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Abstract. Turbines in wind power plants experience significant power losses when wakes from upstream tur-
bines affect the energy production of downstream turbines. A promising plant-level control strategy to reduce
these losses is wake steering, where upstream turbines are yawed to direct wakes away from downstream tur-
bines. However, there are significant uncertainties in many aspects of the wake steering problem. For example,
infield sensors do not give perfect information, and inflow to the plant is complex and difficult to forecast with
available information, even over short time periods. Here, we formulate and solve an optimization under uncer-
tainty (OUU) problem for determining optimal plant-level wake steering strategies in the presence of independent
uncertainties in the direction, speed, turbulence intensity, and shear of the incoming wind, as well as in turbine
yaw positions. The OUU wake steering strategy is first examined for a two-turbine test case to explore the im-
pacts of different types of inflow uncertainties, and it is then demonstrated for a more realistic 11-turbine wind
power plant. Of the sources of uncertainty considered, we find that wake steering strategies are most sensitive to
uncertainties in the wind speed and direction. When maximizing expected power production, the OUU strategy
also tends to favor smaller yaw angles, which have been shown in previous work to reduce turbine loading. Ulti-
mately, the plant-level wake steering strategy formulated using an OUU approach yields 0.48 % more expected
annual energy production for the 11-turbine wind plant than a strategy that neglects uncertainty when consider-
ing stochastic inputs. Thus, not only does the present OUU strategy produce more power in realistic conditions,
but it also reduces risk by prescribing strategies that call for less extreme yaw angles.

Copyright statement. This work was authored in part by the Na-
tional Renewable Energy Laboratory, operated by Alliance for Sus-
tainable Energy, LLC, for the U.S. Department of Energy (DOE)
under contract no. DE-AC36-08GO28308. The US Government re-
tains and the publisher, by accepting the article for publication, ac-
knowledges that the US Government retains a nonexclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the pub-
lished form of this work, or allow others to do so, for US Govern-
ment purposes.

1 Introduction

A key determinant in the profitability of a wind power plant
is its annual energy production (AEP). The traditional strat-
egy for increasing AEP has been to control each turbine in
the plant such that single-turbine power generation is maxi-
mized, irrespective of the generation by other turbines. Plant-

level control, by contrast, is an innovative approach that has
the potential to further optimize wind plant performance and
increase AEP (Johnson and Thomas, 2009; Marden et al.,
2013; Gebraad et al., 2017; Fleming et al., 2016a; Munters
and Meyers, 2018). However, plant-level control presents
new challenges in coordinating a set of complex machines,
each operating in a highly uncertain and complex flow envi-
ronment.

Recently, researchers from the National Renewable En-
ergy Laboratory (NREL) have partnered with utility-scale
wind power plants to demonstrate the potential benefits of the
wind plant control strategy known as wake steering (Flem-
ing et al., 2017, 2019). This strategy offsets turbine yaw po-
sitions from the incoming wind, thereby “steering” wakes
away from downstream turbines (Fleming et al., 2016b; Ge-
braad et al., 2016; Raach et al., 2016). Accurately character-
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izing the plant and atmospheric physics is, however, a sig-
nificant challenge when designing wake steering schemes. In
particular, it is difficult to forecast the future behavior of the
atmosphere, since the engineering forecast models used in
practice are prone to inaccuracies (Nygaard, 2015), infield
sensors are subject to bias (Mittelmeier and Kühn, 2018),
and many quantities of interest must be extrapolated or in-
terpreted from measured values.

There are also various sources of uncertainty that can have
substantial impacts on the success of wake steering strate-
gies. For example, thermally driven vertical mixing in the
atmospheric boundary layer is difficult to measure and char-
acterize (Wharton and Lundquist, 2010). Wind speed mea-
surements must also be extrapolated horizontally to forecast
conditions far away from sensors as well as vertically to char-
acterize the shear in the inflow and wind properties above
meteorological measurement tower sensors (Clifton et al.,
2016). Moreover, it is common practice to assume a deter-
ministic relationship between turbine power, thrust coeffi-
cients, and wind speed, but there is large scatter in these val-
ues when they are measured in practice. Complex phenom-
ena, such as vorticity generated by the turbine blades, cause
yaw alignment sensor errors, introducing significant uncer-
tainty in measurements of turbine yaw angles relative to the
incoming wind.

Physical uncertainties associated with engineering wake
models used for the design of wind plant control strategies
pose additional difficulties. For example, although several
studies have reported significant gains in AEP using plant-
level control strategies under the assumption of perfect (i.e.,
certain) information (Gebraad et al., 2016; Fleming et al.,
2016b; Bossanyi and Jorge, 2016), uncertainties associated
with wake model parameters may cause a wake steering strat-
egy in the field to perform differently than anticipated. Gau-
mond et al. (2014) showed that, by assuming uncertainty in
the inflow direction, the predictive capability of engineering
wake models may be improved, further emphasizing the im-
portance of uncertainty when developing control strategies.

