
Wind Energ. Sci., 5, 1551–1566, 2020
https://doi.org/10.5194/wes-5-1551-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Integrated wind farm layout and control optimization

Mads M. Pedersen and Gunner C. Larsen
Wind Energy Department, Technical University of Denmark,

Frederiksborgvej 399, 4000 Roskilde, Denmark

Correspondence: Mads M. Pedersen (mmpe@dtu.dk)

Received: 31 January 2020 – Discussion started: 24 February 2020
Revised: 3 July 2020 – Accepted: 1 October 2020 – Published: 12 November 2020

Abstract. The objective of this paper is to investigate the joint optimization of wind farm layout and wind farm
control in terms of power production. A successful fulfilment of this goal requires the following: (1) an accurate
and fast flow model, (2) selection of the minimum set of design parameters that rules or governs the problem,
and (3) selection of an optimization algorithm with good scaling properties.

For control of the individual wind farm turbines with the aim of wind farm production optimization, the two
most obvious strategies are wake steering based on active wind turbine yaw control and wind turbine derating.
The present investigation is limited to wind turbine derating.

A high-speed linearized computational fluid dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS)
solver models the flow field and the crucial wind turbine wake interactions inside the wind farm. The actua-
tor disc method is used to model the wind turbines, and utilizing an aerodynamic model, the design space of the
optimization problem is reduced to only three variables per turbine – two geometric and one carefully selected
variable specifying the individual wind turbine derating setting for each mean wind speed and direction.

The full design space is spanned by these (2N +NdNsN ) parameters, where N is the number of wind farm
turbines, Nd is the number of direction bins, and Ns is the number of mean wind speed bins. This design space is
decomposed into two subsets, which in turn define a nested set of optimization problems to achieve a significantly
faster optimization procedure compared to a direct optimization based on the full design space. Following a
simplistic sanity check of the platform functionality regarding wind farm layout and control optimization, the
capability of the developed optimization platform is demonstrated on a Swedish offshore wind farm. For this
particular wind farm, the analysis demonstrates that the expected annual energy production can be increased by
4 % by integrating the wind farm control into the design of the wind farm layout, which is 1.2 % higher than
what is achieved by optimizing the layout only.

1 Introduction

The large-scale global deployment of wind energy is highly
dependent on the cost of energy (COE), i.e. the profit of a
wind power plant (WPP) over its lifetime as seen from an in-
vestor’s perspective. Lowering the COE was previously ad-
dressed with the TOPFARM WPP layout optimization plat-
form (Réthoré et al., 2013; Larsen and Réthoré, 2013). The
platform is used to design a WPP with a minimal COE, for a
given number of a predefined wind turbine (WT) type and an
allowable area with a wind climate known a priori. Hence, it
determines the optimal balance between WPP power produc-

tion revenue on the one hand and, on the other hand, all rel-
evant expenses. The considered expenses include WPP vari-
able capital costs (i.e. capital costs that depend on the WPP
layout), WPP operation and maintenance (O&M) costs, and
the cost of fatigue degradation of the individual components
of all WTs in the WPP. The basic functionality of the TOP-
FARM platform was later extended by also including the
number of WPP WTs as a design variable, and the perfor-
mance of surrogate models, needed to facilitate the optimiza-
tion algorithm used, was moreover improved by Mahulja et
al. (2018). Because WT loading is included, the WPP WTs
must be modelled as aeroelastic models (including individual
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WT control), and the inflow conditions to these are tightly
coupled to the complex non-stationary wake-affected WPP
flow field. Performing individual WT aeroelastic simulations
for all the considered ambient wind speeds and wind di-
rections in each layout configuration iteration is extremely
costly in terms of computational efforts. Therefore, surrogate
models are needed to link ambient WPP inflow conditions,
WT location within the WPP, and WT response in terms of
power production and (fatigue) loading.

However, WPP control aspects were not considered in the
aforementioned WPP layout optimization platform. Fathy et
al. (2001) present a purely theoretical analysis of coupled de-
sign and control of general physical systems. It was found
that conventional sequential optimization processes are not
guaranteed to find system-optimal designs. In this theoreti-
cal framework, a coupling term is introduced, which reflects
the influence of plant dynamics and control on plant design.
The necessary conditions for the combined plant design and
controller optimality were investigated, and it was concluded
that this term depends strictly on the gradients of the cou-
plings with respect to the plant design variables, which is also
intuitively clear. Therefore, for weak or no coupling, i.e. ne-
glectable coupling constraint gradients, the plant design and
controller optimization problems become separable and their
sequential solution is equivalent to the combined optimum.
In the case of a strong coupling, only design methods that in-
clude this interaction explicitly can produce system-optimal
designs contrary to the sequential approach. A priori, how-
ever, it is not possible to evaluate whether the coupling be-
tween system design variables and system control variables
is weak or strong for a complicated physical system like a
WPP.

Fleming et al. (2016) and Gebraad et al. (2017) studied
the optimization of layout and active wake control in terms
of WT yaw-dictated wake deflection on a WPP with 60 WTs.
In these studies, the wake effects are modelled with an aug-
mented version of the N. O. Jensen model (Jensen, 1984)
extended with an engineering model for wake deflection as
caused by WT yaw misalignment. Fleming et al. (2016)
consider an inflow wind speed of 8 m s−1 only and report
a power gain of 2.3 % for the optimized layout, 7.6 % for
the optimized yaw control, and 8.5 % for the integrated lay-
out and yaw control optimization result. Finally, Fleming
et al. (2016) compare the integrated result, which requires
6900 CPU hours, with a sequential approach, which can be
performed in “several hours by a single computer”. They find
that the integrated result is around 0.5 % better than the re-
sults originating from the sequential approach. Gebraad et
al. (2017) perform a three-step optimization: first the annual
energy production (AEP) is increased by 1.5 % by optimiz-
ing the layout considering one wind speed per wind direction
only; then the WT positions and the yaw angle are optimized,
again based on one wind speed per wind direction, which in-
creases the AEP to 5.2 % above the baseline. Finally, the WT

yaw angles are optimized for all relevant wind speeds, raising
the AEP to 5.3 % above the baseline.

