).

1. Assuming temporarily frozen parameters equal to p,
minimize J with respect to R, which yields the follow-
ing expression for the covariance matrix (Jategaonkar,
2015):

1 N
R=— ; wiri(p)r! (p), 3)
where W = 1/NZY  w?.
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2. Assuming a temporarily frozen error covariance R,
solve the minimization problem

1y _
pzargmlnpz Zwl-zriT(p)R ri(p). 4
i=1

3. Return to step 1, and repeat until convergence.

In the following, alternating between steps 1 and 2 is termed
a “major” iteration. The internal iterations necessary for the
solution of the optimization problem at step 1 are termed in
the following “minor” iterations.

2.2 Maximum likelihood estimation in terms of
uncorrelated parameters

The estimation problem expressed by Egs. (3) and (4) can be
ill-posed because of low observability and collinearity of the
unknowns. This is a classical difficulty in parameter estima-
tion: on the one hand one would typically prefer a rich set of
parameters that give ample freedom to adjust the behavior of
a model in order to accurately match the measurements; on
the other hand, it might be difficult — if not altogether impos-
sible — to always guarantee that there is enough informational
content in the measurements to correctly identify and distin-
guish the effects of each one of the unknown parameters.

Indeed, the well-posedness of the identification problem
is associated with the curvature of the likelihood function
with respect to changes in the parameters. Around a flat max-
imum, different values of the parameters yield similar values
of the likelihood. A measure of the curvature of the solu-
tion space is provided by the Fisher information matrix (Jate-
gaonkar, 2015). The inverse of this matrix is also useful be-
cause it bounds the variance of the estimates (Cramér-Rao
bound) (Jategaonkar, 2015). Unfortunately, the Fisher infor-
mation by itself does not offer a constructive way of refor-
mulating a given ill-posed problem.

To overcome this difficulty, Bottasso et al. (2014a) pro-
posed to transform the original physical parameters of the
model into an orthogonal parameter space. This mapping is
obtained by diagonalizing the Fisher matrix using the SVD.
As the new variables are now statistically independent, one
can readily select and retain in the analysis only the parame-
ters that are associated with a sufficiently high level of confi-
dence. Once the problem is solved, the uncorrelated parame-
ters are mapped back onto the original physical space.

This approach enables one to solve an identification prob-
lem with many free parameters, some of which might be in-
terdependent or not observable in a given data set. Further-
more, the SVD diagonalization reduces the problem size, re-
taining only the orthogonal parameters that are indeed ob-
servable. Finally, this approach reveals, through the singu-
lar vectors generated by the SVD, the interdependencies that
may exist among some parameters of the model, which may
provide useful insight into the problem itself.
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A detailed description of the SVD-based version of
ML identification is given in Bottasso et al. (2014a). The
same formulation is used also in the present paper.

2.3 Maximum likelihood estimation with errors in the
inputs and outputs

The standard formulation of the ML identification presented
in Sect. 2.1 considers the presence of noise in the outputs y.
Indeed, outputs are affected by measurement errors but also,
being computed through a model, by the deficiencies of the
model itself. Although errors in the outputs are typically the
primary source of uncertainty in a parameter estimation prob-
lem, there are situations where significant errors may also be
associated with the inputs #, which is the case of the present
application. A formulation of ML that accounts for errors
both in the outputs and inputs is presented next.

The parametric model described by Eq. (1) is expanded as

5= ()= (). ©

Because of modeling and measurement errors, the experi-
mental output measurements y* are in general not identical
to the model-predicted outputs y. Similarly, because of mea-
surement errors and an imperfect realization of the operat-
ing conditions, the experimental inputs #* are in general not
identical to the nominal ones u. These differences can be syn-
thetically quantified by the residual 7 =y* — 7y, where now
y* is an expanded vector that contains measurements of both
outputs and inputs:

v ={x]. ©)
The goal of the estimation problem is to find the model pa-
rameters p and system inputs #; that maximize the probabil-
ity of obtaining the measurements y* and u*. According to
the maximum likelihood criterion, Eq. (4) becomes

p.uy, ..., unN

—_—

N
= argmin,, , 5; wir!l (p,u; )R™'F (p i), (7

and Eq. (3) is now
N
7 2o Wi (2w T (pi). ®)
i=1

Instead of solving the problem in a monolithic fashion, the
following iteration can be conveniently used:
1. Initialize p (see Sect. 2.4), and set u; = uf, i =[1, N].

