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Abstract. Wind turbine blade leading edge erosion (LEE) is a potentially significant source of revenue loss
for wind farm operators. Thus, it is important to advance understanding of the underlying causes, to generate
geospatial estimates of erosion potential to provide guidance in pre-deployment planning, and ultimately to
advance methods to mitigate this effect and extend blade lifetimes. This study focuses on the second issue and
presents a novel approach to characterizing the erosion potential across the contiguous USA based solely on
publicly available data products from the National Weather Service dual-polarization radar. The approach is
described in detail and illustrated using six locations distributed across parts of the USA that have substantial
wind turbine deployments. Results from these locations demonstrate the high spatial variability in precipitation-
induced erosion potential, illustrate the importance of low-probability high-impact events to cumulative annual
total kinetic energy transfer and emphasize the importance of hail as a damage vector.

1 Introduction and objectives

In 2017 wind turbines (WTs) provided 6 % of total elec-
tricity generation in the United States of America (USA)
(U.S. Energy Information Administration, 2018) and there
are over 50 000 WTs operating in the USA today (Pryor et
al., 2019). WTs are subject to harsh operating conditions dur-
ing their 20–25-year lifetimes, including extreme winds, im-
pacts from heavy rain, hailstones and snow, and intense ultra-
violet light exposure that can lead to material damage (Kee-
gan et al., 2013). Accordingly, operation and maintenance
(O&M) costs comprise 20 %–25 % of the total levelized cost
per kilowatt-hour of electricity produced over the WT life-
time (Mishnaevsky Jr., 2019; Moné et al., 2017). WT blades
exhibit the highest failure rate (FR ∼ 0.2) of any WT com-
ponent (Zhu and Li, 2018). The most expensive repair and
longest repair times are associated with blades (Shohag et
al., 2017). Estimates suggest that the average cost of blade
repair of an onshore turbine is approximately USD 30 000,
with replacement costs of ∼USD 200 000 (Mishnaevsky Jr.,
2019). Repair and replacement costs will tend to be higher

offshore, where general O&M costs are higher (∼ 30 % of
total cost) and blade failures also contribute significantly to
turbine downtime (Carroll et al., 2016).

Hail has long been recognized as an important source of
weather-related economic losses in the contiguous United
States (CONUS) (Changnon, 1999; Cintineo et al., 2012).
Economic losses from hail were estimated to be USD 1.2 bil-
lion in 1999 (Changnon, 1999), and property damage from
severe hail has been shown to be increasing with time
(Changnon, 2009), with more recent annual losses estimated
at USD 10 billion, accounting for almost 70 % of severe-
weather-related insurance claims (Loomis, 2018). An analy-
sis conducted in 2009 indicated that an average of 159 d each
year is associated with crop-damaging hail leading to average
crop loss of USD 580 million, and hail damage to property
was valued at USD 850 million (Changnon et al., 2009). Hail,
and hail damage, are highly episodic. For example, insurance
losses in the Dallas–Fort Worth (DFW) metroplex on a single
hail day in May 2011 were estimated to exceed USD 876 mil-
lion (Brown et al., 2015). While the paucity and subjectivity
of observed hail data sets make a global comparison difficult,
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severe hail is almost certainly more common in the central
US than in other areas of the world with substantial wind
energy development (Prein and Holland, 2018). Further, the
relationship linking damage to the frequency and severity of
hail varies substantially with the target. WTs present an inter-
esting challenge in this context because they are large struc-
tures and the blades are rotating, composite materials.

A key cause of the need for WT blade repairs is excess
damage (i.e., material loss) on the leading edge (leading edge
erosion, LEE). LEE roughens WT blades, reducing lift and
electrical power production (Sareen et al., 2014; Gaudern,
2014). LEE causes an average of 1 %–5 % reduction in an-
nual energy production (AEP) (Froese, 2018) and up to a 9 %
reduction when delamination occurs (Schramm et al., 2017).
Thus, excess LEE may be costing the industry tens of mil-
lions of dollars per year via lost revenue and/or increased
maintenance costs and poses a threat to achieving contin-
uing wind energy cost reductions (Sareen et al., 2014). In
response to this issue a major industrial research consor-
tium from Europe (including DNV GL, Vestas and Siemens
Gamesa Renewable Energy) has recently (November 2018)
announced a new partnership (COBRA) focused on the anal-
ysis of mitigation measures for LEE including the devel-
opment of next-generation leading-edge protection systems
(Durakovic, 2019).

WT blades use composites (e.g., epoxy or polyester,
with reinforcing glass or carbon fibers) (Mishnaevsky Jr. et
al., 2017) coated to protect the blade structure by distribut-
ing and absorbing the energy from impacts (Brøndsted et
al., 2005). Thus, the leading edge actually comprises several
layers of the main structural composite material (and thick-
ening materials) plus coatings (Mishnaevsky Jr. et al., 2017).
Impact fatigue caused by collision with rain droplets and
hail stones is a primary cause of WT blade LEE (Bech et
al., 2018; Bartolomé and Teuwen, 2019; Zhang et al., 2015).
Although rain droplets fall at only modest velocities (typi-
cally ≤ 10 m s−1, see details below), the tip of WT blades
rotate quickly (50–110 m s−1); thus the net closing velocity
and kinetic energy transfer are large. Each precipitation im-
pact on the blade leading edge results in transient stresses
that are proportional to impact velocity (Preece, 1979; Slot
et al., 2015). The stress induced by individual high net col-
lision impacts with hydrometeors may, in principle, exceed
the strength of the material. Estimates of the failure energy
threshold of a composite structure vary widely (e.g., val-
ues of 72–140 J are given in Appleby-Thomas et al., 2011)
and may exceed 300 J for leading-edge thicknesses and hail-
stone diameters> 20 mm (Kim and Kedward, 2000). How-
ever, conceptually the erosion of homogeneous materials is
most frequently considered using a three-stage model. Ini-
tially there is an incubation period during which impacts oc-
cur but no visible damage is observed, although microstruc-
tural changes in the materials generate nucleation sites for
material removal, which commences when a threshold is
reached (i.e., when some level of accumulated impacts is

