
Wind Energ. Sci., 5, 199–223, 2020
https://doi.org/10.5194/wes-5-199-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Power Curve Working Group’s assessment of wind
turbine power performance prediction methods

Joseph C. Y. Lee1, Peter Stuart2, Andrew Clifton3, M. Jason Fields1, Jordan Perr-Sauer4,
Lindy Williams4, Lee Cameron2, Taylor Geer5, and Paul Housley6

1National Wind Technology Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
2Renewable Energy Systems, Kings Langley, Hertfordshire, England, UK

3Stuttgart Wind Energy, Institute of Aircraft Design and Manufacture,
University of Stuttgart, Stuttgart, Germany

4Computational Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
5DNV GL, Portland, Oregon 97204, USA

6SSE plc, Glasgow, Scotland, UK

Correspondence: Joseph C. Y. Lee (joseph.lee@nrel.gov)

Received: 26 September 2019 – Discussion started: 24 October 2019
Revised: 10 December 2019 – Accepted: 8 January 2020 – Published: 5 February 2020

Abstract. Wind turbine power production deviates from the reference power curve in real-world atmospheric
conditions. Correctly predicting turbine power performance requires models to be validated for a wide range of
wind turbines using inflow in different locations. The Share-3 exercise is the most recent intelligence-sharing
exercise of the Power Curve Working Group, which aims to advance the modeling of turbine performance. The
goal of the exercise is to search for modeling methods that reduce error and uncertainty in power prediction
when wind shear and turbulence digress from design conditions. Herein, we analyze data from 55 wind turbine
power performance tests from nine contributing organizations with statistical tests to quantify the skills of the
prediction-correction methods. We assess the accuracy and precision of four proposed trial methods against the
baseline method, which uses the conventional definition of a power curve with wind speed and air density at
hub height. The trial methods reduce power-production prediction errors compared to the baseline method at
high wind speeds, which contribute heavily to power production; however, the trial methods fail to significantly
reduce prediction uncertainty in most meteorological conditions. For the meteorological conditions when a wind
turbine produces less than the power its reference power curve suggests, using power deviation matrices leads to
more accurate power prediction. We also determine that for more than half of the submissions, the data set has a
large influence on the effectiveness of a trial method. Overall, this work affirms the value of data-sharing efforts
in advancing power curve modeling and establishes the groundwork for future collaborations.

1 Introduction

Predicting the power output of a wind turbine for a given set
of climatic conditions is a fundamental challenge in wind en-
ergy resource assessment. Current industry practices involve
predicting power output using a power curve, which defines
power production as a function of hub-height wind speed.
Besides the traditional understanding of a power curve, wind
power production also depends on other meteorological vari-
ables including air density, turbulence, and wind shear.

1.1 The challenge

Typically, a power curve is only strictly valid for a subset
of all atmospheric conditions. For clarity, the Power Curve
Working Group (PCWG, Sect. 2) refers to this subset of me-
teorological conditions as the “inner range”. The correspond-
ing “outer range” thus represents all other possible scenarios.
The definitions are discussed in detail in Sect. 3.1.

A wind farm business case requires the power output to be
predicted for the full range of meteorological conditions that
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the operational turbine will experience. Therefore, modeling
approaches that accurately predict wind turbine power output
in both inner and outer range conditions are desirable to re-
duce the uncertainty associated with energy yield predictions
of future wind farms (Clifton et al., 2016).

The wind energy industry performs power performance
tests on wind turbines to test the site-specific power produc-
tion of wind turbines by calculating the difference between
the power predicted by the reference power curve (often pro-
vided by the turbine manufacturers) and actual power pro-
duction at different wind speeds. However, these power per-
formance tests and associated warranties are often limited to
inner range conditions.

In reality, wind turbines operate in the outer range fre-
quently, which sometimes leads to power-production devi-
ations from the reference power curve. To quantitatively cor-
rect for such power deviations in different meteorological
conditions, a power deviation matrix (PDM) is sometimes
used (Fig. 1). Typically, when wind speed and turbulence
intensity (TI, represents the deviations from the mean hori-
zontal wind) are both low, the reference power curve over-
predicts actual power production (bottom left quadrant of
Fig. 1); when wind speed is low with high TI, the reference
model would underpredict observed power (top left quadrant
of Fig. 1); the observations are often incomplete for higher
wind speeds (right half of Fig. 1). In practice, PDMs can be
used to correct power prediction, some of which are illus-
trated in this study (Sect. 3.3 and Appendix A). Currently
the industry lacks an objective criterion to evaluate correc-
tion methods for power deviation. Therefore, reaching an
industry-wide consensus on the prediction method of wind
turbine output in the outer range is necessary.

Additionally, the data that could be most useful for im-
proving power curve modeling are typically isolated within
the industry, they are not shared between organizations,
and their usage is stymied by intellectual property agree-
ments. Thus, gathering these useful real-world data through
intelligence-sharing initiatives can help improve our under-
standing of wind turbine performance in outer range condi-
tions.

1.2 Candidate solutions

In 2005, an international standard on turbine power per-
formance was published. The International Electrotechnical
Commission (IEC) 61400-12-1 standard, Edition 1.0, 2005-
12 (International Electrotechnical Commission, 2005) out-
lines the procedure for determining a power curve from mea-
surements and executing a power performance test. Based
on the 2005 standard, many power performance tests have
been carried out and reported in the wind energy industry
and academia. In 2017, the IEC updated the standard to Edi-
tion 2.0, 2017-03 (International Electrotechnical Commis-
sion, 2017), which includes standard methods for consid-
ering the influence of TI, wind shear, and wind veer in the

Figure 1. A typical power deviation matrix (PDM) between nor-
malized wind speed and turbulence intensity (TI). The predicted
power subtracted from the observed power yields the power devi-
ation in the inner range, i.e., power deviation = observed power –
reference power (or predicted power). A positive power deviation,
seen in the blue region of low wind speeds and high TI, means larger
observed power output than predicted power output, and vice versa
for the red-colored cells. Zero normalized wind speed indicates the
cut-in wind speed, and the normalized wind speed of one approxi-
mately equals the rated wind speed. This particular PDM is derived
and composited using 16 data sets supplied by a contributing mem-
ber of the Power Curve Working Group (PCWG), and the data sets
constitute part of the data submissions in this analysis.

power curve measurement. Because the IEC has not officially
defined a standard power curve prediction procedure for re-
source assessment, the industry often refers to the 61400-12-
1 standards for power curve modeling.

However, applying the standard in practice can be dif-
ficult. The 2017 standard describes theoretical prediction-
correction methods for TI, wind shear (vertical change in
wind speed), and wind veer (vertical change in wind direc-
tion). In reality, the adoption of such analytical methods has
not become the norm in the industry, and an implementation
gap exists. Some of the cited methods only work for a limited
set of power-production data sets and are often not applica-
ble for wind resource assessment. Therefore, the industry still
lacks a set of well-tested power-prediction correction meth-
ods that serves the purposes of both power performance test-
ing and wind resource assessment. More importantly, given
the inaccuracy of power curve models, not employing any
corrections leads to increased scatter in production measure-
ments of the power curve.

Moreover, the IEC standard considers hub-height wind
speed as the primary variable, which can lead to poor power
predictions, especially when wind turbines are waked (Ding,
2019). Research has proven the importance of atmospheric
variables other than wind speed and air density in wind power
modeling. Clifton et al. (2013) demonstrated that simulated
wind shear and TI impacted power performance with respect
to the manufacturer’s power curve in a clear and systematic
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way. They developed a machine-learning model, which in-
cludes shear and TI, and the model had about one-third the
error in power prediction than using the method in the 2005
IEC standard (Clifton et al., 2013). Overall, accounting for
various meteorological parameters, such as turbulence and
atmospheric stability, enhances the skills in modeling power
output and turbine loads (Bardal et al., 2015; Bardal and
Sætran, 2017; Bulaevskaya et al., 2015; Hedevang, 2014;
Sathe et al., 2013; Sumner and Masson, 2006; Wharton and
Lundquist, 2012).

Introducing modern data with data-driven statistical meth-
ods to improve power modeling techniques has been the new
direction of the wind energy industry. Past research demon-
strates the benefit of using remote sensing and supervisory
control and data acquisition (SCADA) data in power per-
formance tests (Demurtas et al., 2017; Hofsäß et al., 2018;
Mellinghoff, 2013; Rettenmeier et al., 2014; Sohoni et al.,
2016; Wagner et al., 2013, 2014). Many experts use the PDM
approach (Fig. 1) to observe any systematic bias in power
curves and correct this in energy yield models. PDMs can be
generic, empirically derived, or turbine model specific. The
PDM approach is not documented in the IEC standard; nev-
ertheless, the technique has been widely used in the industry.
For instance, Whiting (2014) uses PDMs to validate wind tur-
bine energy production. Recently, machine learning and neu-
ral networks that derive multidimensional power curve mod-
els involving many meteorological variables have grown in
popularity (Bessa et al., 2012; Jeon and Taylor, 2012; Lee et
al., 2015b; Optis and Perr-Sauer, 2019; Ouyang et al., 2017;
Pandit and Infield, 2018a; Pelletier et al., 2016).

It is clear that the industry intends to collectively advance
our understanding of the power curve and model power per-
formance with other variables beyond wind speed and air
density. Hence, the PCWG was created to bridge academic
research and industry practices.

