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Abstract. The design of wind turbines and wind farms can be improved by increasing the accuracy of the
inflow models representing the atmospheric boundary layer. In this work we employ one-dimensional Reynolds-
averaged Navier–Stokes (RANS) simulations of the idealized atmospheric boundary layer (ABL), using turbu-
lence closures with a length-scale limiter. These models can represent the mean effects of surface roughness,
Coriolis force, limited ABL depth, and neutral and stable atmospheric conditions using four input parameters:
the roughness length, the Coriolis parameter, a maximum turbulence length, and the geostrophic wind speed. We
find a new model-based Rossby similarity, which reduces the four input parameters to two Rossby numbers with
different length scales. In addition, we extend the limited-length-scale turbulence models to treat the mean effect
of unstable stratification in steady-state simulations. The original and extended turbulence models are compared
with historical measurements of meteorological quantities and profiles of the atmospheric boundary layer for
different atmospheric stabilities.

1 Introduction

Wind turbines operate in the turbulent atmospheric boundary
layer (ABL) but are designed with simplified inflow condi-
tions that represent analytic wind profiles of the atmospheric
surface layer (ASL). The ASL corresponds to roughly the
first 10 % of the ABL, typically less than 100 m, while the
tip heights of modern wind turbines are now sometimes be-
yond 200 m. Hence, there is a need for inflow models that
represent the entire ABL in order to improve the design of
wind turbines and wind farms. Such a model should be sim-
ple enough to efficiently improve the chain of design tools
used by the wind energy industry.

The ABL is complex and changes continuously over
time. Idealized, steady-state models can represent long-term-
averaged velocity and turbulence profiles of the real ABL,
including the effects of Coriolis, atmospheric stability, cap-
ping inversion, homogeneous surface roughness and flat ter-
rain; here we exclude the effects of flow inhomogeneity and

nonstationarity, which are typically considered by mesoscale
and three-dimensional time-varying models. In this work,
we investigate idealized ABL models that are based on
one-dimensional Reynolds-averaged Navier–Stokes (RANS)
equations, where the only spatial dimension is the height
above ground. The output of the model can be used as
inflow conditions for three-dimensional RANS simulations
of complex terrain (Koblitz et al., 2015) and wind farms
(van der Laan and Sørensen, 2017b). Turbulence is mod-
eled here by two limited-length-scale turbulence closures,
the mixing-length model of Blackadar (1962) and the two-
equation k–ε model of Apsley and Castro (1997). These
turbulence models can simulate one-dimensional stable and
neutral ABLs without the necessity of a temperature equa-
tion and a momentum source term of buoyancy. In other
words, all temperature effects are represented by the turbu-
lence model. The limited-length-scale turbulence models de-
pend on four parameters: the roughness length, the Coriolis
parameter, the geostrophic wind speed, and a chosen maxi-
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mum turbulence length scale that is related to the ABL depth.
We show that the normalized profiles of wind speed, wind di-
rection and turbulence quantities are only dependent on two
dimensionless parameters that represent the ratio of the in-
ertial to the Coriolis force, based on two different length
scales: the roughness length and the maximum turbulence
length scale. These dimensionless parameters are Rossby
numbers. The Rossby number based on the roughness length
is known as the surface Rossby number, as introduced by
Lettau (1959), while the Rossby number based on the max-
imum turbulence length is a new dimensionless parameter.
The obtained model-based Rossby number similarity is used
to validate a range of simulations with historical measure-
ments of the geostrophic drag coefficient and cross-isobar an-
gle. In addition, we show that both RANS models’ solutions
are bounded by two analytic solutions of the idealized ABL.

The limited-length-scale turbulence closures of Blackadar
(1962) and Apsley and Castro (1997) can model the effect
of stable and neutral stability but cannot model the unstable
atmosphere. We propose simple extensions to solve this is-
sue and validate the results of the extended k–ε model with
measurements of wind speed and wind direction profiles.
The model extensions lead to a third Rossby number, where
the length scale is based on the Obukhov length. The lim-
ited mixing-length model is not considered in the compari-
son with measurements because we are mainly interested in
the limited-length-scale k–ε model. The k–ε model is more
applicable to wind energy applications because it can also
provide an estimate of the turbulence intensity, which is not
available from the limited mixing-length model of Blackadar
(1962). The limited mixing-length model is applied here to
show that the same model-based Rossby number similarity
as obtained for the k–ε model is recovered.

The article is structured as follows. The background and
theory of the idealized ABL are discussed in Sect. 2. Ex-
tensions to unstable surface layer stratification are presented
in Sect. 3. Section 4 presents the methodology of the one-
dimensional RANS simulations. The model-based Rossby
similarity is illustrated in Sect. 5. The simulation results of
the limited-length-scale k–ε model including the extension
to unstable conditions are compared with measurements in
Sect. 6.

2 Background and theory – idealized models of
the ABL

We model the mean steady-state flow in an idealized ABL.
Here idealized refers to flow over homogeneous and flat ter-
rain under barotropic conditions such that the geostrophic
wind does not vary with height. This flow can be described by
the incompressible RANS equations for momentum, where
the contribution from the molecular viscosity is neglected
due to the high Reynolds number:

DU
Dt
= fc (V −VG)+

d
dz

(
νT

dU
dz

)
= 0,

DV
Dt
=−fc (U −UG)+

d
dz

(
νT

dV
dz

)
= 0, (1)

where U and V are the mean horizontal velocity compo-
nents, UG and VG are the corresponding mean geostrophic
velocities, fc = 2�sin(λ) is the Coriolis parameter with �
as Earth’s angular velocity and λ as the latitude, and z is the
height above ground. In addition, the Reynolds stresses u′w′
and v′w′ are modeled by the linear stress–strain relation-
ship of Boussinesq (1897): u′w′ =−νT dU/dz and v′w′ =
−νT dV/dz, where νT is the eddy viscosity. The boundary
conditions forU and V areU = V = 0 at z= z0 andU = UG
and V = VG at z→∞, where z0 is the roughness length.
Note that it is possible to write the two momentum equations
as a single ordinary differential equation:

d
dz

(
νT

dW
dz

)
= ifcW, (2)

whereW ≡ (U −UG)+ i(V −VG) is a complex variable and
i2 =−1.

The eddy viscosity, νT , needs to be modeled in order to
close the system of equations. The eddy viscosity can be
written as νT = u∗`, where u∗ and ` represent turbulence
velocity and turbulence length scales. For a constant eddy
viscosity, the equations can be solved analytically, and the
solution is known as the Ekman spiral (Ekman, 1905), which
includes the wind direction change with height due to Corio-
lis effects. The Ekman spiral can also be considered a laminar
solution, since one can neglect the turbulence in the momen-
tum equations and set the molecular viscosity to determine
the rate of mixing. For an eddy viscosity that increases lin-
early with height, the equations can also be solved analyti-
cally, as introduced by Ellison (1956) and discussed by Kr-
ishna (1980) and Constantin and Johnson (2019). The two
analytic solutions are provided in Appendix A. One can re-
late the analytic solution of Ellison (1956) to the (neutral)
ASL (z� zi), while the Ekman spiral is more valid for alti-
tudes around the ABL depth zi . Neither of the two analytic
solutions result in a realistic representation of the entire (ide-
alized) ABL. A combination of both a linear eddy viscosity
for z� zi and a constant eddy viscosity for z∼ zi should
provide a more realistic solution. For example, the eddy vis-
cosity could have the form νT = κu∗0zexp(−z/h), where
νT increases linearly with height for z� h as expected in
the surface layer; then it reaches a maximum value at z= h,
and decreases to zero for z > h. Note that u∗0 is the friction
velocity near the surface. Constantin and Johnson (2019) de-
rived a number of solutions for a variable eddy viscosity, al-
though an explicit solution for the entire idealized ABL with
a realistic eddy viscosity (in the previously mentioned form)
has not been found yet. Hence, numerical methods are still
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necessary, and one of the simplest numerical models for the
idealized ABL is given by Blackadar (1962) using Prandtl’s
mixing-length model:

