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Abstract. The need for cost-effective support structure designs for offshore wind turbines has led to continued
interest in the development of design optimization methods. So far, almost no studies have considered the effect
of uncertainty, and hence probabilistic constraints, on the support structure design optimization problem. In this
work, we present a general methodology that implements recent developments in gradient-based design opti-
mization, in particular the use of analytical gradients, within the context of reliability-based design optimization
methods. Gradient-based optimization is typically more efficient and has more well-defined convergence prop-
erties than gradient-free methods, making this the preferred paradigm for reliability-based optimization where
possible. By an assumed factorization of the uncertain response into a design-independent, probabilistic part
and a design-dependent but completely deterministic part, it is possible to computationally decouple the relia-
bility analysis from the design optimization. Furthermore, this decoupling makes no further assumption about
the functional nature of the stochastic response, meaning that high-fidelity surrogate modeling through Gaussian
process regression of the probabilistic part can be performed while using analytical gradient-based methods for
the design optimization. We apply this methodology to several different cases based around a uniform cantilever
beam and the OC3 Monopile and different loading and constraint scenarios. The results demonstrate the via-
bility of the approach in terms of obtaining reliable, optimal support structure designs and furthermore show
that in practice only a limited amount of additional computational effort is required compared to deterministic
design optimization. While there are some limitations in the applied cases, and some further refinement might
be necessary for applications to high-fidelity design scenarios, the demonstrated capabilities of the proposed
methodology show that efficient reliability-based optimization for offshore wind turbine support structures is
feasible.

1 Introduction

Offshore wind energy is becoming an increasingly compet-
itive alternative to the traditional land-based wind farms.
However, there remains a level of additional cost which, to-
gether with some practical challenges, ensures that offshore
wind is still a secondary consideration in many markets.
Hence, the reduction of this cost is a primary objective in cur-
rent research and development. Cost reduction is generally
a multidisciplinary issue, including turbine components like

rotor blades and the drivetrain, wind farm layout, the elec-
trical grid and the design of the support structure (including
the tower). Methods to derive cost-effective, optimal support
structure designs – balancing minimal use of materials (and
potentially other cost-driving design aspects) with the ability
to safely withstand the loads required by design standards –
have been an active area of research for many years. How-
ever, very few studies have taken into account the probabilis-
tic, fundamentally uncertain aspects of the design process.
This includes, for example, uncertainties in the environment
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and the modeling of the environment, affecting the loads ex-
perienced by the structure, as well as uncertainties about the
details of the design itself, affecting the response to the ap-
plied loads. Taking such uncertainties into account generally
requires the use of probabilistic mathematical methods that
severely complicate the design optimization problem that
needs to be solved, both formally and numerically. Hence,
deterministic safety factors tend to be used. This is also true
even for single design assessments. The present study aims
to address these issues by proposing a methodology that al-
lows the use of both state-of-the-art optimization methods
recently developed for support structure design and proba-
bilistic assessments of the structural response to both fatigue
and extreme loads.

Design optimization of structures subject to probabilistic
problem variables and parameters, sometimes called opti-
mization under uncertainty, is in general a large field of re-
search at the intersection of two larger fields, optimization
and probabilistic design. One main distinction is between
robust design optimization (RBO) (Ben-Tal et al., 2009;
Zang et al., 2005) and reliability-based design optimiza-
tion (RBDO) (Choi et al., 2007; Valdebenito and Schuëller,
2010a). The main difference between the two methods is that
in RBDO the design is optimized normally but under specific
probabilistic limits on structural performance (probability of
failure), whereas in RBO the basic idea is to minimize the
variance of a probabilistic objective function in order that the
obtained (mean) solution is robust with respect to the uncer-
tainties. We will generally restrict our discussion to RBDO
and reliability methods but refer to studies on RBO and ro-
bust methods where necessary or appropriate. Furthermore,
given the extensive research on more general applications of
reliability analysis, optimization and RBDO (or optimization
under uncertainty more generally), we will focus on previ-
ous studies concerning wind turbines. For a more expansive
overview of structural reliability and RBDO applied to wind
turbines than the one following below, the interested reader is
referred to Jiang et al. (2017), Leimeister and Kolios (2018),
Hübler (2019) and Hu (2018).

A substantial amount of the literature for both structural
reliability analyses and RBDO of offshore wind turbines
(OWTs) has focused on aspects other than support struc-
ture design. Areas such as blade design (Ronold et al., 1999;
Toft and Sørensen, 2011; Dimitrov, 2013; Hu et al., 2016;
Caboni et al., 2018), foundation design (Yoon et al., 2014;
Carswell et al., 2015; Depina et al., 2016, 2017; Haj et al.,
2019; Velarde et al., 2019), component design (Kostandyan
and Sørensen, 2011; Rafsanjani et al., 2017; Lee et al., 2014;
Li et al., 2017), system/wind farm aspects (Sørensen et al.,
2008), inspection and maintenance planning, and probabilis-
tic tuning/optimization of safety factors (Sørensen and Tarp-
Johansen, 2005; Márquez-Domínguez and Sørensen, 2012;
Veldkamp, 2008) have all been studied. As for support struc-
ture design specifically, though most structural analyses of
OWTs remain deterministic, there has been a number of stud-

ies incorporating reliability-based (or otherwise probabilis-
tic) approaches. For the most part, the reliability-based anal-
yses can be divided into two categories. Firstly, there are
studies using simplified probabilistic models where the un-
certainty in the response is assumed to be a product of the un-
derlying stochastic variables and the deterministic response
variable (e.g., Thöns et al., 2010; Sørensen and Toft, 2010;
Wandji et al., 2016; Yeter et al., 2016, as well as several
of the previously cited studies). Note that the basis for this
kind of factorization can be justified partially or entirely de-
pending on both the type of response variable and the type
of stochastic variable. For example, in the case of Yeter et al.
(2016), the stochastic variables are mostly either modeling or
simulation errors, or directly originating within the analytical
expressions for the response variable. Hence, the level of ap-
proximation involved in this kind of probabilistic modeling
varies. While not strictly in the same category, studies where
the fatigue calculation is based on crack propagation mod-
els and an assumption that the stress cycles follow a Weibull
distribution, allowing exact limit state expressions to be de-
rived, should be mentioned (e.g., Dong et al., 2012). Gen-
erally, these simplifications are done in order to be able to
solve the reliability problem using first-/second-order relia-
bility methods (FORMs/SORMs) in a computationally fea-
sible way. In the second category of studies, the response it-
self is simplified, while generally no particular assumptions
about the stochastic nature of the response are made. This
has been done through static response modeling (e.g., Wei
et al., 2014; Kim and Lee, 2015), but usually the response
is replaced by surrogate models of some kind (e.g., Kolios,
2010; Teixeira et al., 2017; Morató et al., 2019). The use of
surrogate models is often done in order to be able to solve the
reliability problem by sampling methods, generally requiring
a large number of response evaluations, but surrogate mod-
els also make FORM/SORM more computationally practi-
cal. Note that this division of reliability methodology is not
strict – Thöns et al. (2010) also makes use of surrogate mod-
eling, for example – nor does it cover all approaches, but it
is useful as an indicator for one of the fundamental struggles
that all the aforementioned studies have reckoned with: the
fidelity of the probabilistic modeling vs. the fidelity of the
underlying structural analysis.

Only a limited number of studies applying RBDO to OWT
support structure design have been made. In a series of stud-
ies, Yang and collaborators investigated optimization of a tri-
pod support structure with probabilistic constraints. In Yang
et al. (2015), RBDO was performed, and in Yang and Zhu
(2015), RBO was performed. In both cases, a Gaussian pro-
cess (kriging) surrogate model was used for the response and
Monte Carlo sampling was used for the reliability calcula-
tion. In Yang et al. (2018), RBDO was once again performed
with a Gaussian process surrogate model, but in this case the
reliability calculation was done using a fractional moment
method in order to reduce the number of system evaluations
required. All three studies used the heuristic optimization
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method called the multi-island genetic algorithm, and the re-
liability calculations were done for each step in the optimiza-
tion loop, creating a nested two-loop structure. As one might
expect from a heuristic method, the number of iterations re-
quired to solve even the deterministic optimization problem
(around 300 iterations) is rather large given the small number
of design variables used, and this is much more pronounced
in the case of the stochastic optimization (around 3000 itera-
tions). This means that the method is rather computationally
inefficient, especially considering the number of system eval-
uations required by the reliability calculation and the genetic
algorithm at each iteration. However, due to the use of the
surrogate model, this practical issue is overcome, if still ap-
parent. Though not an application to OWTs, it is also worth
mentioning the study of RBDO applied to offshore mono-
pod towers in Karadeniz et al. (2010b) and applied to jacket
structures in Karadeniz et al. (2010a). Here, the limit state
functions are formulated analytically, and a nested two-loop
approach using gradient-based optimization (in this case se-
quential quadratic programming, SQP) and FORM is used.

The previous work on RBDO for OWTs (for both sup-
port structures and otherwise) demonstrates that these meth-
ods can obtain optimal designs that are both more robust/safe
with respect to uncertainties than designs optimized under
deterministic criteria and more tailored to specific design
conditions than deterministic designs using safety factors.
However, so far (and this is particularly true for support
structure designs), no studies have taken advantage of recent
advances in deterministic structural optimization methodol-
ogy. Optimization methods in general can be divided into
gradient-based and gradient-free (often heuristic) methods.
Both approaches have been applied to support structure de-
sign and other wind turbine components (both on- and off-
shore). With some exceptions (e.g., Negm and Maalawi,
2000 using an interior penalty method), gradient-free meth-
ods were the most common among earlier studies. Examples
include Yoshida (2006) using a genetic algorithm, Uys et al.
(2007) with a Rosenbrock search and Zwick et al. (2012)
with a local scaling of sectional members. The advantages of
these approaches are that no gradient information is needed
for the optimization, which simplifies the calculations that
need to be performed for each iteration and avoids the re-
liance on finite difference methods, which can be unstable
in some implementations. On the other hand, these meth-
ods, at least when done at a similar level of detail, gener-
ally converge much slower than gradient-based alternatives,
where the search for optimal designs can be more specifically
guided by the information provided by the gradients. With
this disadvantage of gradient-free methods in mind, and seek-
ing to avoid the issues related to finite difference methods,
some recent studies have demonstrated the viability and, in
most cases, advantages of analytical sensitivities in gradient-
based formulations. This has been shown for static (Sandal
et al., 2018), quasi-static (Oest et al., 2017) and dynamic
(Chew et al., 2016) loading conditions (see also Oest et al.,

2018 for a comparison of these three approaches and a more
thorough review of support structure optimization). In gen-
eral, these approaches make the design optimization problem
more efficient and stable, though, because of the added con-
ceptual complications, these methods have yet to be applied
in studies considering a more realistic and comprehensive set
of loading conditions. A study founded on gradient-based op-
timization that does consider a more comprehensive set of
loading conditions but does not utilize analytical sensitivities
was performed by Häfele et al. (2019). They used a Gaussian
process surrogate model to simplify the response, thus mak-
ing the analysis computationally feasible. This study also
used a more complicated and (arguably) more realistic objec-
tive function, modeling the cost of the support structure in a
more detailed way than the strictly steel mass-/volume-based
approaches that are otherwise commonly used. However, it
was seen that, at least with the particular cost formulations
used, the solution was more or less the same as when a sim-
pler mass-based objective function was used. Another recent
study regarding deterministic support structure optimization
was done in Couceiro et al. (2019). Like the previous study,
completely analytical sensitivities were not used. The plau-
sibility of more comprehensive code checks for design op-
timization under dynamic loading was in this case demon-
strated by a simplified fatigue extrapolation procedure and
an aggregation of time-dependent stress constraints (for ul-
timate limit state analysis) into a single constraint per stress
time series. All these studies have been focused on bottom-
fixed structures (jackets in particular, though the methodolo-
gies are easily transferable to monopiles) and it is unclear
what level of adaptation is necessary to extend these formu-
lations to floating structures.