reached). Once the time to damage has been exceeded, ad-
ditional damage occurs as stress waves propagate from the
impact sites into the composite and cause existing pits and
cracks to grow, and there is a steady increase of material loss
with each additional impact (Cortés et al., 2017; Eisenberg
et al., 2018; Traphan et al., 2018). The number of impacts
required to reach the threshold for surface fatigue failure is
a function of the droplet diameter and phase, the closing ve-
locity, the strength of the material, and the pressure of the
impact. Hence, the material’s response to hail (solid hydrom-
eteors) may differ from that to collisions with liquid (rain)
droplets. For example, the maximum von Mises stress cre-
ated in the WT blade leading edge from a 10 mm diameter
hailstone greatly exceeds that from a rain droplet of equiva-
lent size and closing velocity due to differences in mass and
hardness (Keegan et al., 2013).

WT LEE is a developing area of research and uncertainty
remains regarding the frequency and severity of the issue.
Rates of LEE appear to be highly spatially variable due
to variations in WT operating conditions and the precipita-
tion climate. Industrial experience has demonstrated that ex-
posure to particularly harsh operating conditions can erode
coatings causing partial delamination after as little as 2–
3 years (Rempel, 2012; Keegan et al., 2013). Elastomeric
coatings can be applied for additional erosion resistance
(Dalili et al., 2009; Valaker et al., 2015; Herring et al., 2019).
However, the life of such coatings cannot be predicted ac-
curately (and is a function of UV exposure; Shokrieh and
Bayat, 2007); they have a negative impact on blade aerody-
namics (Giguère and Selig, 1999) and their cost effectiveness
is uncertain (Dashtkar et al., 2019).

The total installed capacity (IC) and rated capacity
(and physical dimensions) of WT being installed exhibited
marked growth in the USA over the last 20 years (Wiser and
Bolinger, 2018; Wiser et al., 2016). Average WT blade length
increased from < 4 m in 1985 to 32 m in 2005 and now ex-
ceeds 55 m (Wiser and Bolinger, 2018). Since the tip speed
increases with blade length, this tendency towards taller WTs
with longer blades exacerbates LEE potential. The increased
blade length and larger maintenance costs associated with
offshore wind turbines tend to make offshore wind farms
especially vulnerable to LEE. Based on previous research
the a priori expectation of this research is that excess LEE
is most likely on WTs deployed in environments with high
rain intensities and hail frequencies, such as experienced in
the Great Plains (the states of Texas, TX; Oklahoma, OK;
Kansas, KS; Nebraska, NE; North and South Dakota, ND,
SD; Wyoming, WY; and Montana, MN; Fig. 1). LEE is likely
to present a growing issue within the US wind industry as
more and larger wind turbines with higher tip-speed ratios
are deployed (Amirzadeh et al., 2017a). The current average
age of WTs in the US is 9 years (AWEA, 2019), and LEE
will be of greater concern as a larger number of WTs move
out of the typical 1- to 5-year warranty period (Bolinger and
Wiser, 2012; Brown, 2010).
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Table 1. The station code and locations of the six NWS dual-
polarization radars from which data are presented (listed from west
to east).

Station code Latitude (N) Longitude (E) State

KSFX 43.106 −112.686 ID
KMAF 31.943 −102.189 TX
KDVN 41.612 −90.581 IA
KMKX 42.968 −88.551 WI
KGRR 42.894 −85.545 MI
KBUF 42.949 −78.737 NY

Addressing the challenges posed by blade LEE and de-
veloping mitigation options requires multi-scale and multi-
disciplinary research. Given the importance of precipitation
phase, size and intensity during WT operation to the poten-
tial for blade LEE, here we focus on developing a consis-
tent and generalizable framework that can be applied to de-
rive estimates of erosion-relevant atmospheric properties. We
present an objective, spatially consistent, robust and repeat-
able framework that can be applied across CONUS and cru-
cially uses only noncommercial (i.e., publicly available) data.
The specific objectives of the research reported herein are as
follows:

1. to develop the workflow necessary to develop a proto-
type radar-based erosion atlas;

2. to provide a first estimate of the spatial variability of
erosion potential across CONUS in regions where wind
turbines are currently deployed (see Fig. 1);

3. to conduct an initial uncertainty propagation exercise to
illustrate how uncertainties in the input data propagate
through the analysis workflow to influence erosion po-
tential estimates;

4. to describe the degree to which blade LEE is episodic
and therefore amendable to the mitigation strategy pro-
posed earlier in research from Denmark of WT cur-
tailment during “highly erosive” periods. The efficacy
of this strategy is a function of (i) the wind speed
regime and joint probability distributions of erosive
events (heavy rain or hail) and power-producing wind
speeds, (ii) the price of electricity supplied to the grid
and (iii) O&M costs. A cost–benefit analysis based on
conditions in Denmark suggested that the loss of rev-
enue from the curtailment of power production was
small compared to the economic benefits from enhanced
blade lifetimes (Bech et al., 2018).

2 Data and methods

A first estimate of precipitation-derived erosion potential at
sites across the USA as developed in the current work is

based on a characterization of the kinetic energy exchange
from rain and hail impacts on the blade leading edge. The
procedure used in making these estimates is divided into two
steps: the calculation of meteorological parameters (wind
speed, rain and hail) at six wind farms, each located within
the observation area of a radar station, and then the calcula-
tion of blade impact frequencies and energy transfer based on
those meteorological parameters. Exact wind farm locations
and details are excluded from this paper under a nondisclo-
sure agreement (NDA).