Uncertainty in the design process can be addressed using
optimization under uncertainty (OUU), a technique that has
been used in several prior wind plant optimization studies
to provide a robust solution under varying levels of uncer-
tainty (Gonzalez et al., 2012; Chen and MacDonald, 2013).
Quick et al. (2017) formulated the wake steering problem us-
ing OUU, assuming large uncertainties in the yaw positions
of individual turbines. Subsequently, Rott et al. (2018) for-
mulated and solved a wake steering OUU problem for a nine-
turbine plant, assuming uncertainty in the measured inflow
direction. More recently, Simley et al. (2019) formulated an
OUU problem by taking yaw position uncertainty and inflow
direction variability into account.

In this paper, we extend prior work on OUU and plant-
level control to address uncertainty in turbine yaw positions
and the direction, speed, shear, and turbulence intensity of
the wind inflow during the optimization of turbine yaw off-

sets for wake steering strategies. Our objective is to under-
stand how uncertainty in the examined parameters influences
wake steering optimization and to quantify the effect of un-
certainty on the performance of a hypothetical wind power
plant. Using a polynomial chaos expansion (PCE) approach,
which has not been employed in previous OUU studies of
wake steering strategies, we show that direction is the most
important uncertain input, effectively smearing out the paths
of wakes and reducing the expected velocity deficit. We fur-
ther show that uncertainty generally reduces optimal yaw off-
sets, in agreement with the results of Rott et al. (2018) and
Simley et al. (2019) obtained using a simple quadrature ap-
proach not based on PCE.

In this study, we first examine a two-turbine test case to
explore how different magnitudes of uncertainty impact the
efficacy of wake steering schemes, with a particular focus on
the trade-off between the power produced by the front and
back turbines. Assuming standard uncertainty distributions
based on available information, we find that the inflow speed
and direction are the most influential parameters for the wake
steering design problem. In a more realistic 11-turbine wind
plant test case, we further demonstrate the benefits of the
OUU formulation. In particular, in addition to yielding more
robust designs, the OUU formulation results in less extreme
prescribed yaw offsets than a deterministic problem formu-
lation. Damiani et al. (2018) demonstrated that, without ac-
counting for wakes from upstream turbines, more extreme
yaw offsets generally result in more extreme turbine loads.

The paper is organized as follows. In the next section, we
outline details of the engineering wake model, the formula-
tion of the OUU problem, and the specific application exam-
ined. Results are outlined for two-turbine and wind plant test
cases in Sect. 3, and conclusions are presented at the end.

2 Methodology, application, and approach

In this study, we applied the FLOw Redirection and In-
duction in Steady State (FLORIS) engineering wake model
(NREL, 2019) to a simple two-turbine test case and to a more
realistic 11-turbine wind plant test case to quantify potential
benefits of explicitly taking uncertainty into account when
designing plant-level wake steering schemes via OUU.

2.1 Engineering wake model

We used the FLORIS implementation of the steady-state
Gaussian wake model (Bastankhah and Porté-Agel, 2016;
Annoni et al., 2018), which imposes a time-independent ve-
locity deficit given by

u(x,y,z)
u∞

= 1−C exp

[
−

(y− δc)2

2σ 2
y

−
(z− zh)2

2σ 2
z

]
, (1)

where u(x,y,z) is the velocity component in the direction
of the inflow, x is the streamwise direction, y is the cross-

Wind Energ. Sci., 5, 413–426, 2020 www.wind-energ-sci.net/5/413/2020/



J. Quick et al.: Wake steering optimization under uncertainty 415

Figure 1. Power (solid line) and thrust coefficient (dashed line)
as functions of wind speed for the NREL 5 MW reference turbine
(Jonkman et al., 2009). Arrows point from the curves to the corre-
sponding vertical axes.

flow direction, z is the vertical direction, δc(x,y,z) is the
wake deflection field in the cross-flow direction, u∞ is the
inflow magnitude at the wind turbine hub height zh, and C
is the velocity deficit in the center of the wake. The stan-
dard deviations, σy and σz, parameterize the width and height
of the wake in the cross-flow and vertical directions, respec-
tively. Further details on the relationships between the differ-
ent wake parameters are provided in the documentation for
FLORIS (National Renewable Energy Laboratory, 2019).

In this study, we limited the value of the thrust coefficient
to be strictly less than 1. Without this modification, wake
calculations for low wind speeds may result in inaccurate
predictions (in particular, the calculation of C involves the
square root of 1 minus the thrust coefficient). Throughout this
paper, we use the NREL 5 MW reference turbine (Jonkman
et al., 2009), which has power and thrust coefficient curves
shown in Fig. 1.

2.2 Problem formulation

Using the steady-state FLORIS wake model, the determinis-
tic power production of a wind plant can be predicted given
turbine-specific yaw positions, y, as well as the average di-
rection, θ ; average speed, u∞; turbulence intensity, TI; and
wind shear coefficient, α, of the incoming wind over a 10 min
period. We denote the deterministic power prediction from
FLORIS as f (v), where v = [y,θ,u∞,TI,α]. It should be
noted that y is a vector of angular yaw positions for each
turbine in a farm and is a relative reference; in this sense,
y represents a vector of yaw offsets with respect to θ . The
length of the vector, y, is equal to the number of turbines

in the plant. The inflow direction, θ , is measured clockwise
from north, and the yaw position is measured counterclock-
wise from the inflow direction.