2 The Power Curve Working Group

The mission of the PCWG is to bring together wind indus-
try stakeholders to help identify, validate, and develop ways
to improve the modeling of wind turbine performance in
real-world, complicated atmospheric conditions. The PCWG
aims to decrease the perceived investment risk and uncer-
tainty of investors by understanding outer range scenarios
when the actual turbine output deviates from the reference
power curve. Ultimately, the PCWG intends to reduce the
average cost of wind energy production through advanc-
ing the industry’s understanding of the turbine power curve.
Therefore, one of the key activities of the PCWG is the
intelligence-sharing initiative, which allows for the bench-
marking of the effectiveness of various power-prediction
methods.

Established in 2012, the PCWG (https://pcwg.org/, last ac-
cess: 31 January 2020) is led by industry experts and is open

for any organization to join and contribute to. The PCWG
includes wind farm developers, turbine manufacturers, con-
sultants, and research institutions. The PCWG receives broad
support from the wind energy industry and has a mandate
to improve turbine performance modeling; thus, the results
shown in this study are highly impactful.

Since 2015, the PCWG has conducted several industry-
wide data-sharing studies (Table 1). In the Share-1 exer-
cise, the PCWG encountered calculation problems that led
to interpolation errors and erroneous outliers. In the follow-
ing Share-1.1 initiative, the PCWG solved the problems and
streamlined the participation process. In the Share-2 exer-
cise, the PCWG found that a calculation error led to bias that
overstates the skills of the two PDM methods. In the Share-3
exercise, the PCWG performed extensive tests on the analy-
sis tool (Sect. 3.2) to minimize calculation errors. Therefore,
Share-3 represents refined results submitted by PCWG col-
laborators that can be disseminated with confidence (Power
Curve Working Group, 2018).

We outline the chronology of past PCWG activities in Ta-
ble 1. The check marks indicate that a method was included
in the trial with at least 30 applicable summary statistics data
sets submitted by the participants. The details of the correc-
tion methods are discussed in Sect. 3.3 and Appendix A.

This paper is the first peer-reviewed journal article that
summarizes the intelligence-sharing efforts orchestrated by
the PCWG, which publicly disseminates the findings and
conclusions from the Share-3 exercise. Specifically, this
study compares different correction methods of power pre-
diction in various meteorological conditions. Building on this
paper, the PCWG plans to deliver a tangible contribution to
power curve advancement to the IEC-61400-15 group. Over-
all, the Share-3 initiative exhibits a collective effort by the
wind energy industry to reduce the bias and uncertainty of
power prediction in the outer range. The results presented in
this study are all from the Share-3 exercise, unless stated oth-
erwise.

3 Evaluation of turbine performance prediction

3.1 Inner range definitions

The PCWG categorizes wind conditions into the inner range
and the outer range (Power Curve Working Group, 2013). In
practice, the inner range represents a relatively narrow range
of conditions that is predominant on typical wind turbine test
sites. The inner range can thus be interpreted as the range of
conditions for which the turbine output can be expected to
meet or exceed its reference power curve, in that the refer-
ence power curve is typically informed by performance un-
der test-site conditions. Subsequently, in inner range condi-
tions, a turbine is expected to generate 100 % or greater of
the annual energy production (AEP) using a reference power
curve. The decomposition of all atmospheric conditions into
the inner range and outer range is purely conceptual, and in
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Table 1. Timeline of PCWG’s intelligence-sharing exercise.

Time Share Number of Correction methods

initiative data sets IEC TI 2DPDM 3DPDM Augmented IEC TI

December 2015 1 50 (4)
√ √

September 2016 1.1 44 (11)
√ √

June 2017 2 47 (6)
√ √ √

December 2018 3 55 (3)
√ √ √ √

Parentheses indicate the number of remote sensing data sets.

Table 2. Different inner range definitions.

Inner range Shear range TI range
definition

A 0.05–0.25 8 %–12 %
B 0.05–0.25 5 %–9 %
C 0.1–0.3 10 %–14 %

principle the boundary of the inner range could be defined by
any set and range of parameters.

Meanwhile, the turbine performance under outer range
conditions is less well represented by the reference power
curve defined in the inner range. In outer range conditions, a
turbine would reach an AEP of less than 100 % of its capacity
on average. The outer range conditions include all possible
scenarios that lead to deviations from expected production
and often result in lower power production than expected.
Therefore, various correction methods have been proposed
to improve the predictability of turbine performance in the
outer range.

The PCWG differentiates inner range and outer range
data based on the wind shear and the hub-height TI (Power
Curve Working Group, 2018). Wind shear, represented by the
power-law exponent, is calculated using the wind speeds be-
tween the lower blade tip and hub height. For example, using
inner range definition A, a time period belongs to the inner
range when the wind shear is between 0.05 and 0.25 and the
TI is between 8 % and 12 % (Table 2). Herein, the definition
of the inner range and outer range only depends on turbu-
lence and shear, and the PCWG activities exclude other vari-
ables in operational performance corrections, such as icing,
blade degradation, and suboptimal performance. These defi-
nitions correspond to the conditions that would be expected
in a power performance test carried out on a new turbine in
a controlled environment defined in the IEC standard. The
PCWG uses the concept of inner range and outer range be-
cause this pragmatic approach is easy to define and simple
to apply, and this method defines clear limits beyond which
performance deviation can be expected.

We outline three inner range definitions in the Share-3 ini-
tiative because the PCWG analysis tool (Sect. 3.2) uses a

specific definition to derive an inner range power curve for
each data set. Depending on the data set, one of the three
definitions is applied. For a data sample, the PCWG analy-
sis tool first uses definition A as the default. If the resultant
inner range data count under definition A is small (Power
Curve Working Group, 2018), then the tool would switch to
definition B. If the inner range data size is again small with
definition B, then the tool would use definition C.

3.2 The PCWG analysis tool

The PCWG member organizations have access to a large
number of power performance test data sets and contrac-
tual power curve guarantees, which offers an excellent op-
portunity to verify the accuracy of trial methods. However,
these data sets are commercially sensitive, and they cannot
be shared directly because of data privacy concerns. There-
fore, PCWG members designed and developed an analysis
tool to enable intelligence sharing, rather than requiring com-
mercially sensitive data sets or contractual performance guar-
antees to be disclosed.

The analysis tool is open sourced via GitHub and written
in the Python programming language. The tool is formally
released and distributed in the form of an executable program
to encourage wide adoption.

End users configure their own portfolio of power perfor-
mance test data sets using a graphical user interface that en-
ables the correction methods to be evaluated for each data set.
Anonymized reports containing a summary of aggregated er-
ror metrics for each power performance data set are gener-
ated and can be sent to an independent aggregator (in this
study, the National Renewable Energy Laboratory, NREL)
for further analysis. This anonymous reporting and subse-
quent analysis by the PCWG aggregator allow PCWG mem-
bers and the wind energy industry to form an objective view
of the accuracy of trial methods, without requiring member
organizations to share commercially sensitive data.

The workflow illustrated in Fig. 2 is common to all PCWG
sharing exercises. Within the tool, the user performs the data
set configuration and portfolio definition steps manually; all
subsequent steps are performed automatically by the tool.
As data set and portfolio configuration data are saved in a
standardized format based on eXtensible Markup Language
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Figure 2. Workflow of the Share-3 exercise.

(XML), the user does not have to reconfigure data sets to con-
tribute to subsequent PCWG share initiatives. The PCWG
can thus test new correction methods without participants
having to reconfigure data sets. An updated version of the
analysis tool is released to users each time new methods are
added. These new correction methods can then be evaluated
in a further iteration of the sharing initiative. The correc-
tion methods tested in the Share-3 exercise are described in
Sect. 3.3 and Appendix A.

Each participant uses the analysis tool to produce human-
readable results in one anonymized report for each data set
in Microsoft Excel format. The error statistics (Sect. 3.4) of
each correction method are aggregated in different categories
(e.g., by normalized wind speed and time of day) in an Excel
file. The participants then send the anonymized reports to the
independent aggregator (NREL in the context of Share-3) for
analysis.

For each data set, the PCWG analysis tool automatically
selects an appropriate inner range definition (Table 1) de-
pending on the 10 min data counts in several atmospheric

scenarios (Fig. 3). Next, the tool generates a power curve us-
ing an adequate amount of inner range data, which represents
power production in a finite range of meteorological condi-
tions. The resultant inner range power curve offers a basis
for the power-prediction analysis, and this process resembles
a measured power curve in reality based on a limited set of
atmospheric cases. Then the tool applies the correction meth-
ods to predict turbine performance in the outer range with the
inner range power curve. This extrapolation process requires
a small but sufficient set of inner range data samples so as to
predict the majority of data in the outer range. A poor inner
range definition would classify all the data in the inner range
and no data in the outer range.

Note that the inner range power curve is only valid for a
subset of TI and wind shear conditions (Table 2), which re-
sembles the premise of a typical reference power curve pro-
vided by turbine manufacturers. The inner range power curve
is derived from the observed data, which differs from a refer-
ence power curve. We also do not use any specific reference
power curves in this analysis because we do not require the
participants of the Share-3 exercise to share them.

3.3 Correction methods

Several methods have been proposed in the IEC 61400-12-1
2017 standard (International Electrotechnical Commission,
2017) and elsewhere for post-processing the data from a
power performance test. These adjustments, often called cor-
rection methods, seek to account for the effect of changing
atmospheric conditions on the wind turbine. One of the goals
of the Share-3 exercise was to test the effectiveness of these
methods (described in Table 3). Note that all five correction
methods use the density correction in the IEC 61400-12-1
2005 standard (International Electrotechnical Commission,
2005). Further details of the correction methods evaluated in
this study can be found in Appendix A.