The research reported herein leverages resources gener-
ated from the upgraded National Weather Service (NWS)
network of WSR-88D radar to dual polarization (completed
in 2013; Seo et al., 2015; Crum et al., 1998) along with the
NOAA Weather and Climate Toolkit (WCT) (see details of
the data products and data volumes provided in Appendix A).
These data represent a unique opportunity to characterize
precipitation properties such as hail that are very challenging
to detect and to accurately characterize using in situ meth-
ods or human observers (see discussion in Allen and Tippett,
2015, and details of radar operation in Kumjian, 2018). NWS
radars operate at elevation angles between 0.5 and 19.5◦ and
an azimuthal resolution of 1◦. Doppler and dual-polarization
data are publicly available at a resolution of 0.25 km up to a
range of 300 km from each radar site (NOAA, 1991; Istok
et al., 2009) (see description of the data provision in Kelle-
her et al., 2007, and an example of the NWS products given
in Fig. 2). The temporal resolution of the data is typically
∼ 5 min, but varies slightly with scanning mode: (1) clear-
air mode uses longer, 10 min scans to collect sufficient re-
turn data during times of no precipitation when signal re-
turn strength is relatively low; (2) precipitation mode is used
when there is any precipitation detected in the scan area and
uses a 6 min scan cycle; (3) storm mode is used when se-
vere or rapidly evolving storms are present and uses a 5 min
sampling interval, made possible by reducing the number of
elevation angles used (NOAA, 2016a). Storm detection and
tracking using radar is a complex and evolving science, but
in brief the NWS system uses an automated function which
employs reflectivity from the current scan and storm cell lo-
cation and vertically integrated liquid water (VIL) from the
previous scan (Johnson et al., 1998).

To illustrate the proposed analysis framework we use data
from six NWS dual-polarization Doppler radar stations (see
Fig. 1 and Table 1) collected over the period 2014–2018.
These locations were chosen to represent gradients in hail
probability and precipitation amount in regions with rela-
tively high wind turbine installed densities (Fig. 1). We em-
ploy the framework in order to generate erosion climates for
six wind farms operating in the scanned volume of the radars
and located 35–75 km from the radar locations. The follow-
ing radar data products are used (see also Appendix A):
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Figure 1. Locations of wind turbines as deployed at the end of 2017 according the USGS database (available from https://eerscmap.usgs.
gov/uswtdb/, last access: 15 January 2020; USGS, 2018) (grey dots), the NWS radar stations from which data are presented (see details in
Table 1) and areas of frequent hail occurrence. Areas with more than 9 hail days per year are outlined by the red contour, and those with more
than six are outlined by the blue contours (Cintineo et al., 2012).

– Precipitation rate (N1P) is the precipitation rate in each
radar cell in each ∼ 5 min period (expressed in units of
millimeters per hour) as estimated from reflectivity.

– Hybrid Hydrometer Classification (HHC), based on re-
flectivity, temperature and dual-polarization variables,
is an estimate of the most likely targets within the
radar volume. While this is a derived product, classifi-
cation algorithms and accuracy have improved with the
widespread adoption of dual-polarization radar and the
application of areal (rather than point-wise) techniques
(NOAA, 2016b; Chandrasekar et al., 2013). The hy-
drometeor types encoded in the NWS data product are
dry snow, wet snow, crystals, big drops, rain (light and
moderate), heavy rain, graupel and rain with hail.

– In hail reports (NHI), maximum hail size (an estimate
of the 75th percentile hail stone diameter, D75) and the
probability of hail are used to identify the occurrence
and severity of hail events (see discussion in Witt et
al., 1998).

– Composite reflectivity (NCR) is the maximum reflectiv-
ity at any elevation angle measured in each radar cell.
This is used here to characterize the spatial extent of
hail events (i.e., reflectivity> 50 dBZ (decibel reflectiv-
ity), Witt et al., 1998).

– Radial wind speeds from the 0.5 elevation angle are
computed from the Doppler shift (N0V) (Alpert and Ku-
mar, 2007).

Figure 2. Example of a single 5 min period of radar data from
KSFX (ID; 8 August 2013, 22:37 UTC). The colors show the com-
posite reflectivity (i.e., the maximum reflectivity from any of the
elevation angles sampled by the NWS radar) in decibel reflectiv-
ity (dBZ). The circles represent storm cells that are identified and
tracked by the NWS detection algorithm; black circles are storms
without hail, and red circles are those with hail.

Wind speeds, hydrometeor type and precipitation inten-
sity for each nominal wind farm located within each radar-
scanned area in each 5 min period are derived as follows.

Precipitation intensity is characterized by rainfall rate
(RR) in millimeters per hour, which is derived using radar
Z–R relationships (Wilson and Brandes, 1979) and reported
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in the parameter precipitation rates (N1P) in all radar cells
every ∼ 5 min. A spatial mean of all N1P values in all radar
cells within 5 km of the wind farm centroid is used here. This
rainfall rate is also used to derive the raindrop spectrum us-
ing the Marshall–Palmer distribution (Marshall and Palmer,
1948). In it the number of droplets above radius, R, per cubic
meter of air (N , m−3) is given by

N =
N0

3
e−3R, (1)

where 3= 8200 (RR)−0.21 (m−1), RR is the rainfall rate in
millimeters per hour andN0 = 1.6×107 m−4; see an example
rain droplet size distribution, expressed as dN/dR, for an RR
of 25 mm h−1 in Fig. 3.