During plant operation, low-frequency variation, spatial
variability, and measurement errors are inevitable complica-
tions that may be represented in a stochastic setting. We en-
vision wake steering strategies changing approximately ev-
ery 10 min. As a result, we introduce the stochastic expected
power, denoted f10 because it is representative of uncertain-
ties that are relevant on the order of 10 min of operational
time. It is defined as

f10 =

∫
f (v)pv (v)dv , (2)

where pv (v) is a joint probability density function (pdf)
that describes the distribution of v, which is representa-
tive of low-frequency temporal variation, spatial variability,
and measurement errors. Although this distribution can be
empirically determined using real-world measurements and
knowledge of turbines in a wind plant, in this study we
instead parameterize pv using the vector of mean values,
µv = [µy,µθ ,µu∞ ,µTI,µα], where µa denotes an average
value of variable a, and the hyperparameter vector, 6 (which
includes, for example, standard deviations if pv is assumed
to be normally distributed). We thus parameterize f10 as

f10 (µv,6)=
∫
f (v)pv (v;µv,6)dv , (3)

where pv (v;µv,6) denotes the joint pdf of v parameterized
by µv and 6. We define this joint pdf such that, as 6→ 0,
pv (v;µv,6) approaches the Dirac delta function centered on
µv , namely δ (v−µv).

The energy production may be estimated for a whole year
(i.e., the expected AEP) as a linear sum of each speed- and
direction-specific expected power production, weighted by
speed- and direction-specific probabilities and multiplied by
8760 h yr−1. These probabilities are representative of annual
variability, as opposed to the previously described uncer-
tainty in operating conditions. Thus, the average inflow speed
and direction are cast as being uncertain in order to capture
their annual variability. In practice, these probabilities are
empirically determined and jointly distributed. The resulting
expression for AEP is thus given as

AEP(µy,µTI,µα,6)=

8760
∫
f10 (µv,6)pµ(µu∞ ,µθ )dµu∞dµθ , (4)

where pµ(µu∞ ,µθ ) represents the joint distribution of µu∞
and µθ over a year.

Using Eq. (4) for the AEP, we can formulate the wake
steering OUU problem as

µ(OUU)
y = argmax

µy
AEP(µy,µTI,µα,6) . (5)
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Similarly, the deterministic wake steering optimization is for-
mulated for 6 = 0 as

µ(det)
y = argmax

µy
AEP(µy,µTI,µα,0) . (6)

The baseline solution corresponds to turbines that are directly
aligned with θ such that there is no yaw offset, corresponding
to

µ(base)
y = 0 . (7)

We used four metrics to assess the quality of different so-
lutions for µy . The value of the stochastic solution (VSS) is
the expected value of the stochastic AEP for the OUU solu-
tion relative to the deterministic solution. Our VSS definition
is similar to the VSS metric introduced by Birge and Lou-
veaux (2011), but it is expressed as a fractional increase in
expected AEP rather than an absolute value increase. As a re-
sult, the solution value metrics do not depend on the amount
of power produced. We also examined the expected value of
stochastic AEP for the OUU solution relative to the baseline
no-offset case, denoted VSSb. The value of the determinis-
tic solution (VDS) is the nonstochastic value of the AEP for
the deterministic solution relative to the baseline solution. In
addition, we report the stochastic value of the AEP for the de-
terministic solution relative to the baseline solution, denoted
as VDSs. Each of these metrics is defined in Table 1.

2.3 Application

2.3.1 Uncertainty estimates

In the present demonstration tests, we considered the ef-
fects of uncertainty in turbine yaw offsets and wind inflow
speed, direction, turbulence intensity, and shear. We envi-
sion wake steering strategies changing every 10 or 20 min, so
we identify reasonable uncertainty values to represent spatial
and temporal variations, as well as measurement errors, in
each of these uncertain parameters over that time span. To-
gether, these variations comprise the joint pdf, pv (v;µv,6).
It should be noted that the present formulation and demon-
stration of the analysis approach are not specific to the un-
certainty values used here, and the method is equally valid
for other choices of these values that may represent different
real-world conditions and wind plants.

To estimate the yaw position uncertainty, we compared
operational data from an NREL turbine with a nearby me-
teorological measuring mast (NWTC Information Portal,
2019); these data were examined previously by Fleming et al.
(2018), Annoni et al. (2018), and Damiani et al. (2018). In the
present study, the wind direction recorded at the turbine was
compared to the wind direction measured on the upstream
meteorological mast. The mean error, which is sometimes
referred to as bias, was removed to focus on the shape of the
distribution of errors, as shown in Fig. 2.

Figure 2. Errors in the yaw position, y, for a test turbine at the
National Wind Technology Center at NREL (Fleming et al., 2018;
Annoni et al., 2018; Damiani et al., 2018). Measurement data used
to calculate the probability distribution were sampled every 30 s.
The solid blue and green lines show Laplace and Gaussian distribu-
tions, respectively. The empirical probability mass function found
from the observed yaw errors is shown with white bars.

