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Abstract. For the first time an analytical solution for the quantification of the spatial variance of the second-
order moment of correlated wind speeds was developed in this work. The spatial variance is defined as random
differences in the sample variance of wind speed between different points in space. The approach is successfully
verified using simulation and field data. The impact of the spatial variance on three selected applications relevant
to the wind energy sector is then investigated including mitigation measures. First, the difference of the second-
order moment between front-row wind turbines of Lillgrund wind farm is investigated. The variance of the
difference ranges between 25 % and 48 % for turbulence intensities ranging from 7 % to 10 % and a sampling
period of 10 min. It is thus suggested to use the second-order moment measured at each individual turbine as
input to flow models of wind farm controllers in order to mitigate random error. Second, the impact of the spatial
variance of the measured second-order moment on the verification of wind turbine performance is investigated.
Misalignment between the mean wind direction and the line connecting the meteorological mast and wind turbine
is observed to result in an additional random error in the observed second-order moment of wind speed. In the
investigated conditions the random error was up to 34 %. Such a random error adds uncertainty to the turbulence
intensity-based classification of the fatigue loads and power output of a wind turbine. To mitigate the random
error, it is suggested to either filter the measured data for low angles of misalignment or quantify wind turbine
performance using the ensemble-averaged measurements of the same wind conditions. Third, the verification of
sensors in wind farms was investigated with respect to the impact of distant reference measurements. In the case
of a misalignment between the wind direction and the line connecting sensor and reference, an increased random
error will hamper the comparison of the measured second-order moments. The suggested mitigation measures
are equivalent to those for the verification of turbine performance.

1 Introduction

The wind energy market has been growing rapidly at a rate
of 16 % throughout the past decade, reaching 539 123 MW
of global, installed capacity in 2017 (Global Wind Energy
Council, GWEC). Many areas of the wind energy sector
require measurements of the wind turbulence in the atmo-
spheric boundary layer (ABL), which is typically quanti-
fied as turbulence intensity. Turbulence intensity is defined
according to the IEC norm (International Electrotechnical
Commission, 2005) as the ratio of the square root of the
second-order moment of axial wind speed to the mean ax-
ial wind speed of the same 10 min period. Common devices

for the measurement of the second-order moment of wind
speed are sonic anemometers, cup anemometers and lidar.
These devices provide an estimate of the second-order mo-
ment covering a confined volume of the ABL, that is at
the sensor location, or in the case of lidar along the laser
beam. However, out of economical and/or technical consider-
ations, these measurements are, at times, performed spatially
separated from the desired location. Typically, extrapolation
is then used to estimate the second-order moment of wind
speed at the desired location. In other applications, measure-
ments from multiple locations are aggregated to obtain sta-
tistical measures. However, second-order moments of wind
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speed measured at different locations over a finite period will
be different, even under homogeneous conditions. This is be-
cause the coherence of turbulence decreases with distance,
particularly the larger the cross-flow separation is (Sørensen
et al., 2012). To quantify and analyse the spatial variance of
the second-order moment of wind speed, an analytical ap-
proach is therefore developed. The spatial variance is defined
as random differences in the sample variance of wind speed
between different points in space.

The spatial variance is relevant to a variety of areas in the
wind energy sector. This work focuses on three areas, that
is wind farm control, the verification of wind turbine perfor-
mance and sensor verification. In wind farm control the oper-
ation of wind turbines in a wind farm is coordinated with the
objective to either (i) maximize the total power production of
the wind farm (Kazda et al., 2016) or (ii) follow a target level
for the total power output of the wind farm, while optionally
reducing fatigue loads of wind turbines (Kazda et al., 2018).
Advanced wind farm controllers typically employ models of
wind farm operation (Gebraad et al., 2016; Kazda and Cutul-
ulis, 2018) to predict the impact of the control on the flow
within the wind farm. Increasingly, turbulence intensity is
used as input to flow models (Niayifar and Porté-Agel, 2016;
Göçmen et al., 2018). The most common turbulence-related
input is ambient turbulence intensity, which is typically ob-
tained from measurements at upstream turbines of the wind
farm. There are two commonly employed approaches to pro-
cess these measurements for use in the flow model. In one
approach, the turbulence measurements at each upstream tur-
bine define the ambient turbulence intensity at the respective
turbine. In the other approach, the ambient turbulence inten-
sity is defined as the average of the turbulence intensity at
all upstream turbines. Because of the distance between wind
turbines, the measured second-order moment of wind speed
however varies between the turbines. The present work thus
investigates the impact of the spatial variance on the two
above-described approaches for defining ambient turbulence
intensity.

