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Abstract. We investigate the optimal relationship between the aerodynamic power, thrust loading and size of a
wind turbine rotor when its design is constrained by a static aerodynamic load. Based on 1-D axial momentum
theory, the captured power P̃ for a uniformly loaded rotor can be expressed in terms of the rotor radius R and
the rotor thrust coefficient CT. Common types of static design-driving load constraints (DDLCs), e.g., limits on
the permissible root-bending moment or tip deflection, may be generalized into a form that also depends on CT
and R. The developed model is based on simple relations and makes explorations of overall parameters possible
in the early stage of the rotor design process. Using these relationships to maximize P̃ subject to a DDLC shows
that operating the rotor at the Betz limit (maximum CP) does not lead to the highest power capture. Rather, it
is possible to improve performance with a larger rotor radius and lower CT without violating the DDLC. As an
example, a rotor design driven by a tip-deflection constraint may achieve 1.9 % extra power capture P̃ compared
to the baseline (Betz limit) rotor.

This method is extended to the optimization of rotors with respect to annual energy production (AEP), in
which the thrust characteristics CT(V ) need to be determined together with R. This results in a much higher
relative potential for improvement since the constraint limit can be met over a larger range of wind speeds. For
example, a relative gain in AEP of+5.7 % is possible for a rotor design constrained by tip deflections, compared
to a rotor designed for optimal CP. The optimal solution for AEP leads to a thrust curve with three distinct
operational regimes and so-called thrust clipping.

1 Introduction

From the inception of the wind energy industry, it has been a
clear trend that rotor sizes have been increasing. However, as
discussed in Sieros et al. (2012), increasing the rotor size is
not a clear way to decrease the cost of energy (CoE), since the
rotor weight (closely related to rotor cost) will always scale
with a larger exponent than the increase in power does. It
is, therefore, argued that the lower CoE that has taken place
is mostly due to improvements in technology. The turbine
is structurally designed to carry loads coming from aerody-
namics (steady or extreme) and the self-weight. Therefore,
lowering the loads should lead to a lighter blade. The steady
aerodynamic load is applied to extract power, and increasing

the load leads to greater power production until the maxi-
mum power coefficient (max CP) is reached. Increasing the
load should lead to a heavier blade but it also leads to greater
power production. It goes to show that understanding the
relationship between loading, power production and struc-
tural response is very important for designing the most cost-
effective turbine. This follows a trend occurring in recent
years in which there is a belief that wind turbine optimization
should include a more holistic approach, with concepts like
multidisciplinary design analysis and optimization (MDAO)
and systems engineering (Bottasso et al., 2012; Zahle et al.,
2015; Fleming et al., 2016; and Perez-Moreno et al., 2016),
where all of the parts of the turbine design that affect the cost
should be taken into account along with the overall objective
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of minimizing the CoE. Some of these related works focus
more on how the rotor loading affects the power and struc-
tural response. One of the concepts that comes out of this is
the so-called low-induction rotor (LIR), in which the velocity
induction at the rotor plane is lower than the value that max-
imizes the power coefficient. The concept was introduced by
Chaviaropoulos and Sieros (2014) and it comes out of the
optimization of annual energy production (AEP) by allow-
ing the rotor to grow while constraining the flap root bending
moment to be the same as some baseline. They state that the
method can increase AEP by 3.5 % with a 10 % increase in
the rotor radius, thereby showing that the LIR can increase
AEP while keeping the same flap root bending moment. It
agrees with Kelley (2017) who allowed for a change in the
radial loading, resulting in a 5 % increase in AEP with a ra-
dius increase of 11 %. It was also investigated by Bottasso
et al. (2015) who tested the potential of using the LIR both
for AEP improvements with load constraints and as a cost-
optimized rotor. They found the same results as the previous
two investigations; the LIR can improve AEP, but when they
consider the CoE they find that the LIR is not cost effec-
tive, meaning that the additional cost of extending the blade
is not compensated by the increase in power. This conclu-
sion is opposed to the conclusion made by Buck and Garvey
(2015b) who set out to minimize the ratio between capital
expenditures (CapEx) and AEP. They arrive at LIR as the
optimal solution for minimizing CapEx/AEP, which is taken
as a measure of CoE. Overall it seems that LIR can increase
AEP while keeping the same load as a non-LIR baseline, but
it is not clear if LIR is a cost-effective solution.

Another concept that is relevant in the context of this pa-
per is thrust clipping (also known as peak shaving or force
capping). For turbines, it is often the case that the maximum
thrust is reached just before reaching the rated power, result-
ing in a so-called thrust peak. When using thrust clipping,
this peak is lowered at the cost of power. It is used with
many contemporary turbines for load alleviation but is often
added as a feature after the design process. Buck and Garvey
(2015a) made a design study in which they found that lower-
ing the maximum thrust by 11 % leads to a 9 % reduction in
material used, at the cost of 0.1 % less lifetime energy, result-
ing in an overall reduction of 0.2 % in the cost of energy. This
shows that including thrust clipping in the design process can
lead to a lower CoE.

In this paper, we investigate the relationship between the
load, power and structural response of wind turbine rotors.
Simple analytical models, based on 1-D aerodynamic mo-
mentum theory and Euler–Bernoulli beam theory, are intro-
duced to establish the first-order relationship between these
responses. This provides a useful framework for the initial
rotor design, especially when high-level design parameters
such as the rotor radius need to be fixed or there is a need to
understand how load/structural responses will change with
rotor size. The effect on the power curve and the related
load/structural response with the variation in wind speeds is

also investigated, which is useful for the initial design of the
highly coupled aeroservoelastic rotor design problem.

The relatively simple models used in this paper do not
capture the full complexity needed for detailed wind tur-
bine rotor design and should be considered a tool for early-
stage rotor design and overall exploration only. For exam-
ple, the underlying theories (of 1-D aerodynamic momen-
tum and Euler–Bernoulli beams) assume steady-state con-
ditions, while designs are often constrained by load cases
that are linked with extreme, unsteady or non-normal op-
erational events, e.g., extreme turbulence, gusts, emergency
shutdowns, subsystem faults or parked conditions. This is a
limitation of the model developed here, but if there is a re-
lation between the steady-state loads and the extreme loads,
which is very likely, then the results are still valid.