As seen in several of the cited studies above, the use of
surrogate modeling to simplify the response analysis has be-
come more common recently. For optimization and reliabil-
ity analysis, and all the more so for RBDO, this is a natural
way to make the problems more computationally tractable
when faced with having to perform a large number of time-
consuming simulations. However, surrogate modeling is in-
creasingly also proposed for basic structural analysis due to
the large number of environmental states that need to be
checked for certification according to design standards (e.g.,
International Electrotechnical Commission, 2009). For ex-
ample, Toft et al. (2016a) used a response surface based on
Taylor expansions, and Gaussian process regression was used
by Huchet et al. (2019) and Teixeira et al. (2019) for fa-
tigue design and by Abdallah et al. (2019) for ultimate limit
state (ULS) design. Though there are some challenges re-
garding the number of samples required to build an accurate
model, this can be alleviated by efficient design of experi-
ment and/or adaptive methods. The overall indication seems
to be that surrogate modeling, and particularly Gaussian pro-
cess regression, provides a viable strategy for simplifying the
structural analysis in design problems.
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In summary, while considerable work has gone into im-
proving the various analyses and methods involved in RBDO
for support structures, there is a very limited amount of stud-
ies that connect these pieces together. In particular, the work
on analytical design sensitivities has not been implemented
into RBDO, nor has it been combined with surrogate mod-
eling approaches that make more comprehensive structural
analysis and/or reliability analysis computationally feasible.
These gaps are what we intend to explore in the present
study. By a very particular formulation of the probabilistic
constraints (limit state functions) used for the support struc-
ture design optimization, we demonstrate how these con-
straints can remain analytically differentiable with respect to
the design variables while at the same time using a surro-
gate model for the stochastic variation of the response. By
doing so, we retain the advantages of the state-of-the-art de-
terministic optimization formulations while ensuring that the
uncertainties are propagated through the system in a way that
makes less simplifications than the commonly used factoriza-
tion approaches and without incurring substantial additional
computational effort. By assuming that some kind of fac-
torization of the response is valid locally in design space,
a standard double-loop RBDO formulation can be applied
together with a design-independent Gaussian process surro-
gate model that makes the inner loop used to solve the reli-
ability problem computationally insignificant. Retraining the
surrogate model and repeating the optimization a few addi-
tional times then leads to convergence and an optimal de-
sign that is feasible with respect to uncertainties in both the
loads and the structural modeling. In addition to incorporat-
ing more advanced optimization methods to the RBDO prob-
lem than has been done previously for OWT support struc-
ture design, the current approach can also be seen as a natural
middle ground between, on the one hand, the simplified an-
alytical limit state formulations and, on the other hand, the
completely surrogate-model-based limit state formulations,
the two most commonly used approaches in reliability anal-
ysis and RBDO for OWTs previously.

The structure of the paper from this point on is as fol-
lows. In the first section (methodology), the general theoreti-
cal background is presented first, with focus on optimization,
reliability analysis and RBDO, but some details about surro-
gate modeling are also included. The section is concluded
with a motivation and presentation of the proposed method
from a general point of view. The next section (testing and
implementation details) describes the setup for how we have
chosen to test the method in practice. This includes specific
models and what kinds of loads are included, the type of con-
straints included in the optimization, sensitivity analysis and
uncertainty modeling. Additionally, some particular practi-
cal details of how the method has been implemented are dis-
cussed. The remaining sections of the paper include a pre-
sentation and discussion of the results, in the results section;
more detailed treatment of a few points of interest, in the fur-

ther discussion section; and a summary and final thoughts, in
the conclusions.

2 Methodology

In the following, we present the basic framework of (deter-
ministic) design optimization for OWT support structures.
Then, some aspects of RBDO and surrogate modeling are ex-
plained. Finally, the synthesis of these aspects resulting in the
proposed RBDO methodology is motivated and presented.

2.1 Design optimization of offshore wind turbine support
structures

For the task of finding the minimum structural mass fmass
of a topologically fixed design consisting of N circular cross
sections, the following optimization problem can be formu-
lated:

min
x
fmass(x) such that

Alinx ≤ b

x ≤ xu

x ≥ xl

cj (x)≤ 0 ∀j ∈ J . (1)

Here, x are the design variables, Alin and b give rise to a sys-
tem of linear inequality constraints, xu and xl are upper and
lower bounds, respectively, and cj represents a non-linear
constraint function indexed according to some set J . The de-
sign variables for this problem will be the diameters Di and
thicknesses ti of each cross section i ∈ {1, . . .,N}. The total
mass of all N cross sections is calculated as

fmass(x = (D; t))= πρ
N∑
i=1

Li(Di ti − t2i ), (2)

where Li represents the (constant) length of each structural
element with cross sections given by Di and ti , and ρ is the
material density (assuming a uniform density throughout the
structure). Examples of the type of linear constraints that can
be represented by Alinx ≤ b are limits on the ratio of each
Di to each ti (the D− t ratio). The non-linear constraint cj
typically corresponds to safety criteria for ULS and the fa-
tigue limit state (FLS) but often also includes constraints on
the first eigenfrequency of the structure.

The optimization problem in Eq. (1) can be solved either
by gradient-based or gradient-free (heuristic) methods. All
gradient-based methods require, as the name suggests, the
calculation of the gradients of the problem. In a constrained
problem like Eq. (1), that means estimating the gradients of
both the objective function fmass and all the constraints. For
an objective function like the one stated in Eq. (2) and for
any linear constraints, this is a trivial problem. For non-linear
constraints, the calculation of gradients (often called sensitiv-
ities in the optimization field) can be very difficult, especially
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when the value of these constraints depends on output from
simulations, as is generally the case for support structure op-
timization. This difficulty can in principle be accommodated
by the use of finite difference methods, where the function
values around the current design point are used to get an es-
timate of the gradient. However, the use of finite difference
methods can lead to inaccurate solutions or failure to con-
verge, or will at least often require a larger number of func-
tion evaluations (computationally costly when simulations
are needed for each such evaluation) to obtain the same solu-
tion as one would using the exact gradients (see, e.g., Chew
et al., 2016). Additionally, the accuracy of finite difference
estimates depends strongly on the chosen step size, the opti-
mal value of which again depends strongly on the (possibly
local) properties of the function in question (see, e.g., Press
et al., 2007 for a general discussion and Oest et al., 2017 for
a demonstration of this effect for support structure design).
Hence, it is desirable to use analytical sensitivities whenever
possible. Examples of common heuristic methods are genetic
algorithms, particle swarm algorithms and random search.
The reason that these methods might be used over gradient-
based methods is that no estimation of sensitivities is neces-
sary in that case, seemingly avoiding the problem described
above related to gradient estimation. However, as a trade-off,
these gradient-free methods generally require a much larger
number of iterations to convergence to the solution, since the
methodology is typically founded on some kind of loosely
guided (possibly random) search of the parameter space.
While being able to overcome some of the weaknesses of
gradient-based optimization, for simulation-based problems,
the resulting added computational expense of heuristic meth-
ods might not be acceptable in practice. Since the gradient-
based methods using analytical sensitivities are able to avoid
the numerical issues associated with finite differences and
obtain accurate gradient information, these methods are con-
sequently preferable. Hence, we shall focus our attention on
gradient-based methods from this point onwards.

It is a well-known result (see, e.g., Kang et al., 2006) that
when the displacements u(t) of the structural system under
dynamic loading S(t) are found by time integration of the
equation of motion, given as

M(x)ü(t)+C(x)u̇(t)+K(x)u(t)= S(t), (3)

for mass matrix M, damping matrix C and stiffness matrix
K, then the sensitivities of the displacements can be found
by time integration of the following equation:

M(x)
dü(t)

dx
+C(x)

du̇(t)
dx
+K(x)

du(t)
dx
=

dS(t)
dx

−

(
dM(x)

dx
ü(t)+

dC(x)
dx

u̇(t)+
dK(x)

dx
u(t)

)
. (4)

Hence, if the non-linear constraints can be expressed as an-
alytical functions of the displacements, the sensitivities are
obtainable via (possibly repeated) application of the chain

rule and finally the solution of Eq. (4). It is presently assumed
that the system matrices (M, C and K) are known analyti-
cal functions of the design variables, as is the case when the
structural analysis is based on finite element modeling with
beam elements defined according to Euler or Timoschenko
beam theory. If this is not the case, the use of semi-analytical
methods (where the gradients of the system matrices are es-
timated with finite differences) must be used. For OWT sup-
port structures, it was shown in Chew et al. (2016) how the
sensitivities of both ULS and FLS constraints could be ob-
tained using the analytical approach described above.

2.2 RBDO

The main distinguishing feature, with respect to the prob-
lem structure defined in Eq. (1), of optimization under uncer-
tainty, is the addition of a new set of stochastic variables θ
that in general can enter both the objective function and the
constraints. In fact, some or all of the design variables in x

could be replaced (or depend on) variables in θ . However, in
our case, we shall restrict the discussion to cases where all
the design variables are deterministic. It follows that the only
θ dependence must then be in the so far to be determined
non-linear constraints cj . In RBDO, the main idea is that we
seek to constrain (and/or, in some formulations, optimize)
the reliability of the system. The reliability of a structural
system is a probabilistic measure of its ability to resist loads.
In the most straightforward mathematical representation, this
is expressed as the extent to which the load effectQ (usually
depending on the response) does not exceed the resistance R
(usually depending on the capacity or structural strength). In
a probabilistic setting, this is quantified by the probability of
failure Pf, defined as

Pf = Prob(Q−R > 0). (5)

Formally, the reliability is the probability of non-failure,
1−Pf, though commonly one tends to use Pf rather than the
actual reliability in analysis and calculations. Furthermore,
since the analogy of load effect and resistance is not always
applicable, the notion of failure is usually represented by a
limit state function g, encoding failure as positive function
values, with the probability of failure as

Pf = Prob(g > 0). (6)

In general, g is a function of both x and θ , and to calculate
Pf requires knowledge of the joint probability distribution hθ
of all the stochastic variables in θ . An exact estimate of Pf is
then given by the integral of hθ over the part of its domain
where g > 0, i.e.,

Pf =

∫
g(x,θ )>0

hθ (θ ′)dθ ′. (7)
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The general RBDO problem may then be formalized as

min
x
fmass(x) such that

Alinx ≤ b

x ≤ xu

x ≥ xl

cj (x)≤ 0 ∀j ∈ Jdet

Pf,j (x)≤ Pmax
f,j ∀j ∈ Jprob, (8)

where Jdet and Jprob represent the indices of deterministic
and probabilistic constraints, respectively, and Pmax

f,j are the
desired upper bounds on the probabilities of failure Pf,j .