Next, it is increasingly common to use turbulence intensity
measurements for the classification of turbine performance.
Having been discussed in literature over the past decade, the
impact of turbulence intensity on turbine performance will
be addressed in the next revision of the IEC standard (IEC,
2005). This is because the turbulence intensity in the flow
that approaches a wind turbine influences its fatigue loads
(Eggers et al., 2003; Saranyasoontorn and Manuel, 2008)
and power output (Elliott and Cadogan, 1990; Gottschall and
Peinke, 2008; Clifton and Wagner, 2014). In the process of
verifying wind turbine characteristics, the turbulence inten-
sity in the free flow is typically measured at a meteorologi-
cal mast adjacent to the wind turbine. As a result of the dis-
tance between mast and wind turbine, the spatial variance
of the second-order moment can impact the accuracy of the
measured turbulence intensity. Uncertainty in the measured
turbulence intensity propagates into the uncertainty of the

measured power curve and fatigue loads of the wind turbine.
When the mast location is directly upstream, the random er-
ror due to the spatial variance of turbulence can be regarded
as small assuming Taylor’s hypothesis of frozen turbulence.
The assumption may lead to an underestimation of the dif-
ference in variances in the situation where one measurement
position is more or less directly downstream from the other.
In case of an offset of the mast location orthogonal to the di-
rection of wind flow, a random error results because of the
spatial variance of turbulence. The magnitude of the impact
and approaches for its mitigation are therefore investigated
in the present work.

The third application area discussed in the present work
is the verification of spatially separated sensors for the mea-
surement of the second-order moment of wind speed. In such
a case, the measurements of the to-be-verified sensor are
compared to a spatially distant reference measurement. Due
to the distance between sensor and reference, the result of
the verification can be corrupted by the spatial variance of
the second-order moment of wind speed. This phenomenon
is discussed in the present work on the example of the veri-
fication case in Mittelmeier et al. (2016). Here turbine-based
measurements of turbulence intensity are verified with refer-
ence measurements at an adjacent meteorological mast.

The remainder of this paper is structured as follows. In
Sect. 2 the developed analytical solution for the quantifica-
tion of the spatial variance of the second-order moment of
wind speed is detailed. In Sect. 3, first, the analytical solu-
tion is verified, and thereafter the mitigation of the impact
of the spatial variance of the second-order moment of wind
speed is discussed for three selected applications. The paper
is concluded with a summary of the key findings in Sect. 4.

2 Analytical solution to spatial variance of
second-order moment of wind speed

In the following the first analytical solution is derived for the
quantification of the expected spatial variance of the second-
order moment of wind speed measured over a time period
T at two spatially separated points a and b. The expected
spatial variance of the second-order moment of wind speed
δµ2

2,L,a−b in an arbitrary directional component projection L
is defined as

δµ2
2,L,a−b(T )= 〈[µ2,L,a(T )−µ2,L,b(T )]2〉, (1)

where µ2,L,a(T ) and µ2,L,b(T ) are second-order moments
measured at the points a = (ax,ay,az) and b = (bx,by,bz)
in the ABL. The direction of the component projection L of
the measurement is assumed to be the same at the points a

and b. x, y and z are the coordinates of the Cartesian coordi-
nate system. x is set to the mean direction of wind flow, y is
the horizontal coordinate orthogonal to x, and z is the verti-
cal coordinate. The measured second-order moment of wind
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speed µ2,L(T ) is defined as

µ2,L(T )=
1
T

T
2∫

−
T
2

(uL(t)− uL)2dt, (2)

where uL(t) is the wind speed in an arbitrary component pro-
jection L, and uL is the wind speed in the same direction av-
eraged over the time interval [−T/2,T /2]. The wind speed
in an arbitrary component projection L is defined as

uL = nL ·u, (3)

where nL = (nL,x,nL,y,nL,z) is the unit-directional vector
in the direction of the projection, and u= (u,v,w) is the
wind velocity.

Assuming a homogeneous turbulent field, the expected
spatial variance of the second-order moment (Eq. 1) can be
reformulated as

δµ2
2,L,a−b(T )= 2[〈µ2,L(T )2

〉− 〈µ2,L,a(T )µ2,L,b(T )〉]. (4)

Next, it is assumed that the mean wind speed uL is zero.
This assumption is not necessary since assuming a non-zero
mean wind speed gives the exact same results, but it makes
the equations much more compact. Furthermore, it is as-
sumed that uL(t) can be represented by a Gaussian process.
Consequently, Isserlis’ theorem (Isserlis, 1916, 1918) can be
applied to Eq. (4), resulting in

δµ2
2,L,a−b(T )=

4
T 2

[ T
2∫∫
−
T
2

〈uL(t)uL(t ′)〉2dtdt ′

−

T
2∫∫
−
T
2

〈uL,a(t)uL,b(t ′)〉2dtdt ′
]
. (5)

The expected spatial and temporal correlation of wind
speeds can be expressed using the two-point correlation ten-
sor of wind velocity R(r,1t). r is a three-dimensional vector
connecting the two points, and 1t is the time delay. Hence,
Eq. (5) can be transformed into

δµ2
2,L,a−b(T )=

4
T 2

[ T
2∫∫
−
T
2

(nTLR(0, t − t ′)nL)2dtdt ′

−

T
2∫∫
−
T
2

(nTLR(a− b, t − t ′)nL)2dtdt ′
]
. (6)

The correlation tensor can be obtained from the infinite
volume integral of the spectral tensor 8(k) as

T
2∫∫
−
T
2

(nTLR(a− b, t − t ′)nL)2dtdt ′ =

T
2∫∫
−
T
2

[ ∞∫ ∫ ∫
−∞

nTL8(k)nL

·exp
(
ik(a− b+

(
U 0 0

)
(t − t ′))

)
dk1dk2dk3

]2
dtdt ′. (7)

The spectral tensor 8(k) can be obtained using the model
of Mann (1994). k is the three-dimensional wave num-
ber vector. The three-dimensional infinite integral over the
wavenumber space is denoted as