νT = `
2S, (3)

where S =
√

(dU/dz)2+ (dV/dz)2 = |dW/dz| is the magni-
tude of the strain-rate tensor, and ` is prescribed as a turbu-
lence length scale,

`=
κz

1+ κz
`max

, (4)

where κz is the turbulence length scale in the neutral surface
layer with κ as the von Kármán constant, and `max is a maxi-
mum turbulence length scale. It is also possible to model the
eddy viscosity with a two-equation turbulence closure, e.g.,
the k–ε model:

νT = Cµ
k2

ε
, (5)

with Cµ as a model parameter, k as the turbulent kinetic en-
ergy, and ε as the dissipation of k. Both k and ε are modeled
by a transport equation:

Dk
Dt
=

d
dz

(
νT

σk

dk
dz

)
+P − ε, (6)

Dε
Dt
=

d
dz

(
νT

σε

dε
dz

)
+
(
Cε,1P −Cε,2ε

) ε
k
, (7)

where P is the turbulence production, and σk , σε, Cε,1, and
Cε,2 are model constants that should follow the relation-
ship κ2

= σε
√
Cµ(Cε,2−Cε,1). When using the standard

k–ε model calibrated for atmospheric flows (Richards and
Hoxey, 1993), the turbulence length scale or eddy viscosity
will keep increasing until a boundary layer depth is formed
and the analytic solution of Ellison (1956) is approximated.
Apsley and Castro (1997) proposed modifying the transport
equation of ε, such that a maximum turbulence length scale
is enforced by replacing the constant Cε,1 with a variable pa-
rameter C∗ε,1:

C∗ε,1 = Cε,1+
(
Cε,2−Cε,1

) `

`max
, (8)

where the turbulence length scale is modeled as `=

C
3/4
µ k3/2/ε. This limited-length-scale k–ε model behaves

very similarly to the mixing-length model of Blackadar
(1962) (Eqs. 3 and 4). For `� `max, the surface layer so-
lution is obtained, while for `∼ `max, the source terms in
the transport equation of ε cancel each other out (C∗ε,1P ∼
Cε,1ε), and the turbulence length scale is limited. For a
given z0,G, and fc, the ABL depth can be controlled by `max.
This means that `max is related to zi ; Apsley and Cas-
tro (1997) noted that `max ∼ zi/3 applies to typical neutral
ABLs. However, the simulated boundary layer depth using

the k–ε model of Apsley and Castro (1997) has an approx-
imate dependence of zi ∝ (G/|fc|)1−a`amax with a ≈ 0.6,
which we will further discuss in Sect. 5. A summary of the
discussed eddy viscosity closures is listed in Table 1. Fig-
ure 1 compares the analytic solutions of Ekman (1905) and
Ellison (1956) with the numerical solutions of the limited
mixing-length model of Blackadar (1962) and the limited-
length-scale k–ε of Apsley and Castro (1997) in terms of
wind speed, wind direction, θ = arctan(V/U ), and eddy vis-
cosity. The Ekman spiral is depicted with two constant eddy
viscosities, which only translates the solution vertically. In
addition, we have chosen fc = 10−4 s−1, G= 10 m s−1, and
z0 = 10−2 m. The numerical solutions are shown for a range
of `max values. It is clear that the ABL depth decreases for
lower values of `max, for both numerical models, and their so-
lutions behave similarly. A lower `max also results in a higher
shear and wind veer and a lower eddy viscosity, which are
characteristics of a stable ABL. Hence, the limited-length-
scale turbulence closures can model the effects of stable strat-
ification by solely limiting the turbulence length scale, with-
out the need of a temperature equation or buoyancy source
terms. When `max→ 0 m (note that there is minimal limit
of `max in order to obtain numerically stable results), the so-
lution approaches the Ekman spiral because the eddy viscos-
ity in the ABL can be approximated by a constant eddy vis-
cosity. Hence, the maximum change in wind direction simu-
lated by the k–ε model of Apsley and Castro (1997) is that of
the Ekman spiral: 45◦. For large `max values, the numerical
solution approximates the analytic solution of Ellison (1956)
but does not match it because their eddy viscosities are dif-
ferent for z ≥ zi .

3 Extension to unstable surface layer stratification

The two limited-length-scale turbulence closures discussed
in Sect. 2 can be used to model neutral and stable ABLs
without the need of a temperature equation and buoyancy
forces. However, it is not possible to model the unstable ABL
because the turbulence length scale is only limited, not en-
hanced, i.e., `≤ κz. In order to model unstable conditions,
we need to extend the models such that the turbulence length
scale is enhanced in the surface layer, ` > κz, which we
present in the following sections for each turbulence closure.

3.1 Limited mixing-length model

One can generically parameterize the turbulence length
scale ` as a “parallel” combination of ASL and ABL scales,

1
`
=

1
`ASL

+
1

`ABL
. (9)

Blackadar (1962) chose `ASL = κz and `ABL = `max to arrive
at Eq. (4). If we choose to set

`ASL =
κz

φm
(10)
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Figure 1. Comparison of analytic and numerical solutions of existing idealized ABL models using fc = 10−4 s−1, G= 10 m s−1, and
z0 = 10−2 m for different model parameters. (a) Wind speed. (b) Wind direction. (c) Eddy viscosity.

Table 1. Eddy viscosity closures for the idealized ABL.

Eddy viscosity closure Solution Reference

Constant – – Analytic Ekman (1905)
Linear νT = u∗0` `= κz Analytic Ellison (1956)
Limited mixing-length model νT = `

2S `= κz/ (1+ κz/`max), Numerical Blackadar (1962)
Limited-length-scale k–ε model νT = Cµk

2/ε `= C
3/4
µ k3/2/ε Numerical Apsley and Castro (1997)

following the turbulence length scale that is a result of
Monin–Obukhov Similarity Theory (MOST, Monin and
Obukhov, 1954) – where

φm = (1− γ1z/L)−1/4 (11)

is the dimensionless velocity gradient for unstable condi-
tions, with γ1 ≈ 16 as shown by Dyer (1974), and L is the
Obukhov length – then it is possible to extend the limited
mixing-length model of Blackadar (1962) to unstable surface
layer stratification, as

`=
κz

(1− γ1z/L)−1/4
+ κz/`max

. (12)

Approaching neutral conditions, L−1
→ 0, the original

length-scale model of Blackadar (1962) is obtained. Note
that in stable conditions, φm = 1+βz/L, so the resulting tur-
bulence length can also be rewritten in the form of Eqs. (4)
and (9), using an effective maximum turbulence length scale
of

`−1
ABL,stable = `

−1
max,eff ≡ `

−1
max+β/(κL). (13)

Thus we can simply use the original length-scale model of
Blackadar (1962) for stable and neutral conditions; the stable
φm function simply informs the selection of `max,eff, follow-
ing Eq. (13).