Hail occurrence is characterized by a number of NWS
radar-derived parameters, most of which are contained in the
hail reports (NHI). Hail size and the probability of occur-
rence are conservatively estimated here, by taking the largest
D75 value and hail probability reported for any storm cell
within 5 km of the nominal wind farm centroid (which will
tend to bias both toward higher values). The spatial cover-
age of hail within that 5 km radius is determined by calcu-
lating the fraction of radar cells in that area which have a
composite reflectivity in excess of 50 dBZ. Hail size distri-
butions are relatively uncertain but are generally considered
to be exponential up to a ceiling diameter (Auer, 1972; Lane
et al., 2008). Herein the size distribution of hailstones is as-
sumed to follow (Cheng and English, 1983)

N (D)= 115λ3.63e−λD, (2)

where D is the hailstone diameter (Cheng and English,
1983). This formulation is based on seven events sampled
in Alberta, Canada, which covered a smaller diameter range
than indicated by the radar products, but it has the advantage
that the distribution requires a single fitting parameter (λ)
and thus can be fully described using only D75. As shown
by the example hail distribution (expressed in dN/dR) for
D75 = 25 mm and λ= 0.053 mm−1 (Fig. 3), the slope of
the hydrometeor diameter is considerably shallower than for
rain droplets as described using Marshall–Palmer. In order to
avoid the occurrence of extremely large hailstones, we trun-
cate the distribution to include diameters up to 2 times the
radar-estimated 75th percentile hail stone diameter (D75).
The presence of such a hail size ceiling is consistent with
previous observations (Auer, 1972).

Wind speeds from radar have been previously used for
numerical wind resource verification (Salonen et al., 2011).
Wind speeds at a typical wind turbine hub height of approx-
imately 80 m are derived using the radial wind speeds from
the 0.5◦ elevation angle scan at a distance of 8 km (±0.5 km)
range from the radar station using an assumption of uniform
flow from

Vradial(θ )= Vmean cos(θ ), (3)

where θ is the difference in angle between the radar beam and
the direction of mean flow and Vmean is the mean wind speed
at hub height. A least-squares fit of a sinusoid of this form is
made to each wind speed scan (excluding cells which report a
zero wind speed) to estimate Vmean. The resulting wind speed
is then used within the simple description of the blade rota-
tional speed as a function of hub-height wind speed as shown
in Fig 4c. This operational RPM (revolutions per minute)
curve is based on long-term data provided from large oper-
ating WT arrays (under an NDA) and represents the mean
rotational speed across all WTs operating in these arrays as
a function of the mean wind speed at hub height across the
arrays. The mean RPM decreases at wind speeds below the
cut-out velocity (of 25 m s−1) due to some WTs rotating be-
low their design RPM at very high wind speeds (near cut out)
as reported in the SCADA (supervisory control and data ac-
quisition) data.

Once the hydrometeor type (rain or hail), hydrometeor
size (which determines mass and terminal velocity) and wind
speed for a reporting period are known, hydrometeor impact
energies for that period are calculated using the mass and
closing velocity for hydrometeors of each radius occurring
in the period. For this analysis the terminal velocity for each
size of rain droplets is derived using (Stull, 2015)

Vt, rain = k

[
ρ0

ρair
R

]1/2

, (4)

where R is the droplet radius (m), k = 220 m1/2 s−1 and ρ0
is air density at sea level (set to a constant of 1.25 kg m−3,
herein), ρair is air density at the altitude above sea level at
which the rain droplet is crossing the rotor plane (see exam-
ple of Vt, rain in Fig. 3). The terminal velocity of hail stones
is derived using (Stull, 2015)

Vt, hail =

[
8
3
|g|

CD

ρi

ρair
R

]1/2

, (5)

where R is radius of the hailstone (m), ρi is the density of
ice (set to a constant of 900 kg m−3 herein) and ρair is air
density at the altitude at which the hail is falling. CD = 0.55
is the drag coefficient (Stull, 2015) (see example of Vt, hail in
Fig. 3).

Closing velocity, Vc, as a function of hydrometeor type
and diameter (D) is calculated from wind speed, Vmean, ro-
tor speed, Vr (calculated from wind speed and RPM curve),
terminal velocity, Vt, and blade position, φ(t). Vr as derived
here represents the linear speed of the blade tip due to rota-
tion, as this will lead to conservative estimates of impact en-
ergy. Local blade speeds increase linearly with distance from
the hub, so both the frequency and the energy of impacts is at
a maximum near the blade tip, where blades are particularly
susceptible to erosion (Keegan et al., 2013).

Vc (D,t)=
[
V 2

mean+ (Vr+Vt(D) · cos(φ(t)))2
]1/2

. (6)
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The impact rate (I ) on the blade leading edge as a function
of hydrometeor type and size is calculated from the number
density of the hydrometeors of a given diameter (N (D)) and
the closing velocity:

I (D, t)=N (D) ·Vc (D, t) . (7)

The assumption that all falling rain droplets will impact the
blade is made on the basis of evidence that only droplets with
diameters below 0.2 mm have insufficient inertia to be de-
flected from the blade by streamline deformation (Eisenberg
et al., 2018). The maximum kinetic energy transferred to the
blade from the hydrometeors is then computed for each hy-
drometeor type and diameter using the following approxima-
tion:

EK (D, t)=
1
2
m(D) ·Vc(D, t)2, (8)

where m(D) is the mass of the hydrometeors of a given di-
ameter.

The total kinetic energy of impacts over a time interval, T ,
associated with hydrometeors of diameter, D, is given by:

EK, T (D)=
∫ t0+T

t0

I (D, t) ·EK (D, t)dt, (9)

where dt is the time interval at which the radar measurements
are available (5 min).

