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Abstract. Wind farm control strategies are being developed to mitigate wake losses in wind farms, increasing
energy production. Wake steering is a type of wind farm control in which a wind turbine’s yaw position is mis-
aligned from the wind direction, causing its wake to deflect away from downstream turbines. Current modeling
tools used to optimize and estimate energy gains from wake steering are designed to represent wakes for fixed
wind directions. However, wake steering controllers must operate in dynamic wind conditions and a turbine’s
yaw position cannot perfectly track changing wind directions. Research has been conducted on robust wake
steering control optimized for variable wind directions. In this paper, the design and analysis of a wake steering
controller with wind direction variability is presented for a two-turbine array using the FLOw Redirection and
Induction in Steady State (FLORIS) control-oriented wake model. First, the authors propose a method for model-
ing the turbulent and low-frequency components of the wind direction, where the slowly varying wind direction
serves as the relevant input to the wake model. Next, we explain a procedure for finding optimal yaw offsets
for dynamic wind conditions considering both wind direction and yaw position uncertainty. We then performed
simulations with the optimal yaw offsets applied using a realistic yaw offset controller in conjunction with a
baseline yaw controller, showing good agreement with the predicted energy gain using the probabilistic model.
Using the Gaussian wake model in FLORIS as an example, we compared the performance of yaw offset con-
trollers optimized for static and dynamic wind conditions for different turbine spacings and turbulence intensity
values, assuming uniformly distributed wind directions. For a spacing of five rotor diameters and a turbulence
intensity of 10 %, robust yaw offsets optimized for variable wind directions yielded an energy gain equivalent
to 3.24 % of wake losses recovered, compared to 1.42 % of wake losses recovered with yaw offsets optimized
for static wind directions. In general, accounting for wind direction variability in the yaw offset optimization
process was found to improve energy production more as the separation distance increased, whereas the relative
improvement remained roughly the same for the range of turbulence intensity values considered.
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1 Introduction

A subset of wind farm control strategies involves the control
of individual wind turbines to influence the aerodynamic in-
teraction between turbines in a wind farm via their wakes.
These control strategies can improve the total energy pro-
duction of a wind farm or reduce structural loads (Johnson
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and Thomas, 2009; Boersma et al., 2017). Although several
methods of actuation exist for influencing the wake behind a
wind turbine (Fleming et al., 2014; Boersma et al., 2017), one
of the most effective and easily implementable strategies for
increasing energy production being explored is wake steering
(Dahlberg and Medici, 2003; Wagenaar et al., 2012). Wake
steering control involves intentionally misaligning turbines’
nacelle positions relative to the wind direction, thereby steer-
ing their wakes away from downstream wind turbines. Al-
though the misaligned turbines generate less power, the total
power produced by the wind farm can be increased as a re-
sult of the higher wind speeds experienced by downstream
turbines.

Wake steering control has been studied using computa-
tional fluid dynamics (CFD), wind tunnel experiments, and
full-scale field experiments. Wake steering was shown to in-
crease the total power production of a six-turbine wind farm
using large-eddy simulation (LES), a type of CFD, by Ge-
braad et al. (2016). Additionally, Vollmer et al. (2016) used
LES to investigate the impact of different atmospheric sta-
bility conditions on the effectiveness of wake steering. Using
two-turbine arrays comprised of scaled wind turbines in a
wind tunnel, Campagnolo et al. (2016) and Schottler et al.
(2016) also demonstrated an overall increase in power pro-
duction with wake steering. Recently, wake steering experi-
ments at commercial wind farms have suggested that an in-
crease in total energy production is realizable in the field for a
two-turbine scenario (Fleming et al., 2017, 2019), with Flem-
ing et al. (2019) observing an average energy increase of 4 %
for a turbine pair over wind directions where wake steering
is active. Although high-fidelity modeling and experiments
are necessary to validate wake steering, computationally ef-
ficient engineering models of wake steering are needed for
optimizing controllers and estimating wind farm energy pro-
duction. For example, the FLOw Redirection and Induction
in Steady State (FLORIS) tool developed by the National
Renewable Energy Laboratory (NREL) and Delft University
of Technology (Gebraad et al., 2016) provides a framework
for optimizing wake steering strategies, allowing the user to
choose between several different engineering wake models.
The FLORIS code is available at https://github.com/NREL/
floris (last access: 1 April 2020) (NREL, 2019c) with doc-
umentation provided at https://floris.readthedocs.io (last ac-
cess: 1 April 2020).