2. Calculate R from Eq. (8).

Wind Energ. Sci., 5, 1537-1550, 2020

C. Wang et al.: Identification of airfoil polars from uncertain experimental measurements

3. Assuming temporarily frozen inputs u;, solve
1 ~
p=argmin, > > wiF (p,upR"'Ti(pu). )
i=1

This is formally identical to the classical error-in-the-
outputs-only ML formulation, which can be solved by
the SVD-based reformulation in terms of uncorrelated
parameters (Bottasso et al., 2014a).

4. Assuming temporarily frozen parameters p, solve

uj =argmin,, ZZw T (p,un)R™'%i (pup),

i=1
J=I1,N]L (10)

These are N decoupled small sized problems, which re-
turn the values of the model inputs.

5. Return to step 2, and repeat until convergence.

This way the solution of the identification problem with input
and output errors is obtained by using the classical error-in-
the-outputs-only ML implementation (using Eq. 9), followed
by a sequence of inexpensive optimizations to compute the
model inputs (using Eq. 10). Notice that, as long as it con-
verges, this iteration returns the same result as the monolithic
solution of Egs. (7) and (8).

2.4 Filtering of measurements based on a priori
uncertainties

Often, a priori information on the expected uncertainties may
be available. In such cases, the unknown true inputs u; can
be bounded as

ui — Au <u; <uj+ Au, (11)

where Au are the expected uncertainty bounds. This a priori
information can be used to retain in the cost function J only
those measurements for which the corresponding residual
cannot be simply explained by the uncertainties expressed
in Eq. (11) but must be due to the model parameters p.

To this end, notice first that the residual r; is a function
of pandu;,i.e.,

ri(pui)=y; —h(p,up). 12)

Indicating the jth component of residual r; as r;;, its maxi-
mum and minimum values for a given p are computed as

M = maxy,ri; (p,ui), (13a)
r,-r;.l =ming,ri; (p, u;), (13b)
subjectto: u; —Au <u; <u; + Au. (13¢)

If the maximum rM and minimum r;" have different signs,

then r;; = 0 lies somewhere within thlS range, and hence this
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Figure 1. Approximation of the maximal and minimal residuals.

residual component can be fully explained by input uncer-
tainties. Therefore, it cannot drive meaningful changes in the
parameters and should be neglected. Otherwise, this resid-
ual carries valuable information and should be retained. To
account for this, a filtered residual fij is defined as

Fi; = min (|ry; [). (14)

The a priori estimates are used to initialize the param-
eters p at step 1 of the iterative algorithm formulated in
Sect. 2.3. A standard ML method is used for the initializa-
tion, considering only errors in the outputs and using Egs. (3)
and (4) where the residual components r;; are replaced by
the filtered ones r;;. Filtering accelerates the optimization
because it avoids meaningless tuning of parameters caused
by measurement noise. Once this initial estimate of the pa-
rameters is obtained, it is further refined by considering the
a posteriori effects of noise in inputs and outputs by step-
ping through points 2-5 of the algorithm. Residual filtering
is not used further because it is based on a priori assumptions
relying on knowledge of the measurement chain, which can
only estimate bounds and might not reflect the actual noise
effectively experienced for any given measurement.

In practice, a naive implementation of filtering can be very
expensive. In fact, as the residual r; depends on p, one would
have to recompute the optimization problems expressed in
Eq. (13) each time the parameters are updated, which be-
comes prohibitively expensive.

The cost of filtering can be drastically reduced with a sim-
ple approximation, as graphically illustrated in Fig. 1. The
figure shows with a dotted blue line the residual compo-
nent r;; as a function of the input u; for a given value of the
model parameters p©. The counter (-)© refers to the values
that the parameters assume at the beginning of each major
iteration used to solve Eq. (4). The minimum and maximum
of this curve, corresponding to rl.’;‘ and r}}’l, are respectively
indicated with downward- and upward-pointing blue trian-
gles. These stationary points are computed at the beginning
of each major iteration by solving Eq. (13). For simplicity,
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this is obtained by a simple evaluation of the residuals over a
regular subdivision of the unknowns.