3.4 Error metrics and data categories

To contrast the accuracy of each power-prediction method,
the Share-3 exercise uses two error metrics to evaluate
each method, normalized mean error (NME) and normalized
mean absolute error (NMAE) (Power Curve Working Group,
2018):

NME=
∑

(Pmethod(t)−Pactual(t))∑
Pactual(t)

, (1)

NMAE=
∑
|Pmethod (t)−Pactual (t) |∑

|Pactual(t)|
, (2)

where Pmethod(t) is the modeled power calculated using any
of the five methods mentioned in Sect. 3.3 and Appendix A
for a given 10 min period, and Pactual(t) is the actual power
production for a given 10 min period. A perfect method
would predict power matching the actual power production,

www.wind-energ-sci.net/5/199/2020/ Wind Energ. Sci., 5, 199–223, 2020



204 J. C. Y. Lee et al.: The Power Curve Working Group’s assessment

Figure 3. How power curves are created and assessed in the Share-3 exercise. The orange and yellow boxes on the left represent the inner
range and the inner range TI with outer range wind shear, respectively.

Table 3. Abbreviations and key features of the correction methods.

Correction method Abbreviation Trial method? Key feature

Baseline – No Using interpolation based on the inner range
power curve

Density and turbulence Den-Turb Yes Using the turbulence normalization method

Density and two-dimensional power de-
viation matrix

Den-2DPDM Yes Using PDM to correct for the bins of normal-
ized wind speed and TI

Density and augmented turbulence Den-Augturb Yes Interpolating using regression across bins of
normalized wind speed and TI

Density and three-dimensional power
deviation matrix

Den-3DPDM Yes Using PDM to correct for the bins of normal-
ized wind speed, TI, and rotor wind speed ratio

so NME would equal 0 and NMAE would equal 0. A posi-
tive NME means the correction method overpredicts power
production in over half of the data samples.

Generally, NME represents the average bias on power pro-
duction of the correction method. Such bias on power curve
modeling affects the long-term P50, which is the median ex-
pected AEP over many years of production and is used to in-
form investment decisions. Meanwhile, NMAE denotes the
average cumulative error of every 10 min sample in a data
bin, which is applicable for short-term power-production
forecasting and time series analysis, making NMAE a stricter
metric than NME. In NME, however, the positive and nega-
tive 10 min errors cancel each other. Overall, the statistical
results of NME (Sect. 4) are analogous to those of NMAE
(not shown). For our purposes, we are interested in analyzing
the long-term power-prediction bias, and hence we only dis-
cuss the NME for the rest of this paper; NMAE is introduced
here because the metric is also generated by the PCWG anal-
ysis tool (Sect. 3.2).

The PCWG analysis tool calculates NMEs (and NMAEs)
by slicing all the 10 min data of each submission in several

ways. For example, the overall NME yields a single value
using all the available data for all atmospheric conditions.
The inner range NME and outer range NME include only the
data from the inner range and outer range, respectively. The
tool also divides the data into different data categories based
on inflow conditions:

– 15 normalized wind speed bins, from 0 to 1.5, for all
the data, the data in the inner range, and the data in the
outer range;

– 4 wind speed and turbulence intensity (WS-TI) bins
only for the outer range data, with four combinations of
low wind speed (LWS), high wind speed (HWS), low
turbulence intensity (LTI), and high turbulence inten-
sity (HTI), which are LWS-LTI, LWS-HTI, HWS-LTI,
and HWS-HTI – the threshold differentiating LWS and
HWS is 0.5 normalized wind speed, and the TI thresh-
old changes with the inner range definition of the data
set (Table 2);

– wind direction;
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– time of day; and

– calendar month.

In this study, we focus on contrasting the results from inner
and outer ranges, outer range normalized wind speeds, and
WS-TI bins in the outer range to improve power predictions
in the outer range.

Additionally, the bins in the outer range normalized wind
speed and WS-TI data categories do not account for all the
data in the outer range, thus, we establish two new data bins
for the residue samples. In reality, data with normalized wind
speeds recorded above 1.5 exist, which exceeds the range be-
tween 0 and 1.5 in the setup of the PCWG analysis tool.
Hence, those data below cut-in wind speed or far beyond
rated wind speeds are labeled as “residual”. Similarly, be-
cause we use wind shear and TI to classify inner and outer
ranges, the four basic WS-TI bins do not cover every data
sample in the outer range, neglecting the data with inner
range TI and outer range wind shear (ITI-OS) (yellow box
in Fig. 3). Herein, we combine the analysis on the four WS-
TI bins with the ITI-OS bin, and for each submission, the
sum of the NMEs from these five data divisions is the outer
range NME.

Moreover, we intend to examine the errors when the cor-
rection methods impact the energy production in different
meteorological conditions, especially at high wind speeds.
Calculating NMEs using total energy integrated across all in-
flow conditions leads to larger NME variations in high wind
speeds than in low wind speeds. Meanwhile, deriving NMEs
from each confined data bin of a data category (for instance,
the inner range, a bin, of the inner–outer ranges, a category)
results in larger NME variations in low wind speeds than in
high wind speeds. These NME data per bin disproportion-
ately skew the NMEs toward low wind speeds when a wind
turbine does not generate power at its full capacity. Hence,
we analyze the effects of the correction methods on total en-
ergy production throughout the whole power curve that spans
the range between the cut-in and cut-out speeds.

To assess the impact on power production from each data
bin of the categories, we also derive the energy fraction for
every bin. From earlier, the PCWG analysis tool calculates
the power-prediction errors based on both bin energy and
total energy. Therefore, dividing the NME per total energy
by the NME per bin energy yields the energy fraction a cer-
tain data bin represents in terms of total energy. For exam-
ple, dividing the NME of the HWS-LTI bin per total en-
ergy by the NME of the HWS-LTI bin per its own bin en-
ergy returns the energy-production fraction of the HWS-LTI
bin as a percentage across the WS-TI bins and the ITI-OS
bin (Fig. 6a). Because wind turbines produce more power
at higher wind speeds, the energy fraction accounts for the
shape of the power curve and weighs heavier toward HWS
than LWS. Meanwhile, the data count of a data bin in a cat-
egory only indicates the total number of 10 min samples in

that bin from the submission and does not account for the
power-production impact of that bin.

One of the goals of the Share-3 exercise is to identify the
optimal methods in power prediction. To emphasize the trial
method’s improvement upon the baseline method, we calcu-
late the difference between the absolute value of the base-
line’s NME and the absolute value of a trial method’s NME.
A negative difference means the method improves from the
baseline, and each method from each submission would re-
sult in different degrees of individual improvement.

3.5 Analysis methodologies

We perform several statistical tests to evaluate the trial
method improvements from the baseline method in differ-
ent meteorological conditions, including the matched-pair t
test, the Levene’s test, bootstrapping, and the Kolmogorov–
Smirnov (K–S) test. The null hypothesis of the matched-pair
t test is that the trial method does not improve upon the
baseline in power prediction. When the null hypothesis is re-
jected, the improvement of the trial method upon the base-
line is statistically significant for that meteorological con-
dition (Appendix B1). For the Levene’s test, when the null
hypothesis of a trial method is rejected, that method signif-
icantly decreases the variance in prediction error from the
baseline (Appendix B2). This means the trial method reduces
uncertainty in power prediction from the baseline method in
a specific inflow condition. Bootstrapping, which is resam-
pling with replacement, is used to validate the results of the
matched-pair t test and the Levene’s test. In this study, boot-
strapped findings agree with the conclusions of the matched-
pair t test and the Levene’s test; thus, the findings of the two
statistical tests are representative (Appendix B3). The K–S
test is to determine whether a sample distribution is Gaus-
sian (Appendix B4). The details of the statistical tests are
explained in Appendix B.

In this study, we cover and analyze all of the results from
various statistical tests, regardless of their statistical signifi-
cance. For instance, even though some methods display im-
provement in predicting power from the baseline method
without statistical significance (the grey cells in Fig. 10b),
we discuss the practical significance of how those methods
compared with the baseline in different atmospheric scenar-
ios.

We also use filters to eliminate flawed data sets and in-
crease the reliability of the statistical tests. We exclude erro-
neous submissions based on the nonzero inner range NMEs
and the excess WS-TI 10 min data counts (Appendix C1). We
apply additional filters to achieve rigorous statistical infer-
ences by removing data sets with substantial improvements
from the baseline (Appendix C2) and by implementing the
Bonferroni correction to reduce alpha in statistical tests (Ap-
pendix C3). The filtering techniques we carried out are de-
scribed in Appendix C.
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Figure 4. The 55 submissions included turbines with rotor diame-
ters from 50 to 154 m (a), hub heights from 44 to 143 m (b), and spe-
cific power from 157 to 583 W m−2 (c). The tests were performed
between 2011 and 2018 (d). These histograms display results with-
out any filtering (discussed in Appendix C).

4 Results and discussion

4.1 Metadata summary

We received 55 submissions from nine organizations from
the Share-3 exercise. About half of the submissions use tur-
bines with rotor diameters between 86 and 97 m, hub heights
between 77 and 88 m, and specific power between 299 and
347 W m−2 (Fig. 4a, b, and c). Specific power is defined as
the rated power divided by the swept area of the rotor. Al-
most half of the submissions are dated from 2015 (Fig. 4d).
Overall, most of the turbines tested in the submissions, which
represent the fleet installed, use modern control systems, so
this is a pertinent study. Around half the participants chose
to share the countries where their turbines were installed.
Therefore, we know that this study includes data from Ger-
many, Mexico, South Africa, Spain, the United Kingdom,
and the United States. Hence, this analysis accounts for me-
teorological conditions at locations across the world.

In some scenarios, the 10 min data counts of the submis-
sions have notable implications. For instance, the number of
10 min data samples in the outer range is larger than that in
the inner range for all of the submissions (Fig. 5a). In three
submissions, the sample size of the 10 min outer range data is
more than 7 times than that of the inner range (Fig. 5b). Note
that the NME filter (Appendix C1 and Fig. C1) is applied to
remove erroneous submissions from all the results presented
for the rest of the paper.