Based on the shape of the distribution in Fig. 2, we pa-
rameterize the yaw misalignment as a two-sided exponential
distribution, termed the Laplace distribution, given by

L(x;µ,ν)=
1

2ν
exp

(
−
|x−µ|

ν

)
, (8)

where µ is the mean and ν is a scale parameter. The remain-
ing uncertain parameters are assumed to be normally dis-
tributed according to

N (x;µ,σ )=
1

√
2πσ 2

exp
[
−

(x−µ)2

2σ 2

]
, (9)

where µ is again the mean and σ is the standard deviation.
Each of the uncertain parameters is then assumed to be inde-
pendent such that the joint pdf, pv (v;µv,6), can be written
as

pv (v;µv,6)=

[L(y;µy,νy)N (θ;µθ ,σθ )N (u∞;µu∞ ,σu∞ )
N (TI;µTI,σTI)N (α;µα,σα)] , (10)

where the hyperparameter is given as 6 =[
νy,σθ ,σu∞ ,σTI,σα

]
. The vector νy represents the scale

parameter used in the yaw offset Laplace distributions for
each turbine in a plant. It should be noted that Mittelmeier
and Kühn (2018) reported yaw misalignment to be a strong
function of the inflow wind speed, which is not considered
here.

Estimated values for 6 are taken from a range of sources.
Based on the observational data shown in Fig. 2, we mea-
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Table 1. Summary of AEP-based metrics used to assess the quality of solutions for given values of µTI and µα (for simplicity, these
parameters are suppressed as arguments of the AEP in the notation).

Metric Equation Description

VSS AEP[µ(OUU)
y ,6]/AEP[µ(det)

y ,6] − 1 Stochastic AEP from OUU relative to the deterministic solution
VSSb AEP[µ(OUU)

y ,6]/AEP[0,6] − 1 Stochastic AEP from OUU relative to the baseline solution
VDS AEP[µ(det)

y ,0]/AEP[0,0] − 1 Nonstochastic AEP from the deterministic solution relative to the baseline solution
VDSs AEP[µ(det)

y ,6]/AEP[0,6] − 1 Stochastic AEP from the deterministic solution relative to the baseline solution

sured a scale parameter of ν = 6.16◦, and we correspond-
ingly set νy = 5◦ for all turbines. Mittelmeier et al. (2017)
discuss a methodology to estimate inflow conditions from
turbine sensor data. They reported Gaussian uncertainties of
3.6◦ and 0.46 m s−1 when predicting the inflow direction and
speed, respectively. Similarly, Gaumond et al. (2014) pro-
vided direction variations measured over a 10 min interval
in the Horns Rev power plant, which yielded a standard de-
viation of 2.67◦. Based on these studies, we propose σθ = 5◦

and σu∞ = 1 m s−1 as reference uncertainty values. Uncer-
tainties for the shear parameter, α, and the turbulence inten-
sity, TI, are more difficult to determine and have received
relatively little attention in previous studies. Consequently,
for the present demonstration of the OUU method, we have
selected relatively large uncertainties of σα = 0.05, which
is just under half as large as the assumed mean value of
µα = 0.12 used in the present tests, and σTI = 5 %, which
is close to the mean value of µTI = 6 % used in these tests.
Although these uncertainties are likely unrealistically large,
it will be seen in the two-turbine test case that even these
large uncertainties have less of an effect on the wake steering
problem than uncertainties in y, θ , and u∞.

The resultant distribution choices and hyperparameter es-
timates are provided for each uncertain variable in Table 2.
It is cautioned that the magnitude of these sources of un-
certainty are site-specific. For example, a wind plant built
in the wake of a large obstacle would be expected to have
larger uncertainty in the inflow direction than a wind plant
built offshore. As such, the uncertainties outlined in Table 2
should be taken as representative of real uncertainties but do
not correspond to any particular site or wind plant. In the
real world, the uncertainties are likely to differ for each wind
power plant, since there are many different potential sources
of uncertainty in the parameters necessary to initialize and
solve the FLORIS model for a wind plant. Correlations be-
tween different parameters and their uncertainties, such as
between wind speed and shear, turbulence intensity, or yaw
error, will also affect the results but are not considered here.

2.3.2 Calculation of AEP

We approximated the integral in Eq. (3) for f10 using PCE,
which uses orthogonal polynomials with collocated quadra-
ture points to interpolate a quantity of interest through an un-

Table 2. Probability distributions and hyperparameter values de-
scribing the uncertainty associated with various inputs to the wake
model.

Parameter Distribution Hyperparameter

Yaw offsets, y L(y;µy ,νy ) νy = 5◦

Wind direction, θ N (θ;µθ ,σθ ) σθ = 5◦

Wind speed, u∞ N (u∞;µu∞ ,σu∞ ) σu∞ = 1 m s−1

Turbulence, TI N (TI;µTI,σTI) σTI = 5%
Shear, α N (α;µα,σα) σα = 0.05

certain parameter space (Eldred and Elman, 2011). We used
the PCE tool in DAKOTA (Adams et al., 2014) in all cases.
As DAKOTA does not support Laplace distributions, we re-
port the mean response resulting from all combinations of
exponentially distributed yaw position errors.