At the kth minor iteration of the solution of Eq. (4), the
model parameters have been updated, and they now assume
the value p®. The corresponding function ri; is depicted
in the figure with a solid red line, together with its new
minimum and maximum points indicated by downward- and
upward-pointing red triangles. To reduce the computational
burden, these stationary points are not computed by solving
Eq. (13) but are approximated.

The nature of the approximation is shown in the figure.
The initial function r;; corresponding to p© is shifted by
#(k) *(0)
ij - ri./
ual evaluated at the nominal inputs u} for the two parameter
values p® and p©. The shifted function is shown by the
dashed black curve in Fig. 1. This is an inexpensive opera-
tion since it does not require any optimization. This nominal
difference is then used for shifting the minimum and maxi-
mum residuals from their initial value at p© to the new value
at p®. By this approximation, the maximum and minimum
residuals are readily and inexpensively updated at each iter-
ation as

the difference r , 1.e., the difference in the resid-

M) _  M(©0) (k) #(0)
T T (152)
r?(k) — r?(o) + ri*-(k) _ ri*-(O)’ (15b)
J J J J

Based on these updated values, the residual filtering condi-
tion expressed by Eq. (13) can be readily updated.

This approximation works very well in practice since the
interval [u;" — Au, u;‘ + Au] is small. In addition, by a stan-
dard Taylor series analysis, one can show that this approx-
imation entails neglecting terms that are quadratic in the
changes in the parameters within a major iteration, which are
typically small. Finally, the approximation does not affect the
quality of the results as the true stationary points are recom-
puted at each new major iteration of the ML algorithm. In
this sense, the approximation only speeds up the calculations
of the minor iterations, but the results — at convergence of the
major and minor loops — are the same that would have been
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obtained by a straightforward (but more expensive) solution
of Eq. (13).

3 Application to the identification of airfoil polars

The parameter identification problem setting described in
the previous pages is completely general and could be used
for a wide range of applications. However, for the specific
problem at hand and with reference to Eq. (1), the outputs
are defined as y = (Cp, Cr)T, where Cp = 2P/(pA V3) and
Ct =2T/(pAV?) are respectively the rotor power and thrust
coefficients, and P is power, T thrust, p air density, A = 7 R?2
the rotor swept area, R the rotor radius, and V the wind
speed. The inputs describe the rotor operating conditions and
are definedasu = (p, V, Q, ;‘3)7, where 2 is the rotor angu-
lar velocity and B the blade collective pitch angle. To obtain
the power and trust coefficients, nominal values of the inputs
are used for both the measured and predicted cases.

The airfoil lift and drag coefficients, respectively noted Cr,
and Cp, are now assumed to be in error, and the goal of the
estimation problem is to calibrate them in order to match
a given set of measurements. This is achieved by defining
changes ACy and ACp with respect to nominal values Cy,
and Cp,, i.e.,

(16a)
(16b)

ACL = CL - CLO = ACL(’L o, Re)v
ACp = Cp — Cp, = ACp(n, , Re),

where 7 is the spanwise location along the blade (because
different airfoils are typically used at different stations along
a rotor blade); « is the local angle of attack; and Re = uc/v
is the local Reynolds number, u being the relative flow speed,
¢ the chord length, and v the kinematic viscosity of air. The
dependency of these functions on spanwise location, angle of
attack, and Reynolds number is approximated using assumed
shape functions and their associated nodal parameters p,
and p ., which therefore represent the tunable algebraic pa-
rameters of the model, i.e.,

(17a)
(17b)

ACL(n,a, Re)~ ACL(pc, ).
ACp(n,a, Re)~ ACp (pcy)-

Following Bottasso et al. (2014a), instead of working di-
rectly with p = (p¢, ; p¢p), which might not be all observ-
able, these variables are first transformed by the SVD into
an uncorrelated set of parameters, which are then truncated
with a variance threshold, calibrated according to the ML cri-
terion, and finally projected back onto the original functional
space ACr and ACp.