∫
dk =

∫ ∫ ∫
∞

−∞
dk1dk2dk3

in the following. The time delay 1t is eliminated using Tay-
lor’s hypothesis of frozen turbulence as the spatial separa-
tion1x = U (t− t ′) in the axial flow direction. U is the mean
wind speed in the axial flow direction when averaging over
the time interval [−T/2,T /2]. Expanding the above equation
and solving the time integral yields

T
2∫∫
−
T
2

(nTLR(a− b, t − t ′)nL)2dtdt ′ =

∫ ∫
(nTL8(k)nL)(nTL8(k′)nL)exp

(
i(k+ k′)(a− b)

)
· sinc2

( (k1+ k
′

1)T U
2

)
T 2dkdk′. (8)

The derived Eq. (8) is used in the original problem (Eq. 6),
yielding an analytical solution for the spatial variance of the
second-order moment.

δµ2
2,L,a−b(T )= 4

∫ ∫
(nTL8(k)nL)(nTL8(k′)nL)

·

[
1− cos

(
(k+ k′)(a− b)

)]
· sinc2

( (k1+ k
′

1)T U
2

)
dkdk′ (9)

In the following, the normalized spatial variance of the
second-order moment δM2,L,a−b is defined as

δM2,L,a−b =

√
δµ2

2,L,a−b

〈µ2,L(T )〉
. (10)

The normalization is performed using the ensemble
second-order moment of wind speed 〈µ2,L(T )〉, which is cal-
culated as

〈µ2,L(T )〉 =

∞∫ ∫ ∫
−∞

nTL8(k)nL
[
1− sinc2

(k1T U

2

)]
dk.

(11)
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Table 1. Key characteristics of domain and grid of simulated wind
field.

Direction x y z

Dimension 5000 m 600 m 600 m
Grid points 1024 128 128
Grid spacing 4.88 m 4.69 m 4.69 m

3 Results and discussion

In the following, the analytical solution is compared to the
spatial variance observed in a simulated wind field in order to
demonstrate its validity. Thereafter, the mitigation of the im-
pact of the spatial variance is investigated for three selected
applications, that is wind farm control, verification of turbine
performance and sensor verification.

3.1 Verification of analytical solution

The analytical solution (Eq. 9) is successfully verified in the
following against a simulated wind field.

3.1.1 Simulation set-up

The turbulent wind field is created using the simulation ap-
proach of the Mann model (Mann, 1998). The simulation do-
main has the dimensions 5000 m× 600 m× 600 m in the x, y
and z directions, respectively. The geometric characteristics
of the simulation domain and grid are summarized in Table
1.

3.1.2 Atmospheric conditions

The ABL is characterized by the following conditions in both
the simulations and the analytical solution. The stability of
the ABL is neutral, and hence the spectral parameters of the
Mann model are set to αε

2
3 = 1, l = 50m and 0 = 3.2, ac-

cording to Sathe et al. (2013). The value of αε
2
3 is arbitrary

and irrelevant, since the spatial variance is only considered
in a normalized manner. The mean wind speed in the mean
wind direction is 8 ms−1. The duration of averaging T is
set to 10 min, as it is used for turbulence measurements in
the IEC norm (International Electrotechnical Commission,
2005).

3.1.3 Comparison with simulation

Figure 1 compares the spatial variance of the second-order
moment obtained using the analytical solution with the re-
sults from the simulations. The comparison was conducted
for the second-order moment of axial wind speed u for spa-
tial separation of measurement points a and b in the y and
z directions. The spatial variance of the second-order mo-
ment was normalized by the expected second-order moment,

Figure 1. Simulation-based validation of analytical calculation of
spatial variance of the second-order moment of ABL wind flow.
Comparison is conducted for the second-order moment of axial
wind speed u for spatial separation of two points in the cross-axial
and vertical directions.

as described in Eq. (10). The analytical solution was evalu-
ated using adaptive multidimensional numerical integration
(Genz and Malik, 1980; Berntsen et al., 1991). The integra-
tion range in the analytical solution was adjusted to the sim-
ulation domain and grid spacing with the aim to mimic the
conditions of the simulations. As such the integration range
of k1 of k was set to [− 2π

lspacing
,− 2π

ldomain
] ∪ [

2π
ldomain

, 2π
lspacing

].
ldomain and lspacing are the domain size and grid spacing, re-
spectively. The integration range of the other integrals of the
analytical solution remained infinite.