As mentioned before, the overall target for current turbine
design is to lower the CoE, but a cost model is not used,
which is also a limitation of this study. However, cost models
use several assumptions made in the design process such as
the price of components in the design or composite lay-up of
the blades, so a predicted cost will always be made with some
uncertainty. Instead, load constraints are considered, much
like in the above-mentioned LIR example. As was found by
Bottasso et al. (2015), a constrained load might not lead to a
lower CoE. So, to accommodate this, a constraint with a fixed
mass is made, which is thought to be a better approximation
of a fixed cost.

This study is carried out in order to obtain an overview
of how the rotor design is more fundamentally influenced by
different types of aerodynamic loading. Thus, an issue like
the self-weight is important for modern turbines but is not
directly included in this study; the static-mass moment espe-
cially has an impact on contemporary turbines. It could be
included, but it was excluded to keep the study as simple as
possible. Further discussion about the limitations and possi-
ble improvements of the study is given later in Sect. 4.5.

2 Theory

This section will introduce the variables and the basic rela-
tionships used in this paper. It is split into two subsections, in
which Sect. 2.1 introduces aerodynamic variables, equations
and the baseline rotor, while Sect 2.2 presents scaling laws
used to formulate design-driving load constraints relative to
the baseline rotor.

2.1 Aerodynamics

The theory underlying this Aerodynamics section is found in
Sørensen (2016).

For wind turbine aerodynamics non-dimensional coeffi-
cients are often introduced and some of the common ones
are for the rotor thrust (CT) and power (CP).
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Figure 1. Relationship between normalized rotor load CT and
power coefficient CP from 1-dimensional momentum theory. Note
that around the Betz limit a small change in CT does not lead to a
proportional change in CP; this is illustrated by 1CT and 1CP.

CT =
T

1
2ρV

2πR2
(1)

CP =
P

1
2ρV

3πR2
, (2)

where T and P are the rotor thrust and power, respectively;
ρ is the air density, V is the undisturbed flow speed and R is
the rotor radius.

These definitions can be applied for any wind turbine ro-
tor, but in this paper, we will use a simplified relationship be-
tween CT and CP that is derived from classical 1-D momen-
tum theory. This implies an assumption of uniform aerody-
namic loading across the rotor plane. The classical equations
are often given in terms of the axial induction (a), which is
defined as a = 1− Vrotor

V
, where Vrotor is the axial flow speed

in the rotor plane. By combining the two classical momen-
tum theory expressions forCP(a) andCT(a) (Sørensen, 2016,
p. 11, Eq. 3.8), the relationship between these coefficients is
arrived at as follows:

CT(a)= 4a(1− a)
CP(a)= 4a(1− a)2

}
⇒ CP (CT)= (1− a)CT

=
1
2

(
1+

√
1−CT

)
CT, CT ∈ [0,1], (3)

where a(CT) is found by inverting CT(a) and using the neg-
ative solution. A plot of CT vs. CP can be seen in Fig. 1.
This CP(CT) curve is monotonically decreasing in slope
and reaches a maximum of CP = 16/27, corresponding to
the well-known Betz limit at CT = 8/9. These monotonic-
ity properties lead to the key observation that a reduction
in thrust (CT = 8/9−1CT) will not lead to a proportional
change in power (1CP). This motivates the investigation in
this paper of the trade-off between power and loads.

2.1.1 Power capture and annual energy
production (AEP)

One way to understand the power yield of a rotor is to con-
sider Eq. (2) as consisting of three separate terms as follows:

P =
1
2
ρV 3︸ ︷︷ ︸

Wind

·
1
2
πR2︸ ︷︷ ︸
Size

·
1
2
CP︸︷︷︸

Coefficient

. (4)

“Wind” is the part of the equation that depends on the wind
conditions, “size” is the part of the equation that depends on
the rotor-swept area and “coefficient” is the part of the equa-
tion related to the power coefficient, representing the capabil-
ity of the rotor to extract power from the wind. The combina-
tion of Eqs. (2) and (3) provides an expression that captures
the last two terms, which are the only ones affected by the
design of the turbine; the result is as follows:

P̃
(
CT, R̃

)
=

P

1
2ρV

3πR2
0

= CPR̃
2
=

1
2

(
1+

√
1−CT

)
CTR̃

2, (5)

where R̃ equals R/R0, with R0 being the radius of the base-
line rotor. This equation will be referred to as the power cap-
ture equation. It shows that power can be changed by chang-
ing either the loading (CT) or the rotor radius (R). This will
serve as the basic equation when the power capture is opti-
mized for a single design point.

When considering turbine design over the range of oper-
ational conditions, annual energy production (AEP) is intro-
duced as an integral metric representing the energy produced
per year given some wind speed frequency distribution. It
can be computed as the power production (P ) weighted by
the probability density of wind speeds (PDFwind) multiplied
by the period of 1 year (Tyear) as follows:

AEP= Tyear
1
2
ρπR2

0

VCO∫
VCI

P̃
(
CT(V ), R̃

)
·V 3
·PDFwind(V )dV. (6)

The wind speed probability distribution PDFwind will be de-
scribed with a Weibull distribution. VCI and VCO are the wind
speeds for cut in and cut out during wind turbine operation.
Here they are taken to be VCI = 3 m s−1 and VCO = 25 m s−1,
which are common numbers for modern wind turbines.

In this paper, we will use a dimensionless measure for AEP
which is equivalent to the so-called capacity factor, defined
as follows:

˜AEP
(
CT, R̃

)
=

AEP
TyearPrated

=
AEP

Tyear
1
2ρπR

2
0

16
27V

3
0

=
27
16

ṼCO∫
ṼCI

P̃
(
CT(Ṽ ), R̃

)
· Ṽ 3
·PDFwind(Ṽ )dṼ . (7)

Ṽ is a normalized wind speed given by V = Ṽ V0, where
V0 is the wind speed at which the turbine reaches the
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rated power (Prated). Throughout this paper it is taken
to be V0 = 10 m s−1. It should further be noted that
PDFwinddV is dimensionless and by nondimensionaliz-
ing AEP it also follows that PDFwinddṼ is dimension-
less. Throughout this paper ˜AEP is calculated using a
discretization of the integral, which is computed us-

ing the trapezoidal rule given as
ṼCO∫̃
VCI

f (Ṽ ;CT, R̃)dṼ ≈

N∑
i=1

f (Ṽi+1;CT,R̃)+f (Ṽi ;CT,R̃))
2 1Ṽi , where the discretization (N )

was found to become insignificant for N = 200.