Analyses of wake steering using CFD simulations, wind
tunnel tests, and engineering models such as FLORIS are
useful for demonstrating the effectiveness of wake steering
but are typically performed assuming fixed wind directions
and yaw positions. In reality, large-scale weather phenom-
ena cause the mean wind direction across the wind farm to
vary over time. Wind turbines are unable to perfectly track
the changing wind directions because of typically slow yaw
controller dynamics as well as difficulty estimating the wind
direction from noisy measurements. This is even more im-
portant when implementing wind farm control, wherein the

wind direction must be estimated from imperfect measure-
ments by a wake steering controller to determine the appro-
priate yaw offset to apply. Because of wind direction vari-
ability, slow yaw controller dynamics, and the uncertainty
inherent in yaw control, energy gains from wake steering are
expected to be lower in the field than predicted by analyses
assuming static wind directions and yaw positions. To ad-
dress wind direction variability, Bossanyi (2018) performed
wind farm control simulations using a dynamic simulation
model with time-varying wind conditions, highlighting con-
troller design choices relevant to dynamic wind conditions.
However, the applied yaw offsets are optimized assuming
static wind directions. Wind direction variability is analyzed
in a statistical sense by Gaumond et al. (2014), who show
that using a wake model to accurately predict wake losses in
a wind farm for a specific mean wind direction requires wind
direction variability about the mean direction to be consid-
ered. To optimize a wake steering strategy for energy pro-
duction, Quick et al. (2017) use optimization under uncer-
tainty (OUU) to find yaw offset targets that maximize energy
production when there is uncertainty in the achieved yaw po-
sition. Rott et al. (2018) similarly use an OUU approach to
optimize yaw offsets for energy production considering vari-
ability and uncertainty in the wind direction during periods
of constant yaw position. Using the FLORIS wake model,
both Quick et al. (2017) and Rott et al. (2018) show that
robust wake steering strategies accounting for yaw or wind
direction uncertainty typically involve lower-magnitude yaw
offsets yet outperform “static-optimal” wake steering strate-
gies, which are optimized for fixed wind directions, when
uncertainty exists.

This article builds on the work of Quick et al. (2017) and
Rott et al. (2018) by including both wind direction uncer-
tainty, resulting from wind direction variability, and yaw po-
sition uncertainty in the robust yaw offset optimization pro-
cess. An additional contribution of this work is to quantify
wind direction and yaw position uncertainty using realis-
tic yaw and yaw offset control simulations with stochastic
wind direction signals based on field measurements. How-
ever, rather than directly using a turbulent wind direction
signal to determine wind direction and yaw position uncer-
tainty, the authors propose a method for deriving a slowly
varying wind direction time series representing the time-
varying mean wind direction across the wind farm without
turbulence. This low-frequency wind direction signal acts as
a more relevant input to the FLORIS wake model, which al-
ready contains the effects of turbulence for a fixed mean wind
direction. The developed method for optimizing yaw offsets
with wind direction and yaw position uncertainty is demon-
strated using the example of a two-turbine array (a scenario
of interest for initial field validation studies) with the Gaus-
sian wake model in FLORIS (Annoni et al., 2018). An addi-
tional contribution of this research is to evaluate the energy
gains achieved by the robust “dynamic-optimal” yaw offsets
using realistic wake steering control simulations, which show
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close agreement with the energy gains predicted from the
probabilistic model of wind direction and yaw uncertainty.
Finally, by varying the turbine spacing and turbulence inten-
sity, where the latter affects the degree of wake expansion and
recovery in the Gaussian wake model, wind direction vari-
ability is shown to become more important in the yaw offset
optimization process as the separation distance increases, but
it has roughly the same impact for different turbulence inten-
sity values.

The rest of the article is organized as follows. Section 2 de-
scribes the models used in the research, including the wake,
wind turbine, yaw controller, wake steering controller, and
wind direction models, as well as the wake steering simu-
lation procedure. The procedure for quantifying wind direc-
tion and yaw uncertainty as well as optimizing yaw offsets
for the case of uncertain wind directions and yaw positions
is described in Sect. 3. Using the Gaussian wake model in
FLORIS, Sect. 4 contains the results of wake steering con-
troller simulations for a two-turbine array in dynamic wind
conditions for both static- and dynamic-optimal yaw offsets,
highlighting the improvement in energy gain when yaw off-
sets are optimized considering wind direction and yaw un-
certainty. Section 4.2 and 4.3 show the dependence of wake
steering with wind direction variability on turbine spacing
and turbulence intensity. Last, further discussion of the re-
sults is provided in Sect. 5, which concludes the paper.

2 Models

This section provides a description of the wake model, wind
turbine model, the yaw and yaw offset controllers, and the
dynamic wind direction model and the simulation procedure
used in the analysis of wake steering with wind direction
variability.

2.1 Wake model

The impact of wakes on turbine power production is modeled
using the FLORIS engineering wake modeling tool (NREL,
2019c). Specifically, the Gaussian wake model developed
by Bastankhah and Porté-Agel (2014, 2016) and Niayifar
and Porté-Agel (2016) is used to model the velocity deficits
and wake profile. This model includes the ambient turbu-
lence intensity (TI) as a parameter that helps determine the
rate of wake recovery and the wake expansion. Wake de-
flection caused by yaw misalignment is modeled using the
wake deflection model of Bastankhah and Porté-Agel (2016),
based on the Reynolds-averaged Navier–Stokes equations.
More information about the wake and wake deflection mod-
els available in FLORIS can be found in Annoni et al. (2018)
or at https://floris.readthedocs.io (last access: 1 April 2020).

An example of the wakes produced by a two-turbine ar-
ray with five rotor diameter (D) spacing using the above-
mentioned wake model, with mean free-stream wind speed
U = 8 m s−1 and a TI value of 10 %, is provided in Fig. 1.