The overall agreement of the results shown in Fig. 1
demonstrates the validity of the analytical solution. The
agreement is better for close separation distances of up to
50 m. Here, the mean absolute difference is only 2.6 % and
0.55 % for separation in the y and z directions, respectively.
It can further be observed that the spatial variance is gen-
erally larger in the simulation results than in the analytical
solution. The difference is the result of the underlying as-
sumptions of the simulations and the numerical integration.
The numerical error in the integration of the analytical so-
lution is 1 % of the result and hence considered too small
to explain the difference. A possible explanation can be that
the adjusted integration range in the analytical solution did
not fully capture the effects of the simulation grid. Gener-
ally, the simulation grid causes a lower ensemble variance of
axial wind speed 〈µ2,u〉 in the simulations. A lower value in
〈µ2,u〉 results because turbulent eddies smaller than the grid
spacing cannot be captured. Since 〈µ2,u〉 is used to normalize
the spatial variance, a lower value in 〈µ2,u〉 results in a larger
value of the normalized spatial variance in the simulations.
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The same trend of the spatial variance can be observed in
the results of the analytical solution and of the simulation.
As such, the spatial variance of the second-order moment of
wind speed increases with larger distance between the mea-
surement points. This is due to a decreasing coherence of
wind turbulence with larger separation distance (Sørensen
et al., 2012). At large separation distances, the spatial vari-
ance converges to an asymptotic value. The simulation re-
sults converge to 0.37 and 0.35 for separation in the y and
z directions, respectively. The results of the analytical solu-
tion converge to 0.34. The asymptotic behaviour can be un-
derstood from the analytical solution, particularly from the
behaviour of the term [1− cos((k+ k′)(a− b))] in Eq. (9).
For large distances between the measurement points a and
b, the oscillations of the cosine term are much faster than
the change in the remainder of the integrand. As a result, the
integral over one period of 1 minus the cosine is well approx-
imated by the remainder of the integrand. Consequently, the
cosine term can be neglected for large separation distances.
As a result, the spatial variance of the second-order moment
converges to an asymptote. Furthermore, when neglecting the
cosine term for large separation distances, the integrand be-
comes independent of the direction of the spatial separation.
Hence, the value of the asymptote is the same for separation
in the y direction and the z direction, as observed in the re-
sults of the analytical solution in Fig. 1 at a distance of 300 m.

The asymptotic behaviour of the spatial variance can also
be understood from the statistics of uncorrelated variables. At
large separation distances, typically on the order of the inte-
gral length scale l, the second-order moment of wind speed
at the points a and b becomes uncorrelated. As a result, the
variance of the difference between the second-order moment
at the points a and b, that is δµ2

2,L,∞, is twice the variance
of the second-order moment of wind speed σ (µ2,L(T ))2.
Hence, the asymptotic value of the normalized spatial vari-
ance can be calculated as

δM2,L,∞ =

√
δµ2

2,L,∞

〈µ2,L(T )〉
, (12)

=

√
2σ 2(µ2,L(T ))
〈µ2,L(T )〉

. (13)

The variance of the second-order moment of wind speed
σ 2(µ2,L(T )) can be approximated according to Lenschow
et al. (1994). Equation (12) can thus be approximated using
the integral timescale τ or the integral length scale L as√

2σ 2(µ2,L(T ))
〈µ2,L(T )〉

≈ 2
√
τ

T
, (14)

= 2

√
L
l
. (15)

This approximation is valid for τ � T and L� l. The
length scale l is obtained from the measurement duration T

and the average axial wind speed U as l = T U . For the case
shown in Fig. 1, the asymptotic value of the normalized spa-
tial variance results is 41 % and hence is comparable to the
results of the analytical solution and of the simulation.

In addition to the effect of the separation distance, Fig. 1
shows that the spatial variance of the second-order moment
increases faster in the cross-axial direction y than in the ver-
tical direction z. This is the result of stronger spectral coher-
ence of turbulence in the z direction than in the y direction.

3.2 Mitigation of impact in applications

The spatial variance of the second-order moment of wind
speed impacts a variety of applications in the wind energy
sector. For the present work, three areas were selected for
more detailed discussion, that is wind farm control, the veri-
fication of wind turbine performance and sensor verification.

3.2.1 Wind farm control

In wind farm control, recent flow models (Kazda et al., 2018;
Göçmen et al., 2018; Niayifar and Porté-Agel, 2016) increas-
ingly use measurements of turbulence intensity as input, par-
ticularly ambient turbulence intensity. An approach to obtain
an estimate of ambient turbulence intensity is to average tur-
bulence intensity measured at upstream turbines of the wind
farm. Such an approach, however, introduces a random er-
ror into the flow modelling due to the difference of the mea-
sured turbulence intensity between the turbines. Using the
average ambient turbulence intensity as input to the flow
model results in a deviation of the modelled turbulence in-
tensity from the actual turbulence intensity at a wind turbine.
It can be shown using the stand-alone dynamic wake me-
andering (sDWM) wind farm operation model (Keck, 2015)
that the thereby resulting error in the prediction of power at
a downstream turbine can be of the same order of magnitude
as the deviation in turbulence intensity. To mitigate this error,
the turbulence measured at each turbine location can be used
as input to the flow model, as in Göçmen et al. (2016) and
Kazda et al. (2018). Thereby, the local realization of turbu-
lent flow can be taken into account.

The difference in turbulence intensity between turbines
arises from the spatial variance of the second-order moment
of wind speed. To demonstrate the magnitude of the spatial
variance in a real wind farm, an investigation was made on
the westerly front row of turbines of Lillgrund wind farm.
Lillgrund wind farm is located offshore, south-east of Copen-
hagen, Denmark (Nilsson et al., 2015). A schematic of the
westerly front row of turbines and the adjacent meteorolog-
ical mast is shown in Fig. 2, together with the investigated
sector of wind direction, wind speed and turbulence intensity.
The front row comprises five wind turbines spaced approx-
imately five rotor diameters apart, that is 450 m. In the fol-
lowing, the spatial variance is first investigated using the an-
alytical solution, and thereafter using measurements. Given
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a wind direction from west, that is 270◦, the spacing of wind
turbines orthogonal to the average direction of wind flow
is more than 400 m. Hence, the turbulence measurements at
wind turbines in the front row are separated with at least that
distance. For the atmospheric conditions investigated with
Fig. 1 and the separation distance of more than 400 m, the
spatial variance is at the asymptotic value of 34 % given an
averaging time T of 10 min.