Figure 5. (a) Box plots of the 10 min data count from the 52
normalized-mean-error-filtered (NME-filtered) submissions in the
inner range (dark blue) and outer range (light blue). The box plot
displays the lower whisker (lower quartile minus 1.5 times the in-
terquartile range, which is the difference between the upper quartile
and lower quartile), the lower quartile, the median, the upper quar-
tile, the upper whisker (upper quartile plus 1.5 times the interquar-
tile range), and outliers as black diamonds; (b) histogram of the
ratio between the outer range data count and the inner range data
count from the 52 NME-filtered submissions.

The majority of the data samples are classified as outer
range, which meets our expectations. The PCWG analysis
tool is able to classify a sufficient amount of inner range data
to derive an inner range power curve for every data set, and
the large number of outer range data samples establishes a
foundation to test the accuracy of the extrapolation process in
power-production prediction (Fig. 3). After all, the large ratio
between outer range and inner range data demonstrates that
the Share-3 exercise is robust because of the large amount of
outer range data available for testing and analysis. Further-
more, the inner range data count does not correlate with the
outer range NME regardless of the correction methods (not
shown).

4.2 Energy fractions and NME distributions

The distributions of the 10 min data counts are comparable
in the four WS-TI bins in the outer range, whereas for many
data sets, the HWS conditions contribute substantially more
to turbine energy production than LWS scenarios (Fig. 6a).
This feature fits our expectation because of the cubic rela-
tionship between wind speed and power when the hub-height
wind speed is between cut-in wind speed and rated wind
speed. The outer range data also account for at least half of
the energy production for most of the submissions (Fig. 6b),
which is reasonable given that the outer range data counts
outweigh those of the inner range (Fig. 5). Overall, HWS
conditions in the outer range, regardless of the TI, particu-
larly deserve our attention in terms of power-prediction cor-
rection.

The data and energy fractions remain the same across cor-
rection methods for each submission, and the distribution
shapes of NMEs across correction methods are analogous;

Wind Energ. Sci., 5, 199–223, 2020 www.wind-energ-sci.net/5/199/2020/



J. C. Y. Lee et al.: The Power Curve Working Group’s assessment 207

Figure 6. (a) Box plot of data fraction (blue) and energy frac-
tion (orange) in percentage of the submissions across the four wind
speed and turbulence intensity (WS-TI) bins and the inner range TI
and outer range wind shear (ITI-OS) bin for the baseline method.
Each colored dot in a bin represents a submission; (b) similar to
(a), but for inner and outer ranges. The dots represent the outliers,
as in Fig. 5. For each submission, the sum of the fractions of the
four WS-TI bins and the ITI-OS bin in (a) equals the fraction of the
outer range in (b); (c) box plot of the baseline’s NME in percent-
age across the same set of WS-TI and ITI-OS bins for the baseline
as in (a). The grey dashed line marks the zero NME, which theo-
retically a perfect correction method would generate. The range of
NME shown is smaller than the observed, which provides a clearer
perspective to contrast different WS-TI bins; (d) similar to (c), but
for inner and outer ranges. Similarly, for each submission, the sum
of the NMEs in (a) equals the NME of the outer range.

thus, we use the baseline data fractions, energy fractions,
and NMEs as an example in Fig. 6. In this paper, only 48 of
the 55 submissions are included in the WS-TI analysis after
we apply the filtering techniques mentioned in Appendix C1.
Moreover, not all of the submissions record 10 min data in
all the bins of different atmospheric categories (including the
WS-TI category) because some specific wind conditions did
not take place during the measurement periods.

Echoing the WS-TI energy fractions, the data with normal-
ized wind speeds above 0.6 demonstrate an extensive impact
on energy production, even though they have smaller rep-
resentation in the 10 min data than those with lower wind
speeds (Fig. 7a). The disproportionate energy-production
contribution in the outer range is prominent, especially for
the samples with normalized wind speeds between 0.9 and
1.2. As mentioned, the analysis tool uses a normalized wind
speed of approximately 0.5 to differentiate LWS and HWS
data. Therefore, we favor the correction methods that are ef-
fective at higher normalized wind speeds.

Across correction methods, the average NMEs vary with
different WS-TI and inner–outer range bins, except for ITI-
OS (Fig. 8a). When the TI is in the inner range and the wind

shear is in the outer range, all the correction methods result
in power underestimation. For the HWS bins of the base-
line method, the median NMEs tend to be weakly positive
(Figs. 6c and 7b), which means the correction methods over-
estimate the real power production in the linear part of the
power curve. However, the baseline also yields the lowest er-
ror on average for HWS-HTI conditions. Meanwhile, Den-
2DPDM, Den-Augturb, and Den-3DPDM yield relatively
low errors in the three bins with HWS and HTI, which im-
pact energy production extensively. Ideally, the inner range
errors would be zero, yet the trial methods and the interpo-
lation method (Appendix A) minimize the prediction errors
and do not necessarily result in zero residual errors in the
inner range (second-to-last row in Fig. 8a).

Overall, the large average outer range NME of the base-
line method indicates sizable room for improvement in the
power-prediction correction methodology. Additionally, the
post-filtering inner range NMEs are close to zero (Figs. 6d
and 8a), which aligns with the inner range definitions
(Sect. 3.1 and Appendix C1).

Variations in NMEs among submissions are the smallest
in the LWS-LTI bin and are substantially higher in the HWS
and HTI bins (Fig. 8b). Moreover, the standard deviation of
the outer range NMEs are about an order of magnitude larger
than the NME averages. The large variation of the correction
method errors demonstrates that the adjustments of power
prediction are imprecise and remain uncertain.

We have discussed the NME distributions of each correc-
tion method individually thus far. In the following section,
we contrast the improvements of the four trial correction
methods upon the baseline method and perform statistical
tests.

4.3 Improvements upon the baseline method

4.3.1 Impact of data sets

The performance of a trial correction method sometimes
depends on the input data set. The effectiveness of a trial
method compared to the baseline method varies greatly
within a data set as well as among data sets (Fig. 9a). The
effects of changing correction methods are limited on some
data sets. Particularly, 30 of the submissions report less than
0.5 % in the statistical range of the absolute NME differences
between the baseline and the trial methods (Fig. 9b). The
trial methods tend to yield similar results for a majority of
the data sets (Fig. 9c). This means that for more than half of
the submissions, the choice of the trial methods has little im-
pact on the resultant improvement or worsening against the
baseline method. For those cases, the data set itself dictates
whether a trial method works or not: when a trial method
is effective and becomes better than the baseline, the other
three trial methods would also yield comparable prediction
corrections, and a similar phenomenon exists for the submis-
sions with mixed and worsening signals.
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Figure 7. Similar to Fig. 6, but for normalized wind speed bins in the outer range, without the colored dots in Fig. 6 (a). For clarity, the
submissions are aggregated as box plots and not displayed as dots in (a). For each submission, the sums of the data fractions, energy fractions,
and NMEs from all the bins, including the residual, equal those of the outer range (in Fig. 6).

Figure 8. (a) Heat map of mean NME based on 48 submissions across the four WS-TI bins and the ITI-OS bin in the outer range, along
with the inner and outer ranges, for five correction methods; blue is negative and red is positive. (b) Heat map of NME standard deviation
using 48 submissions across WS-TI and inner–outer range bins and correction methods. The annotated number in each cell represents the
mean NME or the NME standard deviation of a specific set of data bin and correction method.

Turbine characteristics are generally irrelevant to the per-
formance of trial methods. Across trial methods, the magni-
tude of improvements upon the baseline method does not cor-
relate with any turbine characteristics (not shown), including
turbine hub height and turbine specific power. The 14 sub-
missions for which the four trial methods all improve from

the baseline (blue up-pointing triangles in Fig. 9) include
a variety of turbine models. Meanwhile, the seven submis-
sions for which the trial methods strictly perform worse than
the baseline (red down-pointing triangles in Fig. 9) use tur-
bines with rotor diameters between 77 and 100 m. Because
of the lack of high-quality metadata, we cannot explain why
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Figure 9. (a) Box plot of the differences in absolute NMEs in the outer range between the baseline method and each of the trial methods
for the 52 data set submissions. Each box represents one submission, which has four data points for the baseline–trial method comparison;
(b) scatterplot of the statistical ranges of the absolute NME differences for the submissions. Each data point depicts the difference between
the maximum and the minimum of the absolute NME differences of each submission, corresponding to the boxes in (a). Submissions with
all four negative absolute NME differences against the baseline in (a), i.e., improvements from the baseline across trial correction methods,
are shown as “improved”. Those with four positive values in (a), i.e., deteriorations from the baseline method regardless of the trial method
chosen, are shown as “worse”, and those submissions with no clear improvement or worsening are shown as “mixed”. (c) Histogram of the
ranges in (b) using the same range on the vertical axis.

some data sets record only improvements against the base-
line, while some report the opposite.

4.3.2 Outer range WS-TI and binned wind speed
analysis

In the outer range, the four trial correction methods demon-
strate stronger improvements against the baseline method in
LWS conditions than in HWS cases. More than 60 % of the
submissions report prediction error reduction by switching
to a trial method from the baseline for LWS cases (Fig. 10a),
whereas this quantity is smaller for HWS and ITI-OS sce-
narios. For the LWS-HTI condition, the improvements are
statistically significant across trial methods (Fig. 10b). Only
Den-2DPDM and Den-3DPDM significantly reduce predic-
tion error uncertainty for the LWS-LTI condition by lowering
the NME variances from the baseline (Fig. 10c). The trial
methods are more skillful than the baseline for LWS.