Another integrated approach is taken by Deshmukh and
Allison (2017). They optimize a WPP system including WPP
layout as well as WPP control facilitated by active wake
control over the entire lifetime of the WPP. The optimal
WPP system design is pursued using a quasi-steady empir-
ical wake model (i.e. a deterministic wake, which expands
downstream). The quasi-steady wake model is linearly su-
perimposed on the undisturbed ambient flow fields includ-
ing both mean wind shear and turbulence (presumably us-
ing only one turbulence seed and thereby one realization
of the ambient stochastic turbulence field) to obtain a de-
scription of the WPP flow field. Surprisingly, a relationship
between the atmospheric-boundary-layer (ABL) turbulence
field and the introduced wake expansion factor is not es-
tablished, although there is evidence that wake meandering,
which depends on the site ambient turbulence field, is dic-
tating the static downstream wake “envelope” (Machefaux
et al., 2015). Deshmukh and Allison (2017) take a model-
predictive-control (MPC) approach that is specifically imple-
mented using reduced-order state-space models of the indi-
vidual WTs, which account for the tower fore–aft bending
dynamics, the rotor rotational-speed dynamics, and the blade
pitch dynamics. The active wake control includes both WT
derating and wake deflection by WT yawing. The objective
function is the WPP AEP, and two case studies indicate a sig-
nificant improvement of the integrated system design com-
pared to layout design only. No attempt was made to com-
pare the full integrated system design approach with a se-
quential approach, in which first the layout was optimized
and then, subsequently, the WPP control. Such a compari-
son would have contributed to quantification of the coupling
terms, elaborated by Fathy et al. (2001), and, in the case of
weak coupling, facilitated a reduction in the computational
efforts needed to perform the system design optimization.
The paper is ended with a comparison of the relative AEP
effect of the derating and the yaw-wake-deflection strategy.
It is concluded that wake deflection is of marginal importance
compared to WT derating.

Based on a two-WT case, Andersen (2019) analysed ac-
tive wake control using a high-fidelity computational fluid
dynamics (CFD) large-eddy simulation (LES) solver, fully
coupled with a modal-based aeroelastic tool including a full
dynamic WT controller. Comparing a 35◦ yaw case with the
corresponding derating case, this study concludes that, for a
given reduction in the upstream WT thrust, the yaw-wake-
deflection strategy reduces the power production of the up-
stream WT more than the derating strategy. It is further con-
cluded that the overall benefit of active wake deflection as
well as WT derating is largely uncertain for a two-WT sys-
tem.

Gebraad et al. (2015) also analysed a two-WT case by
means of high-fidelity CFD simulations of the wind farm
flow field coupled with simulations of the WT dynamics.
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They used the National Renewable Energy Laboratory’s sim-
ulator for wind farm applications (SOWFA) to investigate
two different derating strategies: (1) changing the collective
blade pitch setting and (2) changing the tip speed ratio. They
found that the power increase in the wake-affected WT was
balanced by the decrease in the derated WT. This led to the
conclusion that yaw wake deflection is more efficient than
derating when quantified in terms of power production. Un-
fortunately, both of the investigated derating strategies are
suboptimal as shown by Vitulli et al. (2019). The optimal der-
ating strategy is the particular combination of collective pitch
and tip speed setting, resulting in the lowest rotor thrust for
a given WT power production. Using this optimal derating
strategy, Vitulli et al. (2019) obtained a considerable power
gain.

Regarding both numerical two-WT studies by Andersen
(2019) and Gebraad et al. (2015), a full-scale study by van
der Hoek et al. (2019), in which derating of the most up-
stream WT was investigated for a single row of five WTs,
is particularly interesting. Their CFD simulations predicted
a power increase of 5.6 % for the row-aligned wind direction
in the below-rated wind speed regime. This result was veri-
fied by a year-long field test campaign, where WT derating
was turned on and off every half week. The derating was,
for practical reasons, implemented as two pitch offsets (one
for full-wake and one for partial-wake conditions). The re-
sults of the field test predicted an increase of 3.3 % in AEP,
i.e. close to the CFD simulations when taking the subopti-
mal pitch regulation as well as model and measurement un-
certainties into account. Given that derating, based on pitch
regulation only, is suboptimal, there is a potential for even
larger gain by using the optimal combination of pitch and tip
speed settings.

Large uncertainties, associated with both active-wake-
control strategies (i.e. derating and yaw-based wake deflec-
tion) and, not least, among various simulation approaches as
well as measurements, were also reported in Kheirabadi and
Nagamune (2019). Important conclusions from this study are
further that (1) full-scale tests provide the most conserva-
tive (i.e. less optimistic) evaluations of the potential of active
wake control and (2) consistently “added layers of realism
in terms of simulated wind conditions tend to deteriorate the
performance of wind farm controllers”.

Guided by (1) and (2), the present contribution to WPP
system design optimization (i.e. WPP layout and control op-
timization) will seek to describe the complex inter-turbine
aerodynamic interactions within a WPP as realistically as
possible considering the computational resources needed for
WPP optimization. This is done using an extremely fast full-
blown CFD solver.

We will limit the scope to AEP1 system optimization;
i.e. WT loading is excluded. We assume that WT characteris-
tics for aggregated AEP estimates are sufficiently described
in terms of their power and thrust coefficients, which implic-
itly include the relevant structural dynamics of a particular
WT as e.g. crucial blade bending and torsion dynamics for
big modern WTs with flexible blades. Encouraged by the re-
sults obtained by Deshmukh and Allison (2017), Andersen
(2019), and van der Hoek et al. (2019), we will limit WPP
active wake control to WT derating and leave inclusion of
yaw-dictated wake deflection for a future study.

The research challenges dealt with in the present paper can
be summarized as follows:

1. Investigate WPP system optimization based on full-
blown CFD simulations of the complex WPP flow field
with its complicated WT wake interactions.

2. Analyse and indicate the importance of the system cou-
pling terms mentioned in Fathy (2001) – or more specif-
ically their gradients with respect to the WT positions.