2.1.2 Baseline rotor

The work here aims to demonstrate an improved rotor perfor-
mance compared to a baseline design. This baseline design is
chosen to be a turbine operating at the Betz limit below the
rated wind speed and keeping a constant power above the
rated power.

CT,0 =
8
9
≈ 0.889; CP,0 =

16
27
≈ 0.593 (8)

This choice of baseline mimics the typical practice of de-
signing wind turbines target operation at the maximum CP
below the rated power. In reality, turbines will not achieve a
maximum CP at CT = 8/9 since losses alter the relationship
between CT and CP, but this does not change the fact that tur-
bines are operated at the point of the maximum CP. Figure 2
shows the power and thrust curves for the baseline rotor.

In this paper, all results are presented as the change in per-
formance relative to that of the baseline rotor. For this rea-
son, all of the relevant variables (denoted with a zero in the
subscript) will be normalized by the corresponding baseline
rotor values.

1R =
R

R0
− 1 (9)

1P̃ =
CPR

2

CP,0R
2
0
− 1 (10)

1L̃=
CTR

Lexp

CT,0R
Lexp
0

− 1 (11)

1 ˜AEP=
˜AEP
˜AEP0
− 1, (12)

where L̃ as well as Lexp is a generalized load that is intro-
duced in Sect. 4.1 (Effects on loads), and it is written here
for later reference.

2.2 Scale laws and constraints for design-driving loads

In this section, examples of static aerodynamic design-
driving loads (DDLs) will be presented. These examples are

not meant to be exhaustive but include several of the key con-
siderations that constrain the practical design of wind tur-
bine rotors. From the scaled loads, design-driving load con-
straints (DDLCs) are introduced, which limit loads so that
these do not exceed the levels of the baseline rotor. Based on
the DDL examples, it is shown that DDLCs can be elegantly
put in a generalized form.

2.2.1 Thrust (T )

Thrust typically does not limit the design of the rotor itself
but more likely is a constraint imposed from the design of
the tower and/or foundation. The thrust scaling and the asso-
ciated DDLC is given by

Scaling
T = 1

2ρV
2
0 πR

2CT
⇒

DDLC

(T )= T
T0
=

CT
CT,0

(
R
R0

)2
≤ 1.

(13)

2.2.2 Root flap bending moment (Mflap)

The root flap moment is the bending moment at the rotational
center in the axial flow direction. To compute Mflap, the 1-D
momentum theory relations for infinitesimal thrust (dT ) and
moment (dM) are integrated; they are first expressed as

dT =
1
2
ρV 2CT2πrdr (14)

dMflap = rdT , (15)

where r is the radius location of the infinitesimal load (r ∈
[0,R]). The moment scaling and DDLC can be found as fol-
lows:

Scaling
Mflap =

∫ R
0 dMflap =

1
3 ρV

2
0 CTπR

3⇒
DDLC(
Mflap

)
=

Mflap
Mflap,0

=
CT
CT,0

(
R
R0

)3
≤ 1.

(16)

As shown, Mflap scales with R3 so it grows faster than the
power, which scales as R2. Mflap is important for the blade
design since the flap-wise aerodynamic loads need to be
transferred via the blade structure to the root of the blade.

2.2.3 Tip deflection (δtip)

Tip deflection is a common DDLC for contemporary utility-
scale turbines, where tip clearance between tower and blade
may become critical because of the relatively long and slen-
der blades. To get an idea of how tip-deflection scales with
changes in loading and rotor radius Euler–Bernoulli beam
theory; (Bauchau and Craig, 2009, p. 189, Eq. 5.40) is used.
For the problem here, it takes the form of

d2

dr2EI
d2δ

dr2 =
dT
dr
=

1
2
ρV 2CT2πr, (17)

where δ is the deflection in the flap-wise direction of the
blade at location r . EI is the stiffness of the blade at loca-
tion r . For modern turbines the stiffness decrease towards
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Figure 2. (a) The dimensionless power and thrust for the baseline rotor as a function of wind speed. Overlaid (in blue) is the Weibull wind
speed frequency distribution used throughout (IEC-class III: Vavg = 7.5; k = 2). (b) CT and CP as a functions of wind speed. These curves
reflect how most turbines are operated today, targeting the maximum power coefficient below the rated power, which leads to a thrust peak
just before the rated power.

the tip of the blade. To get an estimate for the stiffness, it is
assumed that stiffness follows the size of the chord (EI ∝ c).
The chord is given by the equation in Sørensen (2016, p. 68,
Eq. 5.26); with an approximation for the outer part of the
blade it can be found that c ∝ R/r which means that EI ∝
R/r . An approximate model for EI that has EI ∝ R/r can
be made,

EI (r)=
EIr

1+
(
EIr
EIt
− 1

)
r
R

, (18)

where EIr is the stiffness at the root and EIt is the stiffness
at the tip of the blade. As mentioned above for wind turbines
EIr >EIt.

With the equation for EI , Eq. (17) can be solved by indef-
inite integration, with the integration constants determined
from the following boundary conditions:

δ(r = 0)= 0,
dδ
dr

(r = 0)= 0︸ ︷︷ ︸
Clamped root

d2δ

dr2 (r = R)= 0,
d3δ

dr3 (r = R)= 0︸ ︷︷ ︸
Free tip

. (19)

The resulting displacement solution becomes

δ =
11π
120

V 2ρ

EIr
CTR

5
(

2
33

(
EIr

EIt
− 1

)
r̃6
+

1
11
r̃5

−
5

11

(
EIr

EIt
− 1

)
r̃4
+

10
11

(
2
3
EIr

EIt
−

5
3

)
r̃3
+

20
11
r̃2
)

(20)

=
11π
120

V 2ρ

EIr
CTR

5δshape

(
r̃,
EIr

EIt

)
, (21)

where the normalized radius (r̃ ∈ [0,1]) has been introduced
so that r = R · r̃ . The polynomial shape of the deflection has
been collected in δshape. The maximum deflection occurs at
the blade tip (r̃ = 1), which leads to a scaling relation and
DDLC for tip deflection:

Scaling

δtip =
11π
120

V 2ρ
EIr
CTR

5δshape

(
r̃ = 1, EIr

EIt

)
⇒

DDLC(
δtip
)
=

δtip
δtip,0
=

CT
CT,0

(
R
R0

)5
≤ 1,

(22)

where it has been implicitly assumed that any change in stiff-
ness needs to follow

EIr

EIt
=

EIr

EIr,0

(
EIr,0

EIt,0
+

26
7

)
−

26
7
, (23)

with the simplest way to satisfy this relation being thatEIr =

EIr,0, which gives EIr
EIt
=

EIr,0
EIt,0

.

