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Abstract. Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power
capture, and, in turn, annual energy production for an entire wind farm with very low computational costs com-
pared to higher-fidelity numerical tools. However, wake and power predictions obtained with engineering wake
models can be insufficiently accurate for wind farm optimization problems due to the ad hoc tuning of the model
parameters, which are typically strongly dependent on the characteristics of the site and power plant under in-
vestigation. In this paper, lidar measurements collected for individual turbine wakes evolving over a flat terrain
are leveraged to perform optimal tuning of the parameters of four widely used engineering wake models. The
average wake velocity fields, used as a reference for the optimization problem, are obtained through a cluster
analysis of lidar measurements performed under a broad range of turbine operative conditions, namely rotor
thrust coefficients, and incoming wind characteristics, namely turbulence intensity at hub height. The sensitivity
analysis of the optimally tuned model parameters and the respective physical interpretation are presented. The
performance of the optimally tuned engineering wake models is discussed, while the results suggest that the
optimally tuned Bastankhah and Ainslie wake models provide very good predictions of wind turbine wakes.
Specifically, the Bastankhah wake model should be tuned only for the far-wake region, namely where the wake
velocity field can be well approximated with a Gaussian profile in the radial direction. In contrast, the Ainslie
model provides the advantage of using as input an arbitrary near-wake velocity profile, which can be obtained
through other wake models, higher-fidelity tools, or experimental data. The good prediction capabilities of the
Ainslie model indicate that the mixing-length model is a simple yet efficient turbulence closure to capture effects
of incoming wind and wake-generated turbulence on the wake downstream evolution and predictions of turbine
power yield.

1 Introduction

Wake interactions are responsible for significant power
losses of wind farms (Barthelmie, et al., 2007; El-Asha et al.,
2017), and thus numerical tools for predicting the intra-wind-
farm velocity field are highly sought after for the optimal de-
sign of wind farm layout (Kusiak and Song, 2010; González
et al., 2010; Santhanagopalan et al., 2018b), development of
control algorithms for improving turbine operations (Lee et
al., 2013; Annoni et al., 2016), and enhancement of accuracy
in predictions of power capture (Tian et al., 2017).

Wind turbine wakes present a structural paradigm where
the flow responds to both turbine settings and incoming wind
conditions: the former being associated with thrust coeffi-
cient affecting power production and wake velocity deficit
(Iungo et al., 2018a), the latter being a combination of
velocity variability within the atmospheric boundary layer
and turbulence characteristics depending on the atmospheric-
stability regime (Hansen et al., 2012; Iungo and Porté-Agel,
2014).

Engineering wake models have widely been used in the
wind energy industry because they provide a good trade-off
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between fidelity, in terms of accuracy of the predicted flow
and turbine power capture, and required computational costs.
High-fidelity models, such as large-eddy simulation (LES),
enable detailed characterization of the wake flow and dy-
namics, together with effects on wind turbine performance
(Martínez-Tossas et al., 2015; Santoni et al., 2017). How-
ever, the required high computational costs make LES an
unsuitable tool for wind farm optimization problems. On
the other hand, midfidelity models have been proposed as
tools to bridge the need to resolve flow physics with ade-
quate spatiotemporal resolution and the constraint of achiev-
ing results in a timely manner. Among midfidelity wake mod-
els, we would mention the dynamic meandering wake model
(Larsen et al., 2007), prescribed vortex wake model (Chattot,
2007; Shaler et al., 2019), free vortex wake model (Sebas-
tian and Lackner, 2012), and data-driven Reynolds-averaged
Navier–Stokes (RANS) models (Iungo et al., 2015, 2018a;
Santhanagopalan et al., 2018a).

For wind farm problems involving hundreds to thousands
of simulations, engineering wake models represent suitable
tools to achieve predictions of power capture from a wind
turbine array in a limited amount of time (Mortensen et al.,
2011; Acker and Chime, 2011). There are two general classes
of wake engineering models: the kinematic models (explicit
models) solving the conservation of mass and momentum as
governing equations to obtain an explicit analytical formula-
tion, while the field models (implicit models) generate pre-
dictions of the wake velocity field through a numerical ap-
proach.

The pioneering work by Jensen (1983) and Katic et al.
(1987) assumed a linear wake expansion and a top-hat shape
of the wake velocity profile at each downstream location.
Despite its simplicity, this model provides a good estima-
tion of the mean kinetic energy content available for down-
stream turbines. Based on the Jensen model, Frandsen kept
the top-hat wake profile and derived an asymptotic equilib-
rium state for an infinite wind farm by solving both mass
and momentum budgets (Frandsen et al., 2006). More re-
cently, an axisymmetric Gaussian wake velocity distribution
has been considered as a wake model (Bastankhah and Porté-
Agel, 2014) based on the classical theory for shear flows
(Tennekes et al., 1972). For the Bastankhah wake model,
the Gaussian distribution of the velocity at a given down-
stream location has been embedded into the derivation of the
mass and momentum budgets. The model parameters were
tuned by leveraging datasets obtained through LES and wind
tunnel experiments. Furthermore, this Gaussian wake model
still inherits the assumption of linear wake expansion from
the Jensen model. A more recent model, denoted the one-
parameter model, stemmed from the entrainment hypothesis,
which is formulated without linearizing the governing equa-
tions or assuming the linearity in the growth of the wake
width (Luzzatto-Fegiz, 2018).

Other wake models have been developed without assum-
ing the wake velocity distribution and expansion formula. For

instance, Larsen used the RANS equations with the mixing-
length model as turbulence closure (Swain, 1929; Larsen,
1988). Despite the relatively complicated calibration process,
the Larsen wake model has ambient turbulence intensity em-
bedded in the model.

Field models (implicit models) use different methodolo-
gies to resolve the governing equations implicitly. Ainslie
developed one of the classic field models and calculated the
complete flow field numerically by solving the RANS equa-
tions with a turbulence closure based on the mixing-length
assumption (Ainslie, 1988). This model has identical govern-
ing equations as for the Larsen model, for which the turbu-
lent eddy viscosity is modeled based on the wake-generated
and ambient turbulence. For the Ainslie model, the governing
equations are solved numerically with a parabolic approach
to reduce computational costs.

Engineering wake models generally require parametric
calibration. Light detection and ranging (lidar) measure-
ments were used to calibrate and validate the wake growth
rate of the Bastankhah wake model obtaining a good agree-
ment between the model predictions and the experimental
data (Carbajo Fuertes et al., 2018). Wind tunnel experiments
were performed to improve the initial profile and filter func-
tion of the Ainslie model (Kim et al., 2018). For the Larsen
model, a calibration procedure is introduced in the European
standards (Dekker, 1998), while it is also calibrated by a
data-driven method with high-frequency supervisory control
and data acquisition (SCADA) data in Göçcmen et al. (2018).
Similarly, the SCADA data can be leveraged to tune the wake
decay coefficient for the Jensen model as a function of the in-
coming wind turbulence intensity (Duc et al., 2019). Several
researchers have validated various wake models for different
wind farms showing the nontrivial process to assess accuracy,
robustness, reliability, and uncertainty of the models (Archer
et al., 2018; Duckworth and Barthelmie, 2008; Jeon et al.,
2015; Gaumond et al., 2012; Göçcmen et al., 2018). A clus-
ter analysis of the experimental datasets, such as considering
atmospheric conditions, turbine settings, and wake velocity
fields, has been recommended for wake model benchmark-
ing (Doubrawa et al., 2019).

In this paper, we optimally tune parameters of four engi-
neering wake models based on lidar measurements collected
for a utility-scale wind farm. Firstly, the models and their pa-
rameters are examined and discussed. The optimization of
the model parameters is carried out by minimizing the objec-
tive function defined by the percentage error between the av-
erage velocity field measured by the lidar and the respective
one predicted by the engineering wake models. The optimal
tuning of the model parameters is performed for various clus-
ters of the lidar dataset based on the turbine thrust coefficient
and incoming wind turbulence intensity at hub height. The
optimally tuned parameters of the engineering wake models
are then scrutinized through linear regression analysis. Lim-
itations and advantages of the various models will be dis-
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cussed based on the results obtained from the optimal cali-
bration process.