The wake behavior is shown for the baseline case of zero
yaw misalignment as well as with a positive 20◦ yaw offset
applied to the upstream turbine. Note that a positive yaw off-
set corresponds to a counterclockwise rotation of the turbine
relative to the wind direction.

2.2 Wind turbine

The wake behavior and power production computed by
FLORIS rely on a simplified wind turbine model, which is
based on the NREL 5 MW reference wind turbine model in
this research (Jonkman et al., 2009). The NREL 5 MW refer-
ence turbine has a rotor diameter of 126 m and a hub height
of 90 m. All analysis in this paper is based on simulations
with a mean free-stream wind speed of U = 8 m s−1, cor-
responding to a power production of 1.81 MW (rated wind
speed for the NREL 5 MW reference model is 11.4 m s−1).
With U = 8 m s−1, the NREL 5 MW reference turbine oper-
ates in region 2, where power production is maximized and
thrust is relatively high (the coefficient of thrustCT = 0.762),
conditions in which wake losses are high and wake steering
is most effective.

To model the impact of yaw misalignment on power pro-
duction, a simple cosine power-law relationship is used in
conjunction with the standard power equation in FLORIS:

P =
1
2
ρACPu

3cospγ, (1)

where γ is the yaw offset and the exponent p describes how
quickly power decreases with increasing yaw misalignment.
A value of p = 1.88 is used here, based on fitting Eq. (1) to
data from a LES, as reported by Gebraad et al. (2016).

2.3 Yaw controller

Yaw control is simulated using simple logic based on the yaw
controller model described by Bossanyi (2018). A slowly
varying wind direction signal is formed by low-pass filtering
the measured wind direction, given by the sum of the wind
vane signal and the nacelle position, using a first-order filter
with a time constant of 35 s. When the magnitude of the dif-
ference between the filtered wind direction and the nacelle
position exceeds a threshold of 8◦, the turbine begins yaw-
ing toward the direction of the filtered wind direction at the
yaw rate of 0.3◦ s−1 defined for the NREL 5 MW reference
turbine (Jonkman et al., 2009). Once the difference between
the current yaw position and the slowly varying filtered wind
direction reaches zero or changes sign, the turbine stops yaw-
ing until the error threshold is exceeded again. The values of
the error threshold and yaw rate parameters used here are
equivalent to those presented by Bossanyi (2018). However,
instead of the 30 s filter time constant described by Bossanyi
(2018), a slightly longer time constant of 35 s is used here,
which results in yaw activity similar to that of a commercial
wind turbine used in the wake steering experiment discussed
by Fleming et al. (2019).
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Figure 1. Examples of wakes for a two-turbine scenario with five rotor diameter (D) spacing using FLORIS. In the baseline case, both
turbines are aligned with the wind direction. For the offset case, the upstream turbine has a yaw offset of 20◦.

2.4 Yaw offset controller

For a specific wind direction, optimal yaw offsets are found
for the upstream turbine in a turbine pair by determining the
offset that maximizes the sum of the power produced by the
two turbines using FLORIS. Because of the practical chal-
lenges of switching between large positive and negative yaw
offsets for small changes in wind direction as well as the
relative benefits of positive yaw misalignments, only posi-
tive offsets are considered here. For example, Damiani et al.
(2018) show that blade root bending moment fatigue is re-
duced with positive yaw misalignments but increases with
negative yaw misalignments. Additionally, LES shows that
positive yaw misalignments are more effective at increasing
power production as a result of the behavior of large-scale
trailing vortices that help steer the wake, as explained by
Fleming et al. (2018), as well as the impact of the Coriolis
force on wake deflection, discussed by Archer and Vasel-Be-
Hagh (2019). To further reduce the impact of wake steering
on turbine loads, we limit yaw offsets to 20◦ (Damiani et al.,
2018). However, wake steering with both positive and nega-
tive yaw misalignments may be a promising strategy because
of the additional energy that can be captured. Whereas re-
search suggests that blade root bending moment fatigue de-
creases only for positive yaw offsets, loads for other compo-
nents may increase or decrease regardless of the direction of
misalignment (Damiani et al., 2018; Mendez Reyes et al.,
2019). Therefore, the specific design-driving loads should
be identified and considered when assessing a wake steer-
ing strategy. Furthermore, the load reduction experienced by
downstream turbines from wake steering could outweigh the
higher loads on misaligned upstream turbines when averaged
over the lifetime of the wind farm, as discussed by Kanev
et al. (2018) and Mendez Reyes et al. (2019).

Figure 2. Yaw offset schedules optimized for a 5D turbine spac-
ing with static wind directions for mean wind speeds of 6, 8, and
10 m s−1.

Yaw offsets for the upstream turbine in a two-turbine ar-
ray aligned in the east–west direction, optimized for a tur-
bine spacing of 5D with TI= 10 %, are provided in Fig. 2 for
mean wind speeds of U = 6, 8, and 10 m s−1. These static-
optimal yaw offsets are optimized assuming static wind di-
rections (i.e., without wind direction variability). As the wind
direction crosses above 270◦, where the downstream turbine
is fully waked, the highest allowable offset of 20◦ results in
the maximum combined power production. As the wind di-
rection increases to the north and the downstream turbine is
increasingly only partially waked, the yaw offset needed to
sufficiently deflect the wake decreases until there is no longer
any benefit from wake steering.