The dependency of y on p and u is expressed through
Eq. (1) using blade element momentum (BEM) theory (Man-
well et al., 2009), as implemented in the code FAST (Open-
Fast, 2020).

The typical Reynolds number distribution along a wind
turbine blade is almost constant for the majority of its span
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but assumes smaller values close to the blade tip and root.
The implementation of this paper, improving on the work of
Bottasso et al. (2014a), specifically considers that the airfoil
polars depend on Re. The expected range of Reynolds num-
bers is discretized by linear shape functions and associated
nodal values, and the local Reynolds number is computed at
each spanwise station based on local geometry and flow con-
ditions. The results presented later on consider scaled wind
turbine models for wind tunnel testing. For these rotors, the
chord-based Reynolds number is much lower than in typi-
cal full-scale applications, and ad hoc low-Reynolds airfoils
(Lyon and Selig, 1998) are used. Because of the special flow
regime of these airfoils, the formulation is complemented by
the conditions dCL/dRe > 0 and dCp/d Re < 0. The first of
these conditions accounts for the earlier reattachment of the
laminar separation bubble on the suction side of the airfoil
for increasing Re and the second for the shorter chord extent
of that same bubble (Selig and McGranahan, 2004). They are
enforced as soft penalty constraints in Eq. (4) by modifying
the cost function as J = J + J,, with

amMm Rem

oCL oCp
Jp —Wp/ / <max <0, —m> + max (O, @>>

®m Rep

dReda, (18)

where W, is a penalty parameter, and [Ren, Reym] and [am,
am] are the ranges of Reynolds and angle of attack of inter-
est.

4 Results

4.1 Experimental setup

A scaled wind turbine model of the G1 type (Campagnolo
et al., 2016) was operated in the boundary layer wind tunnel
of the Politecnico di Milano in low turbulence (1 %) con-
ditions. The rotor blade design is based on one single low-
Reynolds airfoil of the RG14 type (Lyon and Selig, 1998).
Measurements of the rotor thrust and power were obtained
for 158 different operational conditions, chosen to span the
range [5.87, 8.81] for the tip speed ratio (TSR) A = QR/V
and the range [—5, 12]° for the blade pitch angle 8. The
wind speed V was varied in the interval [3.10, 7.86] ms !,
resulting in a range of Reynolds equal to [10 000, 90 000].
Table 1 reports a priori estimates of the uncertainties asso-
ciated with the various measured quantities. Given the uncer-
tainties of the measurements, worst-case uncertainties of the
power and thrust coefficients can be readily computed as

200£A0)QEAQ) 209
ACp = max - , (19a)
(p£AP)A(V AV pAV3
2T £ AT) 2T
ACT = max — . (19b)
(p£AP)A(V £AV)E  pAV?2
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Table 1. A priori uncertainty estimates of measurements.

1543

Quantity AV AB AQ

Ap AQ AT

Uncertainty +0.1ms~! +0.2°

+1.5pm  +0.01kgm™3

+0.005Nm +0.03N

The wind speed V was measured by a Mensor CPT-6100
pitot transducer (Mensor, 2016), which is affected by pres-
sure and alignment errors. The pitot tube measures the dy-
namic pressure, i.e., the difference Ap =1/2pV? between
the total and the static pressures. Since the wind speed is
computed by inverting the dynamic pressure expression, er-
rors in Ap and p directly pollute V. Additionally, a yaw
and tilt misalignment may exist between the pitot axis and
the incoming wind vector, increasing the error in V. The
uncertainty of the air density was estimated from the hy-
grometer and barometer installed in the wind tunnel. After
considering all relevant factors, the uncertainty of the wind
speed was determined using the guidelines described in Stan-
dard ISO 3354 (2008). The uncertainty in the blade pitch an-
gle B was estimated by calibrating the actuator encoder with
a Wyler Clinotronic Plus inclinometer (Campagnolo, 2013).
Power was computed as P = Q€2, where Q is the torque,
which was measured by strain gages at the rotor shaft. These
sensors were calibrated by applying a known torque to the
locked rotor. The rotor speed 2 was measured by an optical
incremental encoder with a count per revolution N, = 10000
and an observation window t,y = 4 ms, which results in an
error AQ = 1/Netow ~ 1.5rpm. The thrust T was obtained
by measuring with a strain gage bridge the fore—aft bend-
ing moment at the tower base; here again, the strain gages
were calibrated by applying a known load to the turbine by
a pulley-and-weight system. The contribution to the bending
moment due to the drag of nacelle and rotor was obtained by
a dedicated experiment in the wind tunnel without the blades.
Additional details on sensors and error quantification are dis-
cussed in Campagnolo (2013) and Bottasso et al. (2014b).