3. Evaluate the AEP improvement potential accompany-
ing the integrated system approach with a focus on in-
dividual WT derating based on analysis of an existing
offshore WPP.

Section 2 describes the simulation platform including all
relevant models, while Sect. 3 presents a simple and illus-
trative application example as a sanity check. The Lillgrund
case study is described in Sect. 4. First the layout–control
coupling is analysed by a one-row WPP example. Based on
the results of this study, a system optimization of the Lill-
grund WPP is subsequently performed. The paper is con-
cluded in Sect. 5, where future work is also identified.

2 The platform

Overall, the integrated layout and WPP control optimiza-
tion platform is based on a fusion of TopFarm2 (Pedersen
et al., 2019a); the DTU wake framework, PyWake (Peder-
sen et al., 2019b); and a dedicated aerodynamic rotor model.
TopFarm2, which is the DTU open-source WPP optimization
framework, utilizes the open-source framework for multi-
disciplinary design, analysis, and optimization, OpenMDAO
(Gray et al., 2019), to find the optimal set of design vari-
ables, i.e. WT positions and control settings in a sequential
or nested workflow. PyWake is the DTU open-source AEP
calculator including a collection of stationary wake mod-
els. PyWake is used to establish the AEP objective function

1Restricting the objective function to power production is a ma-
jor simplification compared to the approach taken in Réthoré et al.
(2013), Larsen and Réthoré (2013), and Mahulja et al. (2018) be-
cause (1) aeroelastic modelling of the WPP WTs is circumvented,
(2) a stationary description of the wake-affected WPP flow field
suffices, and (3) no cost models are needed.
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needed in TopFarm2, which in this study is based on the
linearized CFD Reynolds-averaged Navier–Stokes (RANS)
wake model, Fuga (Ott et al., 2011).

A simplified version of the present platform, excluding
WPP layout optimization and thus only including WPP con-
trol optimization, is described by Vitulli et al. (2019). In its
most general formulation, this open-loop WPP control opti-
mization platform deals with two design parameters per WT
– the tip speed ratio, λ, and the collective pitch angle, α, both
conditioned on the wind direction and wind speed. However,
using a case study Vitulli et al. (2019) justifies that the de-
sign space, without loss of generality, can consistently be
collapsed to only one parameter for each WT. This parameter
reflects the desired derating and maps to a unique combina-
tion of collective pitch and tip speed ratio, (αCt ,λCt ), which
results in the smallest possible thrust coefficient, Ct, condi-
tioned on the requested power coefficient, Cp. For the sake of
efficiency, we will take advantage of this finding in designing
the present platform, thus resulting in three design parame-
ters for each WT – two layout coordinates and the unique set
(αCt ,λCt ) resulting from the unique functional relationship
αCt (λCt ).

In summary, the present integrated system optimization
platform consists of four main components:

1. a CFD solver modelling the steady-flow field within
a WPP; the ambient mean wind shear and turbulence
characteristics are specified in terms of a terrain rough-
ness height conditioned on wind direction, which im-
plicitly dictates the ambient turbulence conditions via
the turbulence closure of the CFD model;

2. an aerodynamic part, which models the WT power and
thrust characteristics based on a detailed aeroelastic
model of the WT; this model incorporates a descrip-
tion of both structural and aerodynamic properties of
the WT with predefined settings for rotational speed and
the collective pitch angle conditioned on the rotor inflow
conditions; however, only steady WT deflections are ac-
counted for in defining the rotor aerodynamic character-
istics for the present purpose; this model is in turn used
to establish an accurate and fast surrogate model to fa-
cilitate an efficient optimization process;

3. a WPP AEP performance metric defining the optimiza-
tion objective, including possible constraints, as based
on information available a priori on the mean wind di-
rection probability density function (pdf) and the mean
wind speed pdf conditioned on the wind direction of the
site; and

4. an optimization platform that computes the optimal sys-
tem performance in terms of the WPP AEP metric while
satisfying the site area and minimum wind turbine sep-
aration constraints.

In the following each of these four key elements is described
in some detail.

2.1 The CFD solver

Typically, an optimization of the control settings for a WPP
requires 200–1000 power evaluations for each mean wind
speed and direction. To calculate a proper AEP metric, we
use 23 speeds and 360 directions; i.e. 1.6–8.2 million flow
field computations are needed to optimize the control settings
for a given WPP layout. Obviously, this puts excessively high
demands on the computational speed of the flow solver.

The linear CFD RANS solver, Fuga (Ott et al., 2011),
is extremely fast, has previously compared well with full-
scale measurements (Peña et al., 2018; van der Laan et al.,
2019), and is thus considered ideal for this task. The govern-
ing Navier–Stokes equations, neglecting the Coriolis forcing,
are consistently linearized using a formal perturbation expan-
sion and subsequently retaining only the first-order perturba-
tion terms. Thus, mass conservation is identically satisfied;
momentum conservation is satisfied to first order; and the
resulting WPP fields are divergence free, as they should be
for an assumed incompressible flow. The resulting equations
are in turn conveniently formulated and solved in a mixed-
spectral domain for efficiency reasons. The velocity pertur-
bation around a single WT in the physical domain is derived
from Fourier components of the mixed-spectral solution us-
ing a fast inverse Fourier integral transform and stored in a
system consisting of both general and WT-specific look-up
tables, which facilitates the extreme computational speed of
the solver. Because of the linearity of the model, wakes from
multiple upstream WTs can consistently be superimposed to
construct the flow field further downstream. From an effi-
ciency perspective, this is a big advantage.

The WTs are modelled as actuator discs, which in general
can be vertically inhomogeneous but are often assumed to be
uniform in wake studies. The actuator discs embedded in the
flow field represent the rotor drag forces, which in turn are
responsible for the creation of rotor downstream wakes. The
specifications of the individual actuator discs are based on
detailed aerodynamic models of the WPP rotors as accounted
for in Sect. 2.2. The WPP wind field, impinging on an arbi-
trary WT in the WPP, depends on the ambient wind field and
wakes from relevant upstream WTs linearly superimposed.