The radar-estimated probability of hail and the geographic
extent of hail fall are both treated probabilistically with re-
spect to the number of expected hail impacts on any partic-
ular wind turbine within the wind farm. The number of ex-
pected impacts at each kinetic energy are multiplied by two
factors representing two effects: (1) the probability of hail be-
ing associated with the storm in question, as estimated by the
radar hail detection algorithm, and (2) the fraction of radar
cells within 5 km of the wind farm centroid which have a
composite reflectivity of > 50 dBZ, the range commonly as-
sociated with hail.

NWS radar products have been subject to extensive prod-
uct development efforts and a wide range of evaluation ex-
ercises (Cunha et al., 2015; Villarini and Krajewski, 2010;
Straka et al., 2000) but are nevertheless associated with mea-
surement uncertainties, as are the approximations applied
herein to derive terminal fall velocities and kinetic energy
transfer. To provide a first assessment of how these uncer-
tainties in input data propagate through the analysis frame-
work and thus impact derived kinetic energy exchange, each
of three key parameters of the erosion potential are perturbed
from 50 % to 150 % of observed values during two exam-
ple periods of comparatively high erosion potential. The first
case represents a period of large hail. In this analysis D75 is
set to the 99th percentile D75 at KMKX (WI) (42 mm) and
Vmean is set to 11.3 m s−1 (i.e., the mean wind speed condi-
tionally sampled by ±10 % of D75 = 42 mm). In the second,
a heavy rain event is considered. The RR is set to the 99th

Figure 3. Example of the hydrometeor number density (dN/dR;
number of droplets per meter cubed of air per millimeter of radius
increment) for a precipitation rate of 25 mm h−1 for rain droplets (as
described using the Marshall–Palmer size distribution) and for hail
stones (for D75 of 25 mm and λ= 0.053 mm−1) (left axis). Note:
the λ value employed (λ= 0.053 mm−1) differs from the range (λ:
0.1 to 2 mm−1) used by Cheng and English (1983) for the seven
events they sampled and thus corresponds to a larger maximum hail
size. Hydrometeor terminal velocities of hail and rain are shown by
radius on the right axis.

percentile value at KMKX (18 mm h−1) and the Vmean is set
to the mean value (12.8 m s−1) during heavy rainfall (i.e., RR
within 10 % of the 99th percentile value at KMKX).

Uncertainties in radar-derived hail sizes are less well char-
acterized than for Vmean and RR. For RR the range of ±50 %
is inclusive of previously published uncertainties, under-
standing that those uncertainties are a function of spatial res-
olution, RR and the radar processing algorithm (Seo and Kra-
jewski, 2010; Seo et al., 2015). Wind speed uncertainty (as
quantified using RMSE) for an elevation angle of 0.5◦ is ap-
proximately ±3.4 m s−1 (Fast et al., 2008), and thus for a
wind speed of 12.8 m s−1 a ±50 % variation is fully inclu-
sive of the estimated wind speed error.

3 Results

Key aspects of the erosion-relevant radar-derived atmo-
spheric properties at the six locations are summarized in
Fig. 4. Consistent with previous precipitation climatologies,
there are marked spatial gradients in the annual total and pre-
cipitation intensity (RR, Fig. 4a) (Prat and Nelson, 2015).
Precipitation rates of < 5 mm h−1 are common at all sites;
RRs of 20 mm h−1 are experienced at all locations, but only
the site in Texas (KMAF) exhibits any occurrence of rain-
fall intensity in excess of 35 mm h−1. Using a damage rate
of 3× 10−5 s−1 for an RR of 20 mm h−1 and a closing ve-
locity of 120 m s−1 (Eisenberg et al., 2018), the frequency of
RR of 20 mm h−1 at the site in Texas is such that it would
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accumulate ∼ 0.6 of impact necessary to reach the transition
threshold from the incubation region to material loss over a
25-year period.

At most sites, snow and ice occur at rates at least 1 or-
der of magnitude less frequent than rain. The exception is
the site in Idaho (KSFX) (Fig. 4d). At each of the six loca-
tions, there are fewer than forty 5 min hail periods per year.
Consistent with expectations and previous research (Cinti-
neo et al., 2012), while hail events occur at all six sites,
hail frequency and severe hail events (with maximum hail
sizes> 25 mm) are substantially more frequent at the nom-
inal wind farm locations in Texas, Illinois and Wisconsin
(radar codes: KMAF, KDVN and KMKX) (Fig. 4b). The de-
rived frequency distributions of wind speed close to wind
turbine hub heights (WT HHs) exhibit a high frequency of
wind speeds above typical wind turbine cut-in speeds and
are particularly right-skewed at the site in Iowa (Fig. 4c).
The mean annual wind speed near nominal WT HH is lowest
at KSFX (ID), where it is ≈ 5.9 m s−1. Wind speeds range
from 8.6 to 10 m s−1 at KGRR (MI), KMKX (WI), KBUF
(NY) and KDVN (IA) (Table 2). The wind speed distribu-
tions at these five of the six locations exhibit relatively good
qualitative agreement with a priori expectations (see wind
resource maps available at https://windexchange.energy.gov/
maps-data/324, last access: 15 January 2020) and estimates
from simulations for 2002–2016 with the Weather Research
and Forecasting model (Pryor et al., 2018) for 12 km grid
cells containing the nominal wind field locations that indi-
cate mean annual wind speeds of 6.5 m s−1 at KSFX (ID) and
8.4–9.0 m s−1 (KGRR (MI), KMKX (WI), KBUF (NY) and
KDVN (IA)). However, wind speeds derived from radar ob-
servations from KMAF (TX) are relatively low (mean value
of 5.9 m s−1) and exhibit a relatively low frequency of ob-
servations above 13 m s−1 (2.2 %). This negative bias (of
> 1 m s−1 in the mean relative to the resource map and WRF
model output) from the Texas site will tend to lead to lower
RPM values and hence blade tip speeds and thus a negative
bias in kinetic energy transfer at this location. Wind speed
distributions during precipitation and no-precipitation peri-
ods are qualitatively similar at all six locations. Modal values
are within±1.2 m s−1, but the distributions are heavier-tailed
at all sites during precipitation periods. Mean wind speeds
during precipitation are 0.2–3.8 m s−1 higher at the six loca-
tions than during times of no precipitation (Table 2).

