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Abstract. This paper aims to develop fast and reliable surrogate models for yaw-based wind farm control. The
surrogates, based on polynomial chaos expansion (PCE), are built using high-fidelity flow simulations coupled
with aeroelastic simulations of the turbine performance and loads. Developing a model for wind farm control is
a challenging control problem due to the time-varying dynamics of the wake. The wind farm control strategy is
optimized for both the power output and the loading of the turbines. The optimization performed using two Vestas
V27 turbines in a row for a specific atmospheric condition suggests that a power gain of almost 3%± 1% can
be achieved at close spacing by yawing the upstream turbine more than 15◦. At larger spacing the optimization
shows that yawing is not beneficial as the optimization reverts to normal operation. Furthermore, it was also
identified that a reduction in the equivalent loads was obtained at the cost of power production. The total power
gains are discussed in relation to the associated model errors and the uncertainty of the surrogate models used in
the optimization, as well as the implications for wind farm control.

1 Introduction

Wind turbines operating in the wake of upstream turbine(s)
experience power losses and increased fatigue loads. Accord-
ingly, wind farm control aims at improving the power pro-
duction and potentially decreasing structural loads by opti-
mizing the collective operation of the wind farm, as well as
providing better integration of wind power into the grid. In-
tentionally yawing the turbine has been the focus of recent
studies as one of the methods to mitigate the wake effects.
The objective is to intentionally change the trajectory of the
wake in order to increase the power output of the downstream
turbine(s) and possibly reduce the fatigue loads.

However, in order to apply yaw-based wind farm control,
a thorough understanding of the wake and the loading on
the wind turbine components is necessary. The earliest stud-
ies investigating the performance of a propeller in yaw were

conducted by Ribner (1943), Anderson (1979), and Smulders
et al. (1981). Recently the concept of yawing the turbine has
gained renewed interest focusing on the effect of the wake on
downstream turbines. The characteristics of the wake have
been analysed in various studies, e.g. Knudsen et al. (2015)
for an overall review. Numerous wind tunnel experiments
have shown the potential of redirecting the wake, e.g. Medici
and Dahlberg (2003), Medici and Alfredsson (2006), and
Bartl et al. (2018a). Fleming et al. (2014) evaluated differ-
ent techniques to redirect the wake using high-fidelity sim-
ulations and concluded that yaw misalignment has the most
promising potential. Gebraad et al. (2017) showed that this
can potentially increase the power output and the annual en-
ergy production (AEP) of the total wind farm.

However, these numerical studies are computationally de-
manding, while dynamic wind farm control requires fast and
reliable wake models in the optimization loop. Therefore, en-
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gineering models which capture the effects of wake steering
are necessary. Jiménez et al. (2010) developed such a model
to describe the wake deflection. This was combined with a
multi-zone wake deficit model in FLORIS (FLOw Redirec-
tion and Induction in Steady State). The FLORIS framework,
see Annoni et al. (2018), now includes an alternative wake
model by Bastankhah and Porté-Agel (2014), which is fur-
ther extended in Bastankhah and Porté-Agel (2016). How-
ever, FLORIS yields time averaged results for power pre-
diction, while a model that combines the estimation of both
power output and the structural loading on the wind tur-
bine is crucial in order to apply yaw-based wind farm con-
trol. The majority of the studies have only implemented the
power gain in the cost function; see Gebraad et al. (2016),
Fleming et al. (2016), Kragh and Hansen (2015), and Ge-
braad et al. (2017). However, van Dijk et al. (2016) combined
the FLORIS framework with the CCBlade model in order to
analyse the impact of yaw control on the power output as
well as turbine loading. Their results show that a decrease
in loading is possible at the cost of a reduction in the power
production.

This study aims to develop and validate yaw-based wind
farm control strategies, based on surrogate models through
the use of the high-fidelity flow solver EllipSys3D LES (large
eddy simulation) and the aeroelastic tool Flex5. A surrogate
model essentially constructs response surfaces based on the
input and output of the determined domain. Both the power
output and the turbine loading are included in the optimiza-
tion and assessment of different wind farm control settings.
The analysis also highlights the advantage of using the surro-
gate models as compared to the conventional analytical mod-
els in the optimization.

2 Methodology

2.1 High-fidelity simulation of wind turbine wakes and
wind turbine response

The turbulent wake behind a wind turbine is simulated using
EllipSys3D and the actuator line method to represent the tur-
bine, while the turbine performance and response are calcu-
lated using the aeroelastic tool Flex5. These tools and meth-
ods are briefly described in the following; for a more com-
prehensive description, see Sørensen et al. (2015).

2.1.1 Large eddy simulation

Large eddy simulations (LESs) have been performed with El-
lipSys3D, which was developed at the Technical University
of Denmark by Michelsen (1992) and by Sørensen (1995).
EllipSys3D solves the discretized incompressible Navier–
Stokes equations in general curvilinear coordinates using a
block-structured finite volume approach. The large-scale tur-
bulence is simulated directly by the Navier–Stokes equations,
whereas the turbulence eddies smaller than a predefined grid

size, 1x, are modelled using a subgrid-scale model. The in-
compressible and filtered Navier–Stokes equation is given in
Eq. (1), and the continuity equation is given in Eq. (2). Here,
V = (u,v,w) is the filtered velocity vector, x is the position
vector, p is the filtered pressure, ρ is the density, ν is the
kinematic viscosity, t is the time, and f represents external
body forces. The external body forces are used to represent
the turbine and the atmospheric boundary layer and to im-
pose turbulence, and these body forces will be described in
more detail in Sect. 2.1.2, 2.1.3 and 2.1.4. A hybrid scheme
formed from a third-order QUICK scheme (Leonard, 1979)
and fourth-order central differencing scheme is used to dis-
cretize the non-linear terms.

∂V

∂t
+V · ∇V =−

1
ρ
∇p+∇[(ν+ νSGS)∇V ] +

1
ρ

f WT

+
1
ρ

f PBL+
1
ρ

f turb, (1)

∇V = 0. (2)

2.1.2 Prescribed boundary layer

The atmospheric boundary layer is modelled by using body
forces (f PBL) throughout the computational domain. This
makes it possible to model the shear profile and the atmo-
spheric turbulence independently as described in Troldborg
et al. (2014) and to apply any arbitrary wind shear (and po-
tentially veer) profiles; see for instance Hasager et al. (2017).

2.1.3 Atmospheric turbulence

Turbulence is introduced to the Navier–Stokes equation by
imposing body forces (f turb) into the flow applied in a plane
upstream of the turbine; see Gilling et al. (2009). The im-
posed turbulence fluctuations are obtained from a Mann tur-
bulence box; see Mann (1994) and Mann (1998). The model
requires three input parameters: αTurb · ε

2/3, LTurb, and γ ,
where αTurb is the Kolmogorov constant, ε is the rate of vis-
cous dissipation of specific turbulent kinetic energy, LTurb is
the turbulence length scale, and γ is a measure of turbulence
anisotropy.

2.1.4 Rotor modelling

The wind turbine is modelled using the actuator line method
(AL), as developed by Sørensen and Shen (2002) and im-
plemented in EllipSys3D by Mikkelsen (2003) and Trold-
borg (2009), which imposes body forces (f WT) along rotat-
ing lines in the numerical domain. Here, the actuator lines
are coupled to the aeroelastic tool Flex5 developed by Øye
(1996), which gives the aerodynamic forces on the rotor
blades and deflections; see Sect. 2.1.6.
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Figure 1. Prescribed boundary layer in EllipSys3D. The shaded
red area indicates the wind profile ±σ . The green area represents
the rotor area.