The inflow conditions, i.e. mean wind speed and direc-
tion, are assumed to be horizontally homogeneous over the
spatial extend of the WPP. More specifically, neutral atmo-
spheric boundary conditions are assumed, meaning that a
logarithmic mean wind shear profile applies. The character-
istics of the shear profile is thus in turn defined by a terrain
roughness length and the friction velocity u∗. For neutral at-
mospheric conditions, Monin–Obukhov scaling dictates the
standard deviation of the velocity fluctuations to be invari-
ant through the atmospheric boundary layer and proportional
to the friction velocity. The turbulence inflow is thus ex-
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pressed in terms of the same input parameters as the mean
wind shear field. For the Lillgrund site, a roughness length of
z0 = 0.03 m is used, which results in an inflow turbulence in-
tensity of approximately 12 %. This is at the high end for an
offshore location and relates to the proximity of the Lillgrund
site to urban areas. No attempt was made to link the rough-
ness length to inflow wind speed, because site measurements
have shown only marginal variations in the turbulence inten-
sity with wind speeds below the rated wind speed.

For each wind direction, the local wind speed, i.e. ambient
wind speed minus the sum of deficits from upstream turbines,
the power production, and the thrust coefficient as well as
the wake deficits at downstream WT positions are evaluated
starting with the most upstream WT position and continuing
in the downstream order.

2.2 The aerodynamic WT model

As mentioned, we consider detailed aerodynamic rotor per-
formance expressed in terms of power- and thrust coefficients
as fully satisfactory for WT AEP simulations.

Initially, the power and thrust coefficients of the rotor
are modelled using HAWCStab2 – a linearized aero-servo-
elastic code designed for stability analysis and steady-state
simulation of WTs (Hansen et al., 2017). HAWCStab2 relies
on an extended formulation of the traditional blade element
momentum (BEM) approach (Madsen et al., 2007), and con-
sequently detailed geometric and aerodynamic input is re-
quired, e.g. the blade planform and twist distribution as well
as blade aerodynamic properties in terms of aerodynamic co-
efficients over the blade length. In the present application,
HAWCStab2 uses a fully flexible WT model formulation to
account for the equilibrium-static wind-speed-dependent de-
flections of the WT main components and thus the potential
effects on the WT thrust and power performance.

For traditional layout optimization without WPP control,
the WPP production is implicitly based on WTs running at
maximum Cp. For the present application, which aims at
system-optimal design, the aerodynamic modelling includes
a WT derating feature, which links to a unique set of the
tip speed ratio and collective pitch angle, (αCt ,λCt ). Conse-
quently, the aerodynamic WT model must facilitate compu-
tation of Ct and Cp conditioned on these design variables.
Assuming zero yaw error, the tip speed ratio, λ, is defined as

λ≡
R�

U
, (1)

where R is the rotor radius,� denotes the rotor speed, and U
is the hub-height mean wind speed.

The conditional dimensionless rotor thrust and power co-
efficients are defined as

Ct(U |α,λ)≡
TWT(U |α,λ)

1
2ρAU

2
(2)

and

Cp(U |α,λ)≡
PWT(U |α,λ)

1
2ρAU

3
, (3)

respectively, where TWT is the rotor thrust force; PWT is WT
power production; ρ is the air density; andA is the rotor area,
which depends on both the rotor tilt (θt) and the blade-coning
(θc) angles as

A= π (R cosθc cosθt)2. (4)

In this context, PWT and TWT are obtained from HAWC-
Stab2 simulations of the Siemens SWT-2.3-93 WT, which
operates at the Lillgrund WPP; see Sect. 4. The steady-state
power and thrust have been simulated for a range of collec-
tive pitch and rotor speed settings in a uniform flow field of
8 m s−1. In principle such steady-state parameter sweep sim-
ulations must be performed for all relevant mean wind speeds
to account for the steady-state blade deflections. However,
assuming that these deflections have only a minor effect on
the steady-state power and thrust performance of the WT in
question, then one mean wind speed suffices. This is justified
under the assumption that the thrust scales with U2 and the
thrust coefficient is normalized with U2, whereas the power
scales with U3 and the power coefficient is normalized with
U3.

Note from Eq. (1) that for a fixed wind speed, a variation
in rotor speed corresponds to a variation in λ. Thus, from
the above-described simulation outputs, the power and thrust
coefficients are easily calculated as a function of the tip speed
ratio and the collective pitch via Eqs. (1)–(4); see Fig. 1.

The results shown in Fig. 1 can be used for the entire range
of mean wind speeds requested for the system optimization;
see Eq. (1). This is convenient from a computational point of
view and thus consolidates the status of the tip speed ratio as
a design variable as an appropriate choice.

Another important computational simplification is, as pre-
viously mentioned, the reduction from two control design
variables per WT to one control design variable per WT.
This reduction is based on the previously mentioned find-
ings by Vitulli et al. (2019) showing that optimal derating
is obtained by selecting the unique set of design variables
(αCt ,λCt ), which, for a given derating (i.e. power production
reduction), corresponds to the smallest possible thrust. This
condition, which is also intuitively clear, provides a unique
relationship between αCt and λCt and justifies the reduction
in design space to one control variable per WT, conditioned
on ambient mean wind direction and mean wind speed.

As a consequence of the control design space collapse, a
specific derating factor corresponds to a deterministic path
through the original (α, λ) design space, where the points on
this path correspond to certain mean wind speeds. Note that
these paths are constrained by the minimum and maximum
rotor speed limits as well as the maximum power limit; see
Fig. 2.
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Figure 1. Power and thrust coefficients as a function of tip speed ratio and collective pitch angle, based on HAWCStab2 simulations of a
Siemens SWT-2.3-93 WT.

Figure 2. (a) Cp, (background colour and blue contours) and Ct (orange contours) plotted as a function of tip speed ratio, λ, and collective
pitch setting, α. The green, red, and purple lines expose the (αCtλCt ) relation for 0 %, 10 %, and 50 % derating, respectively. These relations
are plotted for a range of wind speeds (3, 10, and 15 m s−1 are marked) satisfying the rotor speed limits (indicated on the left-hand side of
the panel for 3, 10, and 15 m s−1) as well as the maximum power limit. (b) The corresponding power (solid) and Ct (dashed) curves plotted
as a function of wind speed. These figures are based on HAWCStab2 simulations of a Siemens SWT-2.3-93 WT model.