However, HWS scenarios in the outer range influence en-
ergy production more than other inflow conditions (Figs. 6c
and 7a), and only Den-2DPDM, Den-Augturb, and Den-
3DPDM perform significantly better than the baseline in the
HWS-LTI condition (Fig. 10b). After making the t test and
Levene’s test more rigorous by removing outliers and reduc-
ing alpha (Sect. 3.5, Appendix C2 and C3), the trial methods
are barely better than the baseline in HWS cases (Fig. D1).
Hence, modifying the trial correction methods to effectively
correct for prediction errors in HWS conditions will be a key
objective for the next intelligence-sharing exercise.

In the outer range, the trial correction methods display
stronger average performance improvements and larger un-
certainty reduction from the baseline than in the inner range.
At least half of the submissions benefit from choosing a trial
method to predict outer range power production over the
baseline (Fig. 10a). All of the trial methods statistically sig-
nificantly reduce average NME from the baseline in the outer
range (Fig. 10b). All of the trial methods also reduce power-
prediction uncertainty from the baseline but are not statis-
tically significant (Fig. 10c). After applying strict filters for
the statistical tests (Sect. 3.5, Appendix C2 and C3), none of
the improvements or uncertainty reductions remain statisti-
cally significant (Fig. D1). Additionally, the trial methods are
far less useful in the inner range, yet the outer range consti-
tutes over half of the data samples and energy production, so
we primarily consider the method performance in the outer
range.

Summarizing all meteorological conditions, all of the trial
correction methods improve upon the baseline method by
yielding smaller overall errors. Each trial method results in
overall NMEs closer to zero than the baseline, and more
than half of the submissions gain skills in power prediction
by choosing a trial method over the baseline (last row in
Fig. 10). Although all the methods reduce the overall power-
prediction uncertainty from the baseline, the reductions in er-
ror variance are statistically insignificant. In general, apply-
ing a trial correction method leads to better power-production
prediction on average, yet the precision of the prediction does
not drastically improve. The trial methods have room for im-
provement in modeling power curves.
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Figure 10. (a) Heat map of the four trial methods’ improvement fractions upon the baseline method for the four WS-TI bins and the ITI-OS
bin in the outer range and the inner and outer ranges, calculated by combining the differences in absolute NMEs from individual submissions.
The numbers in each cell indicate the individual improvement percentage. (b) Heat map illustrating whether a trial method yields a smaller
absolute NME than the baseline on average in each data bin (grey) or not (white) and whether the result is statistically significant after
performing the one-sided matched-pair t test with an alpha of 0.05 (black). (c) Heat map representing whether the NME variance of a trial
method is smaller than the NME variance of the baseline method in each data bin (light purple) or not (white) and whether the result is
statistically significant after performing the Levene’s test with an alpha of 0.05 (dark purple).

In the outer range, the four trial methods perform better
than the baseline method for nearly all of the wind speeds
within a power curve. Given that normalized wind speeds
above 0.6 are critical for energy production (Fig. 7a), all trial
methods yield significantly better predictions for over half of
the submissions than the baseline for normalized wind speeds
between 0.6 and 0.8 in the outer range (Fig. 11a and b). Even
though the trial methods are able to reduce prediction uncer-
tainty across most wind speeds, the reductions are statisti-
cally insignificant (Fig. 11c).

The trial methods appear to have difficulties predicting
power near rated wind speeds. The advantage of the trial
methods in power prediction over the baseline diminishes
for normalized wind speeds between 0.8 and 1 (Fig. 11).
This nonlinear section of the power curve approaching rated
power demonstrates weakness in power prediction within the
current collection of trial methods. This feature amplifies af-
ter further outlier filtering (Fig. D2).

Den-Augturb is particularly skillful in power prediction
over the baseline method above rated wind speed in the outer
range (Fig. 11). Even after removing outliers and reducing
alpha, the individual improvement percentage for high winds
stays between 70 % and 75 % for Den-Augturb, unlike the
considerable percentage reductions for other trial methods
(Fig. D2a). Moreover, the average improvements via Den-
Augturb remain statistically significant in three HWS bins

(Fig. D2b). Den-Augturb also illustrates such leverage in the
outer range WS-TI analysis by being the only trial method
to reduce prediction uncertainty for both the HWS-LTI and
HWS-HTI bins (Figs. 10 and D1).

In some cases, outliers lead to notable prediction error re-
ductions of a trial method. The overlapping NME distribu-
tions suggest that the Den-Augturb method yields analogous
power-prediction errors to the baseline method near the cut-
in wind speed (Fig. 12a). With the aid of the Den-Augturb
correction, only 50 % of the data sets improve from the base-
line (Figs. 11a and 12c). Above the rated wind speed, the
Den-Augturb method tends to correct for the baseline’s ten-
dency to overpredict power (Fig. 12b). A few data sets report
extreme improvements (Fig. 12d); thus, the distribution in-
validates the Gaussian assumption of the t test. Even after
excluding those samples (to the left of the red dashed line in
Fig. 12d), the Den-Augturb adjustment at above-rated wind
speeds still significantly improves from the baseline method
(Fig. D2b). We recognize the limits of the t test caused by
the small sample size and the impacts of outliers; hence, we
use bootstrapping to justify the t-test results.

4.3.3 Bootstrap analysis

Results from bootstrapping assert the findings from the sta-
tistical analyses in Sect. 4.3.2. We use bootstrapping to val-

Wind Energ. Sci., 5, 199–223, 2020 www.wind-energ-sci.net/5/199/2020/



J. C. Y. Lee et al.: The Power Curve Working Group’s assessment 211

Figure 11. As in Fig. 10, but for the normalized wind speed bins in the outer range.

Figure 12. (a) Probability density distribution of NME per file
count from the baseline method (purple) and the density and aug-
mented turbulence (Den-Augturb) method (blue) for the outer range
normalized wind speeds between 0 and 0.1; (b) as in (a), but for the
outer range normalized wind speeds between 1.4 and 1.5. (c) His-
togram of the differences in absolute NMEs between the baseline
and the Den-Augturb shown in (a); (d) as in (c), but for the dif-
ferences shown in (b). The grey and red dashed lines denote the
zero NME difference and the 10th percentile of NME differences,
respectively. Note that the ranges of the panel axes differ.

idate the statistical significance of improvement upon the
baseline method (Fig. 13). Thanks to the nature of this sta-
tistical technique, bootstrapping only provides guidance on
the mean effect of the trial methods rather than the specific
error reduction for a particular turbine. Therefore, for a large
number of turbines, applying any of the trial methods signifi-

cantly improves power prediction on average (Fig. 13a). Sim-
ilarly, Den-2DPDM and Den-Augturb are respectively skill-
ful for low-to-moderate and HWS scenarios for an average
test case (Fig. 13b). Moreover, the coincidental bootstrap-
ping findings reflect the fact that the statistical test results
(Figs. 10 and 11) are representative.

We also perform the Levene’s test on the 10 000 boot-
strapped samples to evaluate the statistical significance of un-
certainty reduction by a trial method (not shown). The boot-
strapping analysis affirms the statistically insignificant un-
certainty reductions by any trial method as in Figs. 10 and
11.

Additionally, we perform the bootstrap hypothesis test
(simulating samples with means that fulfill the null hypoth-
esis and deriving the p value empirically) and the Wilcoxon
signed-rank test (a nonparametric test comparing the base-
line and a trial method). Those results match well with the
bootstrapped t-test results (Fig. 13); therefore, the bootstrap
analysis herein is reliable.

4.3.4 Lessons learned

To improve power-prediction corrections, the industry should
consider choosing a rigorous PDM based on a diverse col-
lection of data sets that accounts for different atmospheric
inflows. A contributing member of the PCWG derives the
PDMs tested in the Share-3 exercise using 16 data sets
(Sect. 1.1), which does not cover most turbine models, me-
teorological conditions, and terrains. The industry needs to
expand the reference data sets to develop a comprehensive
PDM. Altogether, fully eliminating power-prediction errors
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Figure 13. Heat maps of the matched-pair t-test results using the
means of the 10 000 bootstrapped samples. Passing the t test indi-
cates that the average of the 10 000 absolute NME means of a trial
method is significantly smaller than that of the baseline. The heat
maps are categorized into the four WS-TI bins, the ITI-OS bin in the
outer range as well as the inner and outer ranges (a), and normalized
wind speed bins in the outer range (b). The bootstrapping only uses
submissions without extreme improvements (Appendix C2). When
a trial method demonstrates average improvement and a statistically
significant average improvement from the baseline, the inflow con-
dition is labeled in grey and black, respectively.

requires a more extensive search for an optimal method with
a more reliable PDM.

Power production at high wind speeds in the outer range
requires attention. We spotlight the higher wind speeds be-
cause those conditions contribute heavily to energy produc-
tion (Sect. 4.2); nevertheless, the trial methods demonstrate
unremarkable improvements upon the baseline method in the
HWS-HTI cases (Fig. 10). Using Den-Augturb correction
displays skills in power prediction above rated wind speeds
in the outer range (Fig. 11), yet choosing the method does
not reduce prediction uncertainty significantly across wind
speeds (Sect. 4.3.2). Overall, the trial methods are more ac-
curate than the baseline in predicting power at HWS; how-
ever, the corrections are imprecise.

Precise and comprehensive data sharing is the key to ad-
vancing the industry’s capability in wind turbine power pre-
diction. The data and metadata the PCWG collected in the
Share-3 exercise cannot answer some of the research ques-
tions we originally raised. For example, we cannot derive
meaningful conclusions based on the geography or the time
of day of the power measurements. Meanwhile, the char-
acteristics of the data sets have a stronger influence on the
value of a trial method than the choice of the method itself
(Sect. 4.3.1). Therefore, ideally with higher-quality data, the
PCWG should examine the influences on prediction errors

from the metadata and the correction methods in the next
intelligence-sharing exercise.