3.2 Limited-length-scale k–ε model

Sumner and Masson (2012) argued that, in stable condi-
tions, the limited-length-scale k–ε model of Apsley and Cas-
tro (1997) overpredicts ` in the surface layer compared to
MOST, where `max = Lκ/β and β ≈ 5. They proposed a
more complicated expression for C∗ε,1 in the transport equa-
tion of ε compared to the original model of Apsley and Cas-
tro (1997). Sogachev et al. (2012) alternatively prescribed a
coefficient in the buoyant term of the ε equation, depending
on `/`max and being similar to the production-related term
that gives results consistent (at least asymptotically) with
MOST. We find that the correction of Sumner and Masson
(2012) provides a better match of the turbulence length scale
within the surface layer compared to MOST with respect to
the original k–ε model of Apsley and Castro (1997). How-
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ever, we also find that a larger overshoot of the turbulence
length scale around the ABL depth is found when Coriolis is
included. Alternatively, one could improve the surface layer
solution of the original model of Apsley and Castro (1997) by
simply reducing `max by roughly 20 %. Therefore, we choose
to use the model of Apsley and Castro (1997) as our starting
point.

In order to account for the increase in turbulence length
scale in the surface layer under unstable conditions, we add
a buoyancy source term B in the k–ε transport equations:

Dk
Dt
=

d
dz

(
νT

σk

dk
dz

)
+P − ε+B, (14)

Dε
Dt
=

d
dz

(
νT

σε

dε
dz

)
+
(
C∗ε,1P −Cε,2ε+C

∗

ε,3B
) ε
k
. (15)

Here B is modeled as

B =−νT

[(
dU
dz

)2

+

(
dV
dz

)2
]
z

L
,=−νT S2 z

L
(16)

following MOST, using the similarity functions of Dyer
(1974) as discussed in van der Laan et al. (2017). We use the
flow-dependent parameter C∗ε,3 ≡ 1+αB (Cε,1−Cε,2) of So-
gachev et al. (2012), which for unstable conditions includes
the prescription

αB = 1−

[
1+

(
Cε,2− 1

)(
Cε,2−Cε,1

)] `

`max
, (17)

amenable to the free-convection limit: ε/B→ 1 for P/B→
0. Further, αB→ 1 as `→ 0, matching neutral conditions
since z/L also vanishes then. The prescription (Eq. 17) re-
sults in

C∗ε,3 = 1+Cε,1−Cε,2+
(
2Cε,2−Cε,1− 1

) `

`max
, (18)

which also means that C∗ε,3→ Cε,2 approaching the effec-
tive ABL top (`→ `max), so sources and sinks of ε balance
in Eq. (15), i.e., P−ε+B, all have the same coefficient Cε,2.

4 Methodology of numerical simulations

The one-dimensional numerical simulations are performed
with EllipSys1D (van der Laan and Sørensen, 2017a), which
is a simplified one-dimensional version of EllipSys3D, ini-
tially developed by Sørensen (1994) and Michelsen (1992).
EllipSys1D is a finite volume solver for incompressible flow,
with collocated storage of flow variables. It is assumed that
the vertical velocity is zero and the pressure gradients are
constant, which is valid in an idealized ABL, as discussed
in Sect. 2. As a consequence, it is not necessary to solve the
pressure correction equation that is normally used to ensure
mass conservation.

4.1 Ambient turbulence in the limited-length-scale k–ε
turbulence model

The limited-length-scale k–ε model typically simulates an
eddy viscosity that decays to zero for z→∞, which can lead
to numerical instability. While, for example, Koblitz et al.
(2015) chose to set upper limits for k and ε to prevent numeri-
cal instabilities, we prefer a more physical method, including
ambient source terms Sk,amb and Sε,amb in the k and ε trans-
port equations, respectively. Following Spalart and Rumsey
(2007), we set

Sk,amb = εamb, Sε,amb = Cε,2
ε2

amb
kamb

. (19)

When all sources of turbulence are zero (P = B = 0) and the
diffusion terms are zero (dk/dz= dε/dz= 0), then k = kamb
and ε = εamb. To be consistent with the equations solved, we
define the ambient turbulence quantities in terms of the driv-
ing parameters, G and `max:

`amb = Camb`max, kamb =
3
2
I 2

ambG
2,

εamb = C
3/4
µ

k
3
2
amb
`amb
= C3/4

µ

3
2

√
3
2
I 3

amb
Camb

G3

`max
. (20)

Here Iamb is the total turbulence intensity1 above the (sim-
ulated) ABL, and Camb is the ratio of the turbulence length
scale above the ABL (`amb) to maximum turbulence length
scale (`max). We choose small values for Iamb = 10−6 and
Camb = 10−6, such that the ambient turbulence does not af-
fect the solution for U and V , while the numerical stability
is maintained. It should be noted that the overshoot in `/`max
that can occur near the ABL depth is still affected by the am-
bient values. Sogachev et al. (2012) and Koblitz et al. (2015)
chose to use a limiter on ε to avoid an overshoot in `, but we
choose not to use it. In general, we prefer to avoid limiters
because they can break the Rossby number similarity that is
presented in Sect. 5.

4.2 Numerical setup

The flow is driven by a constant pressure gradient using a
prescribed constant geostrophic wind speed. The initial wind
speed is set to the geostrophic wind speed at all heights. Dur-
ing the solving procedure, the ABL depth grows from the
ground until convergence is achieved, which occurs when the
growth rate of the ABL depth is negligible because a balance
between the prescribed pressure gradient, the Coriolis forces,
and the turbulence stresses is obtained. The flow that we are
solving is relatively stiff, and we choose to include the tran-
sient terms using a second-order three-level implicit method

1From the two-equation k–ε model (which is isotropic), the total
turbulence intensity is calculated by I =

√
2/3k/

√
U2+V 2.
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with a large time step that is set as 1/|fc| s. All spatial gra-
dients are discretized by a second-order central-difference
scheme. Convergence is typically achieved after 105 itera-
tions, which takes about 10 s on a single 2.7 GHz CPU. The
domain height is set to 105 m to ensure that the ABL depth
is significantly smaller than the domain height for all flow
cases considered. The numerical grid represents a line, where
the first cell height is set to 10−2 m. The cells are stretched
for increasing heights using an expansion ratio of about 1.2.
The grid consists of 384 cells, which is based on a grid re-
finement study presented in Sect. 4.3. A rough-wall bound-
ary condition is set at the ground, as discussed by Sørensen
et al. (2007). For the length-scale-limited k–ε model, this
means that we set ε at the first cell, use a Neumann con-
dition for k, and the shear stress at the wall is defined by
the neutral surface layer. The first cell is placed on top of
the roughness length, which allows us to choose the first cell
height independent of the roughness length. This means that
we add the roughness length to all relations that include z,
i.e., z+ z0. For the limited mixing-length model, we simply
set the eddy viscosity from the neutral surface layer at the
first cell. Neumann conditions are set for all flow variables at
the top boundary.

The turbulence model constants of the k–εmodel are set as
(Cµ, σk , σε, Cε,1, Cε,2, κ)= (0.03, 1.0, 1.3, 1.21, 1.92, 0.4).
The chosen Cµ value is based on neutral ASL measurements,
as discussed by Richards and Hoxey (1993), and Cε,1 is used
to maintain the neutral ASL solution of the k–ε model.