Given the exponential dependence of hailstone and rain
droplet size on precipitation intensity and the accumulated
damage therefrom (Eisenberg et al., 2018), the distributions
of kinetic energy transfer from the two hydrometeor types
at all sites are heavy-tailed. Further, the probability distribu-
tions of each 5 min estimate of kinetic energy transfer (Fig. 5)
and total annual kinetic energy transfer (Fig. 6) indicate
marked differences between the sites and between the two
hydrometeor types. Extremely high hail kinetic energies are
most frequently projected for sites in Texas (KMAF), Iowa
(KDVN) and Wisconsin (KMKX) (Fig. 5a). This is consis-

Table 2. Mean wind speeds close to WT HH from each radar: the
long-term mean, Vmean, the mean during times of precipitation, Vp ,
and the mean during times of no precipitation Vnp.

Station code Mean wind speeds (m s−1)

Vmean Vp Vnp

KSFX (ID) 5.8 5.9 5.7
KMAF (TX) 5.9 6.7 5.8
KDVN (IA) 10.0 11.1 9.8
KMKX (WI) 8.8 10.2 8.7
KGRR (MI) 8.6 12.3 8.5
KBUF (NY) 9.2 10.9 9.0

tent with the precipitation climatology summarized in Fig. 4b
and the high frequency of wind speeds associated with high
WT RPM (Fig. 4c). At these three sites some events (5 min
periods) exhibit kinetic energy of transfer from hail in ex-
cess of 300 J (Fig. 5a). Although these events have a low
probability (less than 1 m−2 yr−1), they may thus be suffi-
cient to cause damage to blade coatings in isolation from
the effects of the cumulative fatigue (Appleby-Thomas et
al., 2011; Kim and Kedward, 2000). Conversely, individual
rain impacts rarely exceed 5.2 J at any site. The probabil-
ity of exceeding this impact kinetic energy threshold over
a square meter of blade leading edge is less that 10−3 yr−1

(Fig. 5b). Thus, hail dominates the annualized cumulative ki-
netic energy of transfer to each square meter of the blades at
all sites (Fig. 6). Indeed, at all sites, despite the low proba-
bility of hail relative to rain (cf. Fig. 4a and b), total annual
kinetic energy transfer from hail exceeds that from rain by
at least 2 orders of magnitude (Fig. 6). The lowest cumula-
tive kinetic energy transfer is projected for the nominal wind
farm sites in Idaho (KSFX), New York state (KBUF) and
Michigan (KGRR). Conversely, values are highest for Texas
(KMAF), Iowa (KDVN) and Wisconsin (KMKX). This is
consistent with previous characterizations of hail frequency,
which show hail fall to be most common in the Great Plains
and much less frequent west of 105◦W (Fig. 1) (Cintineo et
al., 2012; Allen and Tippett, 2015).

Figure 7 illustrates that only a very small fraction of 5 min
periods dominate kinetic energy transfer to the blades from
both hail and rain. At all sites over 80 % of rain-induced ki-
netic energy transfer occurs in the top eighty 5 min periods
per year. Indeed, at all but the site in Idaho (KSFX) over half
of the total rain-induced kinetic energy transfer to the blade
occurs in only twenty 5 min periods in a year. The proba-
bility distribution of hail-induced kinetic energy transfer is
even more heavy-tailed with 90 % of the cumulative kinetic
energy transfer to the blades from hail occurring in fewer
than twenty-five 5 min periods per year at all sites. Thus, few
events dominate the annual total accumulated impact dam-
age.
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Figure 4. Precipitation and wind speed climates from radar data (see locations in Fig. 1). (a) Mean annual number of 5 min periods of each
RR intensity class (discretized in 5 mm h−1 intervals). (b) Mean annual number of 5 min periods with maximum hail sizes (D75) (discretized
in 5 mm intervals). (c) Wind speed distributions for all 5 min periods (discretized in 2 m s−1 intervals). The black line in this frame shows
the WT RPM curve as a function of wind speed (WTG RPM, right axis) (d). Occurrence of NWS radar hydrometeor classifications for each
nominal wind farm shown as the fraction of radar cells in each class during all periods with RR> 1 mm h−1.

Illustrative examples of uncertainties in impact kinetic en-
ergy due to radar observational uncertainties in Vmean, RR
and D75 are shown in Fig. 8. For the representative 5 min
period of heavy rain, a variation of RR± 50 % is associated
with a ±15 % variation in kinetic energy of impact (Fig. 8a).
Increases or decreases in mean wind speed by 4.2 m s−1 (the
upper end of wind speed uncertainty observed in previous
work for an elevation angle of 0.5◦) (Fast et al., 2008) are
shown to decrease kinetic energy, since rotor speed decreases
for wind speeds below or significantly above the rated wind
speed of the turbines (Fig. 4c). For a representative period

of hail (D75 = 42 mm and Vmean = 11.3 m s−1), impact ki-
netic energy varies by ±20 % for a ±50 % variation in Vmean
and D75 (Fig. 8b). Impact kinetic energy actually decreases
as D75 exceeds 120 % of the nominal value (D75 = 42 mm)
(Fig. 8b). This decrease is explained by the interaction of the
single parameter exponential hail size distribution (Fig. 4c)
and the applied hail diameter ceiling. As D75 increases the
truncation of the upper tail of the hail distribution (Fig. 8c)
means the total modeled mass of hail per unit volume de-
creases (Fig. 8d).
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Figure 5. Histograms of kinetic energy of hydrometeor impacts. Annual number of (a) hail and (b) rain impacts per square meter of blade
leading edge as a function of impact kinetic energy. The y axis in panel (b) has been truncated to a maximum value of 1000 yr−1.