A similar spatial variance can also be observed in measure-
ments from Lillgrund wind farm. The spatial variance was
investigated using data from more than 7 years of measure-
ments. The ensemble average of the second-order moment
of wind speed at the turbines was obtained for ensembles
of the following wind condition. The 10 min average wind
speed is between 7.5 and 8.5 ms−1 and hence comparable to
the wind speed used in the results of the analytic solution
above. The 10 min average wind direction is in the 15◦ west-
erly sector between 262.5 and 277.5◦. The measured 10 min
average wind speed and the 10 min based second-order mo-
ment of wind speed are obtained from the nacelle anemom-
etry of wind turbines. The wind direction is measured at the
meteorological mast south of the wind turbine row on tur-
bine hub height. The measurements are filtered according to
the above-described sectors of average wind speed and wind
direction. The spatial variance of the second-order moment
of axial wind speed δM2,u,X−D08 is defined with reference to
wind turbine D08 as

δM2,u,X−D08 =

√
〈(µ2,u,X −µ2,u,D08)2〉

〈µ2,u,D08〉
, (16)

where µ2,u,D08 and µ2,u,X are the second-order moments of
axial wind speed measured at wind turbine D08 and one of
the other front-row wind turbines, respectively.

Figure 3 shows the spatial variance of the second-order
moment between the front-row wind turbines E07, F06, G05
and H04 and wind turbine D08. The spatial variance is nor-
malized by the ensemble variance of axial wind speed at
wind turbine D08. The results are binned with respect to tur-
bulence intensity. The results of each bin are based on at least
33 distinct measurements and hence are considered statisti-
cally significant.

Figure 3 shows the effect of separation distance and atmo-
spheric stability on the spatial variance of the second-order
moment. Atmospheric stability is implicitly characterized by
turbulence intensity. Larger turbulence intensity is likely to
correspond to more unstable atmospheric conditions. For tur-
bulence intensities ranging between 7 % and 8 %, the spatial
variance remains similar with larger distance between the tur-
bulence measurement locations, except for the spatial vari-
ance between turbines G05 and D08. It is thus likely that the
spatial variance has reached the asymptotic value already for
the separation distance between turbines E07 and D08. The
observed behaviour is thus in line with the result of the ana-
lytical solution, which predicts reaching the asymptotic value

in neutral conditions at a separation of 300 m. The magnitude
of the spatial variance is similar between the measurements
and the analytical solution. The spatial variance calculated
using the analytical solution is 30 % for neutral ABL condi-
tions. The spatial variance observed in the measurements is
25 %, except between turbines G05 and D08. The lower spa-
tial variance observed in the field data is due to differences
in the power spectrum of wind speed, which mainly occur
for two reasons. First, it is likely that the turbulence length
scale L of the ABL conditions differs between the measure-
ments and the analytical solution. The ABL conditions in the
measurements are implicitly characterized by turbulence in-
tensity, yet cannot be attributed to a specific condition. The
ABL conditions used for the analytical solution are neutral.
Second, the Mann model, which is used in the analytical so-
lution, provides spectra of undisturbed atmospheric flow. The
measurements, however, are made on the nacelle of a wind
turbine, where the rotor and nacelle of the wind turbine dis-
turb the flow. The spectrum of wind speed measured at the
nacelle of a wind turbine is expected to contain more en-
ergy at higher frequencies than the free flow. In Crespo and
Hernández (1996) this is shown for the near wake, where the
energy in the spectrum of wind speed is increased in particu-
lar at higher frequencies. Thus, in the nacelle-based measure-
ments an increased share of the energy of higher-frequency
eddies is expected in the second-order moment. In the case
of a larger share of energy at high frequencies, the integral
length scale L is smaller. According to Eq. (14) a smaller in-
tegral length scale results in a smaller spatial variance, and
thus confirms the reasoning for the observed difference be-
tween measurements and analytical solution.

For turbulence intensities ranging between 8 % and 10 %,
the spatial variance converges to an asymptotic value with
larger separation between the turbine pairs. The asymptote
is reached at the separation distance of 1400 m between tur-
bines G05 and D08. It is concluded that the asymptote is
reached, since the spatial variance stays constant with the
larger separation distance of 1850 m between turbines H04
and D08. This asymptotic behaviour observed in the mea-
surements verifies the convergence of the spatial variance to
an asymptotic value, as observed in the analytical solution
and the simulations. The value of the asymptote is however
up to 90 % larger than for the results on turbulence intensities
ranging between 7 % and 8 %. The larger value of the asymp-
tote is attributed to more unstable ABL conditions, which
is underpinned by the following two observations. First, ac-
cording to Sathe et al. (2013) the integral length scale is
larger in unstable conditions than in stable ones, and based
on Eq. (14) this results in a larger value of the asymptote.
Second, the higher turbulence intensity of 8 % to 10 % in-
dicates a more unstable condition of the ABL. In general,
when moving across the stability spectrum from stable to un-
stable the integral length scale increases (Sathe et al., 2013).
As a result of this increase, the asymptotic value of the spa-
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Figure 2. Top view of the westerly front row of Lillgrund wind farm and investigated range of wind conditions. Variance of second-order
moment of nacelle wind speed between wind turbines is investigated with turbine no. D08 for reference.