4.3 Grid refinement study

A grid refinement study of the numerical setup is performed
for the limited-length-scale k–ε model of Apsley and Cas-
tro (1997), using 48, 96, 192, 384, and 768 cells. We choose
fc = 10−4 s−1, z0 = 10−4 m, and G= 10 m s−1 for `max =

100 and `max = 1 m. The results in terms of the wind speed
of each grid are depicted in Fig. 2 for both values of `max. For
`max = 100 m, the largest difference with respect to the finest
grid is 0.5 %, 0.2 %, 0.09 %, and 0.03 % for 48, 96, 192, and
384 cells, respectively, located at the first cell near the wall
boundary. When using `max = 1 m, a small ABL depth of
100 m is simulated with a sharp low-level jet. In the enlarged
plot of Fig. 2b, one can see how the grid size affects the low-
level jet, where the largest difference with respect to the finest
grid is 1 %, 0.2 %, 0.04 %, and 0.01 %, for 48, 96, 192, and
384 cells, respectively. We find similar results for the limited
mixing-length model of Blackadar (1962). In addition, the
turbulence model extensions to unstable surface layer strati-
fication typically show smaller differences between the grids
due to the enhanced mixing and the use of a high `max value
that represents a convective ABL. Hence, our choice of using
384 cells is conservative.

5 Rossby number similarity in numerical and
analytical solutions

The numerical solution of the original limited-length-scale
turbulence closures of Blackadar (1962) and Apsley and Cas-
tro (1997) depend on four parameters: fc (s−1), G (m s−1),
`max (m), and z0 (m). Applying the Buckingham π theorem,
it is clear that there should exist two dimensionless numbers
that define the entire solution, since the four dimensional pa-
rameters only have two dimensions (meters and seconds).
This can be shown by writing a nondimensional momentum
equation in complex form (Eq. 2) using the nondimensional
variables W ′ ≡W/U , νT0 ≡ νT /(UL) and z0 ≡ z/L, where
U and L are characteristic velocity and length scales, respec-
tively:

Ro
d

dz′

(
ν′T

dW ′

dz′

)
= iW ′. (21)

Here, Ro is the Rossby number, Ro= U/(|fc|L), which de-
scribes the ratio of the inertial (advective) tendency to the
Coriolis force. If we apply the original mixing-length model
of Blackadar (1962) for ν′T using Eqs. (3) and (4), then
Eq. (21) can be written as

Ro
d

dz′

([
κz′

1+ κz′L/`max

]2 ∣∣∣∣dW ′dz′

∣∣∣∣ dW ′

dz′

)
= iW ′, (22)

where −L/`max, is a second dimensionless number. If we
choose U =G and L= z0, we may define two Rossby-
like numbers, with characteristic length scales based on z0
and `max, respectively:

Ro0 ≡
G

|fc|z0
, Ro` ≡

G

|fc|`max
. (23)

Here, we have obtained Ro` by rewriting the second dimen-
sionless number L/`max as the ratio of the two Rossby num-
bers: L/`max = [U/(|fc|`max)]/[U/(|fc|L)]. Ro0 is known
as the surface Rossby number, first introduced by Lettau
(1959); it also resembles a ratio of (inertial) boundary layer
depth to z0. Analogously, Ro` is like the ratio of two bound-
ary layer depths, fc/u∗0 and zi (e.g., Arya and Wyngaard,
1975); here `max is a proxy for zi , acting as a “lid” for the
ABL. Considering Eq. (23), we have reduced the number
of dependent parameters from four to two: f (fc, G, `max,
z0)→ f (Ro0, Ro`). For a fixed surface roughness z0, the ra-
tio of the two Rossby numbers is then the only dependent
parameter:

`max =
Ro0

Ro`
z0; (24)

i.e., the ratio of simulated ABL depth to z0 is the lone param-
eter. Blackadar (1962) found a characteristic maximum ABL
turbulence length scale of 0.00027G/|fc| for the Leipzig
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Figure 2. Grid refinement study of the one-dimensional RANS simulation using the limited-length-scale k–ε model, for 48, 96, 192, 384, and
768 cells. (a) `max = 100 m. (b) `max = 1 m.

wind profile (Lettau, 1950), which equating with `max cor-
responds to Ro` ' 3700.

Figure 3 depicts the Rossby number similarity of
our one-dimensional RANS simulations using the origi-
nal limited-length-scale turbulence closures of Blackadar
(1962), Fig. 3a–c, and Apsley and Castro (1997), Fig. 3d–
g. Four combinations of Ro0 (106 and 109) and Ro` (103

and 105) are used, each simulated with four combinations
of G (10 and 20 m s−1) and fc (5× 10−5 and 10−4 s−1).
The roughness length and maximum turbulence length scale
follow from Eq. (23) and cover a wide range of z0 from
10−4 to 0.4 m and `max of 100–400 m. Figure 3 shows that
normalized wind speed, wind direction, and turbulence quan-
tities for both turbulence closures are only dependent on Ro0
and Ro`. Both turbulence closures produce similar results in
terms of wind speed, wind direction, and eddy viscosity. The
limited-length-scale k–ε model of Apsley and Castro (1997)
also predicts a total turbulence intensity I (Fig. 3g) and a
turbulence length scale ` (not shown in Fig. 3), which are
only dependent on the two Rossby numbers. In addition, the
total turbulence intensity close to the surface only depends
on Ro0, while further away, it is mainly influenced by Ro`
with a weaker dependence on Ro0.

Considering the non-neutral ABL with Coriolis effects
but ignoring the strength of capping inversion (entrain-
ment), in the micrometeorological literature the Kazanskii
and Monin (1961) parameter u∗0/(|fc|L) is typically invoked
(e.g., Arya, 1975; Zilitinkevich, 1989). This can also be con-
sidered as a third Rossby number, which in our context of
using G instead of u∗0 is

RoL− ≡
−G

|fc|L
; (25)

here the subscript (L− ) denotes that Eq. (25) is defined for
unstable conditions, i.e., L≤ 0. For the convective boundary
layer, u∗0/(−|fc|L) is generally replaced by the dimension-
less inversion height −zi/L, because the convective ABL
depth does not have a significant dependence on u∗0/fc
(Arya, 1975). However, we note that RoL− functions as a
“bottom-up” parameter in the non-neutral RANS equation
set, with the Obukhov length L in Eq. (16) specified as a
surface layer quantity; in effect RoL− dictates the relative
increase in mixing length (i.e., in the dimensionless coordi-
nate z|fc|/G). Our length-scale-limited turbulence closures
extended to unstable surface layer stratification, as presented
in Sect. 3, are dependent on RoL− . This becomes clear when
we substitute the mixing-length model extended to unstable
surface layer stratification from Eq. (12) into the nondimen-
sional momentum equation from Eq. (21):

Ro
d

dz′

([
κz′

(1− γ1z′L/L)−1/4
+ κz′L/`max

]2 ∣∣∣∣ dW ′dz′

∣∣∣∣ dW ′

dz′

)
= iW ′, (26)

where L/L is a third nondimensional number, which can also
be written as the ratio of two Rossby numbers: RoL−/Ro0.
For RoL− = 0, the extended models return to the original
models. Figure 4 depicts the Rossby number similarity of the
extended turbulence closures using six combinations of the
three Rossby numbers, which are each simulated with four
combinations of G and fc. We use two values of Ro0 (106

and 109) and three values ofRoL− (0, 5×102, and 2×103) for
Ro` = 103. For these Rossby number combinations,RoL− =
5×102 andRoL− = 2×103 correspond to near-unstable con-
ditions (−1/L= 0.00125–0.005 m−1) and unstable to very
unstable conditions (−1/L= 0.005–0.02 m−1), respectively.
Figure 4 shows that both extended turbulence closures only
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Figure 3. Rossby number similarity of the original turbulence closures. (a–c) Limited mixing-length model. (d–g) Limited-length-scale k–ε
model.

depend on Ro0 and RoL− for a given Ro`. Although not
shown in Fig. 4, changing Ro` would not break the Rossby
number similarity. Note that it does not make sense to include
combinations of nonzero values of RoL− that correspond to
unstable conditions and large values of Ro` that correspond
to stable conditions.