However, for any but the most trivial limit state functions,
the determination of the values of x and θ giving g > 0, and
hence the determination of the integral in Eq. (7), cannot be
done exactly. The most straightforward and robust way to ac-
commodate this is through the use of sampling methods. In
particular, the family of Monte Carlo and quasi-Monte Carlo
methods is typically used. These methods generally have the
property that for a large enough sample size, the resulting es-
timate P̂f tends towards the exact value of Pf. Unfortunately,
large enough can be an intractable requirement. While the
use of variance reduction techniques can speed up the conver-
gence, as the dimensionality and complexity of the problem
grows, the number of samples does too. This can be particu-
larly problematic when one or more simulations are required
for each sample. Furthermore, sampling methods do not nat-
urally lend themselves well to gradient-based optimization
due to the additional effort involved in the calculation of the
gradients of a quantity estimated by sampling. In some cases,
when the design variables are stochastic, the use of what is
called score functions for the estimation of design sensitivity
is possible, in which case no additional samples are needed
(see, e.g., Hu, 2018). At the very least, no analytical gradients
can be obtained. Hence, it is common to make use of first-
and second-order approximations of the limit state function,
making integration over the g > 0 region feasible.

2.2.1 FORM

The objective of FORM is to approximate the non-linear fail-
ure surface, the set of points such that g > 0, by a linear
function of independent standard normal variables v, derived
from the original set of stochastic variables θ . Historically,
there have been several versions of FORM and related meth-
ods (see, e.g., Choi et al., 2007 and Enevoldsen and Sørensen,
1994, where also more details about FORM in general can
be found), but we shall restrict the discussion to the one most
commonly used. The main idea is as follows: construct the
set of independent standard normal variables v = {vi} by ap-
plying the transformations

vi =8
−1(Hθi (θi)) ∀i ∈ I, (9)

where 8−1 is the inverse of the standard normal cumula-
tive distribution function (CDF), Hθi is the CDF of θi , and
I is the set of all the indices for the stochastic variables in θ .
This particular transformation assumes that the variables in
θ are independent, which is not always the case. For non-
independent stochastic variables, a slightly more involved
transformation (e.g., the Rosenblatt transformation; Rosen-
blatt, 1952) must be used. By substituting v for θ in g, we ob-
tain g(x,v). We want to linearize this function at the point on
the boundary between failure and non-failure, g = 0, that is
closest to the origin in standard normal space, the most prob-
able point (MPP) on the failure surface. This can be found by
solving the following optimization problem:

min
v

√∑
i

v2
i such that

g(x,v)= 0. (10)

We denote the optimal point solving the above v∗, and the

corresponding minimal distance to the origin β =
√∑

i(v
∗

i )2

is called the reliability index. The probability of failure is
then estimated as Pf =8(−β). Some care must be taken
in the application of FORM methods, since this represen-
tation is only exact in the case that g is a linear function.
For a non-linear g, FORM is an approximation, but it is
often good enough for many engineering applications. Be-
yond merely offering a tractable solution to Eq. (7), there
are several properties that make FORM desirable for RBDO.
Consider, for example, the behavior of the probabilistic con-
straints in Eq. (8). Pf will tend to vary over many orders of
magnitude, which can be detrimental to the behavior of many
algorithms for gradient-based optimization. The introduction
of the reliability index means that we can replace the con-
straints involving Pf with equivalent ones involving β, i.e.,

βj ≤ β
max
j =−8−1(Pmax

f,j ). (11)

This substitution has a further advantage when calculating
sensitivities. Even without an explicit expression for the
derivative of Pf with respect to x, we can make the following
observation. In the two cases where the design x is such that
the region g > 0 is either very small (very safe designs) or
very large (very unsafe designs), the change in Pf due to a
small change in x is virtually zero. Hence, in these design
configurations, the sensitivity vanishes, which has a detri-
mental effect on the optimization since most algorithms will
struggle to find new candidate points that lead to measurable
changes in the constraints. Using β as the constraint function
instead gives the following, generally non-vanishing, expres-
sion (Enevoldsen and Sørensen, 1994):

dβ
dx
=

1
dg
dv

dg
dx
. (12)

However, one problem with the definition of FORM given
in Eq. (10), typically called the reliability index approach
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(RIA), is that it is not always possible to find a configuration
v such that g = 0 (within a sufficiently small tolerance). This
can lead to slower convergence of the RBDO problem or in
the worst cases a lack of convergence at all. To resolve this
issue, it is possible to formulate an inverse problem where
instead of calculating the reliability index for a given de-
sign, one finds the configuration of v giving the smallest ex-
ceedance of g > 0 for a given (fixed) reliability index. This
is called the performance measure approach (PMA) and will
be explicated below.

2.2.2 PMA

The main idea of PMA is to reverse the role of objective and

constraint in Eq. (10). If we demand that
√∑

iv
2
i = β

max as
a constraint, we can instead find the largest possible value of
g for which that constraint is satisfied. In other words,

max
v

g(x,v) such that√∑
i

v2
i = β

max. (13)

If we again call the solution point v∗ and term the corre-
sponding value of g as g∗, then, under the assumptions of
the validity of FORM, it follows that Prob(g > g∗)= Pmax

f .
Hence, by further demanding that g∗ ≤ 0, we can guaran-
tee that Pf ≤ P

max
f . The optimization problem in Eq. (13) al-

ways has a solution. Aside from the robustness provided by
this, PMA has a few other advantages. For example, it can be
shown that (see, e.g., Frangopol and Maute, 2005)

dg(x,v∗)
dx

=
∂g(x,v∗)
∂x

, (14)

which simplifies the sensitivity analysis. More generally, for
applications to RBDO, PMA tends to perform better (Tu
et al., 1999; Youn and Choi, 2003; Lee et al., 2002). An il-
lustration of the difference between RIA and PMA is made
in Fig. 1.

The RBDO problem using PMA can be stated as

min
x
fmass(x) such that

Alinx ≤ b

x ≤ xu

x ≥ xl

cj (x)≤ 0 ∀j ∈ Jdet

gj (x,v∗)≤ 0 ∀j ∈ Jprob. (15)

where each gj solves Eq. (13) with βmax
=−8−1(Pmax

f,j ).
One potential downside of PMA is that it does not provide
a direct estimate of the probability of failure. This is fine for
optimization, where being below the threshold is sufficient
and where at least one constraint should be at the boundary

Figure 1. The difference between the solutions provided by RIA (a)
and PMA (b) for a linear limit state function g with two variables,
(v1,v2)= v, in standard normal space. The target reliability index
for PMA (βt = 3.3) is higher here than the RIA solution (β = 2.28),
so the PMA solution finds g∗ > 0. Also indicated are examples of
points visited during the respective optimizations (initial, v0, inter-
mediate, vk , and solution points, v∗; different for the two methods),
where the displayed points before the solution are feasible but not
optimal.

where g∗ = 0 for the final solution. However, if one wishes
to compare the probability of failure of such an optimized
design with the corresponding initial design or a design opti-
mized by deterministic methods, then PMA does not imme-
diately provide a quantitative answer. It only provides a qual-
itative assessment of whether or not the probability of failure
is above or below the given threshold. To get a quantitative
assessment in these cases, we can exploit the approximate
linearity of g∗, especially close to g∗ = 0. If we have solved
the PMA problem in Eq. (13) once for a target reliability βt,
obtaining the solution g∗, we can then use the secant method
to construct an estimate of β0 ≡ β(g∗ = 0) as

β0 = βt−
βt−β

′

g∗− g′∗
g∗, (16)

where g′∗ is the solution of a PMA problem for a target relia-
bility β ′ ∈ (βt,β0). If the initial g∗ is sufficiently small (close
to 0) and/or sufficiently linear, then the above will provide
a good estimate β0 and hence an estimate of the probability
of failure as Pf =8(−β0). Otherwise, this procedure can be
iterated (setting βt = β

′ and β ′ = β0). In such cases, unless
the initial g∗ is very far away from zero and/or g is highly
non-linear, only a few more iterations (1–3) should suffice to
get at least two digits of accuracy for Pf.

2.2.3 Two-loop RBDO vs. single-loop RBDO

As is evident from Eq. (15), the current formulation of the
RBDO problem consists of two nested loops. One outer op-
timization problem that solves the design optimization prob-
lem under the given constraints and one inner optimization
that solves the (PMA) reliability problem to obtain the prob-
abilistic constraints for each iteration. This can be computa-
tionally demanding, even when the convergence of the PMA
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subproblem is accelerated by the use of improved optimiza-
tion methods like the hybrid mean-value algorithm (Youn
et al., 2003). For this reason, several alternative solution
strategies for RBDO have been proposed (Valdebenito and
Schuëller, 2010b). This usually involves either decoupling
the two loops into a sequence of deterministic optimization
and reliability analysis, most prominently in the sequential
optimization and reliability analysis (SORA) method (Du
and Chen, 2004), or the use of reformulated single-loop
approaches, most prominently in the aptly named single-
loop approach (SLA) (Chen et al., 1997). All these meth-
ods involve some kind of approximation of the FORM-based
constraint. While speeding up the convergence significantly
compared to conventional two-loop strategies, this can also
lead to lack of convergence for some problems (Aoues and
Chateauneuf, 2010). On the other hand, SORA seems to be
fairly robust, due in large to the fact that its reliability-based
constraint is locally equivalent to the two-loop approach,
meaning that as the changes in the design become small from
one round of deterministic optimization to the next, the error
in the approximation when using a fixed reliability estimate
during the design optimization tends to zero.

2.3 Surrogate modeling

Surrogate modeling is generally a vast topic and the inter-
ested reader is referred to Wang and Shan (2006) and Mars-
land (2015) for more general overviews, as well as to Tunga
and Demiralp (2005) for the high-dimensional model repre-
sentation approach and Rasmussen and Williams (2006) and
Santner et al. (2018) for more detailed looks at Gaussian pro-
cess regression (GPR). For applications to RBDO in general,
Dubourg (2011) and Jin et al. (2003) are instructive.

Focusing our attention to wind turbine applications, it has
been common for quite some time to use surrogate model-
ing due to the computationally demanding simulations re-
quired for time-domain analysis. This is especially true for
reliability analysis, optimization and RBDO, due to the dras-
tically increased computational effort involved. The most
commonly applied types of surrogate models in wind energy
have been response surface models (typically second-order
polynomials), Taylor expansions and (especially more re-
cently) GPR. GPR has many advantages, including the abil-
ity to capture non-linearities with higher fidelity and provid-
ing an estimate of its own uncertainty by default but gener-
ally requires a larger number of samples to gain a significant
advantage over response surface methods (Kaymaz, 2005).
We note that GPR is often referred to as kriging in the engi-
neering literature. Although, for most practical purposes, the
two terms can be used interchangeably, GPR is more general.
Hence, to avoid specificity where it is not needed, we will use
the term GPR.

2.3.1 GPR

The essentials of GPR are quite similar to conventional re-
gression methods. We wish to construct a model y(x) for the
response y to some input x. However, instead of consider-
ing, for example, a multi-linear or polynomial model plus a
simple noise term, one instead considers a more general ex-
pansion of the input in some basis B (which could be con-
stant, linear, polynomial or otherwise) plus a realization of a
zero-mean Gaussian process (GP):

y = γB(x)+GP(x), (17)

where γ is a set of basis coefficients. The Gaussian process is
determined by its covariance function, which is the product
of the noise parameter σ and a kernel function. The kernel
function gives the covariance function its main structure by
determining the correlation between points (x,x′). Usually,
these kernel functions are exponentially decaying with the
Euclidean distance between the points. In addition to σ , the
covariance function is parameterized by one or more hyper-
parameters. All in all, GPR consists of fitting γ , σ and all
the kernel parameters based on a set of training data {yi,xi},
where in general each input xi can be multi-dimensional.
These parameters are fit using maximum likelihood estima-
tion, though finding optimal parameters often requires the
use of global optimization methods in order to fully con-
sider the range of possible parameter values. The fitted co-
variance function of the GPR model, in particular the value
of σ , provides a natural estimate of the inherent uncertainty
(or expected error) of the surrogate model, which can then
be used to establish confidence/prediction intervals for pre-
dicted model responses to new inputs. An illustration of GPR
is given in Fig. 2.