For each wind speed V, a turbine should operate at a spe-
cific TSR A and blade pitch 8, which are computed in re-
gion II to maximize power capture and in region III to limit
power output to the rated value. On the other hand, for the
task of identifying the airfoil polars, a broad range of condi-
tions is necessary in order to span a sufficient range of angles
of attack and Reynolds of interest. Although a broad range
is necessary for the generality of the identified model, the
conditions that are closer to the nominal operating points —
according to the regulation trajectory of the machine — are
also the ones most likely encountered during the actual oper-
ation of the turbine. To account for this fact, the weight w; of
each operational condition i (see Eq. 2) was assigned based
on its distance to the nominal conditions, computed as

d; = mingJe1(V; = V¥R + 20 — B6) + (ki —1*s)P, (20)
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where (-)* indicates a nominal value, and €1 /7/3 are scaling
factors. All data points were divided into four groups accord-
ing to their distance. Data points within each group were as-
signed the same weight, with longer mean distances corre-
sponding to lower weights.

4.2 ldentification results

Nominal values of the blade polars are defined as the ones
previously computed with the method of Bottasso et al.
(2014a). Although of a good quality, these polars are not al-
ways able to correctly represent the behavior of the turbine,
for example in derated conditions. To improve on this situ-
ation, the method proposed here was used to further correct
the polars and provide improved estimates.

The lift and drag coefficients were parameterized in terms
of bilinear shape functions using seven nodal values for
Reynolds and 21 for angle of attack for each one of the
two coefficients. Since the G1 blades use one single airfoil
type along their entire span, it was not necessary to introduce
the dependency on 1 appearing in the general expressions of
Eq. (16).

For the nominal polars, Fig. 2 plots the variance o (which
is the inverse of the singular values produced by the SVD
analysis) for the seven considered Reynolds numbers and the
lowest 25 modes. The figure shows that modes of intermedi-
ate Reynolds number have better observability as most condi-
tions do happen within this range. All modes with a variance
above 1 (a threshold indicated in the figure by a dashed hor-
izontal line) were discarded, reducing the number of degrees
of freedom from the initial 294 to 117, which improves the
well-posedness of the problem and also reduces the compu-
tational cost.

The identification first used nominal model inputs #* and
the residual filtering technique of Sect. 2.4 to identify an ini-
tial guess to the system parameters p, a process that con-
verged after nine major iterations of Eqgs. (3) and (4). For
the converged solution, Fig. 3 shows the nominal model in-
puts (two upper plots) and the output residuals (two lower
plots), including the nominal residual r*, the maximal resid-
ual rM, the minimal residual ™, and the filtered residual 7
(see Egs. 13 and 14) for each one of the measured data points.
The filtered residuals 7 are O for most conditions, indicating
that the information carried by these data points cannot be
distinguished further from input measurement noise. In ad-
dition, all nonzero filtered residuals are small, indicating an
almost singular R, which is in fact used as a termination cri-
terion.

Wind Energ. Sci., 5, 1537-1550, 2020
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Figure 3. (a, b) Nominal model inputs V, 2, 8, p. (¢, d) Nominal, maximal, minimal, and filtered residuals for the two outputs ACp
and ACT. All quantities are plotted for each one of the 158 operating conditions in the measurement set.