The extended limited-length-scale mixing-length model
(Fig. 4a–c) is less sensitive to RoL− compared to the ex-
tended limited-length-scale k–ε model (Fig. 4d–g) because
of the buoyancy production in the transport equations of k
and ε, which is not present in the extended mixing-length
model. Both models predict a deeper ABL (larger zi) that is
more mixed for stronger unstable surface layer stratification
(increasing RoL− ). The wind veer is also reduced in stronger
unstable conditions for the extended k–ε model (Fig. 4e), but

it does not always decrease with increasing unstable condi-
tions for the extended mixing-length model (Fig. 4b).

One could choose to use the friction velocity at the sur-
face, u∗0, as a velocity scale in the Rossby numbers instead
of the geostrophic wind speed. However, the friction velocity
depends on height z and is a result of the model, not an input.
In other words, the height at which the friction velocity needs
to be extracted to obtain a collapse is also dependent on the
ABL profiles, since the height scales with friction velocity.
Hence it is more sensible to use geostrophic wind speed as a
velocity scale in the model-based Rossby number similarity
– consistent also with classic Ekman theory (which relates
the wind speed in terms of G). Nevertheless, it is possible
to obtain a Rossby similarity using u∗0 as the velocity scale,
which is presented in Appendix B.
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Figure 4. Rossby number similarity of the turbulence closures extended to unstable surface layer conditions. (a–c) Limited mixing-length
model. (d–g) Limited-length-scale k–ε model.

The Rossby number similarity can be employed to gen-
erate a library of ABL profiles for a range of Ro0, Ro`,
and RoL− . The library contains all possible model solutions
for the range of chosen Rossby numbers, and it can be used to
determine inflow profiles for three-dimensional RANS sim-
ulations, without the need for running one-dimensional pre-
cursor simulations.

The obtained Rossby number similarity can only be
achieved for a grid-independent numerical setup, as we have
shown in Sect. 4.3. In addition, the ambient source terms
should also be scaled by the relevant input parameters (G and
`max), as discussed in Sect. 4.1.

The ABL depth zi predicted by the original limited-length-
scale turbulence closures is mainly dependent on the max-
imum turbulence length scale `max. The normalized ABL
depth ((zi + z0)|fc|/G) is mainly dependent on Ro`, which
is depicted in Fig. 5, where results of the limited-length-
scale k–ε model extended to unstable surface layer strati-
fication are shown for 3× 6× 3 combinations of the three
Rossby numbers Ro0, Ro`, and RoL− . We have chosen
G= 10 m s−1 and fc = 10−4 s−1, but the results are inde-
pendent of G and fc due to the Rossby number similarity.
The normalized ABL depth is defined as the height at which
the wind direction (relative to the geostrophic wind direction)
becomes zero for the second time, i.e., above the mean jet and

www.wind-energ-sci.net/5/355/2020/ Wind Energ. Sci., 5, 355–374, 2020



364 M. P. van der Laan et al.: Rossby number similarity of an atmospheric RANS model

Figure 5. Normalized boundary layer depth zi predicted by limited-
length-scale k–ε model extended to unstable surface layer stratifi-
cation, as a function of the three Rossby numbers.

associated turning as in Ekman theory. For the Ekman solu-
tion (Sect. A1), this definition results in an ABL depth equal
to zi = 2π

√
2νT /|fc|. The normalized ABL depth in the

RANS model increases for stronger unstable surface layer
conditions (larger RoL− ), i.e., for larger values of the sur-
face heat flux. For neutral and stable conditions (RoL− =
0) and moderate to shallow ABL depths, i.e., 3× 103

≤

Ro` ≤ 3× 104 – corresponding to zi <∼ 2000 m as seen in
Fig. 5 – we find that log10([zi+z0]|fc|/G)∝−alog10(Ro`),
with a = 0.57–0.62 for Ro0 over the range of 109–105.
Hence for moderate to shallow ABLs the effective depth
modeled in neutral and stable conditions is roughly zi ∝

`amax(G/|fc|)1−a, with a ≈ 0.6. As seen by the solid lines in
Fig. 5, under neutral conditions and with large ABL depths,
the zi dependence on `max softens (a < 2/3) and deviates
from a power law, while for unstable conditions a is simi-
lar to the previously found value of 0.6.

6 Validation and model limits

We employ the Rossby similarity from Sect. 5 to validate
a range of results simulated by the original limited-length-
scale k–ε model of Apsley and Castro (1997) including
our proposed extension to unstable surface layer stratifica-
tion. Historical measurements of the geostrophic drag coef-
ficient u∗0/G and the cross-isobar angle (the angle between
the surface wind direction and the geostrophic wind direc-
tion), as summarized by Hess and Garratt (2002), and mea-
sured profiles of the ASL and ABL for different atmospheric
stabilities from Peña et al. (2010, 2014), respectively, are
used as validation metrics. The limited mixing-length model
of Blackadar (1962) and its extension are not considered in

the comparison with measurements, since we are mainly in-
terested in the k–ε model.

6.1 Geostrophic drag coefficient

The geostrophic drag law (GDL) is a widely used relation in
boundary layer meteorology and wind resource assessment
(after Troen and Petersen, 1989), which connects the surface
layer properties as z0 and u∗0 with the driving forces on top
of the ABL proportional to |fc|G:

G=
u∗0

κ

√[
ln
(
u∗0

|fc|z0

)
−A

]2

+B2, (27)

where A and B are empirical constants. The GDL can be de-
rived from Eq. (1), where the Reynolds stresses do not need
to be modeled explicitly (as in, for example, Zilitinkevich,
1989) and can be expressed as an implicit relation for the
geostrophic drag coefficient u∗0/G and Ro0:

u∗0

G
=

κ√[
ln (Ro0)+ ln

(
u∗0
G

)
−A

]2
+B2

. (28)

Figure 6 is a reproduction from Hess and Garratt (2002),
where the geostrophic drag coefficient is depicted as a func-
tion of surface Rossby number Ro0. The black markers
are measurements summarized by Hess and Garratt (2002),
where the dots are near-neutral and near-barotropic condi-
tions, the triangles and squares reflect less idealized atmo-
spheric conditions, and the open circles are measurements
with a relative high uncertainty. Results of the limited-length-
scale k–ε model including the extension to unstable sur-
face layer stratification are shown as colored markers, where
the colors represent a range of Ro`. For the two small-
est values of Ro`, two additional results are plotted for
RoL− = 5× 102 and RoL− = 2× 103, representing unstable
(−1/L= 0.005 m−1) and very unstable conditions (−1/L=
0.02 m−1) for the chosen values of G= 10 m s−1 and fc =

10−4 s−1. The colored lines are fitted A and B constants
from the GDL as defined in Eq. (28). The analytic solutions
from Ekman (1905) and Ellison (1956), as summarized in
Appendix A, are shown as black and gray lines, respectively.
For RoL− = 0, the geostrophic drag coefficient predicted by
the limited-length-scale k–ε model is bounded by the an-
alytic solutions. For Ro`→ 0, the geostrophic drag coeffi-
cient of Ellison (1956) is approximated. For increasing Ro`
or decreasing ABL depths, the {u∗0/G, log(Ro0)} relation-
ship becomes more linear. In addition, for Ro` = 3.7× 103,
as used by Blackadar (1962), and RoL− = 0, most of the
near-neutral and near-barotropic measurements are captured
quite well. Hess and Garratt (2002) used the measurements
of the geostrophic drag coefficient to validate a number of
models, which often have only one result for each Ro0. The
geostrophic drag coefficients predicted by the limited-length-
scale k–ε model can cover all measurements by varying Ro`.
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Figure 6. Reproduced from Hess and Garratt (2002). Geostrophic drag coefficient simulated by the limited-length-scale k–ε model extended
to unstable surface layer stratification, taken at a normalized height of (z+z0)|fc|/G= 5×10−5 (i.e., in the surface layer), for different Ro0,
Ro`, and RoL− . Black markers represent measurements from Hess and Garratt (2002). Ro` = 3.7× 103 represents `max from Blackadar
(1962). Analytic results of Ekman (1905) and Ellison (1956) are summarized in Appendix A.