2.3.2 Design of experiment

As noted previously, GPR can require a large number of sam-
ples to attain its desired fidelity. For this reason, it is common
to apply specialized sampling techniques, together usually
referred to as the design of experiment (DOE), that sample
the input space more efficiently and thereby require less sam-
ples than, e.g., uniform random sampling. Depending on the
desired outcome, one could, for instance, opt for importance
sampling (most useful in this case if it is known that only a
certain region of the input space is of interest, e.g., for a reli-
ability analysis where one mainly wishes to use the surrogate
model around the failure surface) or a space-filling approach
like Latin hypercube sampling or quasi-Monte Carlo sam-
pling (these are most useful when as wide coverage of the in-
put space as possible is needed, e.g., for optimization where
the region of interest is likely to shift dynamically). A com-
parison between Latin hypercube sampling and quasi-Monte
Carlo sampling was performed in Kucherenko et al. (2015),
where it was found that Latin hypercube sampling can give
better or more efficient results for certain types of problems
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Figure 2. GPR demonstrated on two related test functions: one with
no noise (a) and one with noise (b). In the former case, 10 sample
points are enough for a very good estimate (the real function, y,
being within 1 standard deviation of the estimate, ŷ, throughout).
Note also how the uncertainty decreases around the sample points in
this case due to the lack of noise. In the second case, more samples
are needed for a good estimate. The noisy function does at one point
exceed even 2 standard deviations away from the estimate, but the
underlying (non-noisy) function is well estimated. Note also how
the uncertainty level, while more or less constant, is not higher than
it was away from the sample points of the non-noisy case.

but that quasi-Monte Carlo sampling was otherwise equal or
superior and generally more robust when the problem could
not be classified a priori. Latin hypercube sampling has been
more common for wind energy applications, but a quasi-
Monte Carlo sampling method based on the Sobol sequence
was used in Müller and Cheng (2018).

2.4 Proposed RBDO framework

In the following, we will explain the details of our proposed
framework for RBDO of OWT support structures. However,
we begin with a few remarks that serve to motivate this ap-
proach.

2.4.1 Motivation

Considering the state of the art for reliability analysis and
RBDO for OWTs more generally, we can make a few sum-
mary observations based on the previous discussion. Firstly,
the vast majority of studies make use of either simplified an-
alytical limit state functions (allowing more easily the use
of FORM and making the probabilistic constraints easier
to combine with design optimization) or surrogate models
that completely replace simulation output (usually combined
with sampling-based reliability analysis). Secondly, when
not based on heuristic optimization methods (as has been
the case for all RBDO studies concerning the design of sup-
port structures specifically), gradient-based design optimiza-
tion as part of RBDO has not utilized analytical sensitivities.
Thirdly, little to no use of PMA for reliability analysis or
more advanced RBDO methods like SORA or SLA has been
made, despite their notable advantages.

What can be concluded from this? Simply put, consider-
able progress could be made by making the state of the art
for OWT RBDO, and for support structure design in par-
ticular, more in line with the general state of the art. How-
ever, this should be done in a way that maintains some of
the OWT-specific developments made in previous optimiza-
tion studies. Furthermore, by combining elements from all
these sources, it could be possible to obtain a synthesized
methodology that retains many of the individual advantages.
However, this requires a new approach because of the ways
in which the previous methods seem incompatible. It is, e.g.,
seemingly not possible to use analytical sensitivities if the
simulation output is replaced by surrogate models.

2.4.2 Key simplification

Suppose that all relevant limit state functions gj can be writ-
ten in the form gj =Q−R, which is generally the case for
support structure design, with Q and R being the load effect
and resistance as before. Furthermore, for simplicity (and
since this is usually the case), assume that while both Q and
R are functions of the design x and the stochastic variables
θ , only Q is determined by simulations. We then make the
following simplification:

Q(x,θ )= Y (θ )Q̃(x), (18)

where Y is some arbitrary unknown function with the prop-
erty that Y (θ )= 1, with θ as the mean values of θ , and
Q̃(x)=Q(x,θ ) is the mean response at the specific design
x. A simple example of how such a factorization makes
sense locally is shown in Fig. 3. What are the implica-
tions of this assumption? Firstly, note that this assumption
is consistent with the common simplified limit state func-
tions where the stochastic response is modeled as the prod-
uct of the stochastic variables θ and the design-dependent
mean response. However, in our case, we make no assump-
tion about the functional representation of this factorization.
Hence, this should allow for a higher-fidelity representation
of how stochastic variables input to the system are propa-
gated through the response estimation. Secondly, while this is
indeed a simplification which cannot in general be assumed
valid, previous studies detailing how the fatigue damage dis-
tribution of OWT support structures changes when the design
is modified (Stieng and Muskulus, 2018, 2019) indicate that
this kind of proportional scaling is a reasonable assumption
as long as the design does not change too much. Further-
more, it is not unreasonable to make a similar assumption for
extreme loads. Thirdly, this factorization makes it possible
to fit a surrogate model of the response to variations in the
stochastic variables only, while the design-dependent part of
the response remains as in a deterministic setting. On the one
hand, this means that we can fix the design and fit our surro-
gate model as

Y (θ s)=
Q(x,θ s)

Q̃(x)
, (19)
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Figure 3. An example of factoring out the dependence of one vari-
able from a non-separable expression by using GPR to fit this un-
known factor. The figure shows the relative error when approximat-
ing (x+ y)2 as f (y)(x+ 1)2, around x = 1, with f (1)= 1 and oth-
erwise unknown. Note the accuracy of this representation around
(1,1) and in general the moderate error level as we move away from
this region.

where for each sampled point θ s we estimate the total re-
sponse Q and then factor out the design-dependent mean re-
sponse. This greatly reduces the dimensionality of the surro-
gate modeling problem, since we do not have to also sam-
ple different values of x. Since the fit is design independent
given the underlying simplifications, we may then say that
we obtain a quasi-global (in design space) surrogate model
that can be used throughout a design optimization procedure,
greatly reducing the computational effort of any reliability
calculation. On the other hand, the separation of stochastic
and deterministic response means that for the estimation of
design sensitivities we have the property that

∂Q(x,θ )
∂x

= Y (θ )
∂Q̃(x)
∂x

. (20)

Hence, the use of analytical design sensitivities becomes
possible. Finally, note that while the simplification is ex-
pected to lose accuracy as the design moves further and fur-
ther away from the initial configuration where the surrogate
model was fit, the mean response remains exact. This is not
the case when a surrogate model fit replaces the simulated re-
sponse entirely. Hence, for use in RBDO, the factorization in
Eq. (18) is going to behave at worst like a deterministic op-
timization that includes some simplified reliability estimate
(based on Y ) that modifies both the constraint value and the
constraint gradients, in a way not too different from SORA
and SLA.

2.4.3 Formal statement

Our overall proposed framework is based on the previously
stated PMA-based RBDO problem in Eq. (15), restated here
for convenience:

min
x
fmass(x) such that

Alinx ≤ b

x ≤ xu

x ≥ xl

cj (x)≤ 0 ∀j ∈ Jdet

gj (x,v∗)≤ 0 ∀j ∈ Jprob.

gj is now defined as

gj (x,θ )= yj (θq )qj (x)− rj (x,θr ), (21)

with yj as a surrogate model defined and fit according
to Eqs. (18) and (19), and θq and θr are the stochastic
parameters in θ for the load effect and the resistance,
respectively. Note that we can obtain θi =H−1

θi
(8(vi)), so

that even though the solution of the reliability subproblem
resulting in v∗ is performed in standard normal space, it is
never necessary to obtain yj as a function of v. To ensure
that the RBDO problem is solved with sufficient accuracy,
specifically that the final design is actually feasible with
respect to the probabilistic constraints, the procedure can
be repeated several times, fitting a new surrogate model at
the solution of the previous RBDO loop and starting a new
RBDO loop from this design point. The overall method is
compactly stated as Algorithm 1 and illustrated in Fig. 4.

3 Testing and implementation details

The design optimization performed in this study will in
all cases be based on output from time-domain simulations
of finite element models. These have been implemented in
an in-house, MATLAB finite element code as assembled
Timoschenko beam elements with 6 degrees of freedom at
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Figure 4. Flowchart representation of Algorithm 1.

Figure 5. Beam element with design variables (Di , ti ), length Li ,
nodal coordinates u and coordinate systems indicated (a) and the
offshore wind turbine system and environment (b).

each end of each element. The analysis is based on New-
mark integration and uses a consistent mass matrix and a
Rayleigh damping matrix with mass and stiffness proportion-
ality scaled according to the first two eigenmodes. A typical
finite element, including variables, is shown in Fig. 5a and a
more general representation of the OWT system is shown in
Fig. 5b.

3.1 Models and loads

To test the proposed methodology, two main cases will be
used. The first of these cases is a simplified model based on
a uniform section of a monopile support structure, initially
uniform in its cross-sectional dimensions and with uniform
lengths for each element. This is meant to demonstrate the
basic idea of the method without having to consider realistic
designs. This model will be referred to below as the “Simple
Beam”. The second case is a simplified but reasonably real-
istic representation of the OC3 Monopile (Jonkman and Mu-
sial, 2010) with the cross-sectional dimensions of each seg-
ment initially corresponding to the OC3 design, i.e., with a
uniform monopile segment and a linearly tapered tower seg-
ment. The element lengths are consistent within each major
segment but differ between the tower and monopile. Further-
more, this model also includes a point mass on the top of the
tower, with mass and inertia properties meant to represent
the National Renewable Energy Laboratory (NREL) 5 MW
turbine (Jonkman et al., 2009). This model will be referred
to as the “OC3 Monopile”. Some of the basic properties of
these two models are listed in Table 1, and the material prop-
erties are consistent with the ones in Jonkman and Musial
(2010). The models are fixed (clamped) at one end (at a loca-
tion that corresponds to the mudline for the OC3 Monopile);
i.e., there is no modeling of soil included. This will affect
the global stiffness and change the dynamics of the structural
models somewhat but is not expected to have a large effect
on how these models function in terms of testing the RBDO
method. Both models are loaded at the top with force and mo-
ment time series extracted from fixed rotor simulations of the
NREL 5 MW turbine subject to turbulent wind fields within
the aeroelastic Fedem Windpower software (Fedem Technol-
ogy, 2016). Note that the externally input rotor loads are only
calculated once and are taken as design independent, though
the response to these loads is calculated for every design.
These forces and moments are input into the dynamic simu-
lation as loads on each of the 6 degrees of freedom on the top
node of the tower. Wave loads are represented by a horizon-
tal force time series, applied at a location corresponding to
the bottom of the tower in the OC3 Monopile and at an ana-
log location for the Simple Beam. In the dynamic simulation,
this is input as a load on the degree of freedom correspond-
ing to displacement in the mean wind direction, but no other
degrees of freedom are loaded by this force. This force has
been tuned to give an equivalent moment at the lower end of
the structures as the integrated contribution of all horizontal
wave forces along the height of the water column at each in-
stant in time. These forces are calculated from the Morison
equation, based on wave kinematics sampled from the Joint
North Sea Wave Project (JONSWAP) spectrum and includ-
ing Wheeler stretching. The inertia and drag coefficients are
2.0 and 0.8, respectively. Since the wave loads depend on
the diameter of the relevant members, these loads are recal-
culated for every design before being input to the dynamic
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simulation. The duration of the applied loads is 600 s after
the removal of initial transients. Up to four different load-
ing scenarios are included in the analysis, with environmen-
tal data based on the Ijmuiden Shallow Water Site (Fischer
et al., 2010) and using different random seeds for each re-
alization of wind and wave conditions. The probabilities of
occurrence for fatigue estimation have been renormalized so
that they sum to 1 for the reduced set of cases. These loading
scenarios are summarized in Table 2.