2.1.5 EllipSys3D setup

The numerical domain used for the simulations is 60R×
14R× 40R in the streamwise, lateral, and vertical direc-
tions, respectively. The grid points are equidistantly dis-
tributed in a central region of the domain, where the tur-
bine and wake are located. The central region is located at
7− 53R× 3− 11R× 0− 8R and the mesh is stretched out-
side of the central region towards the boundaries. The domain
consists of 920×192×192 grid points for a total of approx-
imately 34× 106 grid points. The grid resolution in the cen-
tral region corresponds to 22 cells per blade, which implies
that the simulations do not capture distinct tip vortices from
the individual blades. However, the curled wake and the oth-
erwise detailed wake dynamics are captured, which is used
as input to the subsequent aeroelastic simulations. The simu-
lated inflow is converted to a polar coordinate system in order
to perform the simulation in Flex5. A convergence study was
performed to determine the required number of radial and az-
imuthal stations in the polar coordinates, which showed that
10 radial stations and 36 azimuthal stations were sufficient.

Cyclic boundary conditions have been applied on the lat-
eral boundaries, no-slip on the bottom, and far-field con-
ditions on the top boundary. The prescribed atmospheric
boundary layer profile is shown in Fig. 1, including the stan-
dard deviation and the rotor area. Furthermore, no veer has
been imposed in the current simulations.

The Mann box has been generated using the following pa-
rameters: αTurb · ε

2/3
= 0.03379 m4/3 s−2, LTurb = 156.69 m,

and τ = 3.0516. All simulation cases are performed with the
same turbulence seed, i.e. the exact same inflow, which en-
ables direct comparison between the different yaw settings.
The initial transient as the wake develops throughout the do-
main has been discarded, so each simulation is run for a total
time of 1362 s (≈ 22 min).

Table 1. Main parameters of the Vestas V27 given in Resor and
LeBlanc (2014).

Parameter Value Unit

R 13.5 (m)
HHub 32.6 (m)
Prated 225 (kW)
wrated 44 (rpm)
Urated 11.74 (m s−1)
θTilt 4 (◦)
λ 7.61 (–)

Table 2. Calibration of the V27 model based on the experimental
data from Resor and LeBlanc (2014). “FA” indicates the fore–aft
motion of the turbine.

Modal frequency (Hz) Experimental Flex5 model

1st rotor flapwise sym. 2.40 2.36
2nd rotor flapwise sym. 6.67 7.11

1st tower FA 1.01 0.98
2nd tower FA 7.97 8.06

2.1.6 Flex5

For the simulations in EllipSys3D, a Flex5 model of the V27,
which is based on the V27 turbines located at the SWiFT
facility as described by Resor and LeBlanc (2014), is used.
The main parameters of the V27 wind turbine are given in
Table 1, indicating the rated wind speed (Urated), the rated
power (Prated), the rated rotor speed (wrated), the rotor ra-
dius (R), the hub height (HHub), the tilt angle (θTilt), and the
tip speed ratio (λ). The eigenfrequencies are calibrated ac-
cording to the reported experimental values and show a good
match as given in Table 2.

2.2 FLORIS setup and turbine recalibration

FLORIS1 is an engineering model aimed at estimating the
wake deficit and the trajectory behind a yawing turbine.
FLORIS contains various wake deficit models, see Annoni
et al. (2018), yet only the Gaussian wake model is used here
for further analysis.

The input parameters for FLORIS are determined from the
EllipSys3D setup. Furthermore, the turbine characteristics,
shown in Table 1, together with the CP and CT curves of
the V27 are also used as input. The parameters P P and P T,
which characterizes the power loss due to yaw misalignment
and tilt angle, are recalibrated for the V27 using Flex5 un-
der uniform and steady inflow. The parameters P P and P T

are determined for the V27 turbine as 1.4 and 1.25, respec-

1The python code of the FLORIS model was obtained from
GitHub and version 0.1.1 was used (https://github.com/WISDEM/
FLORIS, last access: 11 June 2018).
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tively, with η = 1. These are lower compared to the values
of the NREL 5 MW, which has a value for P P and P T equal
to 1.88. Note that the calibration is limited to P T and P P

for this study, and the default parameters reported in Annoni
et al. (2018) are used for wake deflection and velocity deficit
estimations.

2.3 Surrogate model

The main purpose of a surrogate model is to build a model
that defines the relationship between the input and the output
of a given data set in a fast and accurate manner. In the recent
study of Dimitrov et al. (2018), six surrogate models were
benchmarked in terms of their ability to predict the lifetime
fatigue loads. The benchmark recommended using the poly-
nomial chaos expansion (PCE) as the most beneficial surro-
gate method for quick assessment of loads. PCE is a power-
ful surrogating technique which aims to provide a functional
approximation of a computationally complex model through
its spectral representation on a basis of polynomial functions.
Considering a set of independent stochastic variables, X, de-
scribed by the joint probability density function, f (X), and
a computational model as a map, Y =M(X), the PCE of
M(X) can be defined as

Y =M(X)=
∑
α ∈ N

yα8α(X), (3)

where 8α(X) are multivariate polynomials which are or-
thonormal with respect to f (X), α ∈ N is a multi-index
that indicates the components of the multivariate polynomial
8α , and yα represents the corresponding coefficients which
are iteratively determined. Due to its simplicity and fast con-
vergence, the PCE is also widely used in comparison to a full
Monte Carlo simulation; see Murcia et al. (2018) and Sudret
(2008). In this study, it is used to create a response surface
of the DEL and the power output obtained from Flex5 with
inflow generated by LES.

The surrogate model was built using the python software
toolbox Chaospy (http://chaospy.readthedocs.io/en/master/
installation.html#from-source, last access: 7 May 2019),
which is a numerical tool that enables uncertainty quantifica-
tion using PCE and the advanced Monte Carlo method. It was
first introduced by Feinberg and Langtangen (2015). Further-
more, the point collocation method is used to build the re-
sponse surface of the surrogate model. It is a non-intrusive
method which builds upon the idea of fitting the polynomials
to the input variable by solving a linear system arising from
a statistical regression. The response of the surrogate model
is build via orthogonal polynomial families using the three
term recursion relation, which depends on the selected distri-
bution of the input parameters. For statistically independent
distribution of the input parameter, a multivariate polynomial
expansion in Chaospy can be created using the tensor prod-
uct rule of univariate polynomials described in Feinberg and
Langtangen (2015). The standard statistical linear regression

approach is used to fit the polynomial sets, 8α , to the given
set of data points, which determines the final coefficients of
the surrogate model, yα . The order of the polynomial sets
needs to be defined, which influences the output of the surro-
gate model.

2.3.1 Surrogate training data set

The training data for the surrogate models for the upstream
and the downstream turbine are obtained from simulations
performed with the aeroelastic tool Flex5. These simulations
have been run using detailed turbulent inflow generated via
EllipSys3D with a single turbine operating at different yaw
misalignment. The angle between the rotor axis and the free-
stream velocity is denoted by ψ . A positive yaw angle is a
clockwise rotation of the turbine and a negative yaw angle
is a counterclockwise rotation viewed from above. A total
of nine simulations are performed with yaw angles of the
upstream turbine of ψ1 =−35, −30, −25, −15, −5, 0, 5,
15, 30◦. Turbulent flow fields are extracted and used as in-
put to Flex5 for different downstream turbine distances, sx =
4R,5R,. . .,18R. Hence, the downstream turbine does not af-
fect the flow, and it is therefore denoted as a “ghost turbine”.
A ghost turbine is indicated in Fig. 4, where the planes of the
velocity components are extracted. The downstream ghost
turbine is modelled for yaw angles of ψ2 =−30, −27.5, . . . ,
30◦. An additional simulation was performed in EllipSys3D
with no turbine, where the flow in the turbine position was
extracted and used as input to Flex5 to create the surrogate
for the upstream turbine. This was done to ensure a similar
model error and uncertainty between the surrogate of the up-
stream and downstream turbine, which is particularly critical
for the comparison and normalization of the results.