Figure 3. Effect of separation distance and atmospheric stability
on variance of the second-order moment of nacelle wind speed be-
tween the western front-row turbines of Lillgrund wind farm. At-
mospheric stability is implicitly characterized using turbulence in-
tensity.

tial variance of the second-order moment of wind speed in-
creases, according to Eq. (14).

To conclude, the spatial variance of up to 48 % observed in
the measurements demonstrates that using the average turbu-
lence intensity as input to flow models would result in a con-
siderable random error from the actual turbulence intensity
at each upstream turbine. Hence, it is an advantage to use the
locally measured turbulence intensity as input to flow mod-
els.

3.2.2 Verification of wind turbine performance

The turbulence intensity in the flow approaching a wind tur-
bine influences its fatigue loads (Eggers et al., 2003; Saranya-
soontorn and Manuel, 2008) and power output (Elliott and

Cadogan, 1990; Gottschall and Peinke, 2008; Clifton and
Wagner, 2014). It is therefore increasingly investigated to
classify wind turbine performance; that is, in the present
work, power output and fatigue loads, in terms of turbulence
intensity levels, are investigated. To do so, turbulence inten-
sity is typically obtained from measurements of wind speed
upstream of the respective wind turbine. Uncertainty in the
upstream measurements of turbulence intensity results in un-
certainty in the classification of wind turbine performance.

It is therefore of interest to understand the factors driving
the uncertainty in such turbulence intensity measurements
and to develop mitigation measures. Turbulence intensity is
the ratio of the second-order moment of wind speed and its
mean. Due to the distance between measurement location
and wind turbine, a source of uncertainty can be the spa-
tial variance of the second-order moment of wind speed. The
magnitude of the spatial variance is therefore investigated in
the following for a typical set-up used for the verification of
wind turbine performance. The results give insight into the
impact of the spatial variance on the uncertainty in power
output and fatigue loads and demonstrate the need for miti-
gation measures.

Figure 4 shows a typical experimental set-up used for the
verification of the performance of a wind turbine. A mete-
orological mast adjacent to the wind turbine is used for the
measurement of the flow that approaches the wind turbine. In
the present study, the distance between the mast and the wind
turbine is set to 200 m, which is a magnitude comparable to
real set-ups. Two cases on the alignment between the mean
wind direction and the mast and the wind turbine are shown
in the figure. In the case of alignment, the spatial variance of
turbulence can be regarded as small assuming Taylor’s hy-
pothesis of frozen turbulence.

In the case of misalignment, the spatial variance of the
second-order moment of wind speed between mast and tur-
bine increases with increasing misalignment. Figure 5 shows
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Figure 4. Effect of inflow angle on lateral offset of meteorological mast from wind turbine. Lateral offset is distance orthogonal to direction
of wind flow.

Figure 5. Effect of misalignment angle on normalized spatial vari-
ance of the second-order moment of wind speeds u, v and w aver-
aged over 10 min. The distance between wind turbine and meteoro-
logical mast is 200 m, as described in Fig. 4.

the effect of the misalignment angle on the normalized spatial
variance of the second-order moment of wind speeds u, v and
w. The misalignment angle is defined as the angle between
the wind direction and the line connecting mast and turbine.
The results are obtained from simulations based on the Mann
model. The simulation set-up and atmospheric conditions are
the same as described in Sect. 3.1.1.

With misalignment, the flow measured at the mast is off-
set to the flow that the wind turbine faces, in the cross-axial
direction. As shown in Fig. 1, such an offset results in a spa-
tial variance of the second-order moment of wind speed. As
a result, the second-order moment of wind speed measured at
the mast is associated with a random error compared to the
second-order moment present at the wind turbine for refer-
ence.

It can be observed that the random error increases rapidly
with increasing misalignment. The error reaches 90 % of the
asymptotic value at a misalignment of 22, 22 and 11◦ for
the second-order moment of the wind velocity components
u, v and z, respectively. The asymptotic value of the error
is 36 %, 18 % and 16 % for the second-order moment of the
wind velocity components u, v and z, respectively.

It is therefore of interest to investigate the impact of such
a random error on the uncertainty of the measured fatigue
loads and power output of the wind turbine. In Eggers et al.
(2003) it is reported that a 70 % increase in turbulence in-
tensity resulted in an approximately 10-fold increase in the
fatigue damage fraction of the flapwise blade-root bending
moment. In Saranyasoontorn and Manuel (2008) a variance
of turbulence intensity of 22.8 % resulted in a variance of
the damage-equivalent load (DEL) of the yaw moment of
12.7 %. It is therefore concluded that uncertainty in the mea-
sured turbulence intensity can have a significant impact on
the uncertainty in the measured fatigue loads. The impact of
turbulence intensity on the power curve depends on the op-
erational region of the wind turbine. In Clifton and Wagner
(2014) it can be observed that the sensitivity of the power
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curve to turbulence intensity is small when the turbine is op-
erating below the rated rotational speed. In operation at the
rated rotational speed, the sensitivity is larger.