The paper is organized as follows: in Sect. 2, the wind farm
under investigation and lidar dataset are described. The four
engineering wake models used for the present work are then
elucidated together with the methodology of their optimal
tuning in Sect. 3. Finally, the results and discussion of the
wake models are reported in Sect. 4, followed by concluding
remarks in Sect. 5.

2 Lidar experiment for a wind farm on flat terrain

A lidar experiment was carried out at a wind farm in north-
ern Texas made of 39 2.3 MW wind turbines with rotor di-
ameter, D, of 108 m and a hub height of 80 m. The topog-
raphy map of the site was downloaded from the US Geo-
logical Survey (US Geological Survey, 2017; Fig. 1a), and
the meteorological data indicated a prevailing southerly wind
direction (Fig. 1b). Meteorological data were provided as
10 min averages and standard deviation of wind speed, wind
direction, temperature, humidity, and barometric pressure.
SCADA data were provided for each turbine as 10 min av-
erages and standard deviation of wind speed, power output,
rotor rotational velocity, and yaw angle. For more details on
this dataset and used quality control process see El-Asha et
al. (2017) and Zhan et al. (2020a).

The scanning pulsed Doppler wind lidar deployed for this
experiment is a Windcube 200S manufactured by Leosphere,
which emits a laser beam into the atmosphere and measures
the radial wind speed, i.e., the velocity component parallel
to the laser beam, from the Doppler frequency shift of the
backscattered lidar signal. The lidar system operates in a
spherical coordinate system and measures the radial veloc-
ity defined as the summation of three velocity components
projected onto the laser beam direction. It features a typical
scanning range of about 4 km with a range gate of 50 m, an
accumulation time of 500 ms, and an accuracy of 0.5 m s−1

in wind speed measurements.
According to the wind farm layout and the prevalence of

southerly wind directions (Fig. 1), for wind directions within
the sector 145 and 235◦, the wakes produced by the turbines
from 1 to 6 evolve roughly towards the lidar location, which
is a favorable condition for the lidar to measure with close
approximation the streamwise velocity through single-wake
plan-position indicator (PPI) scans. Furthermore, according
to the layout of Fig. 1a, for the considered wind directions,
these wind turbines are not affected by upstream wakes.

The lidar measurements were typically performed by us-
ing a range gate of 50 m, elevation angle of φ = 3◦, azimuthal
range of 20◦, and rotation speed of the scanning head of
2◦ s−1, leading to a typical scanning time for a single PPI
of 10 s. After rejecting lidar data with a carrier-to-noise ra-
tio (CNR) lower than−25 dB, a proxy for the streamwise ve-
locity is obtained through the streamwise equivalent velocity,

Ueq = Vr/[cosφ cos(θ−θw)], where θ is the azimuthal angle
of the lidar laser beam, and θw is the wind direction. The
streamwise equivalent velocity is then made nondimensional
through the velocity profile in the vertical direction of the
incoming boundary layer, which is also measured with the
lidar. The reference frame used has the x direction aligned
with the wake direction, which is estimated with linear fit-
ting of the wake centers at various downstream locations. The
transverse position of the wake center is defined as the loca-
tion of the minimum velocity obtained by fitting the velocity
data at a specific downstream location through a Gaussian
function. More details on the lidar system and the field cam-
paign are available in Zhan et al. (2020a).

About 10 000 PPI lidar scans of isolated wind turbine
wakes have been processed to provide the nondimensional
average velocity fields used for this study (Zhan et al.,
2020a). Lidar measurements were clustered according to dif-
ferent categories of inflow condition, namely 13 bins of the
hub-height wind speed and five regimes of static atmospheric
stability. The various clusters are defined to capture wake
variability for different incoming wind turbulence intensity,
TI, and different turbine operations and, thus, control set-
tings along the turbine power curve. The lidar scans within
each cluster have been averaged through a technique based
on the Barnes scheme (Barnes, 1964; Newsom et al., 2017;
Letizia et al., 2020a,b). The used data-filtering process, the
cluster analysis, and the ensemble-averaging process ensured
the standard error of the weighted mean was always lower
than 0.8 % (Zhan et al., 2020a). For more details on the clus-
ter analysis and the calculation of the ensemble statistics of
the lidar data see Zhan et al. (2020a); the clustered statistics
are publicly available on Zenodo (Iungo, 2020).

3 Data-driven optimal tuning of engineering wake
models

By leveraging the average velocity field of wakes mea-
sured with a scanning Doppler wind lidar for different
atmospheric-stability regimes and rotor thrust coefficients,
we perform optimal tuning of four widely used engineering
wake models, namely the Jensen model (Jensen, 1983), the
Bastankhah model (Bastankhah and Porté-Agel, 2014), the
Larsen model (Larsen, 1988, 2009), and the Ainslie model
(Ainslie, 1988). In the following, these models are described,
then their parameters are optimally calibrated based on the li-
dar measurements. Specifically, the objective function of the
optimization problem is the mean percentage error (PE) cal-
culated over the measurement domain with x coordinates be-
tween 1.25 and 7D, while r is between ±1.5D. The param-
eter PE is defined via the lidar average streamwise velocity
field, Ulidar, and the respective model prediction, Umodel, as
follows
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Figure 1. Characterization of the test site: (a) layout of the wind farm, where the size of the blue markers represents downscaled rotor
diameter; (b) wind rose of the hub-height wind measured by the met tower for the entire duration of the experiment and reported as a ratio
of the turbine rated wind speed.

PE=
〈
|Umodel(i,j )−Ulidar(i,j )|

Ulidar(i,j )

〉
, (1)

where 〈 〉 refers to the arithmetic mean, and (i, j ) locates the
grid points within the area probed by the lidar. The minimiza-
tion of PE is performed with a heuristic approach by mapping
each model parameter within prescribed ranges.

For this work, it is noteworthy that the thrust coefficient
of the turbine rotor can be estimated through the lidar mea-
surements, Ctlidar , by leveraging the mass and streamwise-
momentum budgets (Iungo et al., 2018b; Zhan et al., 2020a)
and from the SCADA data, referred to as CtSCA , which is cal-
culated by applying the actuator disk theory. Considering a 1-
D stream-tube analysis, mass conservation can be expressed
as

ρπR2
0U∞ = 2πρ

R∫
0

u(r)rdr, (2)

where R0 and R are the radius of the bases of the stream
tube upstream and downstream of the turbine rotor, respec-
tively. The free-stream velocity is indicated as U∞, while r is
the radial coordinate, u is the wake streamwise velocity, and
ρ is the air density. By neglecting the pressure forces and the
shear stresses at the boundary of the stream tube, the momen-
tum conservation reads as

ρπR2
0U

2
∞− 2πρ

R∫
0

u(r)2rdr =
1
2
ρU2
∞π

D2

4
Ctlidar . (3)

According to Iungo et al. (2018b), this approach can pro-
duce a good approximation for the rotor thrust coefficient

if the downstream base of the stream tube is located in a
wake region where the streamwise pressure gradient due
to the induction zone becomes negligible, and the turbulent
shear stresses are still small compared with those of the far-
wake region. By using this strategy, Eqs. (2) and (3) have
been applied by using the lidar data acquired at the position
x = 1.75D to obtain the two unknown parameters, R and
Ctlidar , for each lidar cluster. Specifically, the radius of up-
stream stream tube, R0, has been preset as 0.75D in Eq. (2)
to determine the downstream radius, R, which is then used in
Eq. (3) to calculate Ctlidar .