The last step needed to prepare for an efficient optimiza-
tion procedure is to transform the above-described aero-
dynamic rotor computations into a surrogate model, which
maps mean hub wind speed and the requested derating fac-
tor into a power production coefficient and a thrust coeffi-
cient conditioned on the operational settings, i.e. Cp(U |α,λ)
andCt(U |α,λ). The surrogate thereby establishes the link be-
tween the derating settings, to be specified by the control op-
timizer, and the characteristics of the uniformly loaded actu-
ator discs needed by the flow solver. Note that controller-
specific constraints such as the tower exclusion zone and
smooth transition between regions as well as controller im-
plementation issues are not taken into account. At present,
it has not been found essential to model the actuator discs
as vertically inhomogeneous, although this is possible within
the framework.

2.3 The AEP performance metric and constraints

The objective function defined for the present optimization
platform is the AEP of the WPP. Financial costs of the inter-
nal WPP power grid, access roads, foundation, etc. are not
considered, which in turn means that the positions of the in-
dividual WPP WTs are only constrained by the minimum al-
lowable distance to the nearest neighbouring WT and the line
of demarcation defining the permissible WPP area. Consid-
ering two rotor diameters (2 D) to be the minimum realistic
WT interspacing distance, this minimum spacing constraint
has been selected for all show cases presented in this paper.
The permissible WPP area for the Lillgrund case is the styl-
ized convex shape of the Lillgrund reef. Finally, we have in-
corporated two additional constraints associated with the op-
erational conditions of the Lillgrund Siemens SWT-2.3-93
WT used in all cases:�ε [9 rpm, 16 rpm] and αε [−2◦, 90◦].

In each iteration of the optimization procedure, the objec-
tive function – in this case the AEP performance metric –
must be computed. Computational efficiency is in particular
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needed for the present CFD-based approach, and maximum
efficiency is assured through implementation of the “short-
cuts” described in Sect. 2.2.

For a given layout (i.e. associated with a given iterative
step in the layout optimization process), the WPP AEP, PAEP,
is estimated from

PAEP = T

N∑
i=1

∫ 360◦

0◦

∫ Uout

Uin

Pi(U |θ )fU (U |θ )fθ (θ )dUdθ, (5)

in which U denotes the undisturbed ambient hub-height
mean wind speed and Pi (U |θ ) is the production (in watts) of
the ith WT at ambient hub-height mean wind speed, U , and
associated operating conditions dictated by the internal WPP
flow field. fU (U |θ ) is the ambient hub-height mean wind
speed pdf, conditioned on the ambient mean wind direction
(i.e. often a two-parameter Weibull distribution), and fθ (θ )
is the ambient mean wind direction pdf. Assuming SI units,
T is the number of seconds corresponding to 1 year and N is
the predefined number of WTs within the WPP considered.

In practice, Eq. (5) is discretized to facilitate evaluation
of the involved integrals. In the succeeding case studies, a
directional discretization of 1◦ was used combined with an
ambient mean wind speed discretization of 1 m s−1.

2.4 Optimization setup

Overall, there are three common ways to design the WPP
system optimization. The most elaborate of these is to design
the fully integrated approach by involving all design vari-
ables simultaneously – the one-step approach. The layout-
optimization-related design variables amount to two (i.e. the
WT position in a Cartesian coordinate system) per WT. The
WPP control optimization, conditioned on ambient mean
wind direction and mean wind speed, requires, utilizing the
design space collapse described in Sect. 2.2, one design vari-
able per WT. However, because the AEP computation re-
quires all wind directions and all wind speeds to be accounted
for, the control-related design variables amount to NdNs per
WT. Here Nd is the number of ambient inflow directions and
Ns is the number of ambient mean wind speeds considered
in the discrete version of Eq. (5). Thus, in total the number of
design variables amounts to N (2+NdNs). This is clearly in-
feasible within the present framework – even when utilizing
a high-performance computing cluster.

An alternative and more efficient strategy for a fully in-
tegrated system optimization is a two-step nested approach,
in which, for each optimization step, first the layout is ad-
vanced and then, based on this iteration of the layout, the
associated optimal control schedule, conditioned on ambient
mean wind speed and direction, is determined. Merging the
sequentially determined WPP layout and associated optimal
control schedule, the AEP estimate, associated with the ac-
tual iterative step, can be evaluated. The associated workflow
is illustrated in Fig. 3.

Figure 3. Nested optimization workflow. The control settings are
optimized in every layout iteration.

Figure 4. Sequential optimization workflow. The control settings
are optimized one time only, after the optimal layout is found.

Both the one-step optimization strategy and the two-step
nested optimization strategy are fully integrated strategies,
which eventually will lead to the same result.

If the optimal system design is separable, in the sense
that only a weak coupling exists between the layout and the
WPP control optimization, the problem can be significantly
simplified. This will be quantified in Sects. 3.3 and 4.1 us-
ing two demonstration cases. The significant reduction in
computational complexity is obtained taking a two-step se-
quential approach by approximating a weak system coupling
with no system coupling. The sequential workflow, in which
the conventional “greedy” individual WT control settings are
used for the WPP layout optimization, is succeeded by an
optimization of the WPP control scheduling conditioned on
both ambient mean wind speed and direction. Thereby, the
greedy WT control settings are replaced by optimized “col-
laborative” WT settings to the benefit of the WPP AEP. The
workflow associated with this sequential strategy is shown in
Fig. 4.

The merger of these two optimization steps makes up the
optimized system design and is in essence a sequential appli-
cation of the TopFarm2 (Pedersen et al., 2019a) layout plat-
form and the open-loop WPP control scheduling platform de-
scribed by Vitulli et al. (2019).