Table 3 gives an overview of the simulated cases. This cre-
ated 27 combinations for the upstream turbine and 9× 25×
15= 3375 combinations of yaw angles and downstream dis-
tances for the downstream turbine, which are used as input to
train the surrogate models.

2.3.2 Surrogate model setup

Surrogate models have been created for the power and the
damage equivalent loads (DEL) for both the upstream and
the downstream ghost turbine pair. Together with the pro-
duced power, only the DEL of the flapwise root bending mo-
ment and the total bottom tower bending moment are used
to assess the effect of the yaw angle. This was done in or-
der to simplify the model and to include the most important
DEL influenced by yaw steering. The models are constructed
using three input parameters: the upstream yaw angle (ψ1),
the downstream yaw angle (ψ2), and the spacing between the
upstream and downstream turbine (sx). Each input parameter
is assigned a distribution, for the upstream and downstream
yaw angle (ψ1 andψ2) a normal distribution with µ= 0◦ and
σ = 4.95◦ is used. These values are derived from the distri-

Wind Energ. Sci., 5, 309–329, 2020 www.wind-energ-sci.net/5/309/2020/

http://chaospy.readthedocs.io/en/master/installation.html#from-source
http://chaospy.readthedocs.io/en/master/installation.html#from-source


P. Hulsman et al.: Wake steering wind farm control using surrogates of high-fidelity simulations 313

Table 3. Overview of the cases simulated with the coupling between EllipSys3D LES and Flex5 and the cases simulated with the extracted
flow field in Flex5.

Coupling between Simulated Coupling between Simulated
EllipSys3D ghost turbines EllipSys3D ghost turbines

and Flex5 and Flex5

ψ1 – [−35◦ : 2.5◦ : 30◦] [−35◦, −30◦, −25◦, −15◦, −5◦, 0◦, 5◦, 15◦, 30◦] –
ψ2 – – – [−30◦ : 2.5◦ : 30◦]
sx – – – [4R : 1R : 18R]

bution of the wind direction at hub height in the LES. A uni-
form distribution is used for the turbine spacing, since the
downstream distance is fixed at a certain location.

Three unique surrogate models for the upstream turbine
were created for the power as well as the DEL for the flap-
wise root and the tower bending moments. Note that these
upstream surrogate models only depend on the upstream yaw
angle (ψ1). Another three surrogate models are created for
the downstream turbine. However, the output of these mod-
els depend on the upstream yaw angle (ψ1), the downstream
yaw angle (ψ2), and the spacing between the turbines (sx).
The surrogate models are created with the numerical data be-
tween 4R ≤ sx ≤ 18R. Figure 2 gives an overview of the
various surrogate models created, the output and the corre-
sponding distribution of the input parameter from which the
multivariate polynomial sets are built.

In addition, the stability of the surrogate models are im-
proved by increasing the number of data points. Multiple re-
alizations are extracted from the time series of Flex5 using a
moving average with a window of 10 min shifted every 30 s.
Therefore, there are 23 individual points for each unique con-
figuration. This results in 9× 23= 207 and 9× 24× 30×
23= 149 040 data points for training. The input variables
were normalized (or scaled) for the creation of the surrogate
model in order to give each parameter equal weight, hence
avoiding the potential bias in the model towards one param-
eter. As a result, the output is also normalized, but its scale is
inverted to give the absolute values during the analysis of the
results.

The example data set and the script for the sur-
rogate model training can be found at the project
git (https://github.com/Paul1994H/PCE-surrogates-for-
power-and-loads-under-wind-farm-control.git, last access:
13 November 2019).

3 Results

First, the turbine performance, wake deflection and velocity
deficit is analysed for different yaw angles and downstream
distances. Then the surrogate models for the upstream and
downstream turbines are created, analysed, and used to opti-
mize the operation of the turbine pair, which is examined in
terms of uncertainty and model errors.

3.1 Turbine performance

The power output of the upstream turbine for the yaw cases
ψ1 =−30◦ and ψ1 = 0◦ is shown in Fig. 3. The power pro-
duction is initially smooth before the imposed turbulence
reaches the turbine and the wake starts to develop. The power
output is clearly dynamic, and it is evident that the power
production of the yawed turbine is significantly lower than
normal operation. Interestingly, a reduction in the power fluc-
tuations can also be observed for ψ1 =−30◦ operation case
but further investigation of that phenomenon is left as future
work. The transient period of 100 s is indicated by the dotted
line, and it has been discarded from the analysis, resulting in
a total simulation time of 1261.62 s (≈ 21 min).

3.2 Wake deflection and velocity deficit

As the turbine is yawed, the inflow is no longer aligned with
the rotor axis. The misalignment leads to a difference in the
axial induction and thus an asymmetric loading on the ro-
tor blades; see Branlard (2017). Additionally, the total thrust
also decreases, as demonstrated in Bastankhah and Porté-
Agel (2016). Bastankhah and Porté-Agel (2016) also illus-
trated how the wake deflection increases with increasing yaw
angle. The wake is deflected as a yawed turbine exerts a lat-
eral force on the incoming flow, which induces a spanwise
wake velocity due to the conservation of momentum.

The deflected wake extracted from EllipSys3D is shown
in Fig. 4 for ψ1 =−30◦, ψ1 = 0◦, and ψ1 = 30◦. The fig-
ures show the average relative velocity ( u

u∞
) at hub height

behind a single turbine. Here, u∞ is the average incoming
streamwise component at hub height. The asymmetric wake
is clearly visible; see Fleming et al. (2018) for more details.
It is also evident how negative yaw angle leads to a higher
deflection compared to a positive yaw angle.

3.3 Power surface

3.3.1 High-fidelity simulation results

Figure 5 shows the cumulative power production of the two
turbines for three different upstream yaw angles (ψ1) as a
function of turbine spacing sx

R
and downstream turbine yaw

angle ψ2. The cumulative power production has been nor-
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Figure 2. Overview of the created surrogate models for the upstream turbine and the downstream turbine. The distribution of the upstream
yaw angle (ψ1) and the downstream yaw angle (ψ2) is set to be Gaussian, and the spacing between the upstream and the downstream turbine
(sx) is set to have a uniform distribution. The surrogate models account for the power, the DEL of the flapwise root bending moment (FlapM),
and the DEL of the tower bottom bending moment (TBBM) of the upstream and the downstream turbines.

Figure 3. Time series of the power output of the upstream turbine
determined with the aeroelastic tool Flex5 at ψ1 = 0◦ and at ψ1 =
−30◦. Dotted lines indicate the end of the transient period

malized by the power production of the upstream turbine
with no yaw misalignment (i.e. ψ1 = 0).