2.2.4 Tip deflection with constant mass

The final example of a DDL is also based on tip deflection but
includes a condition to maintain a constant mass of the load-
carrying structure of the blade. To this end, the stylized spar-
cap layout depicted in Fig. 3 is assumed. This layout consists
of two planks. The stiffness of a spar-cap structure with a
homogeneous Young’s modulus (E) can be found from the
stiffness of the rectangle and the parallel axis theorem (see
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Fig. 3 for the variable definitions) as follows:

Irect =
Bh3

12

EI = 2E
(
Irect+A

(
H−h

2

)2)
A= Bh


EI = 2E

(
Bh3

12
+Bh

(
H −h

2

)2
)

= E
H 2Bh

2

(
h2

3H 2 +

(
1−

h

H

)2
)
. (24)

For modern wind turbines h/H � 1, meaning that a common
approximation is

EI ≈ E
H 2Bh

2
. (25)

To compute the mass for such a structure it will be as-
sumed that plank height h and the plank width B are con-
stant and the change in EI comes from a decrease in build-
ing height H . Then, if h is decreased when R is increased,
the following relationship needs to be satisfied for the mass
of the planks to be constant (assuming a constant mass den-
sity),

Rh= R0h0. (26)

From there it follows that changes in the radius of the rotor
will change the stiffness as

EI ≈ EH 2Bh
2 (25)

h=
R0h0
R

(26)

}
EI ≈ E

H 2BR0h0

2R
. (27)

Combining this equation with the tip deflection equation
(Eq. 21), scaling and DDLC can be found as follows:

Scaling
δtip =

11π
120

V 2ρ
EIr

CTR
5δshape

(
r̃ = 1, EIr

EIt

)
EI ≈ E

H 2BR0h0
2R

}

⇒

DDLC(
δtip+mass

)
=

CT
CT,0

EIr,0
EIr

(
R
R0

)5
=

CT
CT,0

(
R
R0

)6
≤ 1,

(28)

with the use of the fact that changing h by the same mag-
nitude for the whole blade leads to EIr

EIt
=

EIr,0
EIt,0

and thereby
does not affect δshape. It should be noted that choosing B to
change instead will lead to the same scaling but the difference
is that changing the plank thickness might lead to higher-
order effects, although they are expected to be insignificant.

2.2.5 Generalizing the constraint form

Considering the four DDLC examples presented above, there
appears to be a pattern in the scaling relations that may be
written as follows:

Figure 3. Assumed spar-cap structure with dimensions: H is the
total build height, h is the space between planks and B is the plank
width.

CT

CT,0

(
R

R0

)Rexp

≤ 1, (29)

where Rexp is the exponent of R in the DDLC.
If the constraint limit is met, the following relationship can

be written

R = R0

(
CT,0

CT

) 1
Rexp

. (30)

3 Formulation of rotor design problems

Based on the performance and constraint relationships out-
lined in the previous section, this section will present the
formulation for rotor design as optimization problems. Two
different classes of problems are introduced, namely power-
capture optimization and AEP optimization, where the latter
is a generalization of the former with the constraint depend-
ing on the wind speed.

3.1 Power-capture optimization

The optimization problem can be stated as

maximize
CT,R̃

P̃ =
1
2

(
1+

√
1−CT

)
CTR̃

2 (31)

subject to
CT

CT,0
R̃Rexp ≤ 1, (32)

where the definition of R̃ = R/R0 has been used for consis-
tency. The solution for this optimization problem is presented
in Sect. 4.1.

It should be noted that this optimization problem is similar
to the problem that is given by Chaviaropoulos and Sieros
(2014) in which they optimize while keeping Mflap. So the
optimization problem in this paper is a generalization of their
optimization problem.
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3.2 AEP optimization

In contrast to the above mentioned optimization of power
capture, optimization with respect to AEP requires the de-
termination of CT(Ṽ ), so it involves a function opposed to a
scalar value. It is also necessary to set the rated power to con-
stant value, while the wind speed at which the rated power is
reached is allowed to change. The problem can be formulated
as

maximize
CT(Ṽ ),R̃

˜AEP=
27
16

ṼCO∫
ṼCI

P̃
(
CT(Ṽ ), R̃

)
· Ṽ 3
·PDFwind(Ṽ )dṼ (33)

subject to
Ṽ 2 CT(Ṽ )

CT,0
R̃Rexp ≤ 1; (DDLC)

27
16 P̃

(
CT(Ṽ ), R̃

)
Ṽ 3
≤ 1 (rated power),

(34)

where the wind speed scaling has been added to the DDLC.

4 Results and discussion

This section discusses the solutions to the rotor design opti-
mization problems introduced in the previous section.

4.1 Optimizing for power capture

The constrained optimization problem maximizing power
capture, as stated in Sect. 3, may be simplified based on the
observation that optimum solutions will occur at the DDL
constraint limit. To understand this, consider that the power
capture of a rotor with an inactive constraint may always be
improved by scaling the rotor up until the constraint is met.
This is true irrespective of the DDLC that determines the
rotor design. Hence, an explicit relation R̃(CT) can be used
to reformulate the problem from a constrained optimization
problem in two variables to an unconstrained optimization
problem in one variable.

P̃
(
CT, R̃

)
=

1
2

(
1+
√

1−CT
)
CTR̃

2 (5)

R̃ =
(
CT,0
CT

) 1
Rexp (30)


⇒ P̃ (CT)=

C
2 1
Rexp

T,0

2

(
1+

√
1−CT

)
C

1−2 1
Rexp

T , (35)

with the optimization problem now as follows:

maximize
CT

P̃ =
C

2 1
Rexp

T,0

2

(
1+

√
1−CT

)
C

1−2 1
Rexp

T . (36)

By differentiating the objective function (Eq. 35 with re-
spect to CT and finding its root, the optimal CT as a function
of Rexp is arrived at.

dP̃ (CT)
dCT

= 0⇒ (37)

CT =
8
(
R2

exp− 3Rexp+ 2
)

(
3Rexp− 4

)2 . (38)

This unique solution is a maximum, which is apparent
from the always-positive value of 1P in Fig. 4. This figure
shows the optimal solution for CT and CP, as well as the rela-
tive change in radius (1R) and power (1P ) compared to the
baseline rotor. In the plots in Fig. 4a and c, CP is observed to
approach the dashed baseline performance (Betz rotor) much
faster than CT as Rexp increases. This is a consequence of the
relationship between CT and CP (Fig. 1). Especially around
the Betz limit, the gradient is very small, which means that
changes in CT do not lead to proportional changes in CP.
Turning to the two plots in Fig. 4b and d, it is seen that the
lowerCP is more than compensated for by increasingR since
the relative change in power (1P ) is always positive.