To mitigate the effect of the random error in the measured
second-order moment on the classification of wind turbine
performance, we recommend use of either or both of the
following methods. First, the measurements of wind turbine
performance can be filtered to only contain data for small
angles of misalignment between wind direction and the line
connecting mast and wind turbine. As shown in Fig. 5, the
error increases rapidly with misalignment. Thus, to limit the
error to, for example, below 15 %, the misalignment angle
could be filtered for the range of ±5◦.

In the second approach, the random error is mitigated by
averaging turbine performance over ensembles of the same
wind conditions. As such, the measured turbine performance
is classified according to mean wind speed, turbulence inten-
sity and atmospheric stability. In case turbine performance is
wind-direction-dependent, due to, for instance, topographi-
cal effects, the classification also needs to be performed with
respect to wind direction. As a result, in each bin the wind
conditions can be assumed to be on average the same at the
meteorological mast and the wind turbine. Thus, the average
wind conditions at the mast can be related to the average per-
formance of the wind turbine for each wind condition bin.
Consequently, the spatial variance of the second-order mo-
ment of wind speed is mitigated successfully.

3.2.3 Spatially separated sensor verification

As a result of physical and economic constraints, sensors for
the measurement of the second-order moment of wind speed
are often verified using spatially separated reference mea-
surements. Due to the distance between the sensor and ref-
erence, the result of the verification can be corrupted by the
spatial variance of the second-order moment of wind speed.

This phenomenon is discussed in the following for the ex-
ample of the verification case in Mittelmeier et al. (2016).
The study compares turbine-based measurements indicative
of turbulence intensity with reference measurements at an ad-
jacent meteorological mast. The measurements at the wind
turbine are wind speed, obtained from the nacelle anemome-
try, and the turbine power output. Turbulence intensity is di-
rectly calculated from the wind speed measurements. In the
case of turbine power, the ratio of the standard deviation of
power to its mean is considered as a measure related to tur-
bulence intensity. One of the investigated wind farms is the
Nordsee Ost wind farm with a layout of wind turbines and
meteorological mast as shown in Fig. 6. The comparison of
turbulence intensity measurements is conducted between the
meteorological mast and wind turbine NO47. The study re-
ports a Pearson correlation coefficient of 0.68 between turbu-
lence intensity measurements at the meteorological mast and
the nacelle anemometry of the wind turbine. The observed
low correlation coefficient originates from the spatial vari-

Figure 6. Nordsee Ost (blue cycles) with neighbouring wind
farm Meerwind Süd (green triangles) and meteorological mast (red
square) (Mittelmeier et al., 2016).

ance of the second-order moment of wind speed, as is shown
in the following.

Assuming that in the investigated scales the largest spa-
tial variance lies in the variability of wind speed and not its
mean, the Pearson correlation coefficient of turbulence inten-
sity ρT I,a,b can be approximated as

ρT I,a,b =
cov

(
T IL,a(T ),T IL,b(T )

)
σ 2(T IL(T ))

≈

1
u2
L

cov
(
σL,a(T ),σL,b(T )

)
1
u2
L

σ 2(σL(T ))

=
cov

(
σL,a(T ),σL,b(T )

)
σ 2(σL(T ))

, (17)

where turbulence intensity T IL,a(T ) at a point a is defined
as the ratio of the standard deviation of wind speed σL,a(T )
to the mean wind speed uL. Next, a linear relation of the
second-order moment of wind speed and its square root is
assumed in the proximity of its mean value. As a result, the
Pearson correlation coefficient of the standard deviation of

wind speed
cov
(
σL,a (T )σL,b(T )

)
σ 2(σL(T )) can be approximated by the

correlation coefficient of the second-order moment of wind
speed as

ρT I,a,b =
cov

(
σL,a(T ),σL,b(T )

)
σ 2(σL(T ))

≈
cov

(
µ2,L,a(T ),µ2,L,b(T )

)
σ 2(µ2,L(T ))

. (18)

For a homogeneous turbulent field, the covariance of the
second-order moment of wind speed can be formulated as

cov
(
µ2,L,a(T ),µ2,L,b(T )

)
σ 2(µ2,L(T ))

=
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〈µ2,L,a(T )µ2,L,b(T )〉− 〈µ2,L(T )〉2

σ 2(µ2,L(T ))
. (19)

Equation (19) can be related to the spatial variance of the
second-order moment of wind speed using Eq. (4) as

ρT I,a,b ≈
〈µ2,L,a(T )µ2,L,b(T )〉− 〈µ2,L(T )〉2

σ 2(µ2,L(T ))

=
〈µ2

2,L(T )〉− 1
2δµ

2
2,L,a−b(T )−〈µ2,L(T )〉2

σ 2(µ2,L(T ))
. (20)

Consequently, the Pearson correlation coefficient of turbu-
lence intensity can be related to the spatial variance of the
second-order moment of wind speed as

ρT I,a,b ≈ 1−
1
2

δµ2
2,L,a−b(T )

σ 2(µ2,L(T ))
. (21)

Equation (21) shows the impact of the spatial variance on
the correlation coefficient. As such, larger spatial variance re-
sults in a smaller correlation coefficient and vice versa. Due
to the large spatial distance between measurement locations
in the case of the work of Mittelmeier et al. (2016), we can
argue that a major contributor for the low correlation coeffi-
cient is the large spatial variance of the second-order moment
of wind speed.