Figure 6. Total annual kinetic energy (EK) per square meter of
blade leading edge from rain and hail impacts at each location.

4 Conclusions

A robust and flexible framework has been developed and
presented for generating an observationally constrained geo-
referenced assessment of precipitation-induced wind turbine
blade leading edge erosion potential. The approach elabo-
rated herein is naturally subject to a range of uncertainties but
is automated, objective, repeatable and predicated on pub-
licly available data available from across most of the conti-
nental US. Further, the modular structure means it is flexible
to use with different assumptions and/or data streams. Al-

though the data volumes are not trivial (see Appendix A),
this analysis framework could be applied to NWS radar data
to estimate LEE potential at any arbitrary site in CONUS
and/or applied to data from other national dual-polarization
radar networks for other regions of the world. For example,
the Network of European Meteorological Services (EUMET-
NET) operates over 200 radars many of which have been up-
graded to dual polarization (Saltikoff et al., 2018). The tool
proposed here could be used to provide a first assessment
of the erosion climate in which a given sited turbine may
operate. It thus provides an important first step towards en-
abling an assessment of the threat of excessive precipitation-
induced LEE in a given deployment environment and the cost
effectiveness of options to reduce the likelihood of premature
blade damage.

The actual likelihood of excess WT LEE and blade dam-
age in any environment is not only a function of the pre-
cipitation and wind climate but also of the WT dimensions,
materials used in the blade coatings and the coating thick-
ness (Eisenberg et al., 2018; Slot et al., 2015), the presence
of existing microstructural defects (Evans et al., 1980) due
to manufacturing defects and damage during transportation
(Keegan et al., 2013; Nelson et al., 2017), and other aspects
of the operating environment (including thermal fatigue and
the occurrence of icing; Slot et al., 2015).

The preliminary estimates of erosion potential and the par-
titioning between liquid precipitation and hail are naturally
subject to limitations including, in likely order of importance,
the following:

– the relatively short duration of time for which the dual-
polarization radar products are available. The upgrade
of the NWS radar network to dual polarization was
completed in April 2013; thus only the complete years
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Figure 7. Contributions of the most intense precipitation events to annual total kinetic energy from hydrometeor impacts. (a) Contribution
of the top forty 5 min periods of hail as a fraction of the annual total kinetic energy of hail impacts. (b) Contribution of the top forty 5 min
periods of rain as a fraction of the annual total kinetic energy of rain impacts. Cumulative fraction of annual impact kinetic energy from the
top X (c) hail events and (d) rain events, where X is set to 40 for hail because no site exhibits more than 36 events per year and is truncated
to 100 for rain.

of 2014–2018 (inclusive) were available for analysis.
Given the large interannual variability in precipitation
climates, this is too short to build a comprehensive cli-
matology (Karl et al., 1995; Prein and Holland, 2018).
Any geospatial depiction of the potential precipitation
erosion climate will vary according to the precise data
period used to compute the climatology and may evolve
as a result of climate non-stationarity altering aspects
of the precipitation climate (e.g., the probability of hail,
Brimelow et al., 2017, and rainfall intensity, Easterling
et al., 2000).

– the applicability of the radar-derived wind speed es-
timates to derive wind turbine blade rotational speed.
There are considerable challenges to line-of-sight wind
retrievals from radar (Fast et al., 2008). The approach
adopted herein assumes a uniform wind flow pattern to
derive the wind speeds at the nominal wind turbine hub
height, which may not be realized. As described above,
while the wind speed climates at five of the six loca-
tions considered exhibited relatively good agreement

with previous estimates of wind climates, values for the
location in Texas are negatively biased. This likely re-
sults in a negative bias in kinetic energy transfer for this
site.

– assumptions regarding the size distribution, occurrence
and terminal velocities of hail (Dessens et al., 2015;
Allen et al., 2017; Heymsfield et al., 2014). The evo-
lution of the NWS radar network to dual polarization
provides an unprecedented opportunity for spatial es-
timates of hail presence and size in clouds (Kumjian
et al., 2018). However, hail production is a complex
and incompletely understood phenomenon (Dennis and
Kumjian, 2017; Blair et al., 2017; Pruppacher and Klett,
2010). There are substantial event-to-event variations in
the size distribution and density of hail stones (Heyms-
field et al., 2014), in the presence of solid-phase hy-
drometeors in clouds (as detected by radar) and the oc-
currence of hail at the ground (Kumjian et al., 2019).
Estimates of hail occurrence, size distribution and ter-
minal fall velocity presented herein are likely conserva-
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Figure 8. Sensitivities of rain (a) and hail (b) impact kinetic energies in one 5 min period to the application of ±50 % uncertainties on
the input parameters; wind speed (Vmean) and precipitation intensity (RR) or hail diameter (D75). Circles represent reported uncertainties
in radar retrievals of wind speed (Fast et al., 2008) and rainfall rate (see Table 1 in Seo and Krajewski, 2010). (c) Mass concentrations of
hailstones per cubic meter of air (expressed as dM/dD) associated with a range of D75 values as a function of hailstone diameter. (d) Total
hail mass (in grams) per cubic meter of air as a function of D75.

tive (i.e., upper bounds on true values), and thus LEE
may be overestimated.