The layout is optimized using a combination of random-
search and gradient-based (SLSQP – sequential least-squares
programming) optimization. The random-search algorithm,
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Figure 5. Three-WT row used for sanity check of the control opti-
mization. Reduced WT production, caused by derating, is indicated
by an arrow pointing downwards; increased WT production, caused
by optimized WPP control, is indicated by an arrow pointing up-
wards.

described by Feng and Shen (2015), does not get stuck at
local optima and is consequently suitable to finding a good
global solution, while the gradient-based optimizer, applied
subsequently, is used to trim the random-search solution
to the nearest optima. In this setup, the gradients are ap-
proximated by a finite-difference approach. For a complex
non-convex optimization problem, a global optimum cannot
theoretically be ensured, but running numerous random se-
quences converging to almost identical results gives confi-
dence in the result being close to the global optimum.

The WPP control scheduling optimization problem has in
general only a few local optima and can therefore easily be
solved by the gradient-based optimizer using gradients com-
puted via finite difference. This control optimization is, how-
ever, rather time-consuming, as the WT control settings must
be optimized for all 360× 23 combinations of wind direc-
tions and wind speeds; see Table 1. These combinations are,
fortunately, independent, and the workflow is therefore suit-
able for parallel computation. For the current study, a paral-
lel workflow utilizing 360 CPUs (i.e. corresponding to a 1◦

mean wind direction resolution) has been set up, where each
CPU optimizes all WT control settings for one wind direc-
tion. Table 1 gives an idea of the computational resources
needed for the case studies described in Sects. 3 and 4.

3 Sanity check

To check the overall behaviour of the optimizers, a sanity
check on a simple illustrative example, consisting of a row
with three Siemens SWT-2.3-93 WTs, has been performed.
This case is selected, because it can be solved via “brute
force” and because the results are easily visualized.

3.1 Control optimization

The sanity check of the control optimization is performed on
a simple example consisting of three WTs in a row, separated
by 4 D and with a uniform inflow of 10 m s−1 aligned with
the row; see Fig. 5.

Figure 6 shows the power produced by the three WTs as a
function of the derating of the two upstream WTs. In panel a,

it is seen that the power for the most upstream WT, WT1,
only depends on its own derating setting. The power of WT2,
on the other hand, depends on the derating of both itself and
of WT1 (panel b). Finally, it is seen that WT3, obviously,
produces the most if both WT1 and WT2 are derated 100 %
(panel c).

The total power produced by the three WTs is seen in
Fig. 7, and it appears that the total power can be increased
by 4.01 % if WT1 is derated by 7 % and WT2 is derated by
5 %.

3.2 Layout optimization

A sanity check of the layout optimizer is also performed on
the three-WT row. In this case, the position of WT2 is al-
lowed to vary between 2 and 6 D behind WT1. Figure 8
shows the individual relative power production of the three
WTs as well as the total power production as a function of
the position of WT2 in a uniform flow of 10 m s−1 aligned
with the row. As expected, WT1 is unaffected by the position
of WT2, while the power production of WT2 increases with
the distance to WT1 and vice versa for the power of WT3. Fi-
nally, the total power production is seen to increase slightly
when WT2 is moved downstream.

For other wind speeds, however, the picture is quite differ-
ent, as seen in Fig. 9. The optimal position thereby depends
on the wind speed distribution, which links to the dependence
of Cp and Ct on wind speed with the hub-height mean wind
speed. Plotting the relative AEP computed using the Weibull
distribution associated with westerly winds at the Lillgrund
wind farm (c.f. the wind rose shown in Fig. 12) reveals that
the optimal spacing, under these conditions, is very close to
4 D.

3.3 Combined layout and control optimization

The performance of the integrated layout and control opti-
mization is illustrated in Fig. 10. The blue line indicates the
relative AEP of the three WTs as a function of the position
of WT2 in the case that all WTs are operated with greedy
settings (i.e. no derating). This is the base case. The opti-
mal position of WT2 is found to be 3.96 D downstream of
WT1. Applying layout-dependent optimal derating of WT1
and WT2 (orange curve) sequentially increases the AEP of
the initial layout by 2.221 %. Finally, the AEP is seen to in-
crease only infinitesimally (i.e. increasing from +2.221 % to
+2.226 %) when applying integrated two-step nested system
optimization. For the investigated simplistic case, this result
indicates a very weak system coupling between WPP layout
and control optimization.

4 The Lillgrund case study

The Lillgrund WPP is located in Øresund between Denmark
and Sweden and consists of 48 Siemens SWT-2.3-93 WTs,
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Table 1. Overview of time consumption of the AEP calculation, the control optimization, and the layout optimization. WD is wind direction;
WS is wind speed.

Row of 8 WTs Lillgrund, 48 WTs,
(1 D layout, 1 WD, 23 WSs) (2 D layout, 360 WDs, 23 WSs)

PyWake, AEP calculation 0.002 s 0.52 s

Control optimization 3.5 s 15 h (1 CPU)
4 min (360 CPUs)

Layout optimization 3.4 s 2.8 h (random search; 1 CPU) +
1.2 h (gradient based; 1 CPU)

Figure 6. Power produced by the three WTs at 10 m s−1 as a function of WT1 and WT2 derating.

Figure 7. Total power of the three-WT row as a function of the
derating of WT1 and WT2. The power can be increased by 4.01 %
when WT1 is derated by 7 % and WT2 is derated by 5 %.

each with a rotor diameter of 93 m. The WPP is known for its
very small WT interspacings, down to 3.3 D and associated
pronounced wake effects. This makes this WPP especially
suited for studies of WPP performance. The WPP layout is
shown in Fig. 11.

The Lillgrund wind climate is outlined in Appendix A in
terms of ambient mean wind speed pdfs (i.e. two-parameter

Figure 8. Relative power produced by the three individual WTs as
well as the total relative power plotted as a function of the position
of WT2.

Weibull), conditioned on the ambient mean wind direction
as well as an ambient mean wind direction pdf. For the sake
of illustration, the applied wind climate information is con-
densed in the wind rose shown in Fig. 12, which reveals pre-
dominant winds from the west and south.