Additionally, the low data resolution imposes limitations
on the statistical analysis in this study. For instance, the
PCWG analysis tool produces error statistics by summariz-
ing the 10 min data, so the collected data are already gener-
alized with temporal signals removed. The input data from
meteorological towers may also be noisy and undermine the
accuracy of the collected samples. The contributing members
of the PCWG also run the analysis tool individually. Such de-
centralized procedures introduce potential user errors; thus,
this analysis requires filtering of erroneous samples (Ap-
pendix C1). Even though the Share-3 exercise, the collected
data, and this analysis are embedded with uncertainty, this
study synthesizes the multiyear effort of the PCWG in mov-
ing the industry forward, sheds light upon the ideal combina-
tions of power-prediction methods, and thus aims to be a part
of the tangible contribution to the IEC 61400-15 group.

5 Conclusions

The goal of the Power Curve Working Group (PCWG) is to
advance the skills of the wind energy industry in modeling
wind turbine power performance in complicated atmospheric
conditions. This study discusses the findings from the Share-
3 exercise, which is an intelligence-sharing initiative of the
PCWG, its analysis tool for data collection, and its defini-
tions of inner range and outer range conditions. In addition
to the background information of the Share-3 exercise, this
study summarizes the analysis based on the 55 power perfor-
mance tests with modern wind turbines from nine contribut-
ing organizations.

In this study, we examine the performance of four cor-
rection methods for power prediction, including density and
turbulence (Den-Turb), density and two-dimensional power
deviation matrix (Den-2DPDM), density and augmented tur-
bulence (Den-Augturb), and density and three-dimensional
power deviation matrix (Den-3DPDM). We use the baseline
method (an interpolation to derive power curve) as the ref-
erence case, and we contrast the improvements in the power
prediction of four other trial methods against that reference.
We compare the correction methods using the normalized
mean error (NME), which describes the long-term average
bias of power prediction to actual power production. We also
use the matched-pair t test and Levene’s test to quantify
whether a trial method reduces average error and uncertainty
compared to the baseline in a statistically significant way. We
bootstrap the data to increase the representativeness of the
statistical tests, and we strengthen the statistical inference by
excluding the samples with substantial improvements.

We evaluate the trial methods primarily for high wind
speed (HWS) conditions in the outer range. A majority of the
meteorological conditions are classified as the outer range,
wherein the power production deviates from the reference

Wind Energ. Sci., 5, 199–223, 2020 www.wind-energ-sci.net/5/199/2020/



J. C. Y. Lee et al.: The Power Curve Working Group’s assessment 213

power curve. This finding agrees with our expectation be-
cause we need a sufficient amount of outer range data to val-
idate the trial correction methods. Given that the HWS sce-
narios correspond to a larger contribution to turbine power
production, the trial methods are more accurate at predicting
power production than the baseline at HWS, but the trial cor-
rection methods are as imprecise as the baseline. For more
than half of the submissions, the data sets have a larger in-
fluence on the prediction error than the choice of the trial
methods, which indicates the need for high-quality metadata
for further analysis.

This work serves as a foundation for the progress to come.
Looking forward, the lessons learned through the Share-
3 exercise suggest possible activities for the next phase of
the PCWG’s intelligence-sharing initiative. Specifically, new
trial methods involving more comprehensive PDMs based on
broad data sets, machine learning, and data from remote-
sensing devices (RSDs) should be applied and tested. Cor-
responding to the growing popularity of RSDs, we should
increase the volume of RSD-based data sets and thus the sta-
tistical significance of the analysis in future iterations of the
PCWG intelligence-sharing initiative.

Additionally, because of the shape of the power curve, we
find that among the Share-3 submissions, data with moder-
ate wind speeds that are close to rated wind speeds largely
contribute to the energy production. The existing wind speed
and turbulence intensity (WS-TI) definitions, with only low
and high bins, do not offer a proper arrangement for us
to analyze such data comprehensively. Therefore, the next
share exercise should consider further dividing wind speeds
into bins of low, medium, high, and rated wind speeds. We
should also consider the data with normalized wind speeds
above 1.5, which heavily impact power production. Eventu-
ally, we will use our findings to contribute to the International
Electrotechnical Commission (IEC) 61400-12 and 61400-15
standards.

Data sharing shapes the future of the wind energy indus-
try. Ultimately, sharing the 10 min power performance data
– although it requires a sea change of attitude across stake-
holders – will fundamentally advance the wind industry in
the most unimaginable ways. Despite the limited data we col-
lected, this analysis demonstrates the importance as well as
the implications of data sharing and should encourage future
collaborations.
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Appendix A

This section describes the correction methods tested in the
Share-3 exercise. All of the methods discussed here use the
piecewise cubic hermite interpolating polynomial (Fritsch
and Carlson, 1980) to derive the inner range power curve.
Specifically, the interpolation recursively adjusts estimated
power on the power curve to minimize prediction error in the
inner range (Marmander, 2016). The Power Curve Working
Group (PCWG) analysis tool (Sect. 3.2) uses the “PchipIn-
terpolator” in the SciPy package in Python (Virtanen et al.,
2020). The interpolation requires the separation of data into
different discrete bins and inevitably averages out the sample
variations within a bin. The predefined bin width also deter-
mines the dependency of power on wind speed, which can
introduce systematic error (Pandit and Infield, 2018a, b).

The participants used the same power deviation matrices
(PDMs) in their Share-3 submissions, so we can fairly exam-
ine the effectiveness of the PDMs in correcting power pre-
dictions. A PDM expresses the expected power deviation be-
tween the observed data and the predictions using a speci-
fied inner range power curve. In Share-3, depending on the
choice of the inner range definition (Sect. 3.1), the analysis
tool automatically applies one of the three versions of the
two-dimensional (2-D) and three-dimensional (3-D) PDMs
for each data set. The PDMs are included as part of the source
code of the PCWG analysis tool (version 0.8.0). We docu-
ment the code and provide the repository in the “Data avail-
ability” section.

Example calculations of the following correction methods
are documented as Microsoft Excel files, and they are also in-
cluded in the repository listed in the “Data availability” sec-
tion.

A1 The baseline method

The accuracy of each correction method in predicting the
outer range data based on the inner range measured power
curve is assessed relative to a reference method. Prior to
the derivation of the inner range power curve and subse-
quent predictions of outer range data, a density correction
is implemented to calculate the normalized wind speed (Vn).
The measured 10 min average wind speed (V10 min) has been
corrected to correspond to a constant reference density (ρ0)
in accordance with the methodology of the 2005 edition of
the International Electrotechnical Commission (IEC) 61400-
12-1 standard (International Electrotechnical Commission,
2005).

Vn = V10 min

(
ρ10 min

ρ0

) 1
3

(A1)

The method of calculation for the average density in each
10 min period (ρ10 min) is dependent on the nature of the data
set provided and the user configuration. It is either calcu-

lated from supplied temperature and pressure data or pro-
vided directly in the input time series data set (i.e., previously
measured or calculated by the participant institution). The ρ0
used here is 1.225 kg m−3 for all data sets.

Note that the air density correction in the IEC 61400-
12-1 standard, although often used in practice, assumes the
air density remains constant within the 10 min period (Bu-
laevskaya et al., 2015). Such an assumption oversimplifies
real-world meteorological conditions, especially when the
observed air density substantially differs from ρ0 (Pandit et
al., 2019). Therefore, using air density as an independent in-
put in statistical models such as Gaussian process, neural net-
work, and random forest can lead to smaller power curve pre-
diction errors than using the air-density-adjusted wind speed
(Bulaevskaya et al., 2015; Pandit et al., 2019).

A2 The density and turbulence (Den-Turb) method

The Den-Turb method consists of applying the density cor-
rection of the IEC 61400-12-1 2005 standard (described in
Appendix A1) in addition to the turbulence normalization
method described in Annex M of the 2017 edition of the IEC
61400-12-1 standard (International Electrotechnical Com-
mission, 2017). The turbulence correction method accounts
for the impact of wind speed variations about the mean in
each 10 min period as well as the nonlinearity of the power
curve. The turbulence correction is broadly divided into two
parts: the generation of the zero-turbulence power curve and
the correction of the reference power curve to a reference
turbulence intensity (TI) experienced at a site (Stuart, 2018).

We summarize the essential steps of the turbulence correc-
tion below. For simplicity, the power curve, turbulence inten-
sity, wind speed, and turbine power coefficient are abbrevi-
ated as PC, TI, WS, and cp in the following, respectively.

1 Use a reference (inner range) PC that is valid for a spe-
cific TI, and identify that TI as the reference TI.

2 Calculate the initial zero-TI PC.

2.1 Determine the reference PC parameters.

2.1.1 Use the reference PC to calculate the available power
for the specific rotor geometry using the cubic relation-
ship between WS and power – the resultant available
power should always be larger than the reference power
at each WS.

2.1.2 Based on the reference PC, identify the four reference
PC parameters (the cut-in WS, the rated power, the rated
WS, and the maximum cp).

2.2 Use the four reference PC parameters as inputs to con-
struct a zero-TI PC for each WS.

2.2.1 For WS below the input cut-in WS, assign zero power.
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2.2.2 For WS above the input rated WS, assign the input rated
power.