When maximizing power capture for a given thrust
(Rexp = 2; dashed vertical blue line in Fig. 4), it is found that
CT→ 0 and1R→∞while1P → 50 %, which was found
by investigating the behavior of the limit value when Rexp→

2. Since 1R→∞ is not of much practical interest, further
explanation is not given here. Alternatively, the maximum
power for a given flap root moment (Rexp = 3; orange line
in Fig. 4) may be achieved by increasing the rotor radius by
11.6 % compared to the baseline design (maximum CP). The
corresponding relative increase in power 1P is 7.6 %. Fi-
nally, designs constrained by tip deflection (Rexp = 5; green
line in Fig. 4) allow the relative power 1P to increase by
1.90 % with a relative change in radius1R of 2.30 %. A table
with the results for the increase in power capture (1P ) and
radius (1R) for four designs (Rexp = 2, 3, 5, 6) can be seen in
Fig. 6. In conclusion, rotors with a static aerodynamic DDLC
should not be designed for the maximum CP, as more power
can be generated by rotors with a lower CT and a larger ra-
dius R, without violating the relevant DDLC.

Effect on loads

Even though meeting the constraint limits means that the
chosen DDL will be the same as the baseline, it is interesting
to know what happens to loads that scale differently than the
DDL. As an example, if the DDLC is Mflap (Rexp = 3) it is
a given that it will not change relative to the baseline, but it
could be interesting to know what happens to T and δtip.

To investigate it we will introduce a generalized load (L)
as a measure of how a load scale.

L=K0V
2
0 CTR

Lexp , (39)

where K0 is a scaling constant and Lexp is the generalized
load exponent. The generalized load equation can be made
non-dimensional with

L̃=
L

K0V
2
0 R

Lexp
0

= CTR̃
Lexp . (40)
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Figure 4. (a) Optimal CT as a function of the constraint R exponent (Rexp). (c) Rexp vs. CP; notice that the optimal CP curve has a steeper
slope and hugs the baseline closer than CT. (b) Rexp vs. relative change in radius 1R. (d) Rexp vs. relative change in power capture (1P̃ ).
Despite the similar shape of the curves, a difference between the two is that 1P (Rexp→ 2)= 50 %, while 1R(Rexp→ 2)→∞. The
vertical lines represent each of the example constraints (∗ DDLC: design-driving load constraint).

The difference between Lexp and Rexp is that Rexp results
in a design, whereas Lexp is a load for a design. Take a de-
sign made for tip deflection (Rexp = 5) as an example, then
Lexp = 3 will describe the Mflap load for that design.

An equation for the relative change 1L̃ can be found in
terms of the baseline rotor as follows:

L̃= CTR̃
Lexp (40)

R̃ =
(
CT,0
CT

) 1
Rexp (30)

L̃0 = CT,0R̃
Lexp
0 = CT,0


⇒1L̃=

L̃

L̃0
− 1=

(
CT

CT,0

)1−
Lexp
Rexp
− 1. (41)

Since it is known that CT ≤ CT,0 these conclusions follow:

Lexp <Rexp The load is lower than the baseline level.
Lexp = Rexp The load is identical to the baseline level.
Lexp >Rexp The load is larger than the baseline level.

This agrees with Fig. 5, which illustrates the effect of design
constraints (DDLCs) on different loads. For example, con-
sider tip deflection (Rexp = 5; DDLC(δtip); the dashed green
line in Fig. 5). Looking at the solid green line (Lexp = 5) it
is seen that the relative change in L is zero as expected. Now
looking at the loads with Lexp <Rexp, namely thrust (Lexp =

2) and flap moment (Lexp = 3), it is seen that 1L is lower
than the baseline, with1T =−6.6 % and1Mflap =−4.4 %.

But for loads where Lexp >Rexp the loads are increased. If
there was a load that scaled like Lexp = 6 the load would
be increased by 1L(Lexp=6) =+2.3 %. Furthermore, Fig. 5
shows that the relative decrease in load is always most pro-
nounced for the thrust (Lexp = 2), with the biggest impact oc-
curring around Rexp ≈ 2.5. All of the relative change curves
have distinct minima but at the same time are characterized
by large plateaus of relatively small change. Another obser-
vation is how quickly the curves grow for Lexp >Rexp. Take
DDLC(Mflap) as an example; in this case 1δtip =+24.5 %
and 1L(Lexp=6) =+38.9 %. The relative change in loads be-
comes smaller as Rexp increases. A sketch with a zoomed-in
view of the tip and a table with the values can be seen in
Fig. 6.

4.2 Low-induction rotor

The concept in this section was mentioned in the Introduc-
tion since it has had some attention over the recent years. The
low-induction rotors (LIR) are rotors designed with a lower
axial induction a than the level that maximizes CP. The con-
cept is, to a certain degree, analogous with optimization of
rotors for power capture.

To investigate such an LIR design, it was chosen to fix the
CT value below the rated power in order for it to be the same
as for the power-capture optimization for a given Rexp. If the
radius was set to the same value as for power capture, it will
result in the constraint limit not being met since the turbine
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Figure 5. Relative change in different rotor load parameters (1L̃) depending on DDLC. The scaling of loads have the form L̃= CTR
Lexp ;

e.g., Lexp = 2 scales as the rotor thrust T and Lexp = 5 scales as the tip deflection δtip. Each curve depicts how a load parameter would
change depending on the design-driving constraint. As an example, consider a design limited by tip deflection DDLC(δtip), i.e., Rexp = 5,
which matches the dashed green line. Tip deflection meets the requirements, while thrust (T ) is lowered by 6.6 % and flap moment Mflap by
4.4 %.