Yaw offset control is used to apply the desired yaw off-
sets to a turbine and can be implemented as either direct yaw
control, wherein a direct yaw position command is sent to
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Figure 3. Yaw offset controller. Inputs include measurements from the wind turbine’s nacelle vane, nacelle anemometer, and yaw position
sensor. The output vane signal is used as the input to the wind turbine’s yaw controller.

the turbine, or indirect yaw control, where the yaw error set
point of the standard yaw controller is changed to the tar-
get offset. Although more precise yaw offset tracking can be
achieved using direct yaw offset control (Bossanyi, 2018),
indirect yaw offset control is considered in this research be-
cause it can be implemented in the field without modifying
the turbine’s yaw control logic (Fleming et al., 2019).

The control logic used to implement indirect yaw offset
control in this research, which is based on the strategy imple-
mented at a commercial wind farm by Fleming et al. (2019),
is provided in Fig. 3. A modified wind vane signal is formed
by subtracting the target yaw offset from the original wind
vane signal. The modified vane signal is then fed into the
wind turbine’s standard yaw controller, causing it to track the
target yaw offset instead of the default set point of zero. The
target yaw offset is determined using a lookup table provid-
ing yaw offset as a function of nacelle-based wind speed and
direction. Low-pass filtering is applied to the lookup table
inputs to provide estimates of the slowly varying mean wind
speed and direction. Note that for this study, which consid-
ers below-rated operation for U = 8 m s−1, the controller is
simplified by containing only the yaw offset schedule deter-
mined for U = 8 m s−1 because of the low sensitivity of the
optimal yaw offsets to wind speed variations in this region.
After comparing the energy gain resulting from wake steer-
ing simulations with different wind direction filter time con-
stants, a value of 30 s was chosen, yielding an estimate of the
slowly varying wind direction without introducing too much
delay.

2.5 Wind model

To assess wake steering control with wind direction variabil-
ity, we developed a dynamic wind model representing real-
istic wind conditions. Time series representing the turbulent
wind direction at a point near hub height measured by the na-
celle wind vane are needed to simulate the yaw and yaw off-
set controllers. FLORIS, on the other hand, models the time-
averaged wake behavior and power production resulting from
turbulent wind conditions as a function of mean wind direc-
tion. Additionally, high-frequency, small-scale components
of wind direction incorrectly indicate the direction of wake
travel. Therefore, a more appropriate input to FLORIS would

be a signal representing the slowly varying, large-scale mean
wind direction across the wind farm, with the turbulent com-
ponent removed. To model these two different wind direction
signals, stochastic time series are generated representing the
slowly varying mean wind direction across the wind farm
(the “low-frequency” component) as well as the purely tur-
bulent wind direction component, corresponding to a fixed
mean wind direction. The low-frequency component is used
as the input to FLORIS, whereas the sum of the two signals
acts as the input to the yaw and yaw offset controllers.

As discussed in Sect. 2.4, because wind speed variability
around U = 8 m s−1 is not expected to significantly impact
the effectiveness of wake steering, the wind model is simpli-
fied by assuming a fixed free-stream wind speed of 8 m s−1.
However, wind speed variability likely has a greater impact
on wake steering near rated wind speed, wherein the relation-
ship between wind speed, power, and thrust is more nonlin-
ear.

Stochastic wind direction signals are simulated by gen-
erating a normally distributed random time series based on
the power spectra of the low-frequency and turbulent wind
direction components, assuming the wind directions can be
represented as Gaussian random processes. Specifically, a se-
ries of Fourier components at discrete frequencies contain-
ing uniformly distributed random phases is generated, with
magnitudes determined by the desired power spectrum (Shi-
nozuka and Deodatis, 1991). We then apply the inverse dis-
crete Fourier transform to obtain the stochastic time series
with a sample period of 1 s.

The power spectrum used to generate the turbulent wind
direction component, Sφt (f ), is based on data from LES us-
ing NREL’s SOWFA (Simulator fOr Wind Farm Applica-
tions) tool (Churchfield et al., 2012), representing a neutral
atmospheric boundary layer with a mean hub height wind
speed of U =∼ 8 m s−1, which is similar to simulations dis-
cussed in past studies (Fleming et al., 2015, 2018). The
power spectrum is calculated using data at a height of 95 m
with a mean wind speed of U = 8.1 m s−1, TI= 10.1 %, and
a wind direction standard deviation of 3.93◦ (see the “LES”
spectrum in Fig. 4).

Measurements obtained from a wind vane at a height of
87 m on the M5 meteorological (met) mast at NREL’s Na-
tional Wind Technology Center (Clifton et al., 2013) are
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Figure 4. Normalized power spectra of the wind direction determined from met mast wind vane measurements, the turbulent wind direction
component derived from LES, and the resulting low-frequency wind direction component (a); the same power spectra multiplied by frequency
(b).

used to determine the power spectrum of the combined low-
frequency and turbulent wind directions, Sφ(f ). To match
the conditions generated by LES, data were limited to 1 h
periods, wherein the mean wind speed was between 7.5 and
8.5 m s−1 and the atmospheric conditions were neutral (de-
fined using the Monin–Obukhov stability parameter, z/L;
Clifton et al., 2013, at a height of 15 m, as |z/L|< 0.05; Ra-
jewski et al., 2013). Using twelve 1 h periods of acceptable
data with an average 1 h TI= 18.8 % and an average 1 h wind
direction standard deviation of 10.92◦, a representative wind
direction power spectrum is determined, shown as the “Met
mast” spectrum in Fig. 4.