2.2.3 For other WS, preserve the cubic dependence of power
on WS and use the input cp to calculate power. At each
WS, the zero-TI power is the product of the WS and the
available power at the WS. To account for the impact of
TI on WS variation, each WS is expanded to a Gaus-
sian distribution, whereby the standard deviation is the
product of the WS and the reference TI. The resultant
expected power at each WS is the sum of products be-
tween the zero-TI power and the WS distribution.

2.3 Determine the resultant PC parameters.

2.3.1 For each WS, if the resultant expected power is larger
than the 10 % of the product of the rated power and the
WS, then label the WS as cut-in WS.

2.3.2 For each WS, divide the resultant expected power by the
available power to calculate cp.

2.3.3 Across WSs, select the minimum cut-in WS, the maxi-
mum power, and the maximum cp.

2.4 If the resultant PC fulfills all three convergence crite-
ria (when the cut-in WS, the maximum power, and the
maximum cp converge to those of the reference PC), do
the following.

2.4.1 Label that PC as the initial zero-TI PC, and select the
four input PC parameters (the cut-in WS, the rated
power, the rated WS, and the maximum cp) as the four
initial zero-TI PC parameters.

2.4.2 Otherwise, adjust the four reference PC parameters as
revised inputs and repeat steps 2.2 and 2.3 a maximum
of three times or until the convergence criteria are met.

3 Calculate the final zero-TI PC.

3.1 Use the four initial zero-TI PC parameters to construct
a PC.

3.1.1 For WS below the initial zero-TI cut-in WS, assign zero
power.

3.1.2 For WS above the initial zero-TI rated WS, assign the
initial zero-TI rated power.

3.1.3 For other WS, use the initial zero-TI cp and the available
power to calculate power, and the resultant power would
be valid for the specific TI.

3.1.4 Label the PC as the final zero-TI PC, and its maximum
power can exceed that of the reference PC.

4 Apply the final zero-TI PC to derive the turbulence cor-
rection.

4.1 Derive the simulated TI PC at the reference TI, for
which the power at each WS is the sum of the prod-
uct between the initial zero-TI power and the Gaussian
WS distribution.

4.2 Finally, calculate the turbulence-corrected PC:

corrected PC= reference PC+final zero-TI PC

− simulated TI PC. (A2)

A3 The density and two-dimensional power deviation
matrix (Den-2DPDM) method

The PDM correction method specifies a correction to be ap-
plied to power prediction for a given inflow bin of the data
set. The PDMs used in the Den-2DPDM method define the
correction to be applied dependent on normalized wind speed
and turbulence binning. The correction in terms of wind
speed and TI is the most common adoption of the PDM ap-
proach (Fig. 1 as an example).

As discussed earlier in Appendix A, the PDM applied to
any given data set is dependent on the inner range defini-
tion used to derive the inner range reference power curve.
The 2DPDM is applied based on the density-corrected wind
speed as discussed in Appendix A1. The predicted power
from the inner range power curve is thus corrected with a
predetermined power deviation value for each specific nor-
malized wind speed and TI.

One limitation of the 2DPDM is that the correction does
not apply to the wind speed or TI bins with zero data counts
(i.e., unpopulated bins), and no correction would be made to
the data in those bins. For instance, such a drawback takes
place when the wind turbine locations used to derive the
PDM rarely measure high wind speeds (Fig. 1 as an illustra-
tion). Hence, this correction becomes inapplicable for those
inflow conditions.

A4 The density and augmented turbulence
(Den-Augturb) method

The Den-Augturb method involves two steps: first, the cor-
rection employs the Den-Turb method (Appendix A2), then
the additional correction applies to the residual power devia-
tion from the Den-Turb-corrected power curve. The method
derives an empirical relationship between normalized wind
speed and the TI of the residual deviation, with the aid of a
specific reference TI. For Share-3, the Den-Augturb method
only applies to normalized wind speeds below 0.9. The Den-
Augturb method applies to the defined wind speed and TI
bins regardless of the data counts in any particular meteo-
rological conditions, which is an advantage over the Den-
2DPDM method (Appendix A3). The calculation of the em-
pirical turbulence is documented within the PCWG analysis
tool, as listed in the “Code availability” section.

For future iterations of the intelligence-sharing exercise, a
possible modification to the current Den-Augturb method is
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to create a 2DPDM using the power deviation residuals and
apply the PDM after the Den-Turb method (Appendix A2).

A5 The density and three-dimensional power deviation
matrix (Den-3DPDM) method

The Den-3DPDM correction method is similar in nature to
the Den-2DPDM method (Appendix A3). This correction
method consists of three variables: normalized wind speed,
TI, and rotor wind speed ratio (Power Curve Working Group,
2016), which is defined as

Rotor wind speed ratio

=
WS(Hub height+ ( 3

4 × rotor radius))

WS(Hub height− ( 3
4 × rotor radius))

, (A3)

where the rotor radius is half of the rotor diameter, and WS
denotes the wind speed at a given height.

We choose the rotor wind speed ratio over the shear expo-
nent of the power law or the log law because the magnitude of
the shear exponent depends on the measurement heights. The
same shear measured at two different height pairs yields two
different shear exponents; the shear exponent increases with
decreasing hub height (Gollnick, 2015). In contrast, the rotor
wind speed ratio accounts for the influence of hub heights
and rotor diameters on wind shear over the rotor swept area
and offers a fair and reliable depiction of shear across tur-
bine models. Moreover, as per the Den-2DPDM correction,
a 3DPDM is defined for each of the inner range definitions
of Sect. 3.1.

Note that increasing the number of data bins by switching
from a 2DPDM to a 3DPDM spreads the data samples thin-
ner, and smaller sample sizes in each bin could weaken the
overall statistical confidence of the correction method (Lee
et al., 2015a). Therefore, methods such as the regression tree
ensemble (Clifton et al., 2013) provide solutions for such a
dimension expansion problem.

A6 Other methods

We also implement other correction methods in the Share-3
exercise that require measurements at multiple heights, usu-
ally via remote sensing devices (RSDs). The shear normal-
ization corrections in the form of the rotor equivalent wind
speed (REWS) correction is applied to some of the partic-
ipant data sets and reported to the independent aggregator.
However, results pertaining to shear normalization correc-
tions are not discussed in this study because the sample of
those data sets is too small to draw statistically meaningful
conclusions. Typically, an RSD is used to acquire data sets
suitable for the application of REWS and similar corrections;
therefore, increased attention should be placed on increasing
the volume of RSD-based data sets in future iterations of the
PCWG intelligence-sharing initiative.

Appendix B

B1 Matched-pair t test

To better understand the statistical significance of the im-
provement for each trial method, we perform the matched-
pair t test (Montgomery and Runger, 2014). This is essen-
tially the Student’s t test on the distribution of differences
between the baseline method and each trial method, in terms
of their absolute normalized mean errors (NMEs).

We choose a one-sample, one-sided matched-pair t test us-
ing an alpha of 0.05. In statistical testing, alpha is a predeter-
mined probability level of rejecting the null hypothesis (H0)
when the null hypothesis is true. The null hypothesis of this
test is that the mean of the absolute NME difference distri-
bution is larger than or equal to zero. In other words, the null
hypothesis is that the trial method performs on par with, or
worse than, the baseline in terms of absolute NME. The al-
ternative hypothesis (HA) is that the mean difference of ab-
solute NMEs between a trial method and the baseline is less
than zero, which indicates the trial method works better than
the baseline method. The null hypothesis and the alternative
hypothesis are mathematically presented as follows.

H0 :
1
n

∑n

i
(|NMEmethod (submissioni)

| − |NMEbaseline (submissioni)|)≥ 0 (B1)

HA :
1
n

∑n

i
(|NMEmethod (submissioni)

| − |NMEbaseline (submissioni)|)< 0 (B2)

To reject the null hypothesis of this one-sided test, the resul-
tant t statistic needs to be negative and the resultant p value
(probability to observe the t statistic) divided by 2 must be
less than alpha. When the null hypothesis of a certain atmo-
spheric condition (for example, in the outer range) of a trial
method is rejected, that means the improvement of such a
method upon the baseline in the specific condition is statisti-
cally significant.

B2 Levene’s test

We also perform the Levene’s test (Brown and Forsythe,
1974; Gastwirth et al., 2009; Levene, 1960), which is a sta-
tistically robust version of the F test that compares the vari-
ances of two sample distributions. The objective of the Lev-
ene’s test is to determine the statistical significance of the
difference between two sample variances. An advantage of
the Levene’s test over a typical F test is that the Levene’s
test works for non-Gaussian distributions. We perform the
Levene’s test to a trial method only when the variance of that
method’s NMEs is smaller than the baseline’s.

In contrast to the matched-pair t test on the differences
of absolute NMEs, we apply the Levene’s test on the NME
distributions of the baseline method and a trial method. We
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select an alpha of 0.05 for all the Levene’s test. The null hy-
pothesis is that the variance of the NMEs from the baseline
equals the variance of the NMEs from a trial method, and the
alternative hypothesis is that the two entities differ. The null
hypothesis and the alternative hypothesis are mathematically
presented as follows.

H0 : variance(NMEbaseline)= variance(NMEmethod) (B3)
HA : variance(NMEbaseline) 6= variance(NMEmethod) (B4)

To reject the null hypothesis, the resultant p value has to
be smaller than the predetermined alpha. Because we only
perform the Levene’s test when a trial method’s NME vari-
ance is smaller than the baseline’s, when the null hypothesis
of the trial correction method for a certain atmospheric con-
dition is rejected, the trial method reduces the uncertainty
in power prediction from the baseline method with statisti-
cal significance. In general, few subsets of the submissions
across atmospheric conditions pass the Levene’s test, imply-
ing that the trial methods do not reduce uncertainty from the
baseline in power prediction in most cases.