– assumptions regarding the size distribution of rain
droplets. Most observational studies indicate an ex-
ponential form (Uijlenhoet, 2001), and the Marshall–
Palmer distribution is the most widely applied. How-
ever, a range of different forms have been proposed to
describe the size spectrum of rain droplets (dN/dR) in-
cluding gamma (Ulbrich, 1983) and lognormal (Fein-
gold and Levin, 1986), an alternative exponential form
(Best, 1950), and more complex non-parametric forms
(Morrison et al., 2019). There is also evidence that
droplet size distributions may exhibit a functional de-
pendence on near-surface wind speed (Testik and Pei,
2017).

– assumptions applied in deriving precipitation intensity
and other precipitation properties from radar. Notable
event-to-event variations in the applicability of Z–R re-
lationships have been reported during rain (Uijlenhoet,
2001; Villarini and Krajewski, 2010).

Future work could address and reduce these uncertainties
and adapt this approach to examine different wind turbines
(by applying a different RPM curve) and/or to assimilate dif-
ferent atmospheric data and/or incorporate more explicit as-
pects of material response. In this analysis we have chosen
to focus on an energetic approach in which we compute the
accumulated kinetic energy transmitted to the blade leading
edge instead of using approaches based on the waterhammer
equation that seek to compute the impact pressure and ma-
terial response to the resulting Rayleigh, shear and compres-
sion waves (that are assumed to act independently of each
individual impact) (Slot et al., 2015; Dashtkar et al., 2019).
It is important to reiterate that the approach adopted here, i.e.,
to compute the maximum total kinetic energy transferred to
the blade, which is used here as a proxy for the erosion po-
tential, represents the upper bound on actual kinetic energy
transfer since it employs a closing velocity characteristic for
the tip of WT rotors, assumes all falling hydrometeors im-
pact the blade, and neglects energy loss during the transfer,
“splash” and bounce of hydrometeors. There are more com-
plex frameworks that can be applied to simulate the pressure
and transient stresses on the blade coatings (Mishnaevsky Jr.,
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2019) and impingement erosion (Amirzadeh et al., 2017a, b).
A model of the blade response to precipitation impacts could
be incorporated within the analysis framework to examine
the probability and time to exceed the (cumulative) failure
threshold energy (Fiore et al., 2015).

This work suggests the dominance of hail as a damage vec-
tor for WT blades at all of the sites studied here. This is con-
sistent with indications that deep convection and hail are par-
ticularly common in the central US (Cintineo et al., 2012)
and indications of large geographic variability in hail fre-
quency (Ni et al., 2017). This finding emphasizes the key
importance of efforts to build and enhance hail climatologies
(Allen et al., 2015; Gagne et al., 2019) with applications in
a wide range of industries (from insurance to renewable en-
ergy). The dominance of hail as a damage vector and the im-
portance of a relatively small number of 5 min periods to total
annual kinetic energy transfer from rain adds credence to the
proposal that blade LEE could be greatly reduced by operat-
ing erosion-safe turbine control (Bech et al., 2018), wherein
the WTs are curtailed during periods with extreme precip-
itation (very heavy rain or the occurrence of hail) without
substantial loss of income.
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Appendix A

The workflow, NWS radar data products and data volumes
necessary for the components of the precipitation erosion cli-
mate are as follows:

1. Download daily .tar archives of NEXRAD polarized
Doppler radar data using ftp from the data repos-
itory hosted at https://www.ncdc.noaa.gov/nexradinv/
(last access: 7 January 2019; NOAA, 1991). These tar
archives contain all NEXRAD level 2 and 3 data and
data products at 5 min intervals in binary NEXRAD for-
mat. The 365 daily tar comprise 60–100 GB per station
per year (PSPY).

2. Preprocessing:

a. Extract precipitation rates (N1P) and hail reports
(NHI) files from each daily tar file.

b. Import raw files into NOAA Weather and Climate
Toolkit (https://www.ncdc.noaa.gov/wct/, 15 Jan-
uary 2020; NOAA NCEI, 2020a), translate N1P,
N0V and NHI files into netcdf and .csv, file sizes
and numbers:

- hydrometeor classification (HHC) raw files
(32 000 to 70 000 files PSPY, 124–180 MB
PSPY)

- NHI csv files (12 000 to 137 000 files PSPY, to-
taling 25–190 MB PSPY)

- N1P raw files (68 000 to 90 000 files PSPY, to-
taling 600–900 MB PSPY)

- N1P netcdf files (130 000 to 150 000 files PSPY,
totaling 240–290 GB PSPY)

- base wind speed (N0V) raw files (40 000 to
60 000 files PSPY, totaling 35–45 GB PSPY)

- N0V netcdf files (40 000 to 60 000 files PSPY,
totaling 900–1100 MB PSPY).

Subsequent data analysis is conducted within MATLAB.
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Data availability. The USGS Wind Turbine Database used in
Fig. 1 is available for download from https://eerscmap.usgs.gov/
uswtdb/ (last access: 15 January 2020; USGS, 2018). The NOAA
Weather and Climate Toolkit (WCT) is a free, platform-independent
Java-based software tool distributed by NOAA’s National Cen-
ters for Environmental Information (NOAA NCEI, 2020a) (down-
load is available from https://www.ncdc.noaa.gov/wct/, last access:
15 January 2020). The NWS radar data are available from https:
//www.ncdc.noaa.gov/data-access/radar-data (last access: 15 Jan-
uary 2020; NOAA NCEI, 2020b).
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