PCE was used to facilitate computing f10 instead of rely-
ing on simple quadrature, which requires a very finely spaced
grid of inputs, or Monte Carlo simulation, which requires
on the order of millions of simulation evaluations. Our ap-
proach integrates the PCE surrogate when estimating f10, ef-
fectively replacing low-order interpolating functions used in
simple quadrature with a surrogate model that requires fewer
quadrature points in order to achieve the same level of accu-
racy. Padrón et al. (2019) recently demonstrated the advan-
tages of PCE in computing AEP as opposed to the traditional
simple quadrature. When computing the integral in the two-
turbine cases, we used fifth-order quadrature with uniform
p refinement and two maximum refinement iterations. In the
OUU problem, we used fifth-order quadrature for the vari-
able products without refinement during each optimization
iteration and used fifth-order quadrature with p refinement
and two maximum refinement levels to assess the outcome
of the wind plant OUU, deterministic, and baseline optimiza-
tion solutions. For more details regarding PCE, we refer the
reader to the DAKOTA theory manual (Adams et al., 2014).

During computation of the AEP via Eq. (4), the speed and
direction joint pdf, pµ(µθ ,µu∞ ), is approximated with an
empirical discrete joint probability mass function, denoted
ρµ(µdθ ,µ

i
u∞

). Here, d = [1, . . .,D] and i = [1, . . ., I ], where
D is the number of directional bins and I is the number of
inflow wind speed bins in the discrete function ρµ. This dis-
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cretization thus yields a new definition of AEP, given as

AEP(µy,µTI,µα,6)=

8760
D∑
d=1

I∑
i=1

ρ(µdθ ,µ
i
u∞

)f10(
[
µy,µ

d
θ ,µ

i
u∞
,µTI,µα

]
,6) . (11)

2.3.3 Layouts considered

To demonstrate the benefits of OUU in the development of
wake steering strategies, we considered a two-turbine layout
as well as a larger 11-turbine layout. We used the two-turbine
layout to explore the basic trade-off between the power pro-
duction of front and back turbines as well as the sensitivity to
different levels of uncertainty. The wind plant problem was
used to assess the potential benefits of OUU in a more real-
istic wind plant design problem. The mean values, scale pa-
rameters, and upper and lower bounds associated with each
input considered in the two-turbine and wind plant cases are
shown in Table 3.

In the two-turbine case, the front turbine directly wakes
the back turbine when flow is from the north, as shown in
Fig. 3a. The turbines are spaced five rotor diameters apart in
the northern direction. We chose this case because it is rep-
resentative of the fundamental trade-off between upstream
turbines losing power by offsetting their yaw positions and
downstream turbines gaining power when wakes are diverted
away from them (as indicated in Fig. 3b). We performed a pa-
rameter sweep across possible values of the front turbine yaw
offset with a nested PCE routine to find the optimum steer-
ing strategy for various uncertainties in the inflow. We report
the maximum VSS across all directions and speeds for each
uncertain input using the reference scale values. Uncertain
variables associated with larger maximum VSS are assumed
to be more important and, based on the results from this two-
turbine case, we included only the most important uncertain-
ties in the more computationally expensive wind plant case.

The wind plant wake steering optimization problem is in-
tended to provide insights into the benefits of OUU in more
realistic scenarios. The plant layout is shown in Fig. 4, and
the corresponding annual wind speed and direction probabil-
ity mass function is shown in Fig. 5. We performed deter-
ministic and stochastic wake steering optimizations for each
speed and direction, reporting the deterministic and expected
power production associated with the OUU, deterministic,
and baseline strategies. We used the annual wind speed and
direction probability mass function to aggregate these speed-
and direction-specific power production estimates into an es-
timate of AEP.

It should be noted that a relatively limited range of inflow
directions and relatively large direction increments were con-
sidered in the present study, as shown in Fig. 5. These choices
were made to simplify the demonstration case, and the ap-
proach is readily extended to wider inflow direction ranges
with smaller increments. In particular, optimization of AEP
with respect to both wind turbine layout and yaw positions

would require the use of smaller inflow increments. Data for
the joint distribution of the wind speed and direction shown
in Fig. 5 are provided in the Supplement.

The expected power production was maximized dur-
ing the optimization. The COBYLA optimization driver in
DAKOTA (Adams et al., 2014) was used to design the wake
steering strategies. The PCE tool in DAKOTA (Adams et al.,
2014) was used during each optimization iteration to esti-
mate the stochastic response in the OUU. Each OUU was
initialized with the corresponding deterministic solution.

3 Results

In the following, we present results for OUU of the simple
two-turbine case as well as the 11-turbine wind plant. It will
be shown from an analysis of the two-turbine case that wind
speed and direction are the most influential parameters, and
so we performed the plant OUU using only these two un-
certain variables, assuming νy , σTI, and σα to be zero. Opti-
mization results of wake steering strategies for the 11-turbine
wind plant are presented using the OUU and deterministic
problem formulations, and the results are compared to base-
line strategies (i.e., using no wake steering).