B3 Bootstrapping

To consolidate the statistical inference, we resample the lim-
ited set of submissions of the same sample size with re-
placement 10 000 times, a process known as bootstrapping.
(Wilks, 2011). Bootstrapping preserves the same empirical
distributions of the data, and each bootstrap sample matches
the size of the observed sample.

For each bootstrap sample, we calculate the mean of the
absolute NME differences as well as the two variances of
the baseline method’s NMEs and a trial method’s NMEs. For
each inflow bin, we perform the matched-pair t test using the
10 000 bootstrapped means, which is approximately Gaus-
sian according to the central limit theorem. In Fig. 13, for
each bootstrap iteration, we select samples of the baseline–
trial method NME pairs randomly from the data submissions.
For each simulated subset of data, we calculate the mean ab-
solute NME difference and we perform one t test using the
10 000 means in Fig. 13. Furthermore, we also perform the
Levene’s test 10 000 times between the baseline method and
the trial method for each bootstrap sample. For each data bin,
we calculate the fraction of the 10 000 bootstrapped samples
that pass the Levene’s test (not shown).

Fundamentally, the objective of bootstrapping is to as-
sess the representativeness of the results from the matched-
pair t test and the Levene’s test using the given collected
set of submissions before any outlier removal. Note that we
bootstrap using all the data after filtering out the erroneous
samples (Appendix C1) as well as excluding the substan-
tially improved data samples from the baseline method (Ap-
pendix C2). Depending on the data bin, the post-filtering
sample size varies between 41 and 46 data sets.

B4 Kolmogorov–Smirnov (K–S) test

One limitation of the t test (Appendix B1) is that it assumes
Gaussian sample distribution. We perform the Kolmogorov–
Smirnov (K–S) test (Wilks, 2011), which examines the good-
ness of fit between two distributions, on our samples. We use
the K–S test with an alpha of 0.05. To validate the t test, the
null hypothesis of the K–S test we use states that the sample
is drawn from the Gaussian distribution.

Because of the negative results from the K–S tests, the
matched-pair t-test results have uncertainty. Meanwhile,
based on the distribution shapes of absolute NME distribu-
tions (Fig. C2, for example), we consider our data samples
to be approximately Gaussian. After excluding samples with
substantial improvements from the baseline method (Ap-
pendix C2), nevertheless, the shapes of the distributions are
closer to Gaussian qualitatively. Hence, we have strong con-
fidence in the t-test results on filtered samples.

Although few samples across all the atmospheric condi-
tions and trial methods pass the K–S test, real-world data are
rarely perfectly Gaussian. Moreover, the K–S test is a highly
stringent check for the Gaussian assumption. Therefore, the
matched-pair t test is still a useful tool in practice, and we
implement various procedures, including bootstrapping (Ap-
pendix B3) and outlier filtering (Appendix C2), to make the
t tests as rigorous and valuable as possible.

Appendix C

C1 Filtering erroneous submissions

A key step for data quality control is to omit the submissions
with absolute inner range NMEs larger than 1 %. Theoreti-
cally, each submission should record an inner range NME of
zero. In other words, by definition the turbine should produce
at or above capacity on average in the inner range. Hence,
we exclude a total of three erroneous submissions with large,
nonzero NMEs in the inner range (nonzero blue bars on the
left in Fig. C1a). Note that all of the three submissions are
from the same organization.

After filtering, the inner range NMEs hover around 0 %
(Fig. C1b); the outer range NMEs span almost 15 % around
0 % (Fig. C1c). In this paper, we only evaluate the 52 inner
range NME-filtered submissions in Sect. 4, unless stated oth-
erwise.

As stated in Sect. 3.4, we introduce a fifth bin of inner
range TI and outer range wind shear (ITI-OS) for those outer
range data not characterized by the four basic wind speed and
turbulence intensity (WS-TI) bins. In four of the 52 NME-
filtered submissions, some of the 10 min outer range data are
double counted in the four WS-TI bins and the ITI-OS bin,
caused by the binning arrangement of the PCWG analysis
tool. Therefore, we only analyze the other 48 proper data sets
for the WS-TI-related analysis in this study.
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Figure C1. Histogram of NMEs using the baseline method:
(a) NMEs of inner range (dark blue) and outer range (light blue)
before filtering; (b) inner range NMEs after filtering out the submis-
sions with absolute NMEs larger than 1 %, categorized into three
inner range definitions – definition A in dark green, definition B in
green, and definition C in lime; (c) outer range NMEs categorized
into three inner range definitions with the same color scheme as
in (b).

C2 Filtering submissions with substantial improvement

For parts of the statistical analysis, we remove the few data
sets when a trial method demonstrates substantial improve-
ments upon the baseline method. Specifically, we exclude the
submissions in the 0.1 quantile, or the 10th percentile of the
absolute NME differences between the baseline and a trial
method, in each atmospheric condition. After this filter, the
remaining samples are thus not skewed by remarkably im-
proved submissions; in return, the statistical inference from
the matched-pair t test (Appendix B1) and the Levene’s test
(Appendix B2) becomes more rigorous. Note that this filter
is only applied to the results in Sect. 4.3.3 and Appendix D.

For example, we filter out the most negative submissions
in Fig. C2. The overall NME in each submission summa-
rizes all 10 min data points with a single value from each
trial method. The absolute NME difference of each submis-
sion between the baseline and a trial method in Fig. C2 de-
termines whether the trial method improves or worsens from
the baseline across atmospheric conditions. In other words,
we illustrate the distributions of the contrasts between the
baseline and a trial method in Fig. C2. Across trial meth-
ods, the samples with strongly negative differences of abso-
lute NMEs display the outliers of considerable improvements
from the baseline (Fig. C2). Those samples remarkably influ-
ence the average performance of a trial method, especially in
the matched-pair t test. As a result, removing them makes
the t test more rigid (Figs. D1 and D2). Note that the distri-
butions of absolute NME differences in Fig. C2, as well as
the majority of the NME difference distributions we discuss

Figure C2. (a) Probability density distribution of overall differ-
ences in absolute NMEs per file between the baseline method and
the four trial methods: Den-Turb in black, Den-2DPDM in blue,
Den-Augturb in light blue, and Den-3DPDM in grey; (b) as in (a),
but after filtering the 0.1 quantile of absolute NME differences.
Negative data points mean the specific trial method yields an over-
all absolute NME closer to zero than the baseline for those sub-
missions, and data with positive values indicate that such a method
results in larger overall absolute NMEs than the baseline. The grey
dashed line in each panel marks the NME difference of zero.

in this study, do not pass the K–S test and are not strictly
Gaussian.

Of those samples with substantial improvements from the
baseline method across the four trial methods, a majority
of those few submissions come from two organizations. Be-
cause of the limited metadata collected, we cannot draw any
meaningful conclusions on why those cases from the two
organizations record considerable improvements upon the
baseline. After all, the input data set has a stronger influence
on the degree of improvements from the baseline than the
choice of the trial method.

C3 Bonferroni correction

For the statistical tests we perform in this study, given an al-
pha of 0.05, each of the tests has a 5 % chance of leading
to false positives, or a 5 % chance of incorrectly rejecting
the null hypothesis. Therefore, the more statistical tests we
present simultaneously, the chance of yielding false positives
becomes higher. This problem of multiple testing can be ad-
dressed by applying the Bonferroni correction to reduce al-
pha (Wilks, 2006, 2011), in which we divide alpha by the
number of bins in each data category for each trial method.
For example, we divide an alpha of 0.05 by 5 for the four
WS-TI bins and the ITI-OS bin for the WS-TI analysis in
Fig. D1. We use a reduced alpha for every matched-pair t
test and Levene’s test for each trial method. Note that this
filter is only applied to the results in Appendix D.

Overall, the Bonferroni correction serves a precautionary
purpose. Because we perform multiple statistical tests across
bins of the inflow categories, we reduce the error rates of
false positives for prudence. Each matched-pair t test has its
own null hypothesis, and the data samples are independent
by nature. For example, in the top row of Fig. 10b, the null

Wind Energ. Sci., 5, 199–223, 2020 www.wind-energ-sci.net/5/199/2020/



J. C. Y. Lee et al.: The Power Curve Working Group’s assessment 219

hypothesis is that a trial correction method does not yield
smaller error from the baseline in low wind speed and low
turbulence intensity (LWS-LTI) conditions in the outer range.
In the second row of Fig. 10b, the null hypothesis is that the
trial correction method does not yield smaller error compared
to the baseline in low wind speed and high turbulence inten-
sity (LWS-HTI) cases. Both tests are independent, both tests
use distinct data sets, and, specifically, data for LTI and HTI,
by nature, do not overlap. Hence, a blanket reduction of al-
pha may make the tests overly rigorous. Nevertheless, the
Bonferroni correction is useful, so we present results with a
strict and trustworthy statistical inference (Fig. D1).

Appendix D

Figure D1. As in Fig. 10, but after removing the submissions with a method’s substantial improvement upon the baseline method (top
10 percentile of the absolute NME differences) as well as using smaller alphas based on the Bonferroni correction (the bin number is two for
the inner and outer ranges).
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Figure D2. As in Fig. D1, but for normalized wind speed bins in the outer range.
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Code availability. The PCWG analysis tool is hosted on GitHub
at: https://github.com/PCWG/PCWG (Stuart and Cameron, 2020).
The analysis of the Share-3 exercise can be found at: https://github.
com/PCWG/PCWG-Share-3 (Stuart and Lee, 2020).

Data availability. The documents related to the Share-3 exercise
are available at: https://zenodo.org/communities/pcwg/ (Clifton,
2020). The example calculations of the zero-turbulence power curve
and the corrected power at target wind speed and turbulence (Ap-
pendix A2) are also included in the repository.
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