The cumulative power output increases for increasing tur-
bine spacing as expected since the wake recovers. Bas-
tankhah and Porté-Agel (2016) showed that an increase in
the yaw angle leads to a decrease in the power output, which
is also seen in Fig. 5. The reduction in the cumulative power
output is even more pronounced at large yaw angles of the
downstream turbine, ψ2, as the power decrease for a yawed
turbine operating in wake is increased compared to a free-
standing turbine; see Liew et al. (2019). Furthermore, the ef-
fect of wake deflection is clearly visible in Fig. 5. The cu-
mulative power output at ψ1 =−30◦ and ψ1 = 30◦ is higher
compared to ψ1 = 0◦ at ψ2 =−30◦, −27.5◦, . . . , 30◦ and

sx = 4R,5R,. . .,18R. The increased power production is
due to the wake deflection observed in Fig. 4, where a higher
velocity reaches the rotor of the downstream turbine. At
ψ1 =−30◦ the wake is deflected further away, which results
in a higher power output for the downstream wind turbine
at closer spacing in comparison to ψ1 = 30◦. In addition,
the highest power output of the downstream wind turbine is
obtained at a slight positive yaw angle for the downstream
turbine (ψ2). This is indicated with the red line in Fig. 5,
showing the yaw angle with the maximum power at a certain
turbine spacing. The highest power production is achieved
when the wake is approaching the rotor plane perpendicu-
lar. For ψ1 < 0◦, this results in ψ2 > 0◦; for ψ1 > 0◦, this
results in ψ2 < 0◦. The minor increase in total power pro-
duction by yawing the downstream turbine as well might not
require additional control. In fact, it might rather be the pre-
ferred control setting of the downstream turbine even with a
greedy controller, as the turbine aims to align itself with the
flow automatically. Turbines reorienting themselves to im-
prove power performance while operating in wake have also
been observed in full-scale measurements by McKay et al.
(2013) and experimentally observed by Bartl et al. (2018b).

3.3.2 FLORIS results

An increase in the cumulative power production for larger
turbine spacing is also seen in the FLORIS results (not shown
for brevity). However, as the FLORIS model does not cap-
ture the asymmetric behaviour of the wake deflection, the cu-
mulative power at ψ1 =−30◦ is identical to ψ1 = 30◦. Fur-
thermore, the effect of a higher power output with a small
yaw angle for the downstream turbine is not captured by the
FLORIS model, as FLORIS uses the local free stream ve-
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Figure 4. Time averaged horizontal plane of the averaged relative velocity ( u
u∞

) at hub height extracted from EllipSys3D, where the upstream
turbine is yawed (a) ψ1 = 30◦, (b) ψ1 = 0◦, and (c) ψ1 =−30◦.

Figure 5. Normalized cumulative power of the upstream and downstream turbine determined with the numerical simulation performed in
EllipSys3D coupled with Flex5 at ψ1 =−30◦, 0◦, 30◦ with different spacing and yaw angles for the downstream turbine. The cumulative
power is normalized with the power output of the upstream turbine with no yaw misalignment (ψ1 = 0◦). sx

R
is the downstream distance.

ψ1 is the yaw angle of the upstream turbine. ψ2 is the yaw angle of the downstream turbine. The red line indicates the yaw angle with the
highest power output at each downstream position.

locity described in Gebraad and Van Wingerden (2014). Fur-
thermore, the assessment showed that FLORIS is unable to
capture the velocity distribution within the near-wake region,
but it otherwise shows a similar behaviour as the high-fidelity
numerical simulation in the far-wake region.

3.3.3 Surrogate results

The results of EllipSys3D presented in Sect. 3.3.1 are used
to build surrogate models for the upstream and downstream
turbine using PCE as described in Sect. 2.3 and 2.3.1. The
surrogate models are then used in optimization to find poten-
tially beneficial wind farm control strategies. The analyses
of the wake deflection and normalized velocity (Sect. 3.2),
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as well as the power output (Sect. 3.3.1), will aid the evalu-
ation of the outcome of the optimization performed with the
surrogate model, with regards to the power and the fatigue
loads.

Here, the generated surrogate models are response sur-
faces based on multivariate polynomials. These response sur-
faces are highly dependent on the selected polynomial order
and the available training data. To visualize the dependency
of the generated PCE surrogates to the polynomial order and
input data, an example case is used. The example case is
based on the power of the downstream turbine at sx = 5R
where the upstream turbine yaw angle is fixed. Two sets of
surrogate models are built with two different data sets in or-
der to assess the sensitivity of the surrogates to the amount
of training data and the polynomial order. The first surro-
gates exclude the data points at ψ1 =−35◦ and ψ1 =−25◦

shown in Table 3, while the second set of surrogates is built
using the full data set. Both sets of surrogate models are con-
structed with polynomial orders of p = 3,4,5,6.

The response of the surrogate model is illustrated in Fig. 6.
The black points show the power output obtained from differ-
ent 10 min periods, which have been extracted using a mov-
ing average with a window of 10 min shifted every 30 s over
the time series to increase the stability of the model. There-
fore, there are 23 individual points, which are not statistically
independent, but give an indication of the inherent variabil-
ity. The red points indicate the median values of the simula-
tion point at every unique condition. Figure 6a shows the first
power surrogate built on the reduced data set. The surrogate
models with p = 5 and p = 6 show signs of over-fitting be-
tween ψ1= [−30◦,−15◦] and between ψ1= [15◦, 30◦] for
p = 5. This tendency is general throughout the domain, al-
though shown here only for a particular spacing (sx = 5R)
behind the upstream turbine.

The over-fitting, which results in large errors in the esti-
mates, can be reduced by populating the training data set fur-
ther. Figure 6b shows the second set of power surrogates for
the full training data set. It highlights how including more
data increases the reliability of the fitted polynomial surfaces
for all orders of the surrogate models (p = 3,4,5,6). How-
ever, at an order of p = 6 the surrogate model still shows a
sign of over-fitting in the following interval: ψ1= [15◦, 30◦].
The output of the surrogate model of the order p = 6 differs
by approximately 7.5 % with the addition of ψ1 =−35◦ and
ψ1 =−25◦ realizations to the training data set atψ1 =−25◦.
For the surrogate model of the order p = 5, a difference
of 6.4 % was observed. Over-fitting is therefore a signifi-
cant risk when fitting higher-order polynomials to insuffi-
cient data or fairly simple response surfaces and when em-
ploying surrogates for extrapolation. On the other hand, it is
also seen in Fig. 6b that the lower-order polynomials are un-
able to fully capture the deepest normalized power surface
where ψ1 ∈ ±10◦.

This also indicates that in order to develop a surrogate
model based on simulation data, a trade-off needs to be made

between an acceptable error, the polynomial order, and the
cost of high-fidelity simulations. The surrogate models built
with the entire data set (as illustrated in Fig. 6b) are used for
the optimization of wind farm control strategies.

3.4 Relative error

The polynomial order for the PCE approach also has to be
determined. Therefore, the relative error of each surrogate
model with different polynomial orders is examined. The rel-
ative error is computed for each turbine spacing (ξR) and
given by Eq. (4).

ξR(ψ1,ψ2, sx)=
PSM(ψ1,ψ2, sx)− P̃Flex5(ψ1,ψ2, sx)

P̃Flex5(ψ1,ψ2, sx)
. (4)

The relative error is the difference between the output of
the surrogate model (PSM), with various polynomial orders,
and the median of the 10 min power output from the simu-
lations performed with Flex5, P̃Flex5, where the flow field is
extracted and used as an input to the aeroelastic tool. The
error ξR is calculated for the entire domain of the optimiza-
tion variables, including all the available combinations of ψ1
and ψ2 per downstream distance sx. Therefore, it reflects the
overall sensitivity of the model performance to the control set
points. The relative error in the power output of the down-
stream turbine is shown in Fig. 7. Here it can be seen that
the distribution of the relative error for all ψ1−ψ2 combi-
nations is wider at close spacing for each surrogate model,
i.e. as the second turbine is within the near-wake region (up
to ≈ 6R) of the upstream turbine. At larger spacing, the dis-
tribution gets narrower, indicating an increased confidence
in the model performance for all ψ1−ψ2 combinations for
larger turbine spacing.