3.1 Two-turbine test case

Figure 3 shows results for the two-turbine test case, where
the front turbine wakes the back turbine. For each uncertain
parameter, we performed a parameter sweep across possible
values of the front turbine yaw offset with a nested sampling
routine to find the optimum steering strategy for various lev-
els of uncertainty. The results are summarized in Table 4.
Based on these results, uncertainty in the wind direction, θ ,
was found to give the maximum VSS value, followed by un-
certainties in the wind speed, u∞; yaw position, y; and tur-
bulence intensity, TI. Uncertainty in shear, α, was found to
have very little impact for wake steering designs.

Uncertainty in the wind direction affects the path that
wakes behind wind turbines will follow. This can be thought
of as spreading out the wake. This effect is explored in Fig. 6,
which shows that, as the inflow direction uncertainty in-
creases, the wake becomes spread out such that the power
of the back turbine is eventually completely insensitive to the
yaw angle of the front turbine. The effect of uncertainty in di-
rection on the front turbine optimal yaw settings is dramatic.
For example, in Fig. 6c, the optimal yaw offset is around 25◦

when there is perfect information. As mild uncertainty is in-
troduced, however, the optimal front turbine yaw angle de-
creases. When large levels of uncertainty are introduced, the
optimal setting switches to almost no steering. The optimal
front turbine yaw offset is shown as a function of inflow di-
rection for different levels of uncertainty in Fig. 6d. Once
again, as uncertainty increases, the optimal yaw offset be-
comes more gradual and less extreme.
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Table 3. Mean and scale values and lower and upper bounds used in the two-turbine and wind plant OUU problems. Sequences are expressed
as [start : increment : end].

Parameter Two turbines Two turbines Plant Plant Lower Upper
i µi 6i µi 6i bound bound

y (◦) [−30 : 1 : 30] [1 : 1 : 15] – 0 −∞ ∞

θ (◦) [−60 : 10 : 60] [1 : 1 : 15] [−60 : 10 : 60] 5 −∞ ∞

u∞ (m s−1) [3 : 1 : 15] [0.2, 0.5, 1, 2] [3 : 1 : 15] 1 3 20
TI (%) 6 [1 : 1 : 10] 6 0 1 30
α 0.12 [0.02, 0.05, 0.1, 0.15, 0.2] 0.12 0 −0.5 3.0

Figure 3. Contours of wind speed for a simple two-turbine test case with an inflow speed of 8 m s−1. Brighter colors correspond to faster
wind speeds. In (a), the turbines are both directly facing the wind with y set to 0. In (b), the front turbine is offset such that y1 = 30◦ and
y2 = 0◦.

Table 4. Maximum VSS across all speeds and directions consid-
ered, given the reference standard deviation values in Table 2.

Parameter y θ u∞ TI α

max(VSS|6) 0.32 % 5.4 % 0.60 % 0.28 % 0.02 %

It is interesting to note that the deterministic solution
may be worse than the baseline solution if there is large
uncertainty in the inflow wind direction. This is shown in
Fig. 7, which indicates that, as inflow direction uncertainty
increases, there is less overall benefit to wake steering. Re-
sults for VSSb in Fig. 7b show that the increase in power pro-
duction is reduced from around 10 % to 1 % as σθ increases
from 1 to 15◦. The VDS results in Fig. 7c have a maximum
of almost 15 % and, by definition, are not affected by uncer-
tainty. We found that the deterministic strategy performed on
the order of 10 % worse than the baseline solution for large

levels of direction uncertainty, which may be observed in the
VDSs results shown in Fig. 7d.

Uncertainty in the incoming wind speed, u∞, changes the
magnitude of the wake velocity deficits, although the wake
paths remain unchanged. Variability in the wind speed leads
to power fluctuations around the nominal power curve, with
different behaviors depending on the operating condition.
Wind speed variability in the region where power produc-
tion tracks the cubic power of velocity generally leads to
higher-than-nominal power production. By contrast, wind
speed variability in the region where the power is limited
by the generator size generally leads to lower-than-nominal
power production. This is due to Jensen’s inequality and the
concavity of different sections of the power curve (Quick
et al., 2016). In either case, the difference in expected power
production will result in different deterministic and stochas-
tic operational strategies. Figure 8 shows that uncertainty in
lower inflow speeds caused the optimal front turbine offset
to decrease, and uncertainty in higher wind speeds caused
the optimal front turbine offset to increase. The optimal front
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Figure 4. Contours of wind speed for the 11-turbine wind farm with
the baseline yaw configuration (y = 0) and 10 m s−1 inflow speed.
Brighter colors correspond to faster wind speeds.

Figure 5. Annual wind speed and direction probability mass func-
tion used in the 11-turbine wind plant optimization study.

turbine offset was insensitive to wind speed uncertainty in the
cubic range of the power curve. The increased uncertainty in
the inflow speed changes expected power production, which
changes the trade-off between reduced power from the up-
stream turbine and increased power from the downstream
turbine due to yaw deflection.