Figure 6. Sketch of a turbine with the load/structural response outlined. The zoomed-in figure shows the radius increase (1R) and the change
in tip deflection (1δtip) for two different DDLCs (bold black line is the baseline). The table shows the relative change in power, radius and
load/structural response for different DDLCs. Rexp = 2 is a thrust constraint design, Rexp = 3 is a flap moment constraint design, Rexp = 5
is a tip-deflection constraint design and Rexp = 6 is the tip deflection+constant mass constraint design.

reaches the rated power earlier. SinceCT is fixed and the con-
straint limit needs to be met, the wind speed at which the tur-
bine reaches the rated power (Ṽrated) can be found. It is found
through the normalized power (the integrant of Eq. 7 without
the PDFwind) and the constraint limit with wind speed scaling
(Eq. 30 multiplied with Ṽ 2) as follows:

27
16

1
2

(
1+
√

1−CT
)
CTR̃

2Ṽ 3
= 1

Ṽ 2 CT
CT,0

R̃Rexp = 1

⇒
Ṽrated =

(
16
27

2(
1+
√

1−CT
)
CT

(
CT

CT,0

) 2
Rexp

) 1
3− 4

Rexp
. (42)
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Figure 7. Power and thrust curves for a low-induction rotor (solid lines), designed using the present method with the DDLC exponent
Rexp = 3, which corresponds to an Mflap constraint. The dashed line is the baseline rotor optimized for a max CP.

For a given rated wind speed the rotor radius can be found
using the following steps:

1. CT =
8
(
R2

exp− 3Rexp+ 2
)

(
3Rexp− 4

)2 (38)

2. Ṽrated =

(
16
27

2(
1+
√

1−CT
)
CT

(
CT

CT,0

) 2
Rexp

) 1
3− 4

Rexp
(42)

3. R̃ =

(
1

Ṽ 2
rated

CT,0

CT

) 1
Rexp

, (43)

With CT, Ṽrated and R̃, ˜AEP can be computed using Eq. (7).
The LIR is illustrated by the examples in Figs. 7 and 8

where the present analysis framework has been applied with
constraints pertaining to flap moments (Rexp = 3) and tip de-
flections (Rexp = 5).

In both cases, the resulting power curves are slightly above
the equivalent baseline ones, and the thrust peaks are reduced
compared to the baseline. The relative change in AEP re-
sults in a smaller change than the change in power at the de-
sign point. For the case with DDLC(Mflap), 1AEP= 6.0 %
while the power capture increased by 1P = 7.6 %. The cor-
responding improvements for a tip-deflection-constrained ro-
tor, DDLC(δtip), are 1AEP= 1.2 % and 1P = 1.9 %. The
lower relative improvement for the LIR is related to the
amount of the power that is produced below the rated power.
The results for the LIR are summarized in Fig. 9 with a ta-
ble and a sketch showing the relative changes in AEP, radius,
thrust, root-flap moment and tip deflection for four different
designs (Rexp = 2, 3, 5, 6). From Fig. 9 the thrust constraint
design (DDLC(T );Rexp = 2) is seen to have diverging values
for1R,1Mflap and1δtip. As was the case for power-capture
optimization these results are found from investigating the re-
sult of the limit in which Rexp→ 2. Even though the result

of 1R→∞ is interesting, the corresponding consequence
of 1Mflap→∞ makes this infeasible for practical use, so
this will not be studied further here.

4.3 AEP-optimized rotor

As mentioned in Sect. 3, the variables considered for op-
timization of AEP are CT(Ṽ ) and R̃. In this formulation,
CT can be adjusted independently for each wind speed,
which ideally can be achieved through blade pitch control.
The relative radius R̃ couples the rotor operation across all
wind speeds, as it is necessarily constant. Based on initial
studies, the optimizer targets solutions with three distinct op-
erational ranges, which, ordered by wind speed, are as fol-
lows:

– operation with maximum power coefficient (max CP);

– operation at constraint limit (constant thrust T ); and

– operation at the rated power.

This can be used to make CT a function of R̃, thereby de-
creasing the optimization problem to an unconstrained opti-
mization in one variable (R̃). The CT function is given as

CT(Ṽ , R̃)=
8
9

8
9 ≤ Ṽ

−2CT,0R̃
−Rexp (max CP)

Ṽ −2CT,0R̃
−Rexp 1≤ 27

16
1
2

(
1+
√

1−CT
)
CTR̃

2 Ṽ 3 (constraint limit)

1= 27
16

1
2

(
1+
√

1−CT
)
CTR̃

2 Ṽ 3 1> 27
16

1
2

(
1+
√

1−CT
)
CTR̃

2 Ṽ 3 (rated power),

(44)

where the last equation needs to be solved to getCT; the solu-
tion is a third-order polynomial, which is more easily solved
numerically.

The only free parameter that needs to be determined to
find the optimal AEP is R̃. The optimization problem can be
reformulated as
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Figure 8. Power and thrust curves for rotor with the DDLC exponent Rexp = 5 (solid lines), corresponding to a δtip constraint. The dashed
line is the baseline rotor optimized for max CP.

Figure 9. Sketch of a turbine with the load/structural response outlined. The zoomed-in figure shows the radius increase (1R) and the change
in tip deflection (1δtip) for two different DDLCs (bold black line is the baseline). The table shows the relative change in power, radius and
load/structural response for different DDLCs. Rexp = 2 is a thrust constraint design, Rexp = 3 is a flap moment constraint design, Rexp = 5
is a tip-deflection constraint design and Rexp = 6 is the tip deflection+constant mass constraint design.

maximize
R̃

˜AEP=

ṼCO∫
ṼCI

P̃
(
CT(Ṽ , R̃), R̃

)
· Ṽ 3
·PDFwind(Ṽ )dṼ . (45)

The problem can be solved with most optimization solvers
since the AEP can be computed explicitly if R̃ is given. The
optimization problem was solved with the L-BFGS-B algo-

rithm described in Zhu et al. (1997) though the use of SciPy
(Millman and Aivazis, 2011).

Examples of the resultant power and thrust curves can be
seen in Figs. 10 and 11, for DDLC(Mflap) and DDLC(δtip),
respectively. Looking at Fig. 10 (Rexp = 3) it is clear that
the power and thrust curves have changed quite substan-
tially, compared to the baseline Betz rotor (dashed curves).
The thrust curve does not have a sharp peak anymore but
rather a flat plateau. As mentioned in the Introduction this
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Figure 10. Power and thrust curve for an AEP-optimized rotor (solid lines) where the DDLC exponent is Rexp = 3, which is equivalent to a
constraint on Mflap. The dashed line is the baseline rotor optimized for the max CP below the rated power.