An a priori estimate of the maximal uncertainties of the
power and thrust coefficients can be computed based on
Eq. (19) and Table 1, which yields

=0.037, (21a)

Wind Energ. Sci., 5, 1537-1550, 2020

(21b)

On the other hand, an a posteriori estimate of the uncertain-
ties evaluated with nominal inputs u* is available by the co-
variance matrix R of Eq. (3) that, using unfiltered residuals,
gives

op =+ Ri1 =0.024, (22a)
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o1 =/ R2p = 0.023. (22b)

As expected, the a posteriori estimates are smaller than the a
priori ones since the latter represent a worst-case scenario.

The process was then continued using the previously con-
verged parameters as an initial guess. Now, however, the
model inputs # were added to the identification to include
the effects of their uncertainties. After three iterations, a con-
verged solution was obtained. The final identified inputs are
denoted in the following as u . For all operational conditions,
Fig. 4 shows the differences Au = u' —u* between identified
and nominal values. In all subplots, two dashed horizontal
lines indicate the a priori uncertainties reported in Table 1. It
is interesting to observe that most estimated inputs are within
the a priori bounds, indicating a good coherence between a
priori and a posteriori statistics. The right part of the same
figure reports the distributions of the errors that, except for
wind speed, are close to normal. On the other hand, density
appears to have a small bias, which violates one of the as-
sumptions of ML estimation.

Figure 5 shows the nominal (dashed lines) and identified
(solid lines) lift (left plot) and drag (right plot) coefficients as
functions of angle of attack for various Reynolds numbers.
Values outside of the angle of attack and Reynolds ranges of
the plot are not identifiable with the available data set and
therefore are not shown. The nominal coefficients tuned ac-
cording to Bottasso et al. (2014a) cross each other, violating
the consistency constraints on the laminar separation bubble
expressed by Eq. (18). In contrast, the new identified results
do comply with the constraints.

https://doi.org/10.5194/wes-5-1537-2020

Table 2 reports the correlation coefficients, computed from
the extended covariance matrix R at convergence, as g;; =

I/Q\i j/(0io}), where oy = \/7?; Because of symmetry, only
the upper triangle is shown.

The correlation coefficient between the two outputs, ACp
and ACT, is negative. This means that, on average, at the
end of the identification process the power and thrust residu-
als have opposite signs. This is expected since this behavior
minimizes the cost function of Eq. (7). Additionally, each in-
put induces same-sign variations in the two outputs; for ex-
ample, a larger wind speed or density implies higher power
and thrust coefficients, whereas a larger blade pitch implies
lower power and thrust coefficients. Given that ACp and
ACT have a negative correlation, the input—output correla-
tion coefficients always have different signs for both outputs;
e.g., 0(ACp, AB) and o(ACT, AB) have opposite signs. The
signs of the input—input correlations can be explained in sim-
ilar terms. For example, the correlation between density and
blade pitch is negative because these two inputs have correla-
tions of opposite sign as the outputs, whereas the correlation
between blade pitch and wind speed is positive because these
two inputs have correlations of the same sign as the outputs.

From the extended covariance matrix at convergence,
the mean absolute a posteriori uncertainties of the in-
puts |u! —u*| were found to be 0.06ms~! for speed V,
0.09° for blade pitch angle g, 0.5 rpm for rotor speed €2, and
0.005 kg m—3 for density p. By comparison with Table 1, all
a posteriori uncertainties are smaller than the a priori ones,
as expected.

Wind Energ. Sci., 5, 1537-1550, 2020
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Table 2. Correlation coefficients among inputs and outputs.

ACp ACT Ap AB AV AQ
ACp 1.0000 —0.8518  0.7084 —0.5550 —0.6206  0.7969
ACT - 1.0000 —0.8839  0.8540  0.1948 —0.6245
Ap - —  1.0000 —0.6661 —0.1100  0.2488
AB - - — 1.0000  0.0134 —0.4751
AV - - - - 1.0000 —0.5025
AQ _ _ - - ~ 1.0000

Table 3. Experimental conditions of the power-derating cases.

Power percentage  100% 97.5% 95% 92.5%
B () 0.42 1.02 1.43 1.79
A (rpm) 8.31 8.23 8.16 8.10
V (ms™h 587 588 588 588

4.3 Power-derating cases

To verify the quality of the identified polars, derated opera-
tional conditions were considered. It should be stressed that
these conditions were not included in the identification data
set and therefore provide for a verification of the generality
of the results. These additional conditions are listed in Ta-
ble 3 and correspond to values equal to 100 %, 97.5 %, 95 %,
and 92.5 % of rated power.