Using the power spectra of the LES-based turbulent wind
direction component, Sφt (f ), and the met-mast-derived com-
bined wind direction, Sφ(f ), and assuming no correlation be-
tween the low-frequency and turbulent components, the spec-
trum of the low-frequency component, Sφl (f ), is found via
the relationship

Sφ(f )= Sφl (f )+ Sφt (f ). (2)

The LES-based turbulent and met-mast-based combined
wind direction spectra are compared in Fig. 4, normalized so
they converge at high frequencies. Note that the LES-derived
spectrum quickly decays above 0.1 Hz because of the spa-
tial filtering inherent in LES. These frequencies are ignored,
however, and the trend observed between 0.01 and 0.1 Hz is
assumed to continue at higher frequencies. Finally, the wind
direction power spectra are approximated using the follow-
ing equations fit to the data, where Sφl (f ) is calculated as
Sφ(f )− Sφt (f ) and C serves as a scaling constant:

Sφ(f )=
C

f
, (3a)

Sφt (f )=
C · 6.26× 103

· f 0.65(
1+

(
f

5×10−3

)3
)0.55 , (3b)

Sφl (f )=

C

((
1+

(
f

5×10−3

)3
)0.55

− 6.26× 103
· f 1.65

)

f

(
1+

(
f

5×10−3

)3
)0.55 . (3c)

Although Eq. (3a) is not physically realistic because it de-
scribes a power spectrum containing infinite energy across all
frequencies, it fits the data well for the range of frequencies
simulated. Note that below 0.0037 Hz, the low-frequency
wind direction is the dominant component of the combined
wind direction signal; for higher frequencies, the turbulent
component dominates. Thus, the low-frequency wind direc-
tion component could be estimated by low-pass filtering a
measured wind direction time series using a cutoff frequency
of 0.0037 Hz.

Examples of the turbulent wind direction and combined
wind direction time series from LES and met mast measure-
ments, respectively, are shown in Fig. 5a. Note that the LES
is limited to 860 s, whereas the met mast measurements are
analyzed in 1 h blocks. Using the power spectra given by
Eqs. (3b) and (3c), examples of stochastic time series repre-
senting the turbulent and low-frequency wind direction com-
ponents as well as the combined wind direction, formed by
summing the turbulent and low-frequency components, are
provided in Fig. 5b. The stochastic time series are scaled to
match the combined standard deviation of 10.92◦ observed
in the met mast data.

2.6 Simulation procedure

As described in Sect. 2.5, the stochastic low-frequency wind
direction component acts as the wind direction used in
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Figure 5. Example wind direction time series: (a) wind directions from LES and met mast wind vane measurements and (b) stochastic
turbulent, low-frequency, and combined wind directions.

FLORIS, whereas the combined low-frequency and turbulent
wind direction serves as the realistic noisy input to the yaw
and yaw offset controllers. A fixed wind speed of 8 m s−1

is used as the input to both FLORIS and the yaw offset
controller. Wake steering control is evaluated by generating
a series of 1 h stochastic wind direction time series with a
combined wind direction standard deviation of 10.92◦ for a
range of mean wind directions. To capture all wind directions
wherein wake steering control could be active, unique 1 h
simulations are performed for mean wind directions between
200 and 340◦ in increments of 0.05◦, resulting in 2800 sim-
ulations for each control scenario examined. For compari-
son purposes, baseline yaw control is simulated in addition
to wake steering control for each wind direction time series.
The first 10 min of data resulting from each simulation are
discarded to eliminate controller start-up transients.

3 Yaw offset optimization

This section begins with a description of the methods used to
model and quantify wind direction and yaw position uncer-
tainty caused by wind direction variability. Next, the process
for optimizing yaw offsets for wake steering control to max-
imize energy production with wind direction and yaw uncer-
tainty is explained.

3.1 Wind direction and yaw position uncertainty

Wind direction and yaw position uncertainty are determined
by first quantifying the yaw error variability. Standard yaw
control is simulated using stochastic low-frequency and com-
bined wind direction signals with the combined wind direc-
tion standard deviation of 10.92◦ measured in the field, as
explained in Sect. 2.5. Yaw error variability is then quanti-

fied as the standard deviation of the difference between the
low-frequency wind direction and the turbine’s yaw position.
An example of simulated wind direction and yaw position
signals for both baseline yaw control and yaw offset control
using static-optimal offsets is provided in Fig. 6. Baseline
yaw control for the simulated conditions results in a yaw er-
ror standard deviation of σε = 5.25◦.