Additionally, the rotor thrust coefficient, which is referred
to as CtSCA , can be estimated directly from the SCADA data.
The streamwise induction factor, a, is calculated from the
solution of the power coefficient with 1-D stream-tube as-
sumption

P

1
2ρU

3
∞
π
4D

2
= 4a(1− a)2, (4)

where P is the power yield recorded by the SCADA. Subse-
quently, the thrust coefficient is calculated as follows:

CtSCA = 4a(1− a). (5)

These two parameters, Ctlidar and CtSCA , allow us to gauge
the accuracy in the optimal tuning of the engineering wake
models.

3.1 Jensen wake model

For the Jensen wake model, mass conservation is applied for
a control volume located immediately downstream of a tur-
bine rotor, while an explicit formula is derived to predict the
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wake velocity field by using only two parameters as input,
namely the rotor thrust coefficient, Ct, and the wake expan-
sion coefficient, k. The expression for this wake model is:

Uw = U∞

[
1−

(
1−

√
1−Ct

)( D

D+ 2kx

)2
]
, (6)

where Uw is wake velocity, which is only a function of the
downstream location, x. Known as top-hat wake model, at
each downstream location the velocity is uniform within the
wake region, which is identified through the wake diameter,
Dw, which grows linearly in the downstream direction as fol-
lows:

Dw =D+ 2kx. (7)

The wake expansion coefficient, k, is defined in analogy with
the jet spreading within shear flows (Pope, 2000). According
to the Wind Atlas Analysis and Application Program (WAsP;
Mortensen et al., 2011), the value of the wake expansion co-
efficient, k, is suggested to be equal to 0.075 and 0.05 for
onshore and offshore wind farms, respectively. However, in
Barthelmie and Jensen (2010) a lower k value of 0.03 is
found to achieve a better agreement with the SCADA data
collected for the Nysted offshore wind farm. The reason for
a lower k value might be due to the high occurrence of stable
atmospheric conditions for that offshore wind farm.

In Frandsen et al. (2006), a semiempirical formula is pro-
posed to estimate k by using the aerodynamic roughness
length and friction velocity as input. In Peña and Rathmann
(2014), a generalized expression for k is proposed, which in-
cludes modulations due to atmospheric stability. In Peña et
al. (2016), the same authors provide an empirical formula
to predict the wake expansion factor based on the incoming
wind turbulence intensity:

k = 0.4 ·TI. (8)

For the optimization of the parameters of the Jensen
model, the thrust coefficient, Ct, is varied between 0.01 and 1
with a step of 0.01, while the wake expansion coefficient,
k, is varied between 0.001 and 0.3 with a step of 0.001.
The optimally tuned wake expansion coefficient, kopt, for the
Jensen model is reported in Fig. 2a against the wind turbu-
lence intensity, TI, measured by the SCADA. The parame-
ter kopt is proportional to TI even though the R-square value
of 0.85 may seem quite low due to the limited number of
points used for the linear fitting. However, it is notewor-
thy that the data reported in Fig. 2 are obtained from the
mean velocity fields of each cluster of the lidar measure-
ments, including about 10 000 PPI scans. Furthermore, it is
also observed that operative conditions belonging to region
3 of the power curve, namely for incoming wind speed at
hub height normalized by the wind turbine rated wind speed,
U∗hub, higher than 0.9, are characterized by a wake expansion
coefficient lower than 0.04. In contrast, for operative con-
ditions in region 2 of the power curve, kopt grows rapidly

with the incoming-turbulence intensity approaching values
close to 0.1. This different variability of kopt with TI indicates
that this model parameter reflects the effects of not only the
incoming-turbulence intensity on the wake evolution but the
wake-generated turbulence as well.

In analogy with the model proposed in (Peña et al., 2016;
Eq. 8), linear fitting between kopt and TI is calculated, pro-
ducing a Pearson correlation coefficient of 0.92, an intercept
of −0.01, and a slope of 0.48, while the slope proposed in
Peña et al. (2016) is 0.4. Therefore, this work would suggest
a slightly revised model for estimating the wake expansion
coefficient for the Jensen wake model as

kopt = 0.48 ·TI− 0.01. (9)

The optimization of the parameters for the Jensen model
also produces estimates of the rotor thrust coefficient, Ctopt ,
for the various clusters of the used lidar dataset. Figure 2b
shows that a roughly constant Ctopt is observed for the region
2 of the power curve while approaching a nondimensional
hub-height velocity, U∗hub, of about 0.9; a reduction in Ctopt

is observed as a consequence of the blade pitching operated
by the turbine controller to keep power capture equal to the
rated power. The rotor thrust coefficients calculated through
the mass and streamwise-momentum budgets (Eqs. 2 and 3),
Ctlidar , is compared with that obtained from the optimal tun-
ing of the Jensen model, Ctopt , in Fig. 3a for each cluster of
the lidar dataset. The Pearson correlation coefficient between
these two parameters is 0.95, which corroborates the accu-
racy of the optimal tuning of the Jensen model from the lidar
data. The comparison of CtSCA with Ctopt in Fig. 3d confirms
the previous results presented in Iungo et al. (2018b), namely
that the thrust coefficient estimated from the SCADA is gen-
erally an underestimation of its actual value because of not
including drag components related to the torque generation,
namely, drag connected with airfoil stall or bluff-body be-
havior due to the wind turbine tower and nacelle.

3.2 Bastankhah wake model

For the Bastankhah wake model, a Gaussian profile is used to
describe the wake velocity field in the transverse direction at
a given downstream location. This Gaussian velocity profile
is then used to solve the mass and momentum budgets as
for jets evolving in a boundary layer (Tennekes et al., 1972;
Bastankhah and Porté-Agel, 2014). The derived self-similar
wake velocity profile can be formulated as

1U

U∞
= C(x)e

(
−

r2

2σ2

)
, (10)

where 1U is the wake velocity deficit at the downstream lo-
cation x, σ is the standard deviation of the Gaussian velocity
profile, and C(x) is the maximum velocity deficit. Inheriting
linear wake expansion from the Jensen model, σ is modeled
as
σ

D
= k∗

x

D
+ ε, (11)
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Figure 2. Optimal tuning of the Jensen wake model: (a) optimized wake expansion coefficient, kopt, as a function of the incoming-turbulence
intensity, TI, and colored by the normalized incoming wind speed at hub height,U∗hub. The dashed black line is the linear fitting; (b) optimized
thrust coefficient, Ctopt , as a function of U∗hub and colored according to TI.

Figure 3. Linear regression of the thrust coefficient obtained from the optimal tuning of the wake models, Ctopt , against that calculated
directly from the lidar data, Ctlidar (a–c), or SCADA data, CtSCA (d–f): (a) and (d) Jensen model; (b) and (e) Bastankhah model; (c) and
(f) Larsen model. The solid red line is the linear fitting result, and the dashed blue line is the 1 : 1 line.

where k∗ is the growth rate of the Gaussian standard devia-
tion, and ε, which by definition is only a function of Ct, is its
offset at the rotor location. The wake velocity field predicted
through the Bastankhah wake model can be written as

1U

U∞
=

[
1−

√
1−

Ct

8(k∗x/D+ ε)2

]
× exp{

−
1

2(k∗x/D+ ε)2

[(
z− zh

D

)2

+

( y
D

)2
]}

, (12)

where y and z are transverse and vertical coordinates, re-
spectively, while zh is hub height. For the Bastankhah wake
model, the thrust coefficient, Ct, is varied between 0.01
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Figure 4. Optimally tuned parameters from Bastankhah wake model: (a) wake expansion parameter, k∗, as a function of the incoming wind
turbulence intensity, TI (dashed black line is the linear fitting), colored by U∗hub; (b) offset of the standard deviation of the Gaussian wake
velocity profile, ε, as a function of the incoming wind turbulence intensity, TI, colored by U∗hub; (c) Ct as a function of U∗hub, colored by TI.

and 1.71 with a step of 0.01, while the wake expansion co-
efficient, k∗, is varied between 0.001 and 0.3 with a step
of 0.001. Furthermore, the parameter ε in Eq. (11) is varied
between 0.2 and 0.5 with a step of 0.01.