3.2 Constraints

As indicated in Eq. (15), the optimization is constrained with
upper and lower bounds on the design variables. This is done
from a theoretical point of view in order for the final designs
to be somewhat realistic with respect to practical constraints
related to manufacturing, transportation and installation that
are not specifically accounted for in the modeling. From a
more practical point of view, some decreased numerical per-
formance was observed, during initial testing, once the de-
sign variables went outside a certain range, especially for cer-
tain combinations of values for some variables. For this rea-
son, the upper and lower bounds were set stricter than normal
practice would dictate. In particular, the lower bounds are for
both models set at 70 % of the smallest initial diameter and
thickness, respectively; the upper bounds are set at 150 % of
the largest diameter and thickness, respectively. We refer to
Table 1 for the smallest and largest values for each model.
While these bounds do not directly correspond to any spe-
cific real limits, the restriction is not expected to rule out any
design of practical interest. As for linear constraints, we will
in some cases include an upper limit on theD−t ratio of 120,
consistent with the NORSOK standard (Standards Norway,
2013). In terms of non-linear constraints, we consider limits
on the accumulated 20-year fatigue damage and on the max-
imum bending moment, to be detailed below. Fatigue calcu-
lations are done as follows. From the displacements obtained
as the solutions to Eq. (3), the internal forces and moments
Sin are obtained by multiplication with the element stiffness
matrices Ke as

Sin =Keue. (22)

From the components of Sin corresponding to the axial force
Sax, in-plane and out-of-plane moments Sip and Sop, the nor-
mal stress σn is then identified as

σn =
Sax

Ac
+
D

2Ic
(Sip− Sop), (23)

whereAc = π ((D2 )2
−(D2 −t)

2) is the cross-sectional area and
Ic =

π
4 ((D2 )4

−(D2 − t)
4) is the second moment of area. Rain-

flow counting (Rychlik, 1987) is then applied to the normal
stress time series, resulting in a set of amplitudes 1σi that
correspond to the differences between stresses at particular

times (a stress cycle), encoded in the vectors tpeak and tvalley,
i.e.,

1σi = σn(tpeak(i))− σn(tvalley(i)). (24)

Unlike what is otherwise common practice, these amplitudes
are not binned. This is in order to facilitate the sensitivity
analysis. The incurred fatigue damage F is then estimated by
use of the Palmgren–Miner linear summation rule, where the
contribution from each stress cycle is given by application
of the appropriate SN curves and thickness correction (Det
Norske Veritas, 2016):

F =
∑
i

ni

ai
1σ
−wi
i

(
t

tref

)−kwi
, (25)

where ni is either 0.5 or 1.0 depending on whether the given
cycle is a half or full cycle, ai is a constant, wi is the Wöh-
ler exponent, tref is the reference thickness below which no
correction is necessary, and k is the thickness correction ex-
ponent. The constants ai , wi , tref and k are set using the SN
curves for welds in tubular joints (in air and in water with
corrosion protection, respectively, depending on the element)
found in Det Norske Veritas (2016). The total lifetime fatigue
damage, Ftot, from all considered environmental states, E, is
then

Ftot = Tlf
∑
E

F (E)Pocc(E), (26)

where Tlf is a factor scaling up from simulation time to a
20-year lifetime, F (E) evaluates Eq. (25) for each state, E
and Pocc are the corresponding probabilities of occurrence
for these states. The limit state function for fatigue, measur-
ing the extent to which the lifetime fatigue damage exceeds
the fatigue resistance 1F (usually set to 1), used as a con-
straint in the deterministic optimization problem, is hence

Ftot−1F ≤ 0. (27)

For the maximum bending moment, the calculation is based
on Sip as obtained from Eq. (22). However, since the use
of global maxima can cause problems with smoothness (the
global maximum may not always change smoothly) and
since checking the bending moment at every time step would
be very time consuming, a compromise is made. In partic-
ular, the Kreisselmeier–Steinhauser function (Kreisselmeier
and Steinhauser, 1979) is used to smoothly aggregate the
bending moment time series into an upper envelope of the
maximum:

MKS = Sip,max+
1
r

log

{∑
i

exp
(
(Sip(ti)− Sip,max)r

)}
, (28)

where the subscript max denotes the global maximum, and r
is a constant controlling the accuracy of the approximation.

Wind Energ. Sci., 5, 171–198, 2020 www.wind-energ-sci.net/5/171/2020/



L. E. S. Stieng and M. Muskulus: Reliability-based design optimization of offshore wind turbine support structures 183

Table 1. Properties of the two models used in the study.

Property Simple Beam OC3 Monopile

Number of elements 6 14
Number of monopile elements 6 3
Number of tower elements 0 11
Lengths of monopile elements (m) 10 10
Lengths of tower elements (m) n/a 7.05
Initial diameter of monopile elements (m) 6.0 6.0
Initial thickness of monopile elements (m) 0.06 0.06
Initial diameter of tower bottom (m) n/a 6.0
Initial diameter of tower top (m) n/a 3.87
Initial thickness of tower bottom (m) n/a 0.027
Initial thickness of tower top (m) n/a 0.019

n/a – not applicable.

Table 2. Properties of the loading scenarios. International Electrotechnical Commission (IEC) design load cases (DLCs) refer to International
Electrotechnical Commission (2009).

Property Scenario 1 Scenario 2 Scenario 3 Scenario 4

Type of analysis Fatigue Fatigue Fatigue Extreme load
IEC DLC 1.2 1.2 1.2 1.3
Mean wind speed (m s−1) 4 12 18 18
Turbulence intensity (%) 20.4 14.6 13.6 20
Significant wave height (m) 0.97 1.57 2.56 2.56
Peak period (s) 5.65 5.79 7.0 7.0
Spectral peakedness 3.3 3.3 3.3 3.3
Surface current speed (m s−1) 0.0 0.0 0.0 0.6
Probability of occurrence 0.47 0.41 0.12 n/a

The above expression approaches Sip,max from above as r ap-
proaches infinity. For computations, r is typically taken to be
50–200 (set to 200 here) depending on desired accuracy (see
Couceiro et al., 2019 for a discussion of this for OWT ap-
plications). Note that, algebraically speaking, Sip,max cancels
out1. Taking Eq. (28) as an estimate of the maximum bend-
ing moment, we then compare this with the NORSOK design
criterion for tubular members subject to bending (Standards
Norway, 2013). The calculation for the bending resistance
uses the one for aD− t ratio of 120 (for realisticD− t ratios
exceeding this value, the changes are negligible). The result-
ing limit state is

MKS−
Z

γM

(
0.94fy − 0.76

120
E
f 2
y

)
≤ 0, (29)

where Z = 1
6 (D3

− (D−2t)3) is the plastic section modulus,
γM is the material factor and fy is the yield strength of the
material. The material factor is fixed at 1.45.

1The nominal expression for the Kreisselmeier–Steinhauser
function does not actually include the global maximum as it does
here, but for improved numerical performance it has been added
(first term) and subtracted (exponential term) as suggested in the
original study (Kreisselmeier and Steinhauser, 1979).

In principle, many other types of constraints should be in-
cluded in order to ensure that the structure adheres to safety
standards (e.g., buckling) and having constraints on eigen-
frequency (to avoid dynamic amplification) is also common.
However, in order to focus our attention on how the basic
support structure optimization problem is affected by the
presence of probabilistic constraints, and see the effect of
each probabilistic constraint more clearly, these other safety
checks have been left out.

3.3 Sensitivity

The estimation of gradients for the objective function as
given in Eq. (2) and the linear constraints is trivial. For the
non-linear constraints, it is mainly a question of repeated ap-
plication of the chain rule as well as the rule of total deriva-
tives for multivariate functions. See, e.g., Chew et al. (2016)
for details of how this can be done (the only modification in
our case being the additional level added by Eq. 28, which
is easily differentiated). However, note that, due to how the
displacement sensitivity is calculated in Eq. (4), regardless
of location in the structure, there is always a dependence on
each design variable for every non-linear constraint. Hence,
none of these derivatives are zero in general.
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3.4 Probabilistic aspects and uncertainty modeling

For the RBDO formulation based on PMA, the limit state
functions represented by Eqs. (27) and (29) can be directly
used, with the understanding that Ftot, 1f, MKS and fy be-
come probabilistic quantities. Using the notation in Eq. (21),
we have

gfls = yfls(θq )F̃tot(x)−1F (30)

guls = yuls(θq )M̃KS(x)

−
Z(x)
γM

(
0.94fy − 0.76

120
E
f 2
y

)
, (31)

where, for simplicity, we define 1F := θ1F and fy := θfy .
The sensitivities then follow from Eqs. (14), (20) and the
above discussion. In this study, a target reliability index of
βmax

= 3.3, corresponding to Pf = 4.8× 10−4(≈ 5× 10−4),
will be used for the solution of the PMA subproblem in
Eq. (13) as part of Algorithm 1. The uncertainties that are
included in the response are global stiffness, global damping
and turbulence intensity. The uncertainty modeling will be
detailed below.

3.4.1 Global stiffness

The uncertainty in stiffness is assumed to come from uncer-
tainty in soil stiffness. Though no soil modeling is included
in the present analysis, this mainly introduces a shift of the
mean stiffness, and hence one may still consider the impact
of a stochastic uncertainty in the soil stiffness. The effect
of soil pile stiffness on the fundamental eigenfrequency of
a monopile was discussed in Kallehave et al. (2015). The
expected range of the fundamental frequency was found to
be [0.937,1.045] as a ratio of its mean value. If we sym-
metrize this as [0.94,1.06] and use the fact that global stiff-
ness of a monopile is proportional to the square of the fun-
damental eigenfrequency, we can then obtain the expected
range of global stiffness as [0.88,1.12] as a ratio of its mean
value. Taking this to be a 98 % confidence interval and, for
lack of other information, assuming that the uncertainty in
global stiffness follows a normal distribution, we obtain that
θstiff ∼N (1,0.052), i.e., a coefficient of variation (CoV) of
0.052. As an independent confirmation, this is close to, if a
bit higher, than what would be obtained from Andersen et al.
(2012) and Damgaard et al. (2015) (each giving a coefficient
of variation of about 0.04).