The impact of wind direction and yaw position uncertainty
on wake steering is analyzed by modeling the low-frequency
wind direction (φl) and yaw position (θ ) as jointly distributed
random variables formed by adding wind direction and yaw
uncertainty to the static wind direction and yaw position de-
fined by the yaw offset schedule. The resulting joint prob-
ability density function (PDF) of low-frequency wind direc-
tion and yaw position is given by the convolution of the static
PDF, f8l,2,s(φl,θ ), based on the offset schedule, γ (φl), and
the PDF representing the uncertainty in the two variables
f18,12 (1φ,1θ ):

f8l,2 (φl,θ )= f8l,2,s (φl,θ ) · f18,12 (φl,θ ) . (4)

The static PDF of wind direction and yaw position is given
by

f8l,2,s (φl,θ )= f8 (φl)δ (θ − (φl− γ (φl))) , (5)

where δ(·) is the Dirac delta function and f8(φ) is the PDF
of the wind direction, assumed to be uniformly distributed
across all wind directions to simplify the analysis. However,
f8(φ) could easily be replaced by a more appropriate proba-
bility distribution based on site-specific conditions.

As explained by Rott et al. (2018), the PDF of the wind
direction during a 5 min time period can be approximated as
a normal distribution. Because wind turbines typically yaw
every few minutes or so – remaining at fixed yaw positions
otherwise (see Fig. 6) – the yaw error is also approximated
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Figure 6. Example stochastic wind directions and low-frequency wind directions with yaw positions corresponding to baseline yaw control
and yaw offset control, with the 8 m s−1 offset schedule shown in Fig. 2.

as a normally distributed random variable. The yaw error un-
certainty is then divided into wind direction uncertainty, 1φ ,
and yaw position uncertainty, 1θ , which are treated as inde-
pendent normally distributed random variables described by
the joint PDF:

f18,12
(
1φ,1θ

)
∼N

([
0
0

]
,

[
σ 2
φ 0
0 σ 2

θ

])
. (6)

To maintain the observed yaw error standard deviation of
σε = 5.25◦, the following relationship between the variances
of wind direction uncertainty, yaw position uncertainty, and
yaw error must exist:

σ 2
φ + σ

2
θ = σ

2
ε . (7)

The impact of the parameters σφ and σθ on the PDF of
wind direction and yaw position with wake steering based
on the static-optimal offset schedule for 8 m s−1 described
in Sect. 2.4 is shown in Fig. 7, which compares theoretical
joint PDFs of low-frequency wind direction and yaw posi-
tion using Eqs. (4) through (7) with a histogram determined
from simulation. All theoretical PDFs and histograms are
discretized using 1◦ bins. The theoretical PDF of wind direc-
tion and yaw position assuming all of the yaw error variation
can be attributed to wind direction uncertainty (σφ = 5.25◦)
is shown in Fig. 7b, whereas the PDF calculated assuming all
variation is caused by yaw position uncertainty (σθ = 5.25◦)
is provided in Fig. 7c. Also shown in the plots are the mean
yaw positions achieved as a function of wind direction. Note
that the two theoretical PDFs are identical for wind direc-
tions far from the yaw offset control sector; for baseline yaw
control, any combination of wind direction and yaw position
standard deviation that satisfies Eq. (7) produces the same
joint PDF of wind direction and yaw position. Consequently,
wind directions where wake steering is implemented must be
used to identify the proper values of σφ and σθ .

Rather than attributing all of the yaw error to either yaw
position or wind direction uncertainty, Fig. 7 reveals that
yaw offset control with wind direction variability is likely
modeled best using a combination of the two sources of un-
certainty. Assuming all of the yaw error is caused by wind
direction uncertainty, as shown in Fig. 7b, implies that the
yaw positions determined from the yaw offset schedule are
achieved without any uncertainty. But once the yaw offsets
are reached, the wind direction varies while the yaw posi-
tion is fixed, until the turbine yaws again. Note that the yaw
position gaps in Fig. 7b are a consequence of discretizing
the PDF using 1◦ bins. Alternatively, Fig. 7c highlights how
attributing all of the yaw error to yaw position uncertainty
suggests uncertainty in the yaw position that is achieved for
a given wind direction but that there is no wind direction
variability once the yaw position is reached. The simulation-
based histogram in Fig. 7a, however, exhibits characteristics
of both yaw position and wind direction uncertainty. Because
the mean yaw positions achieved based on the simulation re-
sults are closer to the theoretical mean yaw values with no
yaw position uncertainty, most of the yaw error can likely be
attributed to wind direction uncertainty, as modeled by Rott
et al. (2018). The procedure used to quantify the amount of
wind direction and yaw position uncertainty, described by σφ
and σθ , respectively, used in the remainder of this research is
explained in Sect. 3.3.