In addition, the extension to unstable surface layer conditions
can also explain the trend of the more uncertain measure-
ments (black dots). Since Ro` and RoL− influence the ABL
depth, as previously shown in Fig. 5, the model suggests that
the measurements were conducted for a range of ABL depths
that could reflect a range of atmospheric stabilities, although
the geostrophic wind shear can play a role here as shown by
Floors et al. (2015).

The fitted A and B parameters in Fig. 6 are dependent
on Ro` and RoL− , which both influence the ABL depth. This
is not a surprising result, since many authors have shown
that A and B are dependent on atmospheric stability (see, for
example, Arya, 1975; Zilitinkevich, 1989; Landberg, 1994).
For moderate roughness lengths over land, the measured val-
ues tabulated by Hess and Garratt (2002) generally fall be-
tween the blue and yellow lines for neutral conditions, which
are consistent with the typically used values in wind energy,
i.e., A= 1.8 and B = 4.5 (e.g., Troen and Petersen, 1989).
Assuming `max is a measure of the ABL depth, then in the
actual atmosphere over land we have Ro0/Ro` ∼ 103–105,
while over sea the ratio is roughly 106–107. Thus one can see
that the typical wind energy values of A and B are a compro-
mise for applicability over both land and sea. The real-world
limits mean that the result for Ro` = 102 (red line) can ex-
tend only from Ro0 ∼ 105–107, while the over-sea regime
(large Ro0) tends to involve a smaller range of Ro`. We note

that the GDL from Eq. (27) limits how large B can be; gener-
ally u∗0/G < κ/B, so values of B greater than those shown
are not physical. The model results in Fig. 6 do not violate
this limit.

6.2 Cross-isobar angle

Figure 7 is a reproduction of Hess and Garratt (2002), where
the angle between surface wind direction and the geostrophic
wind direction is plotted as a function of the surface Rossby
number. This angle is known as the cross-isobar angle, θ0.
The black markers, analytic solutions, and model results fol-
low the same definition as used in Fig. 6, where additional
black diamond markers are added that correspond to clima-
tological measurements, as discussed by Hess and Garratt
(2002). For RoL− = 0, the model results of the cross-isobar
angle are bounded by the analytic solutions, as also found for
the geostrophic drag coefficient in Fig. 6. All measurements
summarized by Hess and Garratt (2002) can be simulated
by the limited-length-scale k–ε model by varying the ABL
depth using Ro`. Most of the measurements are well pre-
dicted for RoL− = 0 and Ro` = 103–104, which is the range
used by Blackadar (1962) (Ro` = 3.7×103). For RoL− 6= 0,
smaller values of the cross-isobar angle can be simulated
compared with the analytic solution of Ellison (1956) due to
the enhanced rate of mixing. The model cannot predict larger

www.wind-energ-sci.net/5/355/2020/ Wind Energ. Sci., 5, 355–374, 2020



366 M. P. van der Laan et al.: Rossby number similarity of an atmospheric RANS model

Figure 7. Reproduced from Hess and Garratt (2002). Cross-isobar angle simulated by the limited-length-scale k–ε model extended to
unstable surface layer stratification, taken at a normalized height of (z+ z0)|fc|/G= 5× 10−5 for different Ro0, Ro`, and RoL− . Black
markers represent measurements from Hess and Garratt (2002).Ro` = 3.7 represents `max from Blackadar (1962). Analytic results of Ekman
(1905) and Ellison (1956) are summarized in Appendix A.

values of the cross-isobar angle compared to the analytic so-
lution of Ekman (1905) (45◦).

6.3 Atmospheric surface layer profiles

Peña et al. (2014) used measurements of the wind speed com-
ponents from 10 to 160 m, from The National Test Station for
Wind Turbines at Høvsøre, a coastal site in Denmark, charac-
terized as flat grassland. The Coriolis parameter for the test
location is 1.21× 10−4 s−1. The measurements were taken
from sonic anemometers over 1 year, and a wind direction
sector was selected to avoid the influence of the coastline
and wind turbine wakes. Peña et al. (2014) also calculated
a “mixing” (turbulence) length scale ˆ̀ using a local friction
velocity u∗ and the wind speed gradient:

ˆ̀ =
u∗

dU/dz
. (29)

Seven cases were defined based on the atmospheric stability,
and these are listed in Table 2 in terms of the Obukhov length,
roughness length, and friction velocity. In order to apply the
limited-length scale k–ε, we need to set the geostrophic wind
speed and the maximum turbulence length scale, which are
both unknown. We choose to use G and `max as free param-
eters, which we fit to a reference wind speed and a turbu-
lence length scale, at a reference height of 60 m. The wind
speed gradient is obtained from a central-difference scheme

taking the wind speed at 40, 60, and 80 m. The fitted pa-
rameters are obtained by running the numerical simulations
with a gradients-based optimizer, and the results are listed
in Table 2. The maximum `max is set to 103 m, which cor-
responds to an ABL depth on the order of 5 km, as depicted
in Fig. 5. The unstable cases are also simulated with the ex-
tended limited-length-scale k–ε model using the measured L
and refitted G and `max, which are listed in Table 2 as values
in parentheses.

Figure 8 depicts the wind speed and turbulence length
scale of the measurements and numerical simulations us-
ing the original and extended limited-length-scale k–ε mod-
els. The turbulence length scale from the numerical simu-
lation is calculated by Eq. (29), instead of the usual defi-
nition `= C3/4

µ k3/2/ε. The original limited-length-scale k–
ε model of Apsley and Castro (1997) can capture the wind
speed and turbulence length scale for the stable and neutral
cases. Note that for the very stable case, the shear is underes-
timated and the model predicts an ABL depth of about 100 m,
which results in a spike in ˆ̀, since dU/dz is zero around the
ABL depth. As expected, the original limited-length-scale
k–ε model cannot predict a lower shear and a larger turbu-
lence length scale compared to neutral atmospheric condi-
tions (where dU/dz= u∗/` and `= κz), and the optimizer
used to fit G and `max sets `max to our chosen maximum
value of 103 m. Note that therefore the lines corresponding
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Table 2. ASL validation cases. Fitted G, fitted `max, and modeled u∗0 in parentheses represent values for the extended model.