The optimized wake expansion factor of the Bastankhah
wake model, k∗opt, is reported in Fig. 4a as a function of the
incoming wind turbulence intensity. In agreement with the
results obtained for the wake expansion factor of the Jensen
model, k∗opt also increases monotonically with the incoming-
turbulence intensity. Furthermore, a secondary trend with the
rotor thrust coefficient is observed, which is an effect of the
wake-generated turbulence. Indeed, the operative conditions
with U∗hub > 0.9 are characterized by a slightly smaller k∗opt.
Similarly to previous work (Carbajo Fuertes et al., 2018), the
linear fitting between k∗opt and TI is calculated, producing the
following optimal values: k∗opt = 0.34·TI−0.013, with an R-
square value of 0.96. The slope between k∗opt and TI of 0.34
is equal to that found in Carbajo Fuertes et al. (2018).

The offset of the standard deviation of the velocity pro-
file, ε (Eq. 11), which is by definition only a function
of Ct, slightly decreases with increasing U∗hub, suggesting
that lower Ct values associated with high U∗hub, i.e., for op-
erations in region 3 of the power curve, lead to a narrower
and shallower velocity deficit in the near wake. However, the
results of the model optimization show that the main variabil-
ity of ε is connected with the incoming-turbulence intensity,
and, specifically, ε decreases with increasing TI. This effect
on ε might be due to the modulation induced on wake re-
covery by the atmospheric stability (Iungo and Porté-Agel,
2014; Zhan et al., 2020a).

Figure 4c shows the optimized thrust coefficient, Ctopt ,
against the normalized hub-height velocity, U∗hub. Similarly
to the results obtained for the Jensen wake model, the Ctopt is
practically uniform in region 2 of the power curve (U∗hub <

0.9), then it monotonically decreases in region 3 of the power

curve (U∗hub > 0.9). The thrust coefficient obtained from the
optimal tuning of the Bastankhah wake model is then com-
pared with that obtained from the mass and momentum bud-
gets applied to the lidar data in Fig. 3b and the respective
values derived from the SCADA data in Fig. 3e. In Fig. 3,
the optimized thrust coefficient,Ctopt , is generally higher than
the respective values predictable with the 1-D stream-tube as-
sumption (Eq. 5) because of including contributions to drag
due to the bluff-body behavior of the turbine tower, nacelle,
and blade stall.

It is noteworthy that Ctopt can be larger than 1 as a result
of Eq. (12), for which a real solution can only be obtained
for x/D ≥ (

√
Ct/8− ε)/k∗. This model limitation was later

overcome in Abkar et al. (2018) and Shapiro et al. (2019).
This constraint has been added for the optimization of the
parameters of the Bastankhah wake model, which results in
rejecting some lidar data in the near wake. Furthermore, re-
moving lidar data collected in the near wake can be beneficial
for the optimal tuning of the Bastankhah model because in
the near wake the velocity profile can be significantly differ-
ent from the typical Gaussian shape, which is an underlying
assumption for this wake model.

Similarly to Carbajo Fuertes et al. (2018), the detection of
the near- to far-wake transition is associated with the down-
stream location where the fitting of the streamwise velocity
as a function of the radial position with a Gaussian function
produces a Pearson correlation coefficient larger than 0.99.
In Fig. 5a, the velocity profiles for the cluster with U∗hub ∈

[0.71, 0.76] and TI ∈ [7 %, 13.5 %] are reported. Based on
the aforementioned criterion, the near-wake region ends at
x = 1.75D. However, a difference of 0.05 in the minimum
of the normalized velocity is observed between the measured
and fitted profile. As a consequence, the Bastankhah wake
model overestimates the maximum velocity deficit to maxi-
mize the correlation between the data and the Gaussian fit-
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Figure 5. (a) Normalized velocity profiles from a lidar cluster with U∗hub ∈ [0.71, 0.76] and TI ∈ [7 %, 13.5 %]. The cross marker represents
lidar measurements, solid lines indicate Gaussian fitting, and different colors indicate the downstream location; (b) linear regression between
optimized average PE retrieved by using the lidar data for the entire wake or excluding the near-wake region. The solid red line is the linear
fit, and the dashed blue line represents a 1 : 1 ratio.

ting, especially in proximity of the sides of the wake. The
drawback of this fitting procedure consists of an overestima-
tion of Ct. Rejecting lidar data in the near-wake region for
the optimization of the Bastankhah wake model can thus be
beneficial for a more accurate estimation of Ct. Figure 5b
shows that the percentage error, PE, obtained by using lidar
data from the entire wake region is larger than only using far-
wake lidar data. On average, the error drops down by 15.8 %
from the full-wake cases, while the maximum improvement
is 69.5 %.

3.3 Larsen model

For the Larsen wake model, the RANS equations are simpli-
fied by neglecting gradients with a smaller order of magni-
tude considering the boundary layer approximation and drop-
ping the viscous term due to the high Reynolds numbers in-
volved for applications to utility-scale wind turbines (Swain,
1929). The axial velocity field is solved by leveraging the
similarity solution and using the mixing-length model as tur-
bulence closure. The first-order contribution to the axial ve-
locity prediction is expressed as

1U1=−
1
9

(
Ct

A

(x+ x0)2

)1/3{
r−3/2

[
3c2

1CtA (x+ x0)
]−1/2

−

(
35
2π

)3/10(
3c2

1

)−1/5
}2

, (13)

where 1U1 is the wake velocity deficit, Ct is the thrust co-
efficient of the turbine rotor, x0 is the streamwise offset for
the reference frame, A is the rotor area, and c1 is a constant
related to the mixing-length model. The wake region is iden-
tified through the following wake radius:

Rw =

(
35
2π

)1/5(
3c2

1

)1/5
[CtA (x+ x0)]1/3. (14)

The coefficients c1, x0 are calculated by following the cali-
bration procedure in Larsen et al. (2003). For more details,
the reader can refer to Appendix A. The radial velocity for
the Larsen wake model is calculated as

ur=
1
3

[CtA(x)]1/3x−3/5r

{
r−3/2

[
3c2

1CtA (x+ x0)
]−1/2

−

(
35
2π

)3/10(
3c2

1

)−1/5
}2

. (15)

To satisfy the continuity constraint, the coefficient 1/3
should be changed to −1/27; for more details see the Ap-
pendix B. In Larsen (2009), a formula for the second-order
contribution to the axial velocity field is provided as

1U2 =

(
Ct

A

(x+ x0)2

)2/3 4∑
i=0

diz(x,r)i . (16)

For the Larsen model, both first- and second-order contribu-
tions require two fundamental input parameters: the thrust
coefficient, Ct, and the incoming wind turbulence inten-
sity, TI. The parameter c1 is calibrated through x0 and Ct
(Eq. A1). However, we seek a more data-driven approach
to compute the velocity field with the Larsen wake model,
yet avoiding the proposed empirical formulas for x0 and c1.
Therefore, in this work, we consider Ct, c1, and x0 as in-
put parameters, whose physical interpretation is further illus-
trated in the following. The thrust coefficient, Ct, is varied
between 0.4 and 1.5 with a step of 0.01, the optimal c1 value
is searched from 0.01 up to 0.25 with a resolution of 0.002,
and x0 ranges from 0.01 up to 3.01 with a step of 0.05. It is
noteworthy that Ct values larger than 1 are allowed since the
constraint of Eq. (A3) is bypassed by considering Ct as a free
input parameter.
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Figure 6. (a) Percentage error, PE, between the Larsen model predictions with or without second-order solution; the color bar indicates
incoming-turbulence intensity of the considered lidar cluster. Color maps of the wake velocity field for the lidar cluster with 0.85<U∗hub <
0.90 and 4%< TI< 5.5%: (b) lidar data; (c) and (d) are prediction through the Larsen model without or with, respectively, second-order
contribution (green lines are the location of wake edge); (e) and (f) are percentage error with respect to the lidar data without or with,
respectively, second-order contributions.