Overall, we found this two-turbine case to be less sensi-
tive to uncertainties in yaw misalignment, turbulence inten-
sity, and wind shear. Uncertainty in the turbine yaw positions
generally reduces the rotor-swept area and spreads out the
path of the turbine wake. As a result, the power of the back

Table 5. Expected and deterministic AEP of OUU, deterministic,
and baseline plant-level wake steering strategies for the 11-turbine
wind plant test case.

Expected Deterministic
AEP (GWh) AEP (GWh)

OUU optimization 115.2 113.3
Deterministic optimization 114.7 114.0
Baseline strategy 114.6 111.1

turbine may be increased or decreased by yaw misalignment
uncertainty, depending on which dynamic dominates. Yaw
position uncertainty does not dramatically affect the solution
at the reference uncertainty (νy = 5◦), but it produces notice-
ably different solutions near νy = 10◦, which has a maximum
VSS of 1.23 %.

Turbulence intensity affects the wake expansion geome-
try, which effectively smears out the path of wakes, decreas-
ing the velocity deficit felt by waked turbines. Although we
did not find turbulence intensity uncertainty to be significant
here, we found a maximum VSS of 1.29 % when σTI = 10 %.
Introducing Gaussian uncertainty in the shear coefficient did
not affect the optimum front turbine angle beyond 1 or 2◦,
even at dramatic levels of uncertainty.

3.2 Wind plant test case

To quantify the benefits of OUU in a more realistic scenario,
we also performed OUU to design wake steering strategies
for an 11-turbine wind power plant. Given the maximum
VSS results summarized in Table 4 for the two-turbine case,
we considered uncertainties only in the wind inflow direction
and speed for the 11-turbine wind plant case. This decision
was driven by both the relative impacts of different uncer-
tainties and the computational cost associated with account-
ing for each uncertainty. In particular, the maximum VSS for
y is roughly half that for u∞, which is itself nearly an order
of magnitude smaller than the maximum VSS for θ . How-
ever, consideration of yaw offsets for each turbine in the wind
plant case increases the stochastic problem dimension by 11,
resulting in substantial additional computational expense in
the OUU approach. Consequently, we only considered un-
certainty in u∞ and θ for the wind plant case, with the un-
derstanding that the approach is readily extended to include
other sources of uncertainty, given sufficient computational
resources.

The stochastic average and deterministic AEP associ-
ated with the OUU, deterministic optimization, and base-
line (i.e., no wake steering) solutions are provided in Ta-
ble 5. These represent the aggregate of the different optimiza-
tion solutions, where powers are weighted by the speed- and
direction-specific annual probabilities of occurrence shown
in Fig. 5. Table 5 shows that, given perfect information,
the deterministic strategy is expected to produce 2.6 % more
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Figure 6. Power production for the front (a), back (b), and both (c) turbines as a function of front turbine yaw offset in the two-turbine
case with 10 m s−1 inflow 3◦ from north. Different line colors indicate different values of σθ , as indicated in panel (d), with brighter colors
corresponding to larger σθ and, hence, greater uncertainty in inflow direction. The black crosses in panel (c) denote optimal front turbine
yaw settings. Panel (d) shows the optimal front turbine yaw offset as a function of inflow direction for 7 m s−1 inflow.

Figure 7. Summary statistics from Table 1 for varying inflow direction θ and uncertainty σθ in the two-turbine case with 7 m s−1 inflow.
Panels show VSS (a), VSSb (b), VDS (c), and VDSs (d), with different values of σθ indicated by different line colors (the legend is shown
at the right of the figure).

AEP than the baseline strategy. However, for the present as-
sumed input uncertainties, the deterministic strategy may be
expected to perform comparably to the baseline strategy, and
the OUU strategy may be expected to produce 0.58 % and
0.48 % more AEP than the baseline and deterministic strate-
gies, respectively.

It is interesting to note that the uncertain expected AEP
is greater than the deterministic AEP in Table 5 for all
three strategies. This represents the aggregate across the an-
nual wind speed and direction probability mass function. We

found that lower wind speeds (below 12 or 13 m s−1) were
generally associated with increased power production from
uncertainty, while larger wind speeds yielded an expected
power less than the deterministic value. When we only con-
sidered direction uncertainty, the expected power was con-
sistently larger than its deterministic counterpart. This is be-
cause the wakes are inherently spread out by uncertainty in
direction, reducing the expected velocity deficit in waked re-
gions. When we only consider wind speed uncertainty, larger
wind speeds were associated with decreased expected power,
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Figure 8. Power production for the front (a), back (b), and both (c) turbines as a function of front turbine yaw offset in the two-turbine
case with 13 m s−1 inflow 7◦ from north. Different line colors indicate different values of σu∞ , as indicated by the legend in panel (g), with
brighter colors corresponding to larger σu∞ and, hence, greater uncertainty in inflow speed, u∞. The black crosses in panel (c) denote optimal
front turbine yaw settings. Panels (d)–(g) show the optimal front turbine yaw offset as a function of inflow direction for inflow speeds, u∞,
of 10, 12, 13, and 14 m s−1, respectively. Only positive inflow directions are shown to highlight the important effects of uncertainty.