3.4.2 Global damping

For the uncertainty in global damping, the two main con-
tributions are assumed to come from aerodynamic damp-
ing and soil damping. Expected ranges of the damping co-
efficients corresponding to these two sources can be ob-
tained from Chen and Duffour (2018) as [4.0,8.0] for
aerodynamic damping (in the fore–aft direction for opera-
tional conditions) and [0.17,1.30] for soil damping, both

Figure 6. Normal distribution vs. log-normal distribution shar-
ing mean and standard deviation: mean 1.0 and standard deviation
0.05 (a); mean 1.0 and standard deviation 0.12 (b).

given as percentages of critical damping. Assuming, as
above, that these ranges correspond to 98 % confidence
intervals and that the uncertainty can be modeled (for
lack of better knowledge) as following a normal distribu-
tion, then we obtain θdamp,aero ∼N (6,0.86) and θdamp,soil ∼

N (0.735,0.243). Summing these contributions and adding
also a constant (deterministic) structural damping of 1.0, the
final result is θdamp ∼N (7.735,0.89), a CoV of 0.115. The
soil uncertainty obtained here is about the same as would
be derived from Damgaard et al. (2015). The aerodynamic
damping is harder to verify with additional sources, and in
principle the level of uncertainty is expected to be wind speed
dependent. For lack of more detailed knowledge, the present
values are used in this study.

As a small comment, we have so far assumed both stiff-
ness and damping to follow normal distributions. It has been
common practice in previous studies to model uncertainties
related to soil and aerodynamic damping as log-normally dis-
tributed (sometimes other skewed distributions). However, at
a CoV of 0.05, there is almost no difference between the cor-
responding normal and log-normal distributions. Even with
a CoV of 0.12, the differences are fairly small. See Fig. 6 for
details. Hence, the impact of this simplification is minor.

3.4.3 Turbulence intensity

The turbulence intensity is modeled as log-normally dis-
tributed with a wind speed-dependent mean and a CoV of
0.05, i.e., θturb ∼ LN(m,0.05), with m derived from Table 2.
This is consistent with, e.g., Sørensen and Tarp-Johansen
(2005), Veldkamp (2008) and Toft and Sørensen (2011).
The particular value is based on the expected uncertainty in
turbulence intensity as derived from the uncertainty of cup
anemometer measurements. If including also the uncertainty
from wake modeling in a wind farm, which is not done here,
the CoV will be higher (Toft et al., 2016b).

3.4.4 Fatigue resistance and yield strength

The fatigue resistance is modeled as log-normally distributed
with a mean of 1.0 and a CoV of 0.3, consistent with, e.g.,
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Table 3. Uncertainty modeling details. Quantities marked with ∗

are expressed relative to the respective deterministic values.

Parameter Symbol Distribution Mean CoV

Global stiffness θstiff Normal 1.0∗ 0.052
Global damping ratio θdamp Normal 7.735 0.115
Turbulence intensity θturb Log-normal 1.0∗ 0.05
Fatigue resistance 1F Log-normal 1.0 0.30
Yield strength fy Log-normal 288 MPa 0.15

Márquez-Domínguez and Sørensen (2012) and Toft et al.
(2016b), i.e., 1F ∼ LN(−0.431,0.294).

The yield strength is modeled as log-normally distributed
with a mean of 288 MPa and a CoV of 0.1, consistent with,
e.g., Melchers (1999). To account for some of the effects of
the simplifications used to arrive at Eq. (29), the CoV is in-
creased to 0.15. Hence, fy ∼ LN(5.652,0.149).

The uncertainty modeling is summarized in Table 3.

3.5 Implementation details

So far, some of the details of the proposed methodology have
been left unspecified in order to suggest an overall frame-
work for RBDO rather than a very specific set of methods.
The literature contains a large amount of choice in regards
to optimization algorithms (both at the design optimization
level and in the inner optimization loop solving the reliabil-
ity problem), surrogate modeling and DOE. While these de-
tails have to be fixed in order to demonstrate the method in
practice, the optimal selection of algorithms is not consid-
ered within the scope of the present study. Such optimality
will in any case be both application specific and depend on
the personal preferences of the designer.

With regards to both levels of the optimization, we use
a combination of SQP and interior-point methods (Nocedal
and Wright, 2006), both of which are common examples
of gradient-based non-linear constrained optimization algo-
rithms. In principle, the PMA-based reliability problem can
be solved more efficiently by use of the hybrid mean-value
method (Youn et al., 2003) or related approaches, but due to
the use of the surrogate model, this is not deemed necessary
for the current application. Convergence of the optimization
is based on fairly standard criteria, with termination of the al-
gorithms when either relative first-order optimality (see, e.g.,
Nocedal and Wright, 2006) is achieved with a tolerance of
10−6 or the relative changes in the design variables are less
than 10−6. Solutions are required to be feasible with a toler-
ance of 10−6.

For the surrogate modeling, we have chosen GPR due to
the benefits stated previously. After some initial trial and er-
ror, the Matérn class kernel with ν = 3/2 was chosen, includ-
ing the use of individual length scale hyperparameters for
each input variable (this implements what is known as auto-
matic relevance determination, in principle de-emphasizing

less relevant input variables in the regression problem; see,
e.g., Rasmussen and Williams, 2006). Overall, this was found
to be the most robust for the regression problem in this
study, especially when considering repeated regression for
additional iterations of the outer loop in Algorithm 1. The
Matérn class of kernels was also used for OWT support struc-
tures in Häfele et al. (2019). We also note here that in or-
der to simplify the simultaneous regression with respect to
all of the three parameters in θq , these parameters were in-
put to the fitting problem in such a way that the surrogate
model became co-monotonic in every variable (an increase
in one or more variables giving always an increase in the
output). In this case, that meant inputting the inverse (1/θi)
of the parameters controlling damping and stiffness. Further-
more, these parameters were implemented as scaling vari-
ables with means of 1.0, such that the actual variables as in-
put to the simulations were a product of the deterministic
values and the respective stochastic scaling parameters in θq .
The hyperparameters of the Gaussian process model were fit
using Bayesian global optimization methods (expected im-
provement) (Mockus, 1975; Jones et al., 1998; Brochu et al.,
2010). The noise standard deviation was taken to be non-zero
and also fit during this procedure, even though the simulation
outputs used in the fitting are in a certain sense noise-free.
This was done because it was seen to give more robust sur-
rogates with respect to changes in the design.

The DOE was done using Sobol sequences, a quasi-Monte
Carlo method. This has the advantage of being more space-
filling, covering a larger range of the space while still having
some clustering to account for local variations, compared to
many ordinary Monte Carlo methods. While not made use of
here, Sobol sequences also have the advantage compared to
the commonly used Latin hypercube sampling method that
it is much easier to interactively add new samples to the old
set. To this last point, the use of an adaptive DOE was not
used here, despite this increasingly becoming the common
approach for GPR. The main reason why was a practical one,
having to do with the way the loading input was sampled,
which made interactively adding samples during a fitting pro-
cedure difficult for our implementation. A total number of
500 samples were pre-generated, with the number of sam-
ples actually used increasing for each iteration of the outer
loop in the following way. For the initial surrogate model,
50 samples were used. The new model at the solution of the
first RBDO procedure was then trained with 100 samples and
compared with the old model using 25 additional samples,
for a total of 125 samples used. All subsequent iterations use
the full set of 500 samples, with 400 used for training and
100 for comparing the current model with the previous one.
In a sense, the DOE is thus somewhat dynamic, even if it is
not adaptive.

Finally, the outer loop needs termination criteria, as in-
dicated in Algorithm 1. One such criterion was chosen to
be simply the convergence of the objective function value.
Once this value changes less than a certain small tolerance,

www.wind-energ-sci.net/5/171/2020/ Wind Energ. Sci., 5, 171–198, 2020



186 L. E. S. Stieng and M. Muskulus: Reliability-based design optimization of offshore wind turbine support structures

the outer loop was halted. However, it is possible to terminate
slightly earlier if the surrogate model is seen to converge,
since in that case the objective function will not change sig-
nificantly or at all during the next iteration. As implied above,
the new surrogate models trained at the solution of the cur-
rent RBDO loop were thus compared with the models used
during that loop. Due to the use of noisy regression models,
the surrogate models will in practice never converge entirely
(or will at least do so very slowly) as long as there are small
changes in the design (and small changes in the surrogate
model give further small changes in the design, etc.). Hence,
a more relaxed convergence criterion was developed for the
surrogate models. Specifically, if we denote by ynew and yold,
the mean prediction of the new and old surrogate models, re-
spectively, and by σy,old, the predicted standard deviation of
the old model, then if

|ynew− yold| ≤ σy,old, (32)

for every test sample point, the surrogate model is not up-
dated. If no surrogate models are updated after an outer it-
eration, the procedure terminates. In order for this relaxed
tolerance not to give infeasible results with respect to the
new surrogate model (which is not used when it is within the
above tolerance), the surrogate predictions for y(θq ), used to
compute the numerical values for the limit state functions
in Eqs. (30) and (31), are based on the mean plus the stan-
dard deviation, y+ σy , rather than just the mean. This guar-
antees that when yold is used instead of the updated model,
the derived results remain strictly feasible with respect to
mean of the more accurate prediction (which would other-
wise have been used). Since the standard deviations tend to
be ∼ [10−3,10−2

], this does not have a large impact on the
results.

4 Results

To illustrate both the basic workings of the RBDO method
and the effect of certain modeling choices and constraints,
a number of different cases are studied. For easy reference,
these have been given names and will be referred to as
such from now on. The names and properties of each of
these cases are listed in Table 4. Note that for cases marked
with “connected”, only one set of values for diameters and
thicknesses is used throughout the structure, meaning there
are only two design variables. In all other cases, there is
one diameter and thickness per element (giving 12 design
variables for the Simple Beam model and 28 for the OC3
Monopile). There is also one set of non-linear constraints (fa-
tigue, extreme load or both) per element. To make compar-
isons between deterministic and probabilistic optimization
more clear, the deterministic non-linear constraint limits have
been tuned to match more closely their probabilistic counter-
parts. In particular, the deterministic versions of the resis-
tance variables 1F and fy have been set to H−1

θ (8(−3.3))

for θ = θ1F and θ = θfy , respectively. This can be consid-
ered a form of simplified safety factor scaling.

4.1 Simple Beam

The objective function for case BEAM-PA-CON is shown in
Fig. 7a. Note how there are only very minor changes after the
first loop. The small modifications to the design variables in
the second and third loops are caused by the updates in the
probabilistic constraints, seen in Fig. 7b. The final design is
characterized by an overall minimization of thickness while
the diameter is increased, as seen in Fig. 7c. Comparing with
the corresponding deterministic case BEAM-DA-CON, the
main difference is a slightly more conservative design, as
would be expected. The corresponding plots are not shown,
as they are almost identical, but results for both cases are
summarized in Table 5. Note that the amount of outer itera-
tions for loop 1 of BEAM-PA-CON is about the same as the
total number of iterations for BEAM-DA-CON.

The results for BEAM-PA and BEAM-DA are shown in
Figs. 8 and 9, respectively. Compared to the cases with con-
nected design variables, there is an (expected) increase in the
number of iterations required to solve the problem, and the
resulting designs are different in the way that the dimensions
are reduced for elements higher in the structure. This is a nat-
ural consequence of the fact that the loads are higher towards
the bottom and the constraints there will be stricter in terms
of allowable cross-sectional dimensions. Otherwise, the re-
sults are similar. The non-linear constraints are somewhat
closer to being active at the solution of the RBDO problem
compared to the deterministic case, which was true previ-
ously but is more apparent for these cases. Detailed summary
results are for these cases displayed in Table 6.