In the case study shown in Fig. 6b, the ensemble-averaged
wake velocity field for the lidar cluster is presented with
a hub-height velocity range of 0.71<U∗hub < 0.76 and tur-
bulence intensity range of 4%< TI< 5.5%. The optimally
tuned velocity field obtained with or without the second-
order contribution of the Larsen model is reported in Fig. 6d
and c, respectively. The first-order solution of the Larsen
model seems to predict higher wind speed at the wake edge
and a lower velocity in proximity to the wake center. In con-
trast, the second-order solution seems to be more accurate
and characterized by a lower PE. Therefore, we used the
second-order solution for the optimal tuning of the Larsen
wake model and found the relative norm of PE decreases
by −13.74 % on average for all the lidar clusters compared
to the case with only considering the first-order solution
(Fig. 6a).

The optimally tuned parameters for the Larsen wake
model are reported in Fig. 7. The model has successfully
captured the reduction in the thrust coefficient for oper-
ations in region 3 of the power curve, regardless of the
incoming-turbulence intensity, TI. In Fig. 7b, the parame-
ter x0 converges to 0 when the incoming-turbulence inten-
sity increases. As mentioned in Sect. 3.3, x0 is defined as
the distance between the rotor position and the origin of the

used coordinate system. Nonetheless, it can also be denoted
physically as the position where the initial wake width equals
one rotor diameter. Therefore, a faster wake recovery rate
due to higher incoming turbulence makes this condition oc-
cur closer to the turbine rotor.

Regarding the wake recovery rate reported in Fig. 7c, we
can see the enhancement of turbulent mixing (c1) as a func-
tion of increasing turbulence intensity, which can be modeled
through a linear function with a slope of 0.66 and intercep-
tion of 0.01. However, the secondary effect on turbulent dif-
fusion due toCt is not singled out for the Larsen wake model.
The justification can be found in the calibration procedure.
Assuming an increase in Ct, the effective rotorDeff increases
monotonically. If we substitute Eq. (A2) into Eq. (A1) and
recast it, we obtain

c1 ∼ C
−

5
6

t

(
9.5

(2R9.5)3
−D3

eff

)− 5
6

, (17)

which suggests that c1 automatically decreases with increas-
ing Ct.
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Figure 7. Optimally tuned parameters for the Larsen wake model: (a) Ct and (b) x0 as a function of the hub-height velocity, U∗hub, for
each lidar cluster, while the lines are colored by the incoming-turbulence intensity (legend at the top left corner); (c) Prandtl’s mixing-length
parameter, c1, versus incoming-turbulence intensity and colored by U∗hub (legend at the top right corner). The dashed black line is the linear
fitting between c1 and TI.

3.4 Ainslie model

Similarly to the Larsen wake model, the Ainslie wake model
is derived from the RANS equations for incompressible flows
(Ainslie, 1988). The turbulent eddy viscosity (EV) is formu-
lated as follows:

EV= F [klb (U∞−Uc)+KM] , (18)

where kl is a constant expected to be a function of the wake
shear rather than incoming-turbulence intensity. In Ainslie
(1988), a suggested value of 0.015 is proposed, which was
obtained from wind tunnel experiments. The parameters b
and U∞−Uc are the wake width and velocity deficit, respec-
tively. KM is the eddy diffusivity for momentum, which is
defined as

KM =
(
κu∗z

)
/φm(z/L), (19)

where κ is the Von Kármán constant; u∗ is the friction ve-
locity; and φm is a stability correction defined through the
Businger–Dyer relationships, which is a function of the sta-
bility parameter z/L (Stull, 1988). Furthermore, a filter func-
tion, F , is introduced to model effects of the wake-generated
turbulence:

F (x)=

{
0.65+

[
x−4.5
23.32

]1/3
x ≤ 5.5

1 x > 5.5
. (20)

It is noteworthy that the filter function F , wake width b, and
velocity deficit U0−Uc are all functions of the downstream
distance from the rotor. Therefore, the turbulent eddy viscos-
ity, EV, is also a function of the downstream position and
coupled with the solution of the wake velocity field. For the
sake of reducing the required computational costs, the equa-
tions of the Ainslie wake model are solved with a parabolic
approach advancing in the downstream direction.

For the Ainslie wake model, the wake width, b, is de-
fined as the radial location where the wake velocity is equal
to 90 % of the free-stream velocity. Similarly to Kim et al.
(2018), we adopted as the initial wake velocity profile the ex-
perimental lidar data measured at a downstream distance of
1.25D. In this regard, the Ainslie model provides the advan-
tage of using experimental data as the initial wake velocity
profile as long as the data are axisymmetric per the model
formulation. For more details on the numerical solution of
the Ainslie wake model see Appendix C.

Summarizing, the inputs of the Ainslie model are the thrust
coefficient, Ct; turbulence intensity, TI; filter function, F ;
shear layer constant, kl; and eddy diffusivity of momentum,
KM. In this study, we set the filter function, F (Eq. 20),
equal to 1 throughout the whole wake region for the sake of
simplicity. The wake-generated turbulence is taken into ac-
count through the parameters kl andKM. It is noteworthy that
Ct and TI are only used to tune the initial wake profile at the
downstream location x = 1.25D, where the lidar measure-
ments are available. Therefore, the independent parameters
required for the optimal tuning of the Ainslie wake model
are kl, which is varied between 0.001 and 0.101 with a step
of 0.005, and KM, which is varied between 0.001 and 0.501
with a step of 0.002.

Since the two model parameters kl and KM are directly
hinged on the eddy viscosity and thus with turbulence mix-
ing and wake recovery rate, in Fig. 8 we show them as a
function of the incoming-turbulence intensity. The parame-
ter kl quantifies the contribution of wake deficit and wake
width to the eddy viscosity. In Fig. 8a it is interesting to
note that kl seems to be independent of hub-height veloc-
ity. A region with higher kl is observed for TI< 15 %, then
kl approaches 0 for higher TI values. In contrast, the param-
eter KMopt is proportional to the incoming wind turbulence
intensity, as shown in Fig. 8b. A similar trend is obtained
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Figure 8. Optimal tuning of the parameters for the Ainslie wake model: (a) kl, (b)KM, and (c) eddy viscosity versus the incoming-turbulence
intensity of each lidar cluster, while the lines are colored by the hub-height velocity. The dashed black line represents linear fitting.

Figure 9. Normalized velocity for the cluster with U∗hub of [0.76, 0.81] and TI of [13.5 %, 19.4 %]: (a) lidar data, (b) Jensen wake model,
(c) Bastankhah wake model, (d) Larsen wake model, (d) Ainslie wake model. The green lines represent the wake edges, while for (c) they
represent the spanwise position corresponding to 2σ .

for the eddy viscosity in Fig. 8c. Furthermore, we calculated
the standard deviation of eddy viscosity along the x direction
for all the lidar clusters (not shown here) and found that it
is 2 orders of magnitude smaller than the average eddy vis-
cosity for the respective lidar cluster. This suggests that a
constant eddy viscosity model can well reproduce the down-
stream evolution of the wake velocity field. Finally, these re-
sults suggest that the turbulent eddy viscosity can be modeled
as EVopt = 0.14 ·TI−0.01 with a Pearson correlation coeffi-
cient of 0.95.

4 Results and discussion

Once the parameters of the four considered engineering wake
models have been optimally tuned based on the mean ve-
locity fields retrieved from the lidar measurements, and their
trends as functions of the normalized incoming wind speed
at hub height, U∗hub, and turbulence intensity, TI, have been

discussed, it is worth scrutinizing the predictions generated
from the wake models more. For instance, the mean veloc-
ity field measured from the lidar for the cluster with U∗hub ∈

[0.76, 0.81] and TI ∈ [13.5 %, 19.4 %] is reported in Fig. 9
and compared with the respective predictions obtained from
the selected wake models. Firstly, the simplistic predictions
obtained through the Jensen model are evident, even though
overall information on the mean kinetic energy content avail-
able within the wake and its evolution in the downstream di-
rection are provided.