As discussed previously, there is a trade-off between ac-
ceptable error and polynomial order, but no decisive conclu-
sion can be drawn with regards to the ideal polynomial order
to build the surrogate models. The error distribution of all
polynomial surrogates are comparable, and the median rela-
tive errors are generally decreased continuously from 3 % at
sx = 5R to approximately 1 % further downstream. There-
fore, the surrogate models of polynomial order p = 3 and
p = 4 are used in the optimization process due to the ro-
bustness of the lower orders against over-fitting (as discussed
in Sect. 3.3.3) and for simplicity. Additionally, it should be
noted that the consistent behaviour of ξR further downstream
indicates a relatively low sensitivity of the surrogate model
performance to both the optimization variables ψ1 and ψ2
and to the turbine spacing. This is highly beneficial for a ro-
bust optimization process.

For comparison, the relative error between the simula-
tions performed with Flex5 and the results obtained from the
FLORIS model is shown in Fig. 8. The relative error is signif-
icant within the near-wake region, but it reduces to approx-
imately 5 % further downstream for all the available com-
binations of ψ1−ψ2. Recent developments of the FLORIS
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Figure 6. Power output of the surrogate model of the downstream turbine at sx = 5R and ψ2 = 0◦ with two different data sets. The surrogate
model has been build using the PCE approach with different polynomial orders (p). Black: the crosses indicate the data points obtained by
performing a moving average of 10 min shifted every 30 s. Red: the squares indicate the mean of the data points obtained by performing a
moving average.

Figure 7. Box plots of the relative error, ξR , of the power output of the downstream turbine between the surrogate model with orders of
p = 3,4,5,6 and the results obtained from the simulations performed with Flex5, where the flow field is extracted and used as an input to
the aeroelastic tool. The distributions correspond to all the available combinations (225 in total) of the optimization variables ψ1 and ψ2 for
each turbine spacing sx.

model framework could potentially decrease the relative er-
ror, e.g. Martínez-Tossas et al. (2019). However, new addi-
tions to FLORIS still rely on model calibration against LES-
generated data, which could equally be used to increase the
population data for building surrogates as previously shown.

3.5 Optimization based on the surrogates

The optimization of wind farm control strategies is per-
formed by applying a weight factor assigned for each sur-
rogate model depending on the objective of the optimization.
The aim of this study is to showcase how to develop a control
strategy, which considers both the loads and the power out-
put through the use of surrogate models. The weighting used
for the optimization is shown in Eq. (5), where SM indicates
the surrogate model.

SMTOT(ψ1,ψ2,S)=
n1
n2
n3
n4
n5




SMPower, 1(ψ1)+SMPower, 2(ψ1,ψ2,S)
1−SMDEL, FLap, 1(ψ1)
1−SMDEL, FLap, 2(ψ1)

1−SMDEL, TBBM, 1(ψ1)
1−SMDEL, TBBM, 2(ψ1)

 (5)

Note that the weights of the surrogate models for the
equivalent loads are subtracted from 1 since the aim is to
reduce the fatigue loads. The optimal point is determined
by calculating the power and the equivalent loads for the
upstream and downstream turbines using the trained sur-
rogates with input parameters of ψ1= [−35◦ : 0.12◦ : 30◦],
ψ2= [−30◦ : 0.12◦ : 30◦], and sx = [4R : 1R : 18R]. The op-
timal control set point is determined using the standard built-
in max function in python. The optimal control strategy is
determined for three cases:
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Figure 8. Box plots of the relative error of the power output of the downstream turbine between the FLORIS model and the results from the
simulations performed with Flex5, where the flow field is extracted and used as an input to the aeroelastic tool. The distributions corresponds
to all the available combinations of the optimization variables ψ1 and ψ2 for each turbine spacing sx. The insert shows the zoom of the last
box plots.

1. a power-driven optimization

2. a combined load and power optimization with a large
weight attributed to the power

3. a combined load and power optimization with a small
weight attributed to the power

3.5.1 Power-driven optimization

The power-driven optimization is performed using Eq. (5)
and setting n1 = 1 and n2 = n3 = n4 = n5 = 0 with the or-
der of p = 3 and p = 4 surrogate models for the upstream
and downstream turbines. The results of the power-driven
optimization are presented in Fig. 9. It shows the contri-
bution of the upstream and downstream turbine to the total
power gain, which is the ratio of the estimated power out-
put from the surrogate model to the baseline (with ψ1 = 0◦

and ψ2 = 0◦) power production from the surrogate model;

i.e. POpt
PBase
=

(
P1ψ1=Opt+P2ψ2=Opt

)
SM(

P1ψ1=0+P2ψ2=0

)
SM

.

Figure 9 also depicts the optimal yaw angles of the up-
stream (ψ1 = Opt) and the downstream (ψ2 = Opt) turbines
that maximize the cumulative power output. Both surrogate
models predict that optimal power gain is obtained when the
upstream turbine is yawed negatively and the downstream
turbine is yawed slightly positively. This is in line with the
power output shown in Sect. 3.3.1, where the highest power
is obtained when the downstream yaw angle (ψ2) is slightly
positive. This occurs as the second turbine aims to reorient it-
self to be perpendicular with the skewed inflow (see Fig. A1
in the Appendix A, which shows the average flow angle).

It is observed that the power gain is the largest at a tur-
bine spacing of sx = 4R with a power gain of approximately
1.6 % and 3.3 % for the surrogates of order p = 3 and p = 4,
respectively. The difference in estimated power gain is di-
rectly related to the overestimation of power production for
the baseline of the second turbine in Fig. 6 for p = 3, which
results in the reference PBase being too large. Otherwise, the
optimization with both surrogate models of order p = 3 and
p = 4 yield very similar predictions as the turbine spacing

Figure 9. Optimal yaw configuration and power gain for a power-
driven optimization. Each bar indicates the cumulative power gain
(POpt) normalized with the power of the respective turbine at a cer-
tain turbine spacing with no yaw misalignment (PBase), estimated
by the surrogate models for both of the turbines. Darkened area: nor-
malized power of the upstream turbine. Shaded: normalized power
of the downstream turbine.

increases. Further downstream, the differences in both power
gain and yaw angles of the two turbines are minor.

A negative yaw angle for the upstream turbine is expected
as it yields a larger wake deflection (as shown in Sect. 3.2).
Furthermore, the optimal yaw angles decrease in magnitude
for both of the turbines as the turbine spacing is increased.
This occurs as the power loss of the upstream turbine is larger
than the power gain of the downstream turbine, which leads
to a decrease in the optimal yaw angle of both turbines. How-
ever, the uncertainty increases as the yaw angle of the up-
stream turbine decreases, because intentionally yawing the
turbine only approximately −4◦ in the case of sx = 16R
is uncertain as the inflow wind direction will continuously
change, e.g. Gaumond et al. (2014), and the unintentional
yaw misalignment due to erroneous wind direction measure-
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ments are often in a similar range, e.g. Mittelmeier and Kühn
(2018).

As shown in Fig. 7, the surrogate models come with rela-
tive errors as a function of the control variables ψ1 and ψ2,
which generally indicates an over-prediction of the power
production. After the optimization is performed in Fig. 9, a
closer look to the surrogate model error, 1POpt, for each of
the optimal control settings is required to correct the model
results for potential bias.1POpt is defined in Eq. (6) in terms
of ψ1 = Opt and ψ2 = Opt.

L(1P )=

(
P1ψ1=Opt +P2ψ2=Opt

)
SM
−1POpt(

P1ψ1=0 +P2ψ2=0

)
Flex5

, (6)

where

1POpt =
(
P1ψ1=Opt +P2ψ2=Opt

)
SM

−

(
P1ψ1=Opt +P2ψ2=Opt

)
Flex5

. (7)

Since the dynamic Flex5 simulation gives different results
for each 10 min realization (as can be seen in, for example,
Fig. 6b), the model error also varies among those realiza-
tions. Note that the Flex5 results are not available for all com-
binations of ψ1 and ψ2, which is why the surrogate models
are built in the first place. However, the prediction error of
the surrogates for each turbine spacing can be interpolated
for the optimized yaw angles ψ1 = Opt and ψ2 = Opt to es-
timate 1POpt. Median and standard deviation of the model
error with respect to the reference Flex5 simulations are pre-
sented in Fig. 10a as a function of turbine spacing.