Data Model

1/L z0 u∗0 Fitted G Fitted `max u∗0
Case (m−1) (m) (m s−1) (m s−1) (m) (m s−1)

Very unstable (vu) −1.35× 10−2 1.3× 10−2 0.35 8.00 (7.50) 103 (5.39× 102) 0.30 (0.34)
Unstable (u) −7.04× 10−3 1.2× 10−2 0.41 10.1 (9.56) 103 (5.54× 102) 0.37 (0.40)
Near unstable (nu) −3.18× 10−3 1.2× 10−2 0.40 10.3 (10.0) 103 (2.00× 102) 0.37 (0.39)
Neutral (n) 1.87× 10−4 1.3× 10−2 0.39 11.0 4.01× 101 0.37
Near stable (ns) 3.14× 10−3 1.2× 10−2 0.36 11.3 1.72× 101 0.35
Stable (s) 9.61× 10−3 0.8× 10−2 0.26 9.96 6.49× 100 0.27
Very stable (vs) 3.57× 10−2 0.2× 10−2 0.16 8.62 3.35× 100 0.20

Figure 8. ASL measurements of Peña et al. (2010) compared to simulation results of the original limited-length-scale k–ε model of Apsley
and Castro (1997). (a) Wind speed. (b) Turbulence length scale from Eq. (29). Unstable cases are also simulated with our extension to
unstable surface layer stratification with L from Table 2.

to unstable conditions of the original k–ε model largely over-
lap in Fig. 8. Higher values of `max would not improve the
results. The limited-length-scale k–ε model extended to un-
stable surface layer stratification is able to predict turbulence
length scales larger than `= κz and shows improved results
for both the shear and the turbulence length scale.

Table 2 also shows the measured and simulated friction
velocity at a height of 10 m. The simulated friction velocity is
calculated as u∗ = (u′w′

2
+v′w′

2
)1/4. For the unstable cases,

it is clear that the extended model predicts friction velocities
that are closer to the measurements compared to the original
limited-length-scale k-ε model due to the enhanced mixing.

It should be noted that the validation presented in
Fig. 8 could be considered as a best-possible simulation-
to-measurement comparison because we have allowed our-
selves to tune both G and `max. When G is provided by the
measurements, it is more difficult to obtain a good match, as
shown in Sect. 6.4.

6.4 Atmospheric-boundary-layer profiles

Peña et al. (2014) performed lidar measurements of the hori-
zontal wind speed components from 10 to 1200 m at the same
test site as discussed in Sect. 6.3. Peña et al. (2014) selected
10 cases that differ in geostrophic forcing and atmospheric
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Table 3. ABL validation cases based on Peña et al. (2014).

Case Description 1/L G z0 u∗0 Ro0 RoL−
(m−1) (m s−1) (m) (m s−1) (–) (–)

4 Stable, strongly forced 4.5× 10−3 20.5 1.6× 10−2 0.45 1.0× 107 –
5 Neutral −5× 10−4 19.5 1.6× 10−2 0.70 1.0× 107 –
9 Very unstable, weak forcing −4.0× 10−2 5.02 1.6× 10−2 0.26 2.8× 106 1.7× 103

stability. The cases were selected to challenge the valida-
tion of numerical models. Since our numerical setup can
only handle a constant geostrophic wind speed, we select the
barotropic cases from Peña et al. (2014): cases 4, 5, and 9 and
the corresponding values of the Obukhov length, geostrophic
wind, roughness length, friction velocity, Ro0, and RoL− are
listed in Table 3. For convenience, we keep the case names
as introduced by Peña et al. (2014). Cases 4 and 5 represent
a stable and a neutral ABL with high forcing, respectively,
where Ro0 = 107. Case 9 is characterized by a low forcing
and very unstable stratification, where Ro0 = 2.8× 106.

In Case 6 from Peña et al. (2014) it is observed that the
lidar measurements do not approach the geostrophic wind
speed at large heights above the surface. This is because the
geostrophic wind speed in Peña et al. (2014) is derived from
outputs of the Weather Research and Forecasting (WRF)
model over a large area, potentially leading to bias. There-
fore, we use a slightly different approach to estimate the
geostrophic wind; because the wind speed above the ABL
is nearly always in geostrophic balance we can just assume
the wind speed measured by the wind lidar above the bound-
ary layer depth to be equal to the geostrophic wind speed,
thereby avoiding possible prediction errors in wind speed
from the WRF model. Instead, only the ABL depth is es-
timated from the WRF model outputs. The ABL depth is
available as a diagnostic variable predicted by the Yonsei
University ABL scheme (Hong et al., 2006) in the WRF
model. To be sure that the lidar wind speed is close to the
geostrophic wind speed, we always estimate it from the level
that is higher than the modeled ABL depth during all 30 min
means, which constitute the three cases.

SinceG is known, we can use Rossby similarity for model
validation. While one could try to find an `max to get the best
comparison with the measurements, we find that it is difficult
to define a good metric. For example, we could attempt to
find an `max that results in an equivalent ABL depth equal to
that of the measurement cases; however, the ABL depth was
not directly measured and only estimated from a model. In-
stead of finding a single `max value, we choose to simulate a
range of `max values. We note that part of this difficulty is due
to the limited extent of the model. There is no “top-down” in-
formation; i.e., we lack entrainment effects and the impact of
the strength of the capping inversion. An extra length scale
could be introduced to account for such effects; examples are
the nonlocal static stability scale found in Zilitinkevich and

Esau (2005), the “mid-ABL” scale of Gryning et al. (2007)
(generalized by Kelly and Troen (2016) for matchingG), and
the “top-down” scale of Kelly et al. (2019).

Figure 9 depicts the measured wind speed and wind direc-
tion, for each validation case. Since cases 4 and 5 have the
same G (within 5 %) and thus same surface Rossby number
Ro0 ' 107, we can plot them together because the normal-
ized model results are the same for both cases. The error
bars represent the standard error of the mean. The original
limited-length-scale k–ε model of Apsley and Castro (1997)
is employed with a range of Ro`. The unstable ABL case
(Case 9) is also simulated with the model extension to un-
stable surface layer stratification using RoL− from Table 3
and the two smallest values of Ro`. Case 4 has a strong
wind shear and a wind veer that leads to a cross-isobar an-
gle of 50◦. The limited-length-scale k–ε model can predict
a maximum cross-isobar angle of 45◦ for extremely shal-
low ABL depths, as shown in Sect. 6.2. Hence, the measured
ABL from Case 4 is not a possible numerical solution. The
measured ABL from Case 5 can be predicted by the origi-
nal limited-length-scale k–ε model, while this is not the case
for the wind speed close to the ground of Case 9 due to the
strong unstable stratification. When the limited-length-scale
k–ε model including the extension for unstable surface layer
conditions is employed, the prediction of the wind speed near
the ground is improved, although it is difficult to correctly
predict both wind speed and wind direction. It should be
noted that the extended (unstable) model only improves the
wind speed in the surface layer (at 10 m), noting the dotted
and solid lines crossing in Fig. 9c.

From the measurements during Case 9 it was observed that
the WRF-modeled ABL depth grew from 300 m to nearly
1200 m, which indicates that the conditions were largely
transient; such nonstationary conditions are difficult for a
RANS model. More unstable cases are necessary to further
validate the extended model, including measurements of tur-
bulence quantities such as the (total) turbulence intensity.
It is possible to use validation cases based on turbulence-
resolving methods, such as large-eddy simulations, in future
work.
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Figure 9. ABL measurements from Peña et al. (2014) compared to simulation results of the original limited-length-scale k–ε model of
Apsley and Castro (1997), for a range of Ro`. (a, c) Wind speed. (b, d) Wind direction. Unstable Case 9 (c, d) is also simulated with our
extension to unstable surface layer stratification (dashed lines), with RoL− (i.e., 1/L) from Table 3.

7 Conclusions

The idealized ABL was simulated with a one-dimensional
RANS solver, using two different turbulence closures: a
limited mixing-length model and a limited-length-scale k–
ε model. While these models require four input parameters,
we have shown that the simulated ABL profiles collapse to
a dependence upon two Rossby numbers, which are defined
by the roughness length and the maximum turbulence length
scale, respectively. The Rossby number based on the maxi-
mum turbulence length scale is a new dimensionless number
and is related to the ABL depth. The model-based Rossby
number similarity obtained herein is valid for both turbu-
lence models. We have employed Rossby number similarity
to compare the range of model solutions with historical mea-

surements of relevant associated meteorological quantities,
such as the geostrophic drag coefficient and cross-isobar an-
gle. The measured variation in these measurements can be
explained by dependence upon the new Rossby number (i.e.,
ABL depth). In addition, we have shown how two classic an-
alytic solutions of the idealized ABL (Ekman, 1905; Ellison,
1956) act as bounds on the results obtainable by the limited-
length-scale k–ε model.