The velocity field predicted through the Bastankhah wake
model looks very similar to the mean velocity field mea-
sured by the lidar, especially in the far wake, indicating that
the velocity profiles in the radial direction can be modeled
with a good level of accuracy through a Gaussian function,
which is the underlying assumption of the Bastankhah wake
model. A larger wake velocity deficit with respect to the ref-
erence lidar data is observed in the near wake for the model

https://doi.org/10.5194/wes-5-1601-2020 Wind Energ. Sci., 5, 1601–1622, 2020



1612 L. Zhan et al.: Optimal tuning of engineering wake models through lidar measurements

Figure 10. Velocity profiles predicted from four wake models and compared with lidar data for 0.62<U∗hub < 0.71 and different values
of TI (a–c: 4%< TI< 5.5%; d–f: 5.5%< TI< 7%; g–i: 7%< TI< 13.5%; j–l: 13.5%< TI< 19.4%) and different downstream location
(a, d, g, j: X = 1.75D; b, e, h, k: X = 3.75D; c, f, i, l: X = 5.75D).

predictions. This feature of the Bastankhah wake model can
be better understood through the velocity profiles in the ra-
dial direction reported for various downstream locations and
incoming-turbulence intensity in Fig. 10. For these data clus-
ters, which are calculated for incoming wind speed within the
range 0.62<U∗hub < 0.71 and different TI, it is observed that
in the near wake the mean velocity field measured by the lidar
is not axisymmetric, and, more importantly, it is significantly
different from a Gaussian function (Zhan et al., 2020a). The
velocity profiles recover a more Gaussian-like trend by mov-
ing downstream and/or increasing the incoming-turbulence
intensity, TI. The optimization procedure of the Bastankhah
wake model attempts to maximize the agreement between the
model predictions and the lidar data, especially in proximity
of the sides of the wake, by enhancing the maximum velocity
deficit, which often results in an overestimated thrust coeffi-
cient (see Fig. 5a). As discussed in Sect. 3.2, this feature has
motivated the rejection of wake regions for the fitting of the
lidar data with a Gaussian function with a Pearson correla-
tion coefficient smaller than 0.99 for the optimal tuning of
the model.

Predictions of the near-wake velocity field are improved
for the Larsen wake model (Fig. 9d). Furthermore, very good

accuracy is generally observed throughout the downstream
evolution of the wake, which suggests that the use of the
RANS equations with the mixing-length turbulence closure
model is an efficient strategy to accurately predict wind tur-
bine wake, yet with very low computational costs. Compared
to the empirical modeling of wake expansion in the Jensen
and Bastankhah wake models, the mixing-length approach
not only provides more clarity in interpreting the role of tur-
bulence but also defines the wake width without ambiguity
(green line in Fig. 9). Prediction accuracy is further enhanced
with the Ainslie wake model, where a modeling strategy sim-
ilar to that of the Larsen model is used with the undeniable
advantage of using the mean velocity field measured through
the lidar at x = 1.25D as the initial condition in the near
wake. For general applications, information about the wake
velocity field at the near wake might not be available, and
this input should thus be replaced by a modeling approach or
alternatively by previous experimental or numerical datasets.

Accuracy in the wake-flow predictions obtained through
the optimally tuned engineering wake models is quantified
through the average percentage error, PE (Eq. 1), which is
reported with solid lines in Fig. 11 for the various clusters of
the lidar dataset. A similar analysis is performed for the wake
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Figure 11. Percentage error, PE (Eq. 1), for four optimized wake models (solid lines) and models tuned with values from the literature
(dashed lines). Different panels include data with TI: (a) 4%< TI< 5.5%; (b) 5.5%< TI< 7.0%; (c) 7.0%< TI< 13.5%; (d) 13.5%<

TI< 19.4%; (e) 19.4%< TI< 35.8%.

predictions obtained with the four models under investigation
using typical parameter values available from the literature
(dashed lines in Fig. 11). Specifically, for the baseline wake
predictions obtained with the Jensen model, the wake expan-
sion parameter, k, is set equal to 0.075, which is the typical
value for onshore wind farms according to the settings of the
software WAsP (Mortensen et al., 2011), or to k = 0.4 ·TI as
proposed in Peña et al. (2016). For the baseline wake predic-
tions generated with all four engineering wake models, the
thrust coefficient is calculated from the SCADA data through
Eqs. (4) and (5). For the Bastankhah wake model, the wake
expansion parameter, k∗, and initial wake width parameter,
ε, are set as for Carbajo Fuertes et al. (2018). For the Larsen
wake model, the typical first-order solution is used as a base-
line wake prediction (see Appendix A for details). For the
Ainslie model, the baseline predictions are obtained using
the parameters from the original paper Ainslie (1988), where
kl = 0.015,KM = 0.023 ·U∗hub, and the initial wake profile is
calibrated from Ct and TI.

In Fig. 11, we observe that a general improvement in the
wake-prediction accuracy is achieved through the optimal-
tuning procedure for all the considered wake models and ev-
ery cluster of the lidar dataset. It is evident that the baseline
Jensen model is characterized by the lowest (average PE of
25 %) yet comparable accuracy, which is a consequence of
the top-hat representation of the wake velocity field. The cal-
ibration of the wake expansion parameter, k, as a function

of TI proposed by Peña et al. (2016) allows the reduction of
the average PE to 19 %. However, the optimal-tuning proce-
dure adopted for the current work enables a PE about 3 times
smaller than for the baseline (average PE of 8 %). The op-
timally tuned Larsen model has a better accuracy than the
Jensen model but worse than Ainslie and Bastankhah mod-
els. The Bastankah model produces in general a similar PE as
for the Ainslie model for the various lidar clusters. It is note-
worthy that the accuracy in model prediction generally in-
creases for higher incoming-turbulence intensity, TI. Indeed,
the enhanced turbulent mixing leads to smoother and more
Gaussian-like wake velocity profiles.

Finally, a sensitivity analysis of the optimally tuned model
parameters as a function ofCt and TI is provided. To this aim,
both input and output parameters are normalized as follows:

f̂ =
f − fmin

fmax− fmin
, (21)

where f is a generic input or output parameter. Through
the linear regression of the normalized parameters, we report
four quantities, namely, slope, intercept, R-square value, and
Pearson correlation coefficient ρ. In Table 1, the numbers in
bold highlight the dominant correlations between model pa-
rameters and input parameters, i.e., Ct and TI.

As mentioned above, the optimal tuning of the Jensen,
Bastankhah, and Larsen wake models generates an estimate
of the thrust coefficient of the turbine rotor, Ct. The linear re-

https://doi.org/10.5194/wes-5-1601-2020 Wind Energ. Sci., 5, 1601–1622, 2020



1614 L. Zhan et al.: Optimal tuning of engineering wake models through lidar measurements

Table 1. Linear regression between inputs from lidar cluster and output parameters from the wake models. Bold values indicate high corre-
lation between the respective parameters.