First, we will focus on a subset of the Lillgrund WPP con-
sisting of a row of eight WTs with along-row inflow condi-
tions covering the entire relevant wind speed regime – i.e. the
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Figure 9. Relative total power production of the three WTs plot-
ted as a function of the position of WT2 for different wind speeds.
The power for 3–25 m s−1 is weighted by the Weibull distribution
associated with wind from 270◦.

Figure 10. Relative AEP plotted as a function of the position of
WT2 for both greedy and optimized control.

wind speed regime within which these WTs are in normal op-
eration. Using this simplified case study, we will investigate
the system coupling between WPP layout and WPP control
optimization. Based on the results from this study, we will
next perform a system optimization of the Lillgrund WPP
and thereby quantify its potential in terms of increased AEP
compared to the base case, which is the present layout (see
Fig. 11) without coordinated WPP control – i.e. only the con-
ventional greedy control of the individual WTs.

Figure 11. WT positions in the offshore Lillgrund WPP.

Figure 12. Wind rose characterizing the wind climate at the Lill-
grund wind farm. Mean wind speed bins are shown in different
colours, and their occurrence probabilities (conditioned on the re-
spective inflow sectors) are proportional to their respective radial
extents.

4.1 Eight-WT row

This case study basically consists of one of the three Lill-
grund WWP rows with eight WTs, meaning that the WT in-
terspacing in the base case is 3.3 D (see Fig. 11) and that
the WTs are Siemens SWT-2.3-93. The wind climate is fic-
titious, as only an along-row inflow direction is considered,
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which ensures the largest possible mutual WT wake interac-
tions. Within this framework we have, without loss of gen-
erality, assumed Weibull-distributed mean wind speeds cor-
responding to the 270◦ site condition (truncated, however, to
the relevant wind speed regime [3 m s−1, 25 m s−1]) although
the “true” inflow direction associated with this row is 300◦.

With the purpose of investigating the strength of the sys-
tem coupling, we have optimized the following: (1) the WPP
layout, (2) the WPP control, (3) the integrated WPP lay-
out and WPP control based on the two-step sequential ap-
proach (see Sect. 2.4), and (4) the integrated WPP layout
and WPP control based on the two-step nested approach (see
Sect. 2.4). Based on a pre-investigation of optimizers, where
the random-search approach was compared to the SLSQP
gradient-based optimization algorithm, the latter was found
to be clearly superior and was consequently used in this
study.

The results of the investigation are, together with the base
case 0, summarized in Table 2.

The base case, case 0, represents the existing layout
with the conventional greedy control of the individual WTs.
Case 1 represents the base case layout with the WPP con-
trol optimized. The associated increase in AEP, relative to
the base case, is significant and amounts to 8.0 %. The close
spacing in the Lillgrund WPP case (3.3 D) is comparable
with the WT interspacing (2.3–3.1 D) in the Goole Fields
WPP investigated in van der Hoek et al. (2019), where an
increase of 5.6 % for a row of five WTs was predicted and an
increase of 3.3 % was realized in the accompanying full-scale
study. As noted in the discussion of the results in this pa-
per, the k-ε turbulence closure of the CFD model, which was
used for the tuning of the derating settings, supposedly makes
the CFD predictions underestimate wake effects for closely
spaced WTs, whereby the used pitch settings are likely to
be suboptimal. Furthermore, only the first WT in the inves-
tigated row was derated, their two-step pitch-offset derating
strategy was suboptimal, and finally the derating potential in-
creases with the number of WTs. This, paired with the fact
that full-scale studies will always suffer from imperfect in-
flow (due to, for example, wind direction variability within
the 10 min recording sequences) and WT operational condi-
tions (such as moderate yaw errors), makes us believe that
the case 1 result is fairly consistent with the results presented
in van der Hoek et al. (2019). In case 2 the WT applies the
greedy control, and the WT row layout is optimized. The in-
crease in AEP, relative to the base case, amounts to 1.4 %,
which is considerably less than achieved in case 1. Compared
to the three-WT case in Fig. 10, the AEP increase achieved
by layout optimization in this case is much more pronounced
because the number of design variables has increased from
one to six. It is seen that the distances between the two most
upstream and the three most downstream WTs are smaller
than in the base case. This allows larger spacing and thereby
production of the middle turbines, which, in this case, results
in an increase in the AEP of the whole row. Obviously, this

strategy is not possible with only three WTs. Case 3 repre-
sents one of two system optimization approaches. Here we
assume that the system optimization is separable and con-
sequently can be performed by first optimizing the layout
and subsequently the WPP control. The combined effect is
an increase in AEP amounting to 9.1 %, which is significant
and exceeds what was obtained by only optimizing the WPP
control (i.e. case 1). In the second and last system optimiza-
tion strategy, case 4, the integrated two-step nested approach
is taken. Although the approach is more complex and time-
consuming (around 540 times slower) than the case 3 strat-
egy, the outcome is not significantly improved (see Table 2).

In conclusion, we have shown that the strength of the sys-
tem coupling between WPP layout and WPP control opti-
mization is only marginal for the considered eight-WT case
study characterized by “heavy” mutual WT wake interac-
tions.

4.2 Full Lillgrund wind farm

This case study comprises the entire Lillgrund WPP, and it
ultimately aims to quantify the potential of an integrated sys-
tem optimization of WPP layout and WPP control.

In analogy with Sect. 4.1, we will investigate a variety of
WPP layout and WPP control optimization strategies. The
control optimization schedule and the associated results ap-
pear in Table 3.