All in all, the results so far show that the method works
well for these simple systems. The convergence behavior is
more or less as for the deterministic case, with the addition of
a few short extra loops to achieve overall convergence with
respect to the updated GPR-based surrogate model. However,
the results obtained from the first outer loop are likely good
enough for practical purposes. The fatigue constraints dom-
inate over the extreme load constraints, which is not unex-
pected. Furthermore, the system seems driven by the thick-
ness(es) both with respect to the objective (structure mass)
and the (fatigue) constraint, and the solutions reflect this
(with minimal thicknesses and increased diameters where
necessary to compensate). This can mostly be understood as
a result of the fact that the contribution of the thickness to
the cross-sectional areas and second moments of area is of
higher order than that of the diameter.

4.2 OC3 Monopile

Beginning with the two basic cases for the OC3 Monopile,
OC3-PA and OC3-DA, displayed in Figs. 10 and 11, respec-
tively, we see that the behavior is fairly similar to the Sim-

Wind Energ. Sci., 5, 171–198, 2020 www.wind-energ-sci.net/5/171/2020/



L. E. S. Stieng and M. Muskulus: Reliability-based design optimization of offshore wind turbine support structures 187

Table 4. Testing cases for RBDO. Loading scenario numbers refer to the values in Table 2.

Case name Model Probabilistic Loading scenarios Number of design variables, Other
number of non-linear constraints

BEAM-PA Simple Beam Yes 1+ 2+ 3+ 4 12, 12 None
BEAM-PA-CON Simple Beam Yes 1+ 2+ 3+ 4 2, 12 Connected
BEAM-DA Simple Beam No 1+ 2+ 3+ 4 12, 12 None
BEAM-DA-CON Simple Beam No 1+ 2+ 3+ 4 2, 12 Connected
OC3-PA OC3 Monopile Yes 1+ 2+ 3+ 4 28, 28 None
OC3-DA OC3 Monopile No 1+ 2+ 3+ 4 28, 28 None
OC3-PF OC3 Monopile Yes 1+ 2+ 3 28, 14 None
OC3-PU OC3 Monopile Yes 4 28, 14 None
OC3-PA-DT OC3 Monopile Yes 1+ 2+ 3+ 4 28, 28 D− t ratio constraint
OC3-PA-NW OC3 Monopile Yes 1+ 2+ 3+ 4 28, 28 No wave loads
OC3-PA-RND OC3 Monopile Yes 1+ 2+ 3+ 4 28, 28 Randomized design

Figure 7. The optimization process for case BEAM-PA-CON: the objective function (a), maximum non-linear constraint violations (b) and
the change in the design from initial to final configuration (c). The design drawings also have the level of non-linear constraint violation
indicated by the coloring of the elements. The thicknesses have been exaggerated for legibility.

Table 5. Summary results of cases BEAM-PA-CON and BEAM-
DA-CON.

Variable BEAM-PA-CON BEAM-DA-CON

Diameter after loop 1 8.98 m n/a
Final diameter 9.00 m 8.44 m
Thickness after loop 1 0.0140 m n/a
Final thickness 0.0137 m 0.0133 m
Normalized mass after loop 1 0.351 n/a
Final normalized mass 0.346 0.315
Initial maximum Pf 2.0× 10−11 2.0× 10−11

Final maximum Pf 4.8× 10−4 1.8× 10−2

Iterations in loop 1 20 n/a
Total iterations 36 22

ple Beam cases without connected design variables. Despite
having more than twice the number of design variables, con-
vergence is achieved in about the same number of iterations.
The main new detail in the solution is that the second ele-
ment from the bottom does not follow the otherwise appar-
ent pattern of monotonically increasing diameters from top
to bottom. In fact, this element has a smaller diameter than
the element above, with a comparatively increased thickness
to compensate. This is expected to be due to the wave loads,
which are driven more by the diameter. The reason this does
not happen for the Simple Beam cases is most likely because
the smaller number of elements cannot resolve this effect.
Otherwise, there is in the probabilistic case a much larger
constraint violation at some intermediate points and the ob-
jective function initially increases above its starting value,
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Figure 8. The optimization process for case BEAM-PA: the objective function (a), maximum non-linear constraint violations (b) and the
change in the design from initial to final configuration (c). Details as in previous figure.

Figure 9. The optimization process for case BEAM-DA: the objective function (a), maximum non-linear constraint violations (b) and the
change in the design from initial to final configuration (c). Details as in previous figures.

but this does not seem to have much of an effect on the over-
all solution. More detailed results are shown in Table 7.

Next, the effect of including D− t ratio constraints for all
elements is shown in the results from case OC3-PA-DT in
Fig. 12. With this constraint in place, the low-thickness, high-
diameter solution obtained previously is no longer feasible
and the result is a solution which balances the reduction more
evenly among the thicknesses and diameters. The result is in
a sense more pleasing from a practical point of view, since
it is more in line with a design that would actually be man-

ufactured; both due to the lack of very large diameters and
because one avoids the wave-load-induced “hourglass shape”
seen in the previous two cases. The convergence is also faster
(73 vs. 140 iterations), though there is one additional (very
short) outer iteration required. On the other hand, the D− t
ratio constraint is a lot more strict overall and less than 10 %
reduction in mass is possible. In fact, the initial OC3 design
is not feasible with respect to this constraint, which is why
the objective function is increased by quite some amount at
the beginning of the first loop. Note also that, as opposed to
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Figure 10. The optimization process for case OC3-PA: the objective function (a), maximum non-linear constraint violations (b) and the
change in the design from initial to final configuration (c). Details as in previous figures.

Figure 11. The optimization process for case OC3-DA: the objective function (a), maximum non-linear constraint violations (b) and the
change in the design from initial to final configuration (c). Details as in previous figures.

other comparable cases, the final design is softer (at 0.24 Hz)
than the initial design (at 0.28 Hz).

Randomizing the initial OC3 design gives the results dis-
played for OC3-PA-RND in Fig. 13. This initial design is
both heavier and much less feasible (a probability of failure
of 1 essentially in several locations) than the initial OC3 de-
sign, which seems to make the convergence a bit slower in
this case but not by too much. The solution is not exactly the
same as for OC3-PA, but the difference is negligible (1 % or
less in the design variables and less than 0.005 % in the ob-
jective). This is within the expected variation caused by the
small inherent randomness in the surrogate modeling.

Finally, the effects of no wave loads (OC3-PA-NW), only
fatigue constraints (OC3-PF) and only extreme load con-
straints (OC3-PU) are shown in the results in Figs. 14, 15 and
16, respectively. As would be expected, the removal of the
wave loads leads to a slightly lighter design and one where
the element diameters consistently decrease from bottom to
top. The difference in convergence behavior is likely neg-
ligible and mostly due to the randomness in the surrogate
modeling. The resulting design has a slightly higher utiliza-
tion of extreme loads. Since the fatigue constraints generally
dominate over the extreme load constraints, the results for
OC3-PF are as expected, with negligible differences in the
final solution compared with OC3-PA and OC3-PA-RND.
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Figure 12. The optimization process for case OC3-PA-DT: the objective function (a), maximum non-linear constraint violations (b) and the
change in the design from initial to final configuration (c). Details as in previous figures.

Figure 13. The optimization process for case OC3-PA-RND: the objective function (a), maximum non-linear constraint violations (b) and
the change in the design from initial to final configuration (c). Details as in previous figures.

Conversely, using only extreme load constraints as in OC3-
PU results in a final design that has about 16 % less mass
than OC3-PA. This case also removes the visible effect of
the wave loads on the solution, most likely because (at least
for this loading scenario) the extreme loads caused by the
waves are much less significant than the corresponding fa-
tigue loads. Otherwise, the behavior is more or less as in the
other cases.

More detailed results for OC3-PA-DT, OC3-PA-RND,
OC3-PA-NW, OC3-PF and OC3-PU can be found in Table 8.

5 Further discussion

The results demonstrate quite clearly the capability of the
proposed methodology to obtain reliable optimal support
structure designs without making the optimization process
itself much more computationally complex than in the deter-
ministic case. In fact, the initial outer iteration of the RBDO
approach requires about the same number of iterations as the
corresponding deterministic optimization cases. The small
amount of changes to the design that occur in the additional
outer iterations indicate that, even with the simplifications
involved in the response factorization, the surrogate model
is a fairly accurate global approximation. Final convergence
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Figure 14. The optimization process for case OC3-PA-NW: the objective function (a), maximum non-linear constraint violations (b) and
the change in the design from initial to final configuration (c). Details as in previous figures.

Figure 15. The optimization process for case OC3-PF: the objective function (a), maximum non-linear constraint violations (b) and the
change in the design from initial to final configuration (c). Details as in previous figures.

of the outer loop is then mostly necessary for convergence
in a mathematical sense, and the added computational ef-
fort required is of lesser practical importance. Tightening the
non-linear constraints slightly would ensure that feasible so-
lutions were obtained after only one round of RBDO. The
50 samples used to train the surrogate model for the initial
RBDO loop represent a very small additional computational
effort compared to what is required for the optimization in
general. Since the minimum number of function evaluations
(and thus simulations) required for a single iteration is one
base evaluation plus one additional evaluation for every de-
sign variable, 50 simulations becomes rather negligible (for
the OC3 Monopile models, this number is surpassed after

only two iterations). Even when using all 500 samples, the
added computational effort is not particularly large when
compared with a full optimization procedure (it is equiva-
lent to at most 18 iterations of OC3 Monopile models or at
most 46 iterations of unconnected Simple Beam models). All
in all, this makes the proposed RBDO framework a realistic
option if gradient-based deterministic optimization is com-
putationally feasible for the desired application. We note that
the computation time on a single workstation (16 cores at
2.7 GHz; 128 GB RAM) for one full evaluation of the con-
straints (including all simulations required for four loading
scenarios and the computation of all design sensitivities) was
about 40 s for the non-connected Simple Beam designs and
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Figure 16. The optimization process for case OC3-PU: the objective function (a), maximum non-linear constraint violations (b) and the
change in the design from initial to final configuration (c). Details as in previous figures.

Table 6. Selected summary results of cases BEAM-PA and BEAM-
DA.

Variable BEAM-PA BEAM-DA

Bottom diameter after loop 1 9.00 m n/a
Final bottom diameter 9.00 m 9.00 m
Bottom thickness after loop 1 0.0158 m n/a
Final bottom thickness 0.0157 m 0.0144 m
Top diameter after loop 1 4.17 m n/a
Final top diameter 4.16 m 3.95 m
Top thickness after loop 1 0.0133 m n/a
Final top thickness 0.0133 m 0.0133 m
Normalized mass after loop 1 0.258 n/a
Final normalized mass 0.259 0.238
Initial maximum Pf 2.0× 10−11 2.0× 10−11

Final maximum Pf 4.8× 10−4 2.7× 10−2

Iterations in loop 1 78 n/a
Total iterations 128 86

about 100 s for the OC3 designs. The total solution time was
consequently on the order of hours: at most 10–12 h for all
outer iterations to complete but generally only a few hours
for the initial outer iteration.