3.2 Yaw offset optimization procedure

For a given estimated low-frequency wind direction, φ̂l, de-
termined by the yaw offset controller, the optimal yaw off-
set γ ∗ for the upstream turbine in the turbine pair is found
using

γ ∗
(
φ̂l

)
= argmaxγE

[
P
(
φ̂l,γ

)]
, (8)
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Figure 7. Distributions of low-frequency wind direction and yaw position with yaw offset control using a static-optimal yaw offset schedule:
(a) histogram from simulation results and theoretical probability density functions assuming (b) only wind direction uncertainty and (c) only
yaw position uncertainty.

where E[P (φ̂l,γ )] is the expected power production given
the estimated wind direction, φ̂l, and target yaw offset, γ .
Based on the joint probability distribution of wind direction
and yaw position uncertainty in Eq. (6), the expected power
production using FLORIS is given by

E
[
P
(
φ̂l,γ

)]
=

180∫
−180

180∫
−180

f18,12
(
1φ,1θ

)
PFLORIS

(
φ̂l+1φ,γ −1θ

)
d1φd1θ , (9)

where PFLORIS(φl,γ ) describes the power production of the
two-turbine array as a function of low-frequency wind direc-
tion and the yaw offset of the upstream turbine, and 1φ and
1θ represent deviations of the wind direction and yaw po-
sition from their mean values, respectively. Equations (8)
and (9) essentially comprise the same form of optimization
used by Quick et al. (2017), considering only yaw uncer-
tainty, and Rott et al. (2018), examining wind direction un-
certainty. Equation (9) is implemented by approximating the
integration as a double summation and discretizing wind di-
rection and yaw position using a step size of 1◦. As a result,
only integer yaw offset values are considered.

The solution to Eqs. (8) and (9) as a function of wind di-
rection without wind direction or yaw position uncertainty
(σφ = σθ = 0) yields the static-optimal yaw offset schedule.
When wind direction and yaw uncertainty, resulting from
wind direction variability, are included, the solution is re-
ferred to as the dynamic-optimal offset schedule.

3.3 Wind direction and yaw position variability
parameter tuning

Appropriate values for the standard deviation of the wind
direction and yaw uncertainty are found by comparing the

expected mean energy production with wake steering based
on theoretical PDFs of wind direction and yaw with simula-
tion results. Specifically, the mean energy production across
all wind directions is calculated for different combinations
of σφ and σθ adhering to Eq. (7). The combination that best
predicts the mean energy resulting from wake steering sim-
ulations is used for finding the dynamic-optimal yaw off-
set schedule. Note that we assume the controller has perfect
knowledge of the yaw position. Yaw uncertainty, as defined
here, instead stems from the dynamics and hysteresis of the
yaw and wake steering controllers. For example, the target
yaw misalignment determined by the yaw offset controller
lags behind the true wind direction, which can cause the yaw
controller to settle on an unintended yaw position. Addition-
ally, while the turbine is yawing to achieve a particular yaw
misalignment, the offset target from the yaw offset controller
can change, again causing the controller to stop at an unin-
tended yaw position.

To find the uncertainty parameters that best predict the en-
ergy production with dynamic-optimal yaw offsets, an iter-
ative parameter tuning approach is used. An initial guess is
made, setting yaw position uncertainty equal to wind direc-
tion uncertainty. Next, simulation results based on the ini-
tial dynamic-optimal yaw offset schedule are used to retune
the uncertainty parameters. The process is repeated until both
the uncertainty parameters and optimal yaw offsets converge.
By applying this tuning procedure, values of σφ = 4.95 and
σθ = 1.75◦ are found. As expected, most of the yaw error
variation is attributed to wind direction uncertainty, with a
small amount of yaw position uncertainty caused by the yaw
controller dynamics. A comparison between the histogram
of low-frequency wind direction and yaw position based on
wake steering simulations using the dynamic-optimal yaw
offset schedule and the theoretical joint PDF with σφ = 4.95
and σθ = 1.75◦ is shown in Fig. 8.
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Figure 8. Distributions of low-frequency wind direction and yaw position with yaw offset control using a dynamic-optimal yaw offset
schedule: (a) histogram from simulation results and (b) theoretical probability density function assuming wind direction uncertainty with a
standard deviation of 4.95◦ and yaw position uncertainty with a standard deviation of 1.75◦.

Figure 9. Distributions of low-frequency wind direction and yaw position with yaw offset control using a static-optimal yaw offset schedule:
(a) histogram from simulation results and (b) theoretical probability density function assuming wind direction uncertainty with a standard
deviation of 4.95◦ and yaw position uncertainty with a standard deviation of 1.75◦.

A comparison between the histogram of low-frequency
wind direction and yaw position from wake steering simu-
lations with the original static-optimal yaw offset schedule
from Fig. 2 and the theoretical joint PDF using the tuned pa-
rameters is shown in Fig. 9. Although the mean yaw positions
are similar, the wind direction and yaw distributions do not
match as well as they do for the dynamic-optimal case, es-
pecially near φ = 270◦, where the wind direction is aligned
with the turbine pair. Close agreement is desired so that the
theoretical joint PDF of wind direction and yaw position can
be used to accurately predict the simulated energy gain, al-
lowing the optimal yaw offset schedule to be reliably found
using the theoretical PDF. Part of this discrepancy can be ex-
plained by the larger offsets demanded by the static-optimal
offset schedule. The theoretical joint PDF of wind direction
and yaw assumes that the yaw controller tends to settle near

one of the two yaw position extremes near φ = 270◦. How-
ever, the wake steering simulations reveal that the yaw con-
troller often settles between the two extremes in this region
as a result of the indirect yaw control implementation. Thus,
the specific yaw control dynamics affect how well the theo-
retical joint PDF of wind direction and yaw predicts the ac-
tual control behavior. Notwithstanding the observed discrep-
ancies for the static-optimal offset schedule, there is good
agreement between the simulated and predicted joint PDFs
for the robust dynamic-optimal case.