Jensen model Bastankhah model Larsen model Ainslie model

Fitting parameters Ĉt k̂ Ĉt k̂∗ ε̂ Ĉt ĉ1 x̂0 k̂l K̂M

Slope (Ĉtlidar) 0.95 0.24 0.93 0.12 0.24 0.81 −0.19 −0.44 −0.19 −0.06
Intercept (Ĉtlidar) 0.09 0.16 −0.01 0.24 0.35 −0.07 0.42 0.71 0.39 0.23
R2 (Ĉtlidar) 0.91 0.04 0.86 0.01 0.11 0.79 0.04 0.07 0.03 0
ρ (Ĉtlidar) 0.95 0.19 0.93 0.12 0.33 0.89 −0.2 −0.26 −0.16 −0.05
Slope (T̂I) 0.14 1.12 −0.14 0.92 −0.55 −0.22 0.86 −1.24 −0.54 0.97
Intercept (T̂I) 0.66 0.01 0.63 0.06 0.66 0.51 0.06 0.77 0.42 −0.01
R2 (T̂I) 0.02 0.85 0.02 0.93 0.61 0.07 0.87 0.58 0.25 0.91
ρ (T̂I) 0.15 0.92 −0.15 0.96 −0.78 −0.26 0.93 −0.76 −0.5 0.95

gression of the optimally tuned Ct with the respective values
obtained from the lidar data through the application of mass
and momentum budgets (Sect. 3), Ctlidar , produces a slope
between 0.93 and 1.1. This indicates a very good accuracy
of the optimal-tuning procedure, especially considering that
for the linear regression the R-square value is always larger
than 0.84, and the Pearson correlation coefficient is larger
than 0.91.

Regarding the model parameters representing the wake
turbulent diffusion, the slope obtained through the linear re-
gression of these parameters with the incoming-turbulence
intensity, TI, is between 0.86 and 1.12 (R-square value and
Pearson correlation coefficient larger than 0.85 and 0.92, re-
spectively). These results further corroborate the models al-
ready proposed by Peña et al. (2016) and Carbajo Fuertes et
al. (2018), for which the wake turbulent expansion is always
assumed to be linearly proportional to TI.

5 Conclusions

Low-computational costs and easy implementation are key
factors for the wide application of engineering wake mod-
els in wind energy for both industrial and academic pursuits.
However, it is challenging to tune parameters of these en-
gineering wake models to achieve satisfactory accuracy for
predictions of wakes and power capture required for the de-
sign and control of wind farms. Furthermore, this calibration
can be even more challenging when wake models are used
for a broad range of atmospheric-stability regimes or in the
presence of flow distortions induced by the site topography.

In this paper, we have considered four widely used engi-
neering wake models, namely the Jensen model, Bastankhah
model, Larsen model, and Ainslie model. The tuning param-
eters of these engineering wake models have been optimally
calibrated by minimizing the mean percentage error between
the wake flow predicted through the models and the mean
velocity fields measured through a scanning Doppler wind
lidar deployed at an onshore wind farm in northern Texas.
Statistics of the wake velocity field are obtained through a

cluster analysis based on the incoming-turbulence intensity
at hub height and the normalized hub-height wind speed. The
results of the optimal-tuning procedure have shown that the
thrust coefficient obtained through this numerical approach
is in very good agreement with the values obtained by ap-
plying the mass and streamwise momentum budgets on the
mean lidar data by neglecting pressure gradients and turbu-
lent stresses. Furthermore, the model parameters represent-
ing the wake turbulent expansion and recovery are roughly
linearly proportional to the incoming wind turbulence inten-
sity at hub height.

This study has shown that the Jensen model has a lower
yet comparable accuracy than the remaining three wake mod-
els, which is mainly connected with the simplistic top-hat as-
sumption used for modeling the wake velocity deficit. How-
ever, a good estimate of the mean kinetic energy within the
wake as a function of the downstream location is achieved
through the Jensen wake model. The Larsen wake model has
generally shown better accuracy than the Jensen model yet
lower than for the Bastankhah and Ainslie wake models. This
feature seems to be the effect of a slightly more complex for-
mulation of the model, leading to the presence of parameters
that are not easy to tune through a data-driven approach, as
for this work.

The Bastankhah wake model has shown great accuracy in
wake predictions upon the optimal tuning of the model pa-
rameters for a broad range of incoming-turbulence intensity
and incoming wind speed at hub height, namely thrust coef-
ficient of the turbine rotor. The main assumption of the Bas-
tankhah wake model consists of modeling the wake veloc-
ity profile in the radial direction through a Gaussian func-
tion. Therefore, significant differences between the predic-
tions and the lidar data have been observed in the near wake
and/or for relatively low incoming-turbulence intensity for
which the velocity profiles might not be axisymmetric and
may differ from a Gaussian-like profile. Therefore, we rec-
ommend using the Bastankhah wake model only for down-
stream locations and wind conditions for which the Pearson

Wind Energ. Sci., 5, 1601–1622, 2020 https://doi.org/10.5194/wes-5-1601-2020



L. Zhan et al.: Optimal tuning of engineering wake models through lidar measurements 1615

correlation coefficient between the actual velocity field and
the Gaussian model is expected to be higher than 0.99.

Finally, the Ainslie wake model has shown great accuracy,
indicating that the mixing-length model for the RANS equa-
tions is a simple yet efficient turbulence closure model to cap-
ture the effects of incoming turbulence and wake-generated
turbulence on wake downstream evolution and recovery. The
Ainslie wake model provides a great advantage to use as in-
put the velocity profile at a specific streamwise location. This
input can be obtained through experiments, numerical simu-
lations, or other models.

The optimal tuning of the considered wake models has en-
abled us to significantly reduce the mean percentage error in
the predictions of the wake velocity field. For certain clus-
ters of the lidar dataset, the mean percentage error has been
4 times smaller than for the respective baseline wake predic-
tion obtained by using standard parameter values available
from the literature. Considering that the wind farm under in-
vestigation is characterized by a typical layout, flat terrain,
and typical daily cycle of the atmospheric stability for on-
shore wind farms, we expect that similar improvements in
wake-prediction accuracy can be generally achieved for wind
farms with similar characteristics by using the reported opti-
mally tuned model parameters.
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Appendix A: Calibration procedure of first- and
second-order solutions of the Larsen wake model

For the Larsen wake model, the coefficient representing the
wake turbulent diffusion is

c1 =

(
Deff

2

)5/2(105
2π

)−1/2

(CtAx0)−5/6, (A1)

where the rotor position, x0, is calculated as

x0 =
9.5D(

2R9.5D
Deff

)3 , (A2)

while the effective rotor diameter Deff is calculated as

Deff =D

√
1+
√

1−Ct

2
√

1−Ct
. (A3)

The wake radius at a distance of 9.5 rotor diameters down-
stream, R9.5, is calculated as follows:

R9.5 = 0.5[Rnb+min(H,Rnb)] , (A4)

where the empirical formula to calculate Rnb is

Rnb =max[1.08D,1.08D+ 21.7D(TI− 0.05)], (A5)

noting that TI is the incoming-wind-turbulence intensity at
hub height. Equation (A4) includes the blockage effect from
the ground as the wake radius could not be larger than hub
height (Larsen et al., 2003; Renkema, 2007). Subsequently,
Larsen added another empirical expression for R9.6 that con-
sists of input parameters Ct and TI and can be written as

R9.6 = a1 exp
(
a2C

2
t + a3Ct+ a4

)
(b1TI+ 1)D, (A6)

where all the constants can be found in Larsen (2009). The
only difference between these two calibration procedures is
the calculation of the wake radius at 9.5 or 9.6D.