To demonstrate this, the correlation coefficient was quan-
tified by calculation of the components of Eq. (21) from
a simulated turbulent field. The simulated field was gener-
ated as described in Sect. 3.1.1. The simulated conditions are
neutral atmospheric boundary layer stability, a mean wind
speed U of 8.33 m s−1 and a wind direction perpendicular to
the line connecting turbine and meteorological mast. Neutral
atmospheric boundary layer stability is characterized using
the Mann model with parameters of αε

2
3 = 1, l = 50m and

0 = 3.2, according to Sathe et al. (2013). The averaging du-
ration T is set to 600 s.

Figure 7 shows the impact of the horizontal cross-flow
separation distance between points a and b on the correla-
tion coefficient of turbulence intensity between these points.
It can be observed that the correlation coefficient declines
rapidly with increasing separation distance. For a distance
greater than 200 m it is smaller than 0.1. In the Nordsee Ost
wind farm, the cross-flow distance between mast and turbine
is larger than 400 m. Hence, a low correlation coefficient of
similar magnitude as in the simulations would be expected.
The larger correlation coefficient observed in the measure-
ments is likely because the correlation coefficient was ob-
tained from measurements of various conditions of atmo-
spheric boundary layer stability. This can be understood from
the definition of the correlation coefficient as follows.

ρT I,a,b =〈(
T IL,a(T )−〈T IL,a(T )〉

)(
T IL,b(T )−〈T IL,b(T )〉

)〉
σ 2(T IL(T ))

(22)

Figure 7. Impact of horizontal cross-flow separation distance be-
tween points a and b on correlation coefficient of turbulence inten-
sity between these points.

Turbulence intensity differs more between unstable and
stable atmospheric boundary layer conditions than due to
spatial separation of measurement locations. As a result, spa-
tially separated measurements of turbulence intensity of the
same atmospheric condition appear correlated with respect
to the average turbulence intensity of all stability conditions.
Consequently, the blending of measurements from different
atmospheric conditions results in a larger correlation coeffi-
cient, as observed in the Nordsee Ost case.

Overall, the results demonstrate the low correlation of
measurements of turbulent flow in the case of separation in
the cross-flow distance. It is therefore of interest to develop
more accurate approaches for the verification of sensors in
case of spatially separated reference measurements. Our rec-
ommended approach is to filter for direction misalignment,
that is the angle between the wind direction and the line con-
necting sensor and reference, or to average over ensembles
of the same atmospheric conditions. The approach is equiv-
alent to the mitigation measures discussed with regards to
the verification of wind turbine performance, described in
Sect. 3.2.2. The interested reader is thus referred to that sec-
tion for more details on the approach.

4 Conclusions

The first analytical solution for the quantification of the spa-
tial variance of the second-order moment of wind speed was
developed in this work. The spatial variance is defined as ran-
dom differences in the sample variance of wind speed be-
tween different points in space. The approach is successfully
verified using simulation and field data. The impact of the
spatial variance of the second-order moment of wind speed
is then investigated in three selected applications of the wind
energy sector including mitigation measures. First, the vari-
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ance of the second-order moment between front-row wind
turbines of Lillgrund wind farm is investigated. The vari-
ance ranges between 25 % and 48 % for turbulence inten-
sities ranging from 7 % to 10 %. Using the average turbu-
lence intensity at front-row turbines as an estimate for ambi-
ent turbulence intensity would thus result in a random error
in flow model inputs. It is thus suggested to use the second-
order moment measured at each individual turbine as input
to flow models in order to mitigate the random error. This
is particularly of importance for dynamic flow models used
for wind farm control as these aim to capture the dynamics
of flow rather than average properties. Second, the impact of
the spatial variance of the measured second-order moment
on the verification of wind turbine performance is investi-
gated. Misalignment between the mean wind direction and
the line connecting the meteorological mast and wind tur-
bine results in a random error in the observed second-order
moment. Such random error results in uncertainty in the tur-
bulence intensity-based classification of the fatigue loads and
power output of the wind turbine. To mitigate the random
error, it is suggested to either filter the measured data for
low angles of misalignment or quantify wind turbine per-
formance using the ensemble average over the same wind
conditions. Third, the verification of sensors in wind farms
can involve distant reference measurements. In the case of
a misalignment between the wind direction and the line con-
necting sensor and reference, a random error will hamper the
comparison of second-order moments measured at distant lo-
cations. Similar to the verification of turbine performance,
filtering the measured data for low angles of misalignment or
using the ensemble average can mitigate the random error.

To conclude, the comparison or combination of measure-
ments of the second-order moment of wind speed from spa-
tially separated locations can result in a random error. As-
suming Taylor’s hypothesis of frozen turbulence, the random
error is particularly prominent for the separation in the cross-
axial and vertical directions of measurement locations. This
work shows that knowledge of the drivers of the random error
allows for mitigation measures.
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that was used for the numerical simulation of turbulent wind fields
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ProductsWEngIECTurbulence_MannSim.ashx?la=da&hash=
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2020), and Linux or Mac OS versions can be obtained from
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are not publicly available, as they are the property of the wind farm
owner and/or operator.
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