Figure 9. Summary statistics from Table 1 for varying inflow direction, θ , and wind speed, u∞, in the 11-turbine wind plant test case. Panels
show VSS (a), VSSb (b), VDS (c), and VDSs (d), with different values of u∞ indicated by different line colors (the legend is shown at the
top).
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Figure 10. Optimization histories for deterministic (a) and stochastic (b) 11-turbine wind plant optimization studies with 12 m s−1 inflow
30◦ from north. The deterministic optimization was initialized with the baseline strategy, and the stochastic optimization was initialized with
the deterministic solution. The thick black line in each panel shows power (left vertical axes), and the thin multicolored lines show the yaw
positions of the different turbines (right vertical axes).

Figure 11. Probability mass distributions of y summed over all tur-
bines, wind speeds, and wind directions in the 11-turbine wind plant
test case, as prescribed by the OUU and deterministic wind plant
optimization strategies.

and smaller wind speeds were associated with increased ex-
pected power. This matches the intuition from Jensen’s in-
equality discussed earlier.

Figure 9 summarizes improvements in AEP for the differ-
ent wake steering strategies for varying wind speed and di-
rection. Some strategies appear to produce 15 % more power,
given perfect inflow information (reflected in the VDS results
in Fig. 9c), but these same strategies produce almost 2 % less
power than the baseline no-steering strategy under uncertain
conditions (shown in the VDSs results in Fig. 9d). The VSSb
and VDSs metrics in Fig. 9b and d show that some determin-
istic and OUU solutions may produce 2 % and 4 % improve-
ments in average power production, respectively, which is
much lower than the increase predicted by the determinis-
tic scenarios indicated in the VDS results shown in Fig. 9c.

The optimization histories of the OUU and deterministic ap-
proaches are shown for 12 m s−1 inflow 30◦ from north in
Fig. 10.

In general, we found that by incorporating uncertainty in
the wake steering problem formulation, less extreme yaw off-
sets were required to optimize AEP. We show the aggregate
of yaw positions suggested by the OUU and deterministic op-
timization approaches in Fig. 11. Although the histogram in
Fig. 11 is not weighted by probability of inflow occurrence,
these results nevertheless strongly suggest that wind plant de-
signers may expect OUU to yield wake steering strategies
with lower-magnitude yaw offsets than when using the de-
terministic optimization formulation.

4 Conclusions

In this study, we examined how uncertainty affects wake
steering strategies and what benefits may be associated with
designing these strategies in the presence of operational un-
certainty using OUU. While previous approaches (Simley
et al., 2019; Rott et al., 2018) have used simple quadrature
to estimate AEP, we demonstrated the more efficient PCE
approach. We show that uncertainty in inflow direction ef-
fectively smears out the wake. Although the yaw positions
are not explicitly considered in the objective function, the
OUU formulation leads to smaller yaw offsets, which should
generally lead to less extreme loads.

Uncertainty in yaw positions is epistemic and may be re-
duced with more accurate yaw position detection methods.
Uncertainty in inflow conditions is more nuanced. While
there are issues with accurately measuring these quantities,
fundamentally, there may not be a single characteristic di-
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rection, speed, turbulence intensity, or shear associated with
the wind flowing into a utility-scale wind plant. For exam-
ple, a wind power plant may be built downstream of a moun-
tain, causing wind to enter from multiple directions. So, the
uncertainties in these inflow parameters may be thought of
as a combination of epistemic and aleatoric, irreducible, or
model-form uncertainties.

The fact that OUU results in more expected power pro-
duction with less extreme yaw offsets makes a strong case
for designers to move toward OUU formulations in plant-
level control strategies. In particular, OUU results in wake
steering strategies that are more conservative than the deter-
ministic approach – the magnitude of the turbine yaw offsets
determined by OUU is diminished, compared to those found
using deterministic optimization. Assuming that the inflow
uncertainties were precisely quantified, we have shown that
wake strategies formulated with the OUU approach can pro-
duce up to roughly 4 % more power (for the 5 m s−1 wind
speed and 0◦ wind direction) than wake steering strategies
formulated using the deterministic approach.

We are optimistic for the future of plant control strategies
and anticipate that uncertainty will become increasingly in-
corporated in future plant control analysis. In future work, we
plan to further quantify typical levels of uncertainty in input
parameters, explore higher-fidelity flow models, and include
fatigue loading in the OUU objective function. There are sev-
eral other sources of uncertainty that may be injected into
this problem. For example, we assumed perfect knowledge
of the turbine power and thrust curves. Typical levels of un-
certainty in turbine power and thrust curves probably would
have resulted in somewhat different optimum wake steering
strategies. Uncertainty in power would change the shape of
the mean power curve, altering the trade-off point, and un-
certainty in thrust would affect the magnitude of the velocity
deficit behind the turbine. Quantifying fatigue loading is an
attractive prospect, though it requires a more advanced wake
model. Partial waking may be more detrimental than full ex-
posure to a wake, complicating the fundamental trade-offs
that we explored. Finally, the effect of correlations between
different sources of uncertainty also deserves further future
consideration.
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