The investigated cases are analogous to the cases inves-
tigated for the eight-WT case in Sect. 4.1. As for case 1 we
see a considerably drop in performance increase compared to
the eight-WT situation, which is due to the persistently more
severe mutual WT wake interactions in the fictitious eight-
WT situation compared to the full Lillgrund WPP, where
WT wake interactions for some inflow directions are limited
(see Fig. 14). With less wake interaction, less potential for
WPP control follows intuitively. Case 2 represents an iso-
lated WPP layout optimization retaining the greedy individ-
ual WT control performance. The associated increase in AEP
performance amounts to 2.8 % – or more than double that of
the WPP control optimization, case 1. The last case, case 3,
represents a system optimization approach. Based on the in-
vestigations performed in both Sects. 3.3 and 4.1, we assume
that the system optimization is separable in the sense de-
scribed in Sect. 4.1. The rationale justifying this assumption
is that the system coupling between WPP layout and WPP
control optimization was shown to be marginal in the eight-
WT case, in which the overall WT wake interaction, over
all inflow directions, is significantly more pronounced than
for the full Lillgrund case. Taking the sequential approach,
the combined Lillgrund WPP optimization results in an AEP
improvement of 4.0 %, which is significantly more than each
of the individual layout and WPP control optimization ap-
proaches. Finally, it should be noted that, although possible,
the two-step nested approach will require horrendous CPU
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Table 2. AEP results of various optimization approaches applied on the eight-WT row. The CPU times refer to the computation time on
a standard laptop PC. The figures in the rightmost column show the position of the eight turbines. The derating settings of the WTs are
indicated by the colour of the turbine symbol and quantified in percent by the number above the WT symbols.

Table 3. AEP results of various optimization approaches applied on
the full Lillgrund WPP.

Case Layout Control AEP (GWh)

0 Initial Greedy 345.2
1 Initial Optimized 349.5 (+1.3 %)
2 Optimized Greedy 354.9 (+2.8 %)
3 Optimized Optimized (sequential) 358.7 (+4.0 %)

resources and even on a cluster take on the order of a few
months to conduct.

The layout resulting from the Lillgrund WPP system opti-
mization is shown in Fig. 13 together with the baseline lay-
out.

From a pure production perspective, it makes sense to lo-
cate WTs densely at the boundary of the “admitted area” for
the WPP, because it intuitively will reduce the WT wake in-
teractions. Notable is also that the individual WT deratings
for the shown example, except for one row, are considerably
less than for the baseline case.

The results for all the investigated optimization strategies
are summarized in Figs. 14 and 15. Figure 14 shows the in-
crease in AEP conditioned on the inflow mean wind direc-
tion. As expected, the AEP gains vary with the wind direction
with huge increases, up to 50 %, for the optimized layout for
the wind directions that are parallel to the rows of the origi-
nal layout, i.e. 120◦ / 300◦, 42◦ / 222◦, and 0◦ / 180◦. These
increases, however, are almost balanced out by the decrease
in other directions resulting in the average increases of the
2.8 % and 4 % that are reported in Table 3.

In Fig. 15, the AEP gains are shown as a function of the
mean inflow wind speed. The largest increases are seen be-
low 10–11 m s−1 where all WTs operate below rated power.
At higher wind speeds, the WPP production wake losses de-
crease, as more and more WTs reach rated power, thus even-
tually completely eliminating any WPP control potential.

5 Conclusions

This paper describes a platform for integrated WPP layout
and derating-based WPP control optimization. The objective
function for the optimization is the AEP of the WPP with-
out considering financial costs of the internal WPP grid. This
means that the positions of the individual WPP WTs are only
constrained by a minimum allowable distance to the nearest
neighbouring WT, in this case 2 D, and the convex boundary
around the initial WPP layout.

As WPP loading is excluded, stationary modelling of the
complex WPP flow field suffices, which is a considerable
simplification. Contrary to other known WPP optimization
platforms, the present approach is based on a consistent and
very fast CFD solver, whereby the inherent uncertainties as-
sociated with simple empirical algebraic wake models, in-
cluding their often debatable wake summation procedure, are
avoided. This strategy is consistent with a recent review of
WPP optimization approaches (Kheirabadi and Nagamune,
2019), where one of the conclusions is that “added layers of
realism in terms of simulated wind conditions tend to deterio-
rate the performance of wind farm controllers”, thus stressing
the importance of carefully and realistically simulated WPP
flow fields.
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Figure 13. The baseline Lillgrund WPP layout (a) and optimized Lillgrund WPP layout (b). The two panels show the flow case associated
with 10 m s−1 inflow from direction 223◦. The derating settings of the individual WTs are indicated by the colour of the WT symbols and
quantified in percent by the number above the WT symbols. The background colours illustrate the increase in wind speed from the individual
greedy to the collaborative optimized control situation.

Figure 14. Increase in AEP due to layout and/or control optimiza-
tion plotted as a function of inflow wind direction.

The platform has initially successfully been subjected to a
simplistic sanity check. Subsequently, the platform has been
used to analyse the potential of an integrated WPP layout and
WPP control optimization of the offshore WPP Lillgrund,
which consists of 48 closely spaced WTs. First, an analy-
sis of the system coupling between WPP layout optimization
and WPP control optimization is performed as based on a
subset of this WPP exposed to inflow conditions clearly ex-
aggerating the overall complex inter-WT aerodynamic inter-
actions within a traditional WPP, because all the WTs are in a
state of maximum wake interaction. The study demonstrates

Figure 15. Increase in AEP due to layout and/or control optimiza-
tion plotted as a function of wind speed.

an inferior system coupling only, thus justifying separation of
the present optimal system design. Based on this learning, a
full system optimization of the Lillgrund WPP is performed,
resulting in a gain amounting to 4.0 % in AEP relative to the
baseline case, which is the present Lillgrund layout without
WPP control.

In a future perspective, the platform will be extended to
also include active wake control in terms of WT yaw-dictated
wake deflection. This requires a generalization of the applied
linearized CFD flow solver Fuga – a work that is in progress.
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Appendix A

Table A1. Sector probability and Weibull shape and scale parameters for the Lillgrund site. Data obtained from the study of Göçmen and
Giebel (2016).

Wind sector Frequency Weibull scale Weibull shape
(centred; ◦) (%) (A) (k)

0 3.8 4.5 1.69
30 4.5 4.7 1.78
60 0.4 3.0 1.82
90 2.8 7.2 1.7
120 8.3 8.8 1.97
150 7.5 8.2 2.49
180 9.9 8.4 2.72
210 14.8 9.5 2.7
240 14.3 9.2 2.88
270 17.0 9.9 3.34
300 12.6 10.3 2.84
330 4.1 6.7 2.23
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