5.1 Obtained designs

The results obtained from RBDO do not appear functionally
or systematically different than those obtained with deter-
ministic optimization, producing designs that are similar and
only slightly heavier. Note, for example, the large differences
in maximum probability of failure compared to the small dif-
ferences in total mass. The designs are driven by fatigue on
the load side and the element thicknesses on the structural

side, leading in general to designs with small thicknesses and
large diameters. The OC3 Monopile designs tend to be quite
a bit stiffer than the initial design, except when the loads or
constraints are relaxed enough to allow for very light designs
(as in the case of OC3-PA-NW and OC3-PU). The overall ex-
ception to these trends is the case with aD−t ratio constraint,
though the thickness is also driving in this case. However,
since the thickness cannot be arbitrarily smaller than the di-
ameters in this case, the result is an effective upper bound on
the thickness corresponding to the values where the overall
design (with much smaller diameters than the other cases) is
at the boundary imposed by the non-linear constraints. All in
all, this is beneficial for the design process, since reliability-
based constraints do not seem to change anything fundamen-
tal about the problem or introduce anything phenomenolog-
ically new from the design point of view. By and large, this
indicates that as long as the structural and load models can
be successfully adapted to the probabilistic setting, e.g., in
the manner done in this study, then most if not all of pre-
vious knowledge and experience from deterministic design
optimization is still valid and useful. On the other hand, this
should not be taken to mean that probabilistic constraints can
be easily replaced by more conservative deterministic ones.
There is no way to determine sensible limits for such con-
straints – sensible here in the sense of being sufficiently safe
while not being overly conservative – without performing
some kind of non-deterministic analysis. Such analyses, for
example, probabilistically tuned partial safety factors as basis
for deterministically constrained optimization, are not neces-
sarily more efficient than the present RBDO framework and
cannot account for any potentially design-dependent changes
that would be naturally accounted for with our methodology.
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Table 7. Selected summary results of cases OC3-PA and OC3-DA.
Design variable numbers run from 1 (bottom element) to 14 (top
element).

Variable OC3-PA OC3-DA

Diameter 1 after loop 1 9.00 m n/a
Final diameter 1 9.00 m 9.00 m
Thickness 1 after loop 1 0.0201 m n/a
Final thickness 1 0.0201 m 0.0179 m
Diameter 2 after loop 1 6.82 m n/a
Final diameter 2 6.84 m 6.74 m
Thickness 2 after loop 1 0.0294 m n/a
Final thickness 2 0.0295 m 0.0271 m
Diameter 3 after loop 1 9.00 m n/a
Final diameter 3 9.00 m 8.76 m
Thickness 3 after loop 1 0.0139 m n/a
Final thickness 3 0.0141 m 0.0133 m
Diameter 4 after loop 1 8.52 m n/a
Final diameter 4 8.50 m 8.1 m
Thickness 4 after loop 1 0.0133 m n/a
Final thickness 4 0.0133 m 0.0133 m
Diameter 14 after loop 1 4.33 m n/a
Final diameter 14 4.35 m 4.09 m
Thickness 14 after loop 1 0.0133 m n/a
Final thickness 14 0.0133 m 0.0133 m
Normalized mass after loop 1 0.588 n/a
Final normalized mass 0.586 0.545
Initial maximum Pf 7.8× 10−5 7.8× 10−5

Final maximum Pf 4.8× 10−4 1.9× 10−2

Initial first eigenfrequency 0.279 Hz 0.279 Hz
First eigenfrequency after loop 1 0.295 Hz n/a
Final first eigenfrequency 0.294 Hz 0.274 Hz
Iterations in loop 1 91 n/a
Total iterations 140 85

5.2 Simplifications

Some further simplifications have been made in the present
analysis compared with more realistic applications. The main
examples are the system model (with no soil model or de-
tailed hydrodynamic modeling), the load analysis (simplified
wave modeling, small number of environmental states con-
sidered) and the uncertainty modeling (potentially a much
larger set of uncertainties might have been considered and
a more detailed approach could have been used to obtain
the specific uncertainty models). None of these simplifica-
tions are negligible but are not expected to affect the viabil-
ity of the results dramatically either. The system and load
modeling are not necessarily so far away from approaches
commonly used for industrial applications, nor do they af-
fect the system response in a way that would cause large
deviations from the behavior seen in this study. The simpli-
fied (or lack of) soil structure interaction and hydrodynamic
properties mostly serve to increase the global stiffness, re-
duce global damping and change the self weight of the sys-
tem. These are systematic effects that may change the am-

plitudes of the response but are not expected to change the
relative response to specific scenarios and so change, e.g.,
the complexity required to fit the surrogate model with re-
spect to design changes. Similarly, the simplified load anal-
ysis is also not expected to affect the relative responses very
much, especially for the fatigue analysis, where recent stud-
ies have shown that the distribution of fatigue damage over
a comprehensive set of environmental states does not change
drastically when the design changes, particularly as long as
the eigenfrequency does not change too much (Stieng and
Muskulus, 2018, 2019). Finally, the uncertainty analysis is
mostly consistent with previous work in terms of the specific
modeling but uses a smaller number of uncertainties than has
typically been part of reliability studies. This can be seen
as somewhat limiting in regards to the above points about
the lack of added computational complexity, but it should be
noted that it is usually possible to reduce the number of un-
certainties down to a level closer to that of the present study
by careful preliminary studies of the sensitivity to each un-
certain parameter and subsequent elimination of all but the
most important parameters. The automatic relevance deter-
mination of the GPR approach used presently is also advan-
tageous for such a purpose.

6 Conclusions

In this work, we have presented a general methodology
for performing RBDO of OWT support structures. The
fundamental idea is that if the stochastic system response
can be factorized into a design-dependent, deterministic
(mean) response and a design-independent, probabilistic re-
sponse, then it becomes possible to implement state-of-the-
art RBDO, including state-of-the-art support structure design
optimization methods, without adding much computational
effort compared to deterministic optimization. The further
advantages of the approach are that no assumptions about
the functional representation of the probabilistic response are
necessary, and since all design dependence is found in the de-
terministic part of the response, high-fidelity surrogate mod-
els can be fit for the probabilistic response while simultane-
ously making use of analytical methods for the estimation of
design sensitivities. Together, this makes it possible to utilize
recently developed gradient-based methods without having
to make further adaptations of more general RBDO methods.

For the range of considered cases, the results show the fea-
sibility of the proposed methodology. Although the overall
approach includes an additional outer loop to ensure local
fidelity of the surrogate model at the solution, these addi-
tional iterations are only necessary to ensure convergence in
a stricter sense. For practical purposes, a single surrogate
model fit and a single RBDO procedure suffices. Further-
more, the number of iterations of the RBDO procedure (not
counting the solution of each reliability subproblem, which
is computationally negligible when using a surrogate model),
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Table 8. Selected summary results of cases OC3-PA-DT, OC3-PA-RND, OC3-PA-NW, OC3-PF and OC3-PU. Design variable numbers run
from 1 (bottom element) to 14 (top element).

Variable OC3-PA-DT OC3-PA-RND OC3-PA-NW OC3-PF OC3-PU

Diameter 1 after loop 1 5.90 m 9.00 m 9.00 m 9.00 m 9.00 m
Final diameter 1 5.92 m 9.00 m 9.00 m 9.00 m 9.00 m
Thickness 1 after loop 1 0.0491 m 0.0198 m 0.0164 m 0.0202 m 0.0163 m
Final thickness 1 0.0493 m 0.0202 m 0.0165 m 0.0202 m 0.0165 m
Diameter 2 after loop 1 5.58 m 6.81 m 9.00 m 6.82 m 9.00 m
Final diameter 2 5.61 m 6.85 m 9.00 m 6.85 m 9.00m
Thickness 2 after loop 1 0.0465 m 0.0145 m 0.0145 m 0.0294 m 0.0141 m
Final thickness 2 0.0467 m 0.0294 m 0.0147 m 0.0294 m 0.0143 m
Diameter 3 after loop 1 5.26 m 9.00 m 8.81 m 9.00 m 8.54 m
Final diameter 3 5.29 m 9.00 m 8.84 m 9.00 m 8.61 m
Thickness 3 after loop 1 0.0438 m 0.0142 m 0.0133 m 0.0139 m 0.0133 m
Final thickness 3 0.0441 m 0.0141 m 0.0133 m 0.0141 m 0.0133 m
Diameter 4 after loop 1 4.97 m 8.70 m 8.20 m 8.52 m 7.98 m
Final diameter 4 4.98 m 8.51 m 8.18 m 8.50 m 8.03 m
Thickness 4 after loop 1 0.0414 m 0.0133 m 0.0133 m 0.0133 m 0.0133 m
Final thickness 4 0.0415 m 0.0133 m 0.0133 m 0.0133 m 0.0133 m
Diameter 14 after loop 1 3.09 m 4.33 m 4.31 m 4.33 m 2.84 m
Final diameter 14 3.09 m 4.35 m 4.32 m 4.35 m 2.84 m
Thickness 14 after loop 1 0.0257 m 0.0133 m 0.0133 m 0.0133 m 0.0133 m
Final thickness 14 0.0258 m 0.0133 m 0.0133 m 0.0133 m 0.0133 m
Normalized mass after loop 1 0.922 0.589 0.519 0.588 0.490
Final normalized mass 0.922 0.586 0.519 0.586 0.493
Initial first eigenfrequency 0.279 Hz 0.217 Hz 0.279 Hz 0.279 Hz 0.279 Hz
First eigenfrequency after loop 1 0.236 Hz 0.296 Hz 0.283 Hz 0.295 Hz 0.266 Hz
Final first eigenfrequency 0.235 Hz 0.294 Hz 0.282 Hz 0.294 Hz 0.268 Hz
Iterations in loop 1 50 123 82 86 81
Total iterations 73 200 121 160 120

and hence the number of simulations required during opti-
mization, is very close to that of the equivalent determinis-
tic cases. The only additional computational effort is then
found in the training of the surrogate model. However, this
effort is comparable to that of a small number of additional
iterations of the design optimization, especially for a larger
number of design variables. Hence, the overall added com-
putational complexity is small and makes the RBDO prob-
lem comparable to the equivalent deterministic optimization
problem. The results also indicate that the RBDO framework
does not change anything significantly about the kind of op-
timal designs that are obtained, as compared with determin-
istic design optimization. The same properties (fatigue and
element thickness) seem to drive the designs, and the main
differences are that probabilistically constrained designs are
more conservative than their deterministic counterparts, as
one would expect.

The current study is somewhat preliminary, in the sense
that only a limited number of loading scenarios and con-
straints are considered, as well as the fact that the structural
and environmental models are simplified and that limited ef-
fort has been put into refining, or otherwise optimizing, the
methods used in the implementation of the overall frame-

work. With regards to the simplifications, this is not expected
to be a very limiting factor, though future work with higher
fidelity is needed to ensure the practical viability of the pro-
posed approach. As for the lack of refinement, this would in-
dicate at least some potential for improving the methodology
presented herein, which already works fairly well. It is likely
that at the very least a more efficient design of experiment
will be crucial if a larger amount of loading scenarios and
higher-fidelity system modeling is to be made practical. Con-
sidering that many of the underlying optimization procedures
used were originally developed for jacket support structures,
it is expected that the current results, derived for monopiles,
should be applicable with only minor modifications. Since
very few studies of RBDO for OWTs have been done so far,
in particular for support structure design, the current devel-
opments will hopefully open up new avenues for further re-
search.

Code and data availability. The data used for creating the fig-
ures and tables displaying the results are available in the Supple-
ment. The code used to generate the results is very comprehensive
and is, in its current form, not suitable for publication.
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