Figure 10a shows that the surrogate models generally re-
produce the optimum power very well. For PCE order p = 3,
the median error increases further downstream, where the op-
timization settings get closer to the baseline (i.e.ψ1 = 0◦ and
ψ2 = 0◦). This behaviour is expected as it was also observed
in Fig. 6b for ψ1 = 0◦± 15◦ and ψ2 = 0◦. There, it is also
seen that the over-prediction is much less visible for PCE or-
der p = 4 in that region, which results in much smaller bias
for the surrogate especially for larger turbine spacing. The er-
ror bars indicate 1 standard deviation of the surrogate model
error compared to the median of the 23 different 10 min real-
izations. It shows that the surrogate model error easily both
over- and under-predicts by 2 %, for a specific 10 min real-
ization. Since the variance in the surrogate model error is
purely due to the physical dynamics of the inflow used in the
Flex5 simulations, and not the complexity of the surrogate,
the spread around the median error for PCE orders p = 3 and
p = 4 is essentially the same.

The surrogate model error is subsequently used to assess
the power gain likelihood, L(1P ), which is the power esti-
mate including the observed modelling error and uncertainty,
as defined in Eq. (6). The expected power gain likelihood is
obtained by subtracting the interpolated surrogate model er-
ror (shown in Fig. 10a) from the power gain predicted by the

surrogate models for each turbine spacing and optimal yaw
settings

(
P1ψ1=Opt +P2ψ2=Opt

)
SM

. In other words, due to the
potential bias in the model results and difference over the
10 min realizations, implementing the optimum settings in-
dicated in Fig. 9 gives a different power output, which is a
source of uncertainty around the expected power gain by the
surrogates. To take this bias and variability into account, the
likelihood of the power gain is quantified based on the differ-
ence between the surrogate model performance and 10 min
realizations of Flex5 simulations as in Eq. (6) and shown in
Fig. 10b. It is highly important to note that the quantification
of the “power variability” here in this study is limited to the
difference between 10 min realizations. Inter 10 min statistics
(or faster timescale investigations) and the ultimate dynamic
evaluation of wake steering wind farm control is left as future
work.

First and foremost, Fig. 10b shows a very similar power
gain likelihood for both PCE surrogates p = 3 and p = 4,
also in the near wake; though the results without taking the
model error into account were very different as shown in
Fig. 9. This shows the importance of the model correction
in estimating the true power gain to be achieved by the op-
timized control settings estimated by the surrogate models.
Note that in this study true power gain refers to the power
gain that is observed in Flex5 simulations, as an approxi-
mation to real power gain that one would expect to be able
to measure in the field, provided there were sufficient time,
money, knowledge of techniques, etc., and no errors in the
reporting, collection, and processing of the data. For both of
the models p = 3 and p = 4, the power gain likelihood is
higher (slightly less than 3 %± 1 %) around the near-wake
region, where it quickly drops to less than 0.5 % around 10R
downstream. It is also seen that the standard deviation of the
power gain is higher for p = 4, which is due to the higher
model complexity, hence higher sensitivity to the model in-
puts and higher optimum yaw angles up to 12R downstream
as presented in Fig. 9. Both the expected power gain in Fig. 9
(before the model correction) and the power gain likelihood
in Fig. 10b (after the model correction) point to essentially
zero power gain after 10R for the investigated setup. It is
mainly due to the fact that the optimized yaw setting ψ1
and ψ2 approaches the baseline case ψ1 = 0 and ψ2 = 0 for
larger turbine spacings, i.e. no yaw on either turbine. For
closer spacings, the wake dynamics are more complex and
the associated uncertainty is significant. The analysis shows
that the decision-making process to implement the control
settings should be based on the power gain likelihood, where
the model results are corrected with the best available infor-
mation rather than an operational judgement based purely on
the model results.

The uncertainty is partly due to the natural variability of
the flow and the turbulent wake and partly due to the uncer-
tainty associated with the surrogate models. The former is in-
herent and difficult to reduce, while the latter can be reduced
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Figure 10. Surrogate model error and estimated power gain likelihood for the optimized yaw settings ψ1 and ψ2 as a function of turbine
spacing for PCE model orders p = 3 and p = 4. Error bars indicate the median ±1σ of the difference of the 10 min median realizations
compared to the surrogate estimates.

by adding more high-fidelity data as shown in Sect. 3.3.3 and
increasing model accuracy. The inherent uncertainties due to
the natural variability of the non-stationary atmosphere com-
pared to the current LES model setup are not fully accounted
for and atmospheric stability is not included, either. Further-
more, the data used for the surrogates does not take the in-
duction into account, i.e. the presence of the turbines alters
the inflow and hence the actual power production, e.g. Trold-
borg and Meyer Forsting (2017) for steady state alterations
and Mann et al. (2018) for changes in the incoming turbulent
structures.

It should also be noted that wider error distributions and
higher bias (seen in Fig. 8) in FLORIS would point to wider
power gain likelihood distributions, signifying higher risk for
the case study. These risks should be quantified and taken
into consideration when using, for example, FLORIS. Over-
all, the distribution of the power gain likelihood emphasizes
the importance of the uncertainty embedded in the (quasi-
)steady models, as well as the mean bias in the error, applied
to a dynamic wind farm control setup. In other words, the
uncertainty of the model outputs and control inputs has to be
taken into account in the decision making to assess the true
performance of the wind farm control strategies. Therefore,
applying wake steering for the current turbine and flow sce-
nario might not be a sensible option, except for very small
turbine spacing. Even then, the variability and the measure-
ment (or information) uncertainty of the local inflow wind
directions might have a significant impact to the power gain
likelihood presented here. The challenges of implementing
yaw misalignment under uncertainty is briefly discussed in
Quick et al. (2017) and should be further investigated for the
analysed setup here in this study.

3.5.2 Combined load and power optimization

The loads can be included in the optimization by changing
the weight factors (n2− n5 6= 0) assigned to each surrogate
model in Eq. (5) depending on the objective of the optimiza-
tion, i.e. power or loads.

The power-driven optimization in the previous section
showed that the polynomial order has some influence on the
expected power gain, but that it can potentially be corrected
for. The DEL of the flapwise root bending moment (FlapM)
and the tower bottom bending moment (TBBM) for the up-
stream and the downstream turbines are surrogated. It should
be noted that the total tower bottom bending moment have
been used here, i.e. the total length of the tower bending mo-
ment in the streamwise and lateral directions.

The combined optimization for both power and loads is
conducted using polynomial of minimum order, p = 3, for
each of the load surrogate models to reduce the complexity.
In addition, an order of p = 4 was selected for the power
output of the downstream turbine as it contained smaller total
model errors for the expected power gain; see Fig. 10a.

Here, the main aim is to visualize the effect of including
loads in the optimization process and how it changes the op-
timum operational condition. But it should be noted that the
reduction (or increase) in loads under optimum control strate-
gies is not as critical as the power production, because the
“business case” of load reduction is not as straightforward.
For additional information on lifetime extension with regards
to load management, see Ziegler et al. (2018).