The limited-length-scale turbulence closures can repre-
sent the effects of stable and neutral stratification but cannot
model unstable conditions. We have proposed simple exten-
sions to overcome this issue, without adding a temperature
equation (van der Laan et al., 2017). The extended models
require an additional input, the Obukhov length, which can
be used to define a third Rossby number. We have shown
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that the extension of the k–ε model compares well with mea-
surements of seven ASL profiles, representing a range of at-
mospheric stabilities, including three unstable cases. The k–
ε model further offers turbulence intensity, whose profile is
also found to collapse according to the developed similarity
theories. A model validation of the ABL for a stable, a neu-
tral, and an unstable case is performed, with less success for
the non-neutral cases. In the very stable case, the measured
wind veer of 50◦ was larger than the maximum wind veer
of 45◦ that the k–ε model can simulate. In addition, the very
unstable case was characterized by nonstationary conditions,
which are difficult to capture with a RANS model. More val-
idation cases based on the convective ABL are necessary to
quantify the performance of the turbulence model extension
to unstable conditions beyond the surface layer.

The application of the one-dimensional RANS simulations
to generate inflow profiles for three-dimensional RANS sim-
ulations is not performed here and it should be investigated
in future work. Ongoing and future work also includes the
incorporation of the effect of the capping-inversion strength
to accommodate entrainment at the ABL top (softening the
ABL lid, one might say); this can be considered as an intro-
duction of an additional length scale. In addition, the effects
of length-scale limitation and neglecting the buoyancy force
in the momentum equation need to be quantified for three-
dimensional RANS simulations of complex terrain and wind
farms.
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Appendix A: Analytic solutions for the idealized ABL

A1 Constant eddy viscosity – Ekman spiral

The analytic solution of Ekman (1905), known as the Ekman
spiral, can be expressed as a function of a single variable, the
normalized height ξ ≡ z

√
|fc|/(2νT ). The wind speed S =√

U2+V 2 and the wind direction θ can be written as

S(ξ )=G
√

1− 2cos(ξ )exp(−ξ )+ exp(−2ξ ),

θ (ξ )= arctan
(

sin(ξ )
exp(ξ )− cos(ξ )

)
. (A1)

The cross-isobar angle θ (0) is found to be 45◦, and the
geostrophic drag coefficient is zero (since there is no rough-
ness or u∗ within Ekman theory).

A2 Linear eddy viscosity – Ellison

The analytic solution of Ellison (1956) for the U and V ve-
locity components can be written in terms of the Kelvin func-
tions ker and kei, as discussed by Krishna (1980):

U = cGker(x)+UG, V = cGkei(x)+VG, (A2)

where x is a normalized height x ≡ 2
√
z|fc|/(κu∗0) and c is

a constant. For z→ z0 (and assuming z0� u∗0/|fc|), the
Kelvin functions can be expanded, and the solution can be
written as

U ≈−cG

[
1
2

ln
(
z0|fc|

κu∗0

)
+ γe

]
+UG = 0,

V ≈−cG
π

4
+VG = 0, (A3)

where γe ≈ 0.57721 is the Euler–Mascheroni constant. We
can set the geostrophic wind G through the constant c:

c =−

([
1
2

ln
(
z0|fc|

κu∗0

)
+ γe

]2

+
π2

16

)−1/2

,

UG = cG

[
1
2

ln
(
z0|fc|

κu∗0

)
+ γe

]
, VG = cG

π

4
. (A4)

Note that Krishna (1980) chose cG=−2u∗0/κ (so his −c is
5 times the geostrophic drag coefficient u∗0/G for κ = 0.4),
which follows from the Neumann condition,

dU
dz
=
u∗0

κz
=−

cG

2z
, (A5)

by taking dU/dz in Eq. (A2) for z→ z0. As as consequence,
the geostrophic wind becomes a dependent parameter. We
prefer to keep the geostrophic wind as an independent param-
eter by using c as defined in Eq. (A4). Then, the effective u∗0
is calculated as u∗0,eff = cGκ/2.

A GDL can be derived in the form of Eq. (28) by using
the Neumann conditions of Eq. (A5) and the constant c from

Eq. (A4), where A=− ln(κ)+ 2γe ≈ 2.07 and B = π/2≈
1.57, as also shown by Krishna (1980). The friction velocity
in Eq. (A4) can now be calculated by solving the GDL for
u∗0/G. Hence, the analytic solution of Ellison (1956) is only
dependent on Ro0.

The cross-isobar angle (angle between the geostrophic
wind direction and surface wind direction) can be written as
a function of the geostrophic drag coefficient u∗0/G and the
Rossby number Ro0 using Eq. (A4):

θ0 = arctan
(
VG

UG

)
= arctan

(
π/2

2γe− ln (Ro0)− ln (κu∗0/G)

)
, (A6)

where the GDL can be used to solve for u∗0/G.

Appendix B: Rossby number similarity based on the
friction velocity

In this article, we have shown a Rossby similarity of
two limited-length-scale turbulence closures using the
geostrophic wind speed,G, as a velocity scale, instead of the
friction velocity near the ground, u0∗. It is more convenient
to use G because it is a constant and a model input, while
u0∗ is a model result that depends on height. However, it is
possible to obtain a Rossby similarity based on u0∗ using the
geostrophic drag coefficient u∗0/G from Fig. 6, since we can
write the following:

Ro∗` ≡
u∗0

|fc|`max
=
u∗0

G
Ro`,

Ro∗0 ≡
u∗0

|fc|z0
=
u∗0

G
Ro0,

Ro∗L− ≡
−u∗0

|fc|L
=
u∗0

G
RoL− . (B1)

Figure 6 can be transformed into an explicit relation of
u∗0/G as a function of Ro∗` , Ro∗0 , and RoL− ; the result is
depicted in Fig. B1 for Ro∗L− = 0.

The Rossby similarity based on u0∗ is illustrated in Fig. B2
for four combinations ofRo∗0 (105 and 108) andRo∗` (102 and
104) for RoL− = 0, using four combinations of u∗0 (0.2 and
0.4 m s−1) and fc (5× 10−5 and 10−4 s−1). Only results of
the limited-length-scale k–ε model are shown for brevity, al-
though the Rossby similarity based on u0∗ also applies to the
limited mixing-length model and for the unstable extension
(where RoL− 6= 0).

It should be noted that u0∗ in Fig. 6 was extracted at a
normalized height of (z+ z0)|fc|/G= 5× 10−5, which rep-
resents the surface layer. If a perfect Rossby similarity based
on u0∗ is desired, one would need to extract u0∗ at a constant
normalized height equal to (z+ z0)|fc|/u0∗, which requires
an iterative process of finding a geostrophic wind speed that
results in a RANS simulation with a desired u0∗, at a constant
normalized height. This is beyond the scope of the present
work.
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Figure B1. Geostrophic drag coefficient simulated by the limited-length-scale k-ε model as a function of Ro∗
`

and Ro∗0 with Ro∗
L−
= 0.

Figure B2. Rossby number similarity of the limited-length-scale k–ε model using the friction velocity as the velocity scale, for RoL− = 0.
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