Figure 6 shows the results in terms of power (on the left)
and thrust (on the right) coefficients as functions of der-
ating percentage. In all plots, the experimental results are
shown using a solid blue line with * symbols; whiskers in-
dicate the uncertainties according to Eq. (19) and Table 1.
Simulation results are computed with nominal measured in-
puts u* for both the nominal polars p* according to Bottasso
et al. (2014a) and the newly identified polars p', and they are
marked with x and ° symbols, respectively. The results indi-
cate a marked improvement when using the newly identified
polars, especially regarding the rotor power coefficient.

Wind Energ. Sci., 5, 1537-1550, 2020

5 Conclusions

This paper has presented a new maximum likelihood iden-
tification method that, departing from the classical formu-
lation, accounts for errors both in the outputs and the inputs.
The new method is a generalization of the classical approach,
where the system parameters are estimated together with the
system inputs, which this way can differ from their actual
measured quantities because of noise. The new expanded for-
mulation is solved using a partitioned approach, resulting in
an iteration between the standard parameter estimation and
a series of decoupled and inexpensive steps to compute the
inputs. To cope with the ill-posedness of the problem caused
by low observability of the parameters, the formulation uses
an SVD-based transformation into a new set of uncorrelated
unknowns, which, after truncation to discard unobservable
modes, are mapped back onto the original physical space.
The formulation is further improved by an initialization step
that accounts for a priori information on the errors affecting
the measurements, discarding all data points whose residuals
can be simply explained by uncertainties.

The new proposed formulation was applied to the esti-
mation of the aerodynamic characteristics of the blades of
small-scale wind turbine models. This is a particularly diffi-
cult problem because an extended set of parameters is neces-
sary in order to give a meaningful description of the polars,
taking into account their variability with blade span, angle
of attack, and Reynolds number; invariably, this results in an

https://doi.org/10.5194/wes-5-1537-2020
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Figure 6. Results for the power-derating cases. (a) Power coefficient, (b) thrust coefficient. Solid blue line with * symbols: experimental
results, including uncertainties according to Table 1; solid orange line with ® symbols: simulation results with newly identified polars; solid
red lines with x symbols: simulation results with nominal polars according to Bottasso et al. (2014a).

ill-defined problem because of the many unknown parame-
ters and their possible collinearity. In addition, measurement
errors affect both the outputs and the inputs, the latter be-
ing particularly relevant and representing the operating con-
ditions of the turbines. On the other hand, good-quality esti-
mates of the polars are of crucial importance for the accuracy
of simulation models based on lifting lines.

https://doi.org/10.5194/wes-5-1537-2020

Results indicate that a higher quality of the estimates is
achieved by the proposed method compared to an error-in-
the-outputs-only approach. Indeed, the estimated polars were
able to correctly model derated operating conditions, which
were not included in the parameter estimation process. All
prior attempts at modeling these conditions failed to a various
extent when using the standard maximum likelihood formu-
lation. In addition, results indicate that the present approach
was able to cope with the ill-posedness of the problem caused
by the low observability of the many unknown parameters,
which is an important aspect for the practical applicability
of the method to complex problems as the one considered in
this paper.
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Appendix A: Nomenclature

A Rotor-swept area

Cp Drag coefficient

CL Lift coefficient

Cp Power coefficient

Cr Thrust coefficient

Cost function

Pressure

Model parameters

Power

Torque

Residual

Covariance matrix

Reynolds number

Thrust

Model inputs

Wind speed

Weight of the ith measurement
Model outputs

Angle of attack

Blade collective pitch angle
Nondimensional blade span location
Tip speed ratio

Rotor speed

Density

Correlation coefficient
Standard deviation

Expanded quantity

©) Filtered quantity

)t Identified quantity

()* Measured quantity

ALM  Actuator line method

BEM Blade element momentum
CFD  Computational fluid dynamics
FVW  Free vortex wake

LES  Large-eddy simulation

ML Maximum likelihood

SVD  Singular value decomposition
TSR  Tip speed ratio
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