For the terms in the second-order contribution of the
Larsen model solution, they are defined as

z(x,r)= r3/2(CtA (x+ x0))−1/2
(

35
2π

)−3/10(
3c2

1

)−3/10
(A7)

and

d0 =
4
81

[(
35
2π

)1/5(
3c2

1

)−2/15
]6

× (−1− 3(4− 12(
6+ 27

(
−4+

48
40

)
1
19

)
1
4

)
1
5

)
1
8
, (A8)

d1 =
4

81

[(
35
2π

)1/5(
3c2

1

)−2/15
]6

×

(
4− 12

(
6+ 27

(
−4+

48
40

)
1

19

)
1
4

)
1
5
, (A9)

d2 =
4

81

[(
35
2π

)1/5(
3c2

1

)−2/15
]6

×

(
6+ 27

(
−4+

48
40

)
1

19

)
1
4
, (A10)

d3 =
4
81

[(
35
2π

)1/5(
3c2

1

)−2/15
]6

×

(
−4+

48
40

)
1
19
, (A11)

d4 =
4

81

[(
35
2π

)1/5(
3c2

1

)−2/15
]6

1
40
. (A12)

Appendix B: A note on the Larsen wake model

The authors noticed that for roughly identical predictions in
streamwise velocity component from the Larsen and Ainslie
wake models, the radial velocity predicted from the former
is 1 order of magnitude larger than that for the latter while
having the opposite sign. Subsequently, we calculated the di-
vergence in cylindrical coordinate and nonconservative form,
( ∂ux
∂x
+
ur
r
+
∂ur
∂r

), for both models. For the case in Fig. B1,
the input Ct and turbulence intensity are set equal to 0.9 %
and 12 %, respectively. The ux profile at x = x0 obtained
from the Larsen wake model is used as the initial profile for
the Ainslie wake model, while KM = 0.01 and kl = 0.015
are used for turbulence closure of the Ainslie wake model.
Both models practically provide identical streamwise veloc-
ity fields (Fig. B1a and b) yet completely different radial ve-
locity fields (Fig. B1c and d), and, in turn, a significant resid-
ual is obtained when calculating the mass conservation of the
Larsen wake model (Fig. B1e). Therefore, we revisited the
derivation of the velocity formulas from the Larsen model as
follows:

M =

(
35
2π

)3/10(
3c2

1

)−1/5
(B1)

N =
(

3c2
1CtA

)−1/2
(B2)

K =
1
9

(CtA)1/3 (B3)

ux =−KN
2r3x−

5
3 + 2KMNr

3
2 x−

7
6 −KM2x−

2
3 (B4)

ur = 3KN2r4x−
8
3 − 6KMNr

5
2 x−

13
6 + 3KM2rx−

5
3 . (B5)

The three contributions of the mass conservation can be writ-
ten as
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∂ux

∂x
=

5
3
KN2r3x−

8
3 −

7
3
KMNr

3
2 x−

13
6 +

2
3
KM2x−

5
3 (B6)

∂ur

∂r
= 12KN2r3x−

8
3 − 15KMNr

3
2 x−

13
6 + 3KM2x−

5
3 (B7)

ur

r
= 3KN2r3x−

8
3 − 6KMNr

3
2 x−

13
6 + 3KM2x−

5
3 . (B8)

If we sum up Eqs. (B6)–(B8), the result will not be 0, which
means the mass is not conserved in the model. Now we look
at the derivation of ux for the Larsen wake model:

ux = U∞

(
CtAx

−2
)− 1

3
χ1(ζ ) (B9)

χ1(ζ )= χ11(ξ ) (B10)

χ11(ξ )=−
(

1
3
ξ

3
2 − IC2

)2

(B11)

IC2 =
1
3
ξ

3
2

0 (B12)

ξ =
(

3c2
1

)− 3
2
ζ (B13)

ζ = r(CtAx)−
1
3 (B14)

ξ0 =

(
35
2π

) 1
5 (

3c2
1

)− 2
15
, (B15)

which are identical to the Eqs. (4.2.3), (4.2.10), (4.2.12),
(4.2.13), (4.2.9), and (4.2.2) in the original paper (Larsen,
1988). Substituting Eqs. (B10)–(B15) into Eq. (B9), we con-
firm that the expression of ux is correctly obtained as shown
in Eq. (13). The radial velocity ur is directly induced by con-
servation of mass as

ur =−
1
r

r∫
0

r
∂ux

∂x
dr. (B16)

We injected Eq. (B6) into Eq. (B16), and the result is

ur =−
1
3
KN2r3x−

8
3 −

2
3
KMNr

3
2 x−

16
6 +

1
3
KM2x−

5
3 , (B17)

which is not equal to Eq. (B5); thus we rederived Eq. (4.2.17)
in Larsen (1988) starting from

ur =
U∞

3

(
3c2

1C
2
t A

2
) 1

3
x−

4
3 ξχ11(ξ ). (B18)

We substitute Eqs. (B11)–(B15) into Eq. (B18) to finally
achieve

ur

U∞
=−

1
27

(CtA(x))1/3x−3/5r
{
r−3/2

(
3c2

1CtA (x

+x0))−1/2
−

(
35
2π

)3/10(
3c2

1

)−1/5
}2

. (B19)

It is noteworthy that, comparing this result with Eq. (15),
the first coefficient becomes −1/27 instead of 1/3, which
leads to a negative radial velocity that is 1 order of mag-
nitude smaller than the original calculation. The negative
sign is consistent with the flow entrainment expected for the
downstream recovery of a turbulent wake (Schlichting and
Gersten, 2016). To verify divergence computed from the cor-
rected radial velocity, we get

∂ur

∂r
=−

4
3
KN2r3x−

8
3 +

5
3
KMNr

3
2 x−

13
6 −

1
3
KM2x−

5
3 (B20)

ur

r
=−

1
3
KN2r3x−

8
3 +

2
3
KMNr

3
2 x−

13
6 −

1
3
KM2x−

5
3 . (B21)

It is clear that if we sum up the above equations and Eq. (B6),
the divergence equals 0.
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Figure B1. Assessment of the Larsen wake model (a, c, e) against the Ainslie wake model (b, d, f): (a–b) streamwise velocity, (c–d) radial
velocity, (e–f) residual of the mass conservation. The green lines represent the wake edges defined from the Larsen wake model.
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Appendix C: Numerical scheme to solve the Ainslie
model

The Ainslie wake model consists of two governing equations,
the continuity and momentum budgets, which are solved
through the boundary layer approximation

∂ux

∂x
+

1
r

∂ (rur)
∂r
= 0 (C1)

ux
∂ux

∂x
+ urV

∂ux

∂r
=−

1
r

∂ (ruxur)
∂r

. (C2)

Knowing that−uxur = ε
∂ux
∂r

, we can substitute this equation
into the momentum equation and discretize the result as

∂u
i,j
x

∂x
=

ε

u
i,j
x

(
1
r

∂u
i,j
x

∂r
+
∂2u

i,j
x

∂r2

)
−
u
i,j
r

u
i,j
x

∂u
i,j
x

∂r
, (C3)

where i and j are the dummy index in the x and r direc-
tions, respectively; i = 1, 2, . . . ,Nx and j = 2, 3, . . . ,Nr .
It is worth mentioning that Nx has to be sufficiently large
to ensure numerical stability. To compute the axial veloc-
ity gradient, we need to know the radial velocity, ur. There-
fore, a parabolic approach advancing in the radial direction
is applied. To this aim, the continuity equation is firstly dis-
cretized as

∂u
i,j
x

∂x
=−

1
r

rU
i,j
r

∂r
. (C4)

Then, we use it to replace the term on the left-hand side of
Eq. (C3), producing

u
i,j
r

∂r
=−

ε

u
i,j
x

(
1
r

∂u
i,j
x

∂r
+
∂2u

i,j
x

∂r2

)
+ u

i,j−1
r(

1

u
i,j
x

∂u
i,j
x

∂r
−

1
r

)
. (C5)

Therefore, the radial velocity ur can advance in the r direc-
tion by following

u
i,j
r = u

i,j−1
r +

∂u
i,j
r

∂r
dr. (C6)

An initial value u1,1
r = 0 is assumed as the one used in the

Larsen model. Finally, we insert Eq. (C6) back to Eq. (C3) to

get ∂u
i,j
x

∂x
and apply

u
i+1,j
x = u

i,j
x +

∂u
i,j
x

∂x
dx. (C7)

The solution of the velocity field is then advanced in the x di-
rection until the entire velocity field of interest is computed.
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Data availability. The lidar dataset used is publicly available
to download at https://doi.org/10.5281/zenodo.3604444 (Iungo,
2020).

Code and data availability. The code for the optimal tuning of
the models is available at https://www.utdallas.edu/windflux/ (last
access: 11 June 2020) (Zhan et al., 2020b).
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