As previously shown, weight factors of [1.0, 0.0, 0.0, 0.0,
0.0] would only optimize for the power, while a combined
scenario of power and load optimization is generated with
two additional weighting factors, namely [0.60, 0.10, 0.10,
0.10, 0.10] and [0.40, 0.15, 0.15, 0.15, 0.15]. Figure 11 shows
the results obtained with the different weighting factors for
each surrogate model as a function of turbine spacing. The
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results of the upstream turbine are shown with blue to black
shades and the downstream turbine in red to orange shades.

Figure 11a shows the optimal yaw angles of the upstream
and the downstream turbines. The absolute value of the opti-
mal yaw angles, ψ1 and ψ2, decrease continuously towards 0
for increasing turbine spacing, as previously shown in Fig. 9;
i.e. yawing the upstream turbine gets less and less beneficial
as the turbine spacing increases. The pure power-driven op-
timization results in almost no yaw for the largest spacing,
while including loads yields larger optimal yaw angles of the
first turbine of approximately−10 to−15◦. Interestingly, in-
cluded loads in the optimization yields a small, negative yaw
angle of the second turbine, contrary to a previous case where
the second turbine would yaw slightly positive.

Figure 11b shows the power output during the optimiza-
tion case with different weight factors. Here, it can be seen
that the power output reduces with both increasing turbine
spacing and increasing weight for the DEL, as expected. This
is due to the change in the yaw angle (shown in Fig. 11a). As
the loads are given more weight, the power gain will even-
tually be a power loss, meaning that power production can
be sacrificed to reduce the turbine loads. Furthermore, the
green line has been included to directly show the effect of
not yawing the second turbine as compared to the optimal
yaw settings shown in red. The additional yawing of the sec-
ond turbine only has a minor influence on the power gain.
This is a good sign in terms of the inflow direction uncer-
tainty discussed previously, which would be larger for the
second turbine operating in wake.

Figure 11c shows the normalized DEL of the flapwise root
bending moment as a function of turbine spacing for the dif-
ferent weight factors. Perhaps surprisingly, the loads appear
to increase even when including the loads in the optimization
for all possible turbine spacings. The DEL increases because
the optimization yields a significant reduction in the tower
bottom bending moments shown in Fig. 11d. It is seen how
the tower bottom bending moment can be decreased by al-
most 20 % for the first and 5 % for the second turbine, but
it comes with a cost of reduced power gain and increased
flapwise root bending moment. The transition towards larger
turbine spacing is once again continuous.

However, this optimization is of course based on an equal
weighting of the flapwise root and tower bottom bending mo-
ment. An additional optimization was tested with weights
of [0.40, 0.30, 0.30, 0.00, 0.00] and [0.40, 0.00, 0.00, 0.30,
0.30] in order to isolate the effects of only including the
flapwise root bending moment and the tower bottom bend-
ing moment in the optimization, respectively, as opposed to
previous settings where the tower bottom bending moment
dominated the optimization space. The results show that it
is no longer possible to increase the power production for
such a severe weighting of the loads; see Fig. B1 in Ap-
pendix B. It is very difficult to decrease the flapwise root
bending moments for any of the two turbines, which results
in almost no upstream or downstream yaw. For the tower bot-

tom bending moment, the optimization yields that the first
turbine should yaw −35◦, which is the edge of the training
domain for the surrogates, i.e. the optimization essentially at-
tempts to turn the turbine out of the wind to reduce the tower
bottom bending moment on both turbines. An improved opti-
mization would require an actual cost model to specify these
weights correctly and therefore to assess the economical im-
pact of increasing or decreasing the loads on the different
components.

3.6 Validation

As any simplified model, the surrogates include model errors
and uncertainties as previously mentioned and quantified.
Figure 12 shows contours of the normalized power output
of the upstream and the downstream turbine with respect to
ψ1 andψ2 at a turbine spacing of sx = 4R, obtained from the
surrogate models with an order of p = 3 and p = 4. As seen,
the contours differ for the two surrogate models, hence the
sensitivity is different. However, the optimal region for both
ψ1 and ψ2 is comparable in magnitude, where p = 4 yields
higher gain for ψ2 <−20◦. The extend of the surrogate of
order p = 4 yields a larger region of higher power increase,
as well as a secondary local optima for positive upstream yaw
angles. However, it should be noted that around this region,
the training data for the surrogate models are sparse, and
hence the confidence in the model results is lower. For the
rest of the validation analysis, the turbine spacing of sx = 4R
is selected since it provided a high power gain during the op-
timization of the control strategies.

The validation is performed as a blind test via additional
simulations in Flex5 with the optimum yaw settings ψ1 =

−25.3◦ and ψ2 = 5.5◦ estimated by the surrogate model of
order p = 4 at spacing of sx = 4R. Table 4 summarizes the
results of the surrogate models and the results using the ghost
turbines in this Flex5 simulation, which formed the basis for
the surrogate models. The surrogate models and the ghost
turbines yield very comparable results for the power out-
put, as expected. The surrogate models overestimate the total
power output by less than 2 %, which is in agreement with
the interpolated surrogate model error in Fig. 10a. Table 4
also verifies the power gain likelihood, L(1P ) presented in
Fig. 10b, where the expected value of true power gain given
by the Flex5 simulations is

E


(
P1ψ1=Opt +P2ψ2=Opt

)
Flex5(

P1ψ1=0 +P2ψ2=0

)
Flex5

= 2.1%, (8)

which is 0.8 % lower than power gain likelihood at 4R down-
stream reported in Fig. 10b. Note that at this spacing, Fig. 9
shows the expected power gain estimated by the surrogate
models p = 3 and p = 4 as 1.6 % and 3.3 %, respectively.
After taking the model bias and difference in 10 min real-
izations into account, the power gain likelihood of the sur-
rogates is decreased for both p = 3 and p = 4, approaching
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Figure 11. Combined load- and power-based optimization with respect to the DEL of the flapwise root bending moment (FlapM) and the
DEL of the combined tower bending moment (TBBM) for the upstream and the downstream turbine. The weighting is given as follows: [P1+
P2,FlapM1,FlapM2,TBBM1,TBBM2]. The optimization which included the DEL of the upstream and the downstream turbine was done for
three cases. The first case is optimizing only for the power which has the weighting SMTOT = [1,0,0,0,0]. The second case is a combined
scenario which optimizes for the power and the load with a weighting of SMTOT = [0.60,0.10,0.10,0.10,0.10]. The final weighting is
SMTOT = [0.4,0.15,0.15,0.15,0.15]. Squared symbols: power-driven optimization. Circle symbols: combined load-based optimization.
Blue to black: ψ1. Red to orange: ψ2. The optimized cumulative power is normalized by the cumulative power during normal operation, i.e.
ψ1 = 0◦ and ψ2 = 0◦. The DEL values are normalized per turbine, as the ratio of the optimum DEL and the DEL during normal operation
with ψ1 = 0◦ and ψ2 = 0◦ for each turbine spacing. Green symbols: normalized cumulative power with ψ1 = Opt and ψ2 = 0◦ to see the
effects of downstream yawing.

the validation values in Table 4. This once again emphasizes
the importance and added value of model correction in esti-
mating the true power gain that is likely to be observed in
(quasi-)dynamic operation.

The resulting power gain likelihood presented here can be
compared to reported gains in literature, where Kheirabadi
and Nagamune (2019) have performed a comprehensive re-
view of the reported power gains published across different

model fidelities (wind tunnel and field tests). The spread in
the reported values is very large, ranging from power loss
of −7.9 % to power gains of 46 % for different wind farm
layouts and specifications. However, 16 of the 29 examined
studies reported power gains in bins ranging from −7.5 % to
12.5 %, so the present results are comparable. Furthermore,
it is noteworthy how the majority of the studies using low-
fidelity models, e.g. FLORIS, report power gains of approx-
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Figure 12. Contour plots of the cumulative power output dependant on the upstream and the downstream yaw angle at sx = 4R. The power
is normalized by the upstream and downstream turbine at ψ1/ψ2 = 0◦.