Figure 11. Power and thrust curve for an AEP-optimized rotor (solid lines) where the DDLC exponent is Rexp = 5, which is equivalent to a
constraint on δtip. The dashed line is the baseline rotor optimized for the max CP below the rated power.

is often referred to as thrust clipping. It comes from the
DDLC equation (Eq. 44) which shows that CT ∝ Ṽ

−2, and
since thrust is proportional to T ∝ CTṼ

2, it means that the
thrust is constant. As mentioned, the region where the ro-
tor is thrust clipped is also where the DDLC is active, so
opposed to the baseline and LIR rotor, the DDLC is active
over a larger range of V . The larger range of V is also partly
why 1R = 44.6 %, which is a huge increase. As a result, it
also leads to a large increase, with 1AEP= 19.9 %. This is
a very large change in R̃ and the feasibility of such a de-
sign is doubtful. As it is shown later, the change in maximum
loads (see Fig. 13) leads to a significant change in loads with
Lexp >Rexp.

A more realistic design for modern turbines is found in
Fig. 11 (Rexp = 5). Here the changes are fewer but still sig-
nificant with 1R = 10.7 % and1AEP= 5.8 %. It shows the
same shape as the thrust-clipped curve, but now it is over a
smaller range of V . As mentioned in the Introduction, thrust
clipping was also found by Buck and Garvey (2015a) to be a
beneficial way to lower CoE.

In Fig. 12 the relative change in R and AEP can be seen as
a function of the DDLC R exponent. The plot both contains
the result for the AEP-optimized rotor (AEP opt.; solid black
line) and the low-induction rotor (LIR opt.; dashed–dotted
gray line). The difference between the two is significant, es-
pecially for 1AEP. The results for the AEP-optimized ro-
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Figure 12. DDLC exponent (Rexp) vs. (a) relative change in radius (1R) and (b) relative change in AEP (1 ˜AEP). The plot contains both
of the changes for the cases of the low-induction rotor (LIR opt.; dashed–dotted black line) and the AEP-optimized rotor (AEP opt.; black
solid). The changes in both AEP and radius are much larger for the AEP-optimized rotor.

Figure 13. DDLC R exponent (Rexp) vs. relative maximum load (1L̃max). The plot looks similar to Fig. 5 but 1L̃max is the change in
maximum loading. As an example, when thrust (T ) is −30.8 % for Rexp = 3 it means that the maximum thrust (for any wind speed) is
30.8 % lower than the maximum thrust for the baseline (which happens just before the rated wind speed). Notice that the range for the y scale
is much larger in this plot than for the power-capture-optimized rotor. The potential reduction is more, but it comes with the consequence
that Lexp >Rexp grows faster even for high values of Rexp.

tor are summarized in Fig. 14 with a table and a sketch
that shows the relative changes. As was the case for power-
capture optimization and LIR optimization, some values di-
verge when Rexp→ 2, and the results are found by investi-
gating this limit. But since it has no practical value, further
explanation is omitted here.

Effect on loads

In Fig. 13 a plot of the relative change in maximum loads
as a function of the DDLC R exponent. The relative max

load (1L̃max) does not compare the loads at each Ṽ but rather
the max load for the baseline at Ṽ = 1 (rated wind speed) to
the max load for the optimized rotor for any Ṽ . The plot in
Fig. 13 is similar to the plot in Fig. 5 with the difference being
that it is the relative change in maximum loads, independent
of wind speed at which it occurred. Comparing the two plots,
one should note the range for the y scale in the two plots, with
Fig. 13 having the larger range. It also means that the relative
change in the loads for the AEP-optimized rotor experiences
a larger relative change. But it also has the consequence that
loads with Lexp >Rexp grow faster, especially for larger val-
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Figure 14. Sketch of a turbine with the load/structural response outlined. The zoomed-in figure shows the radius increase (1R) and the
change in tip deflection (1δtip) for two different DDLCs (bold black line is the baseline). The table shows the relative change in power,
radius and load/structural response for different DDLCs. Rexp = 2 is a thrust constraint design, Rexp = 3 is a flap moment constraint design,
Rexp = 5 is a tip deflection constraint design and Rexp = 6 is tip deflection+constant mass constraint design.

ues of Rexp (> 5). A summary of the AEP-optimized rotor
can be seen in Fig. 14, where a table of four different designs
(Rexp = 2, 3, 5, 6) shows the relative change in AEP, radius,
thrust, root-flap moment and tip deflection.

4.4 Summary of findings

In Table 1 the tables shown in Figs. 6, 9 and 14 are summa-
rized. It compares the different optimizations to each other.

As seen from the tables, the largest increase in1P/AEP is
found using AEP optimization, which also leads to the largest
increase in rotor radius (1R). It also shows that using thrust
clipping seems to be a better operational strategy than low
induction, as the design-driving constraint can be met over a
larger range of wind speeds and low induction is only needed
around maximum thrust and not at low wind speeds.

In all three optimization cases, the optimization of the de-
sign with thrust constraint (DDLC(T ); Rexp = 2) leads to
divergent values for 1R and the loads. In all cases the re-
sult is found by investigating the behavior of the limit when
Rexp→ 2. Since this is not thought to be of much practical
value, the details are not provided here.

4.5 Limitation of the study and possible improvements

The study shows that for a rotor constraint by a static aero-
dynamic DDL there is a benefit to lowering the loading and
increasing the rotor size in terms of power/AEP. But, as it
was found by Bottasso et al. (2015), having a rotor with the

same load constraint and increasing the radius does not mean
that the cost is the same or that it is cost optimal. They found
that the increase in AEP did not compensate for the added
cost from increasing the rotor radius. This problem of cost
vs. benefit is not directly addressed in this paper, but by the
DDLC δtip+mass, a constraint in which the mass is kept con-
stant. It is thought to be a better approximation for a rotor
with a fixed price – but this assumption needs to be tested.

Another issue that is not taken into account in this study is
the influence of the turbines self-weight. As was found by
Sieros et al. (2012) the self-weight becomes more impor-
tant for larger rotors. To accommodate for the added mass,
a penalty could be added which should scale as R̃ or R̃3 for
top head mass and static blade mass moment, respectively.
As discussed above, there could also be a constraint imple-
mented that will keep the mass or the mass moment in the
optimization. Again this is a limitation of the study.

The fidelity of the models is also a limitation. Even though
1-D aerodynamic momentum theory is a common approxi-
mation to do for first-order studies in rotor design, it is well
known that the constantly loaded rotor is not possible to re-
alize, and when losses are included the constantly loaded ro-
tor is not the optimal solution anymore. At the same time, if
it was possible to decrease the load at the tip more than at
the root, it would lead to less tip deflection than a constantly
loaded rotor with a similar CT. Extending the model to be
able to handle radial load distribution is one way of adding
detail to the model that could lead to even larger improve-
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Table 1. Overview of the optimization results from optimizing power capture (Opt. PC), low-induction rotor (Opt. LIR) and annual energy
production (Opt. AEP).

Opt. PC Rexp 1P 1R (Lexp = 2) (Lexp = 3) (Lexp = 5)
1T 1Mflap 1δtip

DDLC T 2 +50.0 % ∞ 0.0 % ∞ ∞

DDLC Mflap 3 +7.6 % +11.6 % −10.4 % 0.0 % +24.5 %
DDLC δtip 5 +1.9 % +2.3 % −6.6 % −4.4 % 0.0 %
DDLC δtip+mass 6 +1.2 % +1.4 % −5.5 % −4.2 % −1.4 %

Opt. LIR Rexp 1AEP 1R (Lexp = 2) (Lexp = 3) (Lexp = 5)
1T 1Mflap 1δtip

DDLC T 2 +49.7 % ∞ 0.0 % ∞ ∞

DDLC Mflap 3 +6.0 % +14.9 % −12.9 % 0.0 % +31.9 %
DDLC δtip 5 +1.2 % +2.6 % −7.5 % −5.1 % 0.0 %
DDLC δtip+mass 6 +0.7 % +1.6 % −6.2 % −4.7 % −1.6 %

Opt. AEP Rexp 1AEP 1R (Lexp = 2) (Lexp = 3) (Lexp = 5)
1T 1Mflap 1δtip

DDLC T 2 +69.7 % ∞ 0.0 % ∞ ∞

DDLC Mflap 3 +19.9 % +44.6 % −30.8 % 0.0 % +109.0 %
DDLC δtip 5 +5.7 % +10.6 % −26.2 % −18.3 % 0.0 %
DDLC δtip+mass 6 +3.9 % +7.0 % −23.8 % −18.4 % −6.6 %

ments. It could be done through the use of blade element
momentum (BEM) theory.

For modern turbine design, it is often the case that the
structural design is determined by the aeroelastic extreme
loads, such as extreme turbulence or gusts. With the simplic-
ity of the models in this study, this is not taken into con-
sideration. But if the extreme load happens in normal oper-
ation there will likely be a direct relationship between the
steady and extreme loads, meaning that a decrease in steady
loads will also lead to a decrease in the extreme load. This is
an assumption that should be tested in future work. If the
design-driving load is happening in nonoperational condi-
tions, e.g., extreme wind in parked conditions, grid loss or
subcomponent failure, then the analysis tool cannot be di-
rectly applied.

5 Conclusions

A first-order model framework for the analysis of wind
turbine rotors was developed based on aerodynamic 1-
D momentum theory and Euler–Bernoulli beam theory.
This framework introduces the concept of design-driving
load (DDL) for which a generalized form has been devel-
oped in which loads only differ by a scaling exponent Rexp,
e.g., thrust scales as Rexp = 2, root-flap moment as Rexp = 3
and tip deflection as Rexp = 5. Despite the simplicity of the
model, this study has shown important trends in how to de-
sign rotors for maximum power capture. It has been shown
that the potential increase in power capture is very dependent
on the relevant constraint, e.g., thrust as the constraining load

compared to the more restrictive tip deflection. Furthermore,
it was concluded that the best way to design a rotor for in-
creased power capture using aeroelastic considerations is not
to maximize CP but rather to relax CP and operate at lower
loading (lower CT). How much one should relax CP depends
on the chosen design-driving constraint (Rexp). The results
for optimizing for power capture are summarized in Table 1
(Opt. PC).

The optimization of power capture determines the best
possible design for a given wind speed. By considering the
annual energy production (AEP), an optimal design across
the range of operational wind speeds can be found for a
given wind speed frequency distribution. Optimal AEP was
considered with two different approaches, namely the low-
induction rotor (LIR) and full AEP optimization. For LIR,
theCT value below the rated power was set to the value found
from power-capture optimization for the chosen Rexp. Then
the radius was increased compared to the power-capture-
optimized rotor, since it will reach the rated power earlier
with the same rotor size. A summary of the results can be
seen in Table 1 (Opt. LIR).

For the full AEP optimization, CT was allowed to take on
any positive value below the Betz limit (0≤ CT ≤ 8/9) for
all wind speeds. The optimal AEP is obtained for a rotor that
operates in three distinct operational regimes:

– operation with maximum power coefficient (max CP);

– operation at constraint limit (constant thrust T ); and

– operation at the rated power.
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The results from the optimization are summarized in Table 1
(Opt. AEP). It shows significantly larger relative improve-
ments in power/energy compared to power-capture- and LIR-
optimized rotors. This comes at the cost of a larger increase
in rotor radius. In the range where the optimum turbine op-
erates at the constraint limit, the thrust curve is clipped (in a
manner also known as peak shaving or force capping). This is
a control feature used for many contemporary turbines, so it
is interesting that this study, independent of this knowledge,
shows that thrust clipping is a very efficient way to increase
energy capture while observing certain load constraints. It is
also the main reason behind the relatively large possible im-
provements in AEP, as the constraint limit is met over a larger
range of wind speeds.

In spite of relatively crude model assumptions made, this
paper provides profound insight into the trends of rotor de-
sign for maximum power/energy, e.g., the use of thrust clip-
ping. As wind turbine rotors continue to develop towards
larger diameters with slender (more flexible) blades, the
type of design-driving load constraint also evolves. With the
present model framework, the conceptual implications of this
development become clearer; an increase in AEP of up to
5.7 % is possible compared to a traditional CP-optimized ro-
tor – without changing technology, using bend-twist coupling
or other advanced features. Finally, this work has demon-
strated an approach to formulate an optimization objective
that couples power and load/structural response though the
power-capture optimization. This approach may be extended
into less crude model frameworks, e.g., by introducing radial
variations in rotor loading.
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