Table 4. Comparison between the power output and the equiv-
alent loads of the surrogate model for the optimal yaw settings
(ψ1 =−25.3◦ and ψ2 = 5.5◦) and the normal operation (ψ1 = 0◦

and ψ2 = 0◦) at different polynomial orders for the upstream and
the downstream turbines at 4R.

p = 3 p = 4 Ghost Ghost
turbine turbine

optimum normal
operation

P1 (kW) 88.3 88.7 87.3 100.9
P2 (kW) 46.1 46.1 44.5 28.1
PTot (kW) 134.4 134.8 131.8 129.0

DEL FlapM1 (kNm) 25.1 25.4 26.3 23.6
DEL FlapM2 (kNm) 25.5 25.0 25.5 20.1

DEL TBBM1 (kNm) 92.4 92.2 93.9 114.6
DEL TBBM2 (kNm) 158.3 161.8 165.7 106.5

imately 5 %± 2.5 %, which is comparable to the estimated
model error seen in Sect. 3.4.

The equivalent load of the flapwise root bending moment
determined with the surrogate model also yields very compa-
rable results with the equivalent loads obtained directly from
the Flex5 simulations. There is only a minor difference in the
flapwise root bending moments, while the surrogates under-
estimate the tower bottom bending moment by less than 5 %,
which should be accounted for by including the model error.

4 Conclusion

EllipSys3D has been used to perform large eddy simulations
of a V27 turbine operating at different yaw angles to inves-
tigate wake steering. The turbine has been modelled using
actuator lines, which are fully coupled to the aeroelastic tool
Flex5. The full flow field is extracted at different downstream
distances and used as turbulent input to Flex5 to mimic a
downstream turbine operating in the deflected wake of an
upstream turbine. The upstream turbine has also been mod-

elled with turbulent inflow in Flex5. The performance and
response of the two turbines are used to construct surrogate
models of different orders based on polynomial chaos expan-
sion.

It is shown how the accuracy of the surrogate models de-
pends on the amount of training data, and how the choice
of order for the polynomials needs to be considered to cap-
ture more complexity but also to avoid overfitting. The con-
structed surrogate models consistently yield median errors
for a variety of control inputs, i.e. the yaw angles of the
upstream and downstream turbines at different turbine spac-
ings. Considering the entire domain of the optimization, the
surrogate models consistently overestimate the power output
of the downstream turbine by approximately 2 % for most
turbine spacings. The performance of FLORIS is also com-
pared to the high-fidelity results for different control settings.
FLORIS yields very large relative errors for close turbine
spacings and moderately wide, biased distributions for larger
turbine spacings, with median errors of 5 % and 3 % standard
deviation for the investigated configuration.

Due to their higher accuracy, the surrogate models are used
to optimize the power production. The two surrogate models
of order 3 and 4 generally show similar results in terms of cu-
mulative power production of the two turbines. However, the
power gain optimized using surrogate models with p = 3 and
p = 4 are very different for small turbine spacings due to the
difference in the inherit model error and uncertainties. The
model error was estimated to be small (< 1 %) but with sig-
nificant standard deviation in the model error of ±2 %. The
optimization results were furthermore corrected by the esti-
mated model error to give a power gain likelihood, i.e. the
most realistic optimization performance when correcting for
model error and known uncertainties. However, uncertain-
ties originated from the inherent variability of the inflow, and
the induction is not accounted for. The optimized power gain
likelihood showed a potential for improving the power pro-
duction by almost 3 %± 1 % for turbine spacings less than
7R. The optimized power gain likelihood decreased to 0 %
for larger turbine spacing as the optimization resulted in only
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minor or no yaw of the turbines, i.e. converging to normal
operation as attempting to wake steer becomes unfavourable.
The associated uncertainty is significant, and the comparison
between power gain estimated directly by the surrogate mod-
els and the corrected power gain likelihood emphasize the
need to correct model results and take the uncertainties into
consideration. In other words, the uncertainty of the model
outputs and control inputs has to be considered in order to
assess the true performance of the wind farm control strate-
gies and to decide whether to apply a given control strategy.
All uncertainties considered, it might therefore not be sensi-
ble to apply wake steering for the current turbine and flow
scenario, unless the two turbines are very closely spaced.

A combination of surrogate models has also been used to
include the DEL in the optimization. The results showed that
it is possible to reduce the tower bottom bending moments
for both turbines by sacrificing some of the power gain. On
the other hand, it is generally not possible to reduce the
flapwise root bending moments. The combined power and
load optimization also generally converge to normal opera-
tion with no yawing of the two turbines for larger spacings.

Finally, the optimization results were compared and val-
idated against additional Flex5 simulation at the optimum
yaw angles predicted by the surrogates. The validation con-
firmed the power gain likelihood assessment and provided
estimates of the DEL of both flapwise root and tower bottom
bending moments, which were underpredicted by less than
5 %.

The surrogate approach used in this study could be ex-
tended in several ways. To be generally applicable it should
include different flow cases, e.g. wind speed, turbulence in-
tensity, shear, and atmospheric stability. The surrogates can
also be expanded by including field measurements when
available. Additional surrogate models can be constructed
for other turbine models. The true performance test of the
presented optimization procedure should be conducted in a
wind farm environment, where the flow complexity would
increase and hence also the requirements on the model cor-
rections and uncertainty estimations.
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Appendix A: Wake inflow direction

Figure A1. Averaged horizontal scan of the flow angle obtained with the coupling between EllipSys3D and Flex5 at ψ1 =−30◦ at hub
height. The average flow angle over the rotor area at sx

R
= 4,8,12,16 is 6.4◦, 5.3◦, 3.8◦ and 3.2◦. The dotted black lines indicate the rotor

area.
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Appendix B: Additional load- and power-based
optimization

Figure B1. Combined load- and power-based optimization with respect to the DEL of the flapwise root bending moment (FlapM) and the
DEL of the combined tower bending moment (TBBM) for the upstream and the downstream turbines. The weighting is given as follows:
[P1+P2,FlapM1,FlapM2,TBBM1,TBBM2]. The optimization which included the DEL of the upstream and the downstream turbines
was done for two additional cases. The first case is a combined scenario which optimizes for the power and the load with a weighting
of SMTOT = [0.4,0.3,0.3,0,0]. The second case has a weighting of SMTOT = [0.4,0,0,0.3,0.3]. Red and black symbols: power-driven
optimization. Green and magenta dashed line: first combined load- and power-based optimization. Blue and orange dashed line: second
combined load- and power-based optimization. The optimized cumulative power is normalized by the cumulative power during normal
operation, i.e. ψ1 = 0◦ and ψ2 = 0◦. The DEL values are normalized per turbine, as the ratio of the optimum DEL and the DEL during
normal operation with ψ1 = 0◦ and ψ2 = 0◦ for each turbine spacing.
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Appendix C: Nomenclature

AEP Annual energy production
AL Actuator line
BEM Blade element momentum
CFD Computational fluid dynamics
DEL Damage equivalent load
FlapM Flapwise root bending moment
FLORIS FLOw Redirection and Induction in Steady State
LES Large eddy simulation
NREL National Renewable Energy Laboratory
PCE Polynomial chaos expansion
QUICK Quadratic Upstream Interpolation for Convective Kinematics
SM Surrogate model
SWiFT Scaled Wind Farm Technology
TBBM Total tower bottom bending moment
TI Turbulence intensity
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Code and data availability. The input data and surrogate model
data are available at https://github.com/Paul1994H/Surrogates-
Wind-Farm-Control-Model.git (Hulsman, 2019).
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