4 Results

In this section, we present simulation results showing the in-
crease in energy production with wake steering for a two-
turbine array. In Sect. 4.1, the improvement in wake steering
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Figure 10. Normalized mean power of combined upstream and downstream turbines for baseline and wake steering control with static-
optimal and dynamic-optimal yaw offset schedules for (a) static and (b) dynamic wind directions. Mean power values are determined from
theory (solid) and simulation (dashed) for a turbine spacing of 5D and turbulence intensity of 10 % and plotted as a function of low-frequency
wind direction.

performance when dynamic-optimal yaw offsets are used is
discussed in detail for a turbine spacing of 5D and turbu-
lence intensity of 10 %. The impact of turbine spacing and TI
(which impacts wake expansion and recovery in FLORIS)
on the improvement in energy production using dynamic-
optimal yaw offsets is examined in Sect. 4.2 and 4.3, respec-
tively.

4.1 Comparison of yaw offset controllers optimized for
static and variable wind directions

For a turbine spacing of 5D and turbulence intensity of 10 %,
the normalized mean power of the combined upstream and
downstream turbines binned by low-frequency wind direc-
tion for westerly wind directions is shown in Fig. 10 for base-
line yaw control and wake steering control. The mean power
production resulting from baseline yaw control and wake
steering control with static-optimal and dynamic-optimal
yaw offsets is provided in Fig. 10a for the case of static wind
directions (i.e., power is computed for each wind direction
independently, with yaw offsets determined directly from
the yaw offset schedules). Clearly, the static-optimal offset

schedule outperforms the lower-magnitude dynamic-optimal
yaw offsets in this case. Note that power is only increased
for one-half of the waked sector because of the restriction of
positive yaw offsets. Figure 10b shows the mean power pro-
duced with the same three control scenarios with wind direc-
tion variability included. Solid lines correspond to theoretical
predictions of power production based on Eq. (9), whereas
dashed lines are calculated from simulation results. Here,
the static-optimal yaw offsets only outperform the dynamic-
optimal offsets in a narrow sector; overall, the dynamic-
optimal yaw offsets result in higher energy gain. Because
of wind direction variability, the applied yaw offsets cause
a loss in power when the wind direction drops below 270◦ or
increases above ∼ 280◦. Compared to the static-optimal off-
sets, the dynamic-optimal yaw offset schedule strikes a bal-
ance between achieving large gains between 270 and∼ 280◦

and minimizing losses outside this sector.
Mean yaw offsets along with the normalized change in

power produced by the turbine pair with wake steering con-
trol are plotted in Fig. 11 as a function of low-frequency wind
direction for both static-optimal and dynamic-optimal yaw
offsets. The mean achieved yaw offsets and changes in power
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Figure 11. Mean achieved yaw offsets using offset schedules optimized for (a) static and (b) dynamic wind directions as well as change in
mean power produced by the turbine pair from wake steering using offset schedules optimized for (c) static and (d) dynamic wind directions
as a function of low-frequency wind direction. Theoretical achieved offsets and power gains are shown for dynamic wind directions along
with the yaw offset schedules. Achieved yaw offsets and power gains from simulations with dynamic wind directions are provided for 1 s,
1 min, and 10 min averages of low-frequency wind direction, yaw offset, and power. A turbine spacing of 5D and turbulence intensity of
10 % are used in the FLORIS model.

with dynamic wind directions predicted by theory and re-
sulting from simulation are shown along with the yaw offset
schedules. Simulation results are provided based on binning
using the original 1 s data as well as 1 and 10 min averages
of the data. The mean achieved yaw offsets binned by low-
frequency wind direction for the static-optimal and dynamic-
optimal cases reveal the source of the power loss below
270 and above ∼ 280◦, as shown in Fig. 10b. For wind di-
rections below 270◦, zero yaw offset is desired. However, the
positive mean yaw offsets resulting from wind direction vari-
ability cause the wake to deflect clockwise toward the down-
stream turbine, reducing its power. On the other hand, for
wind directions above ∼ 280◦, relatively small yaw offsets
are needed to deflect the partial wake away from the down-
stream turbine. Because of wind direction variability, the re-
sulting mean yaw offsets are too large, leading to unneces-

sary power loss on the upstream turbine with little additional
gain at the downstream turbine. Comparing the static-optimal
and dynamic-optimal cases shows how the less-aggressive
dynamic-optimal yaw offsets lead to slightly lower peak
gains in power production, but they result in lower mean yaw
offsets achieved outside of the primary wake steering region,
minimizing power loss. The lower peak gains are more than
compensated for by the reduced losses. Finally, note that the
dynamic-optimal yaw offsets extend to higher wind direc-
tions than the static-optimal offsets. The small offsets above
290◦ result in very little power loss, yet, due to wind direc-
tion variability, help increase the mean achieved yaw offsets
at lower wind directions where wake steering is beneficial.

The theoretical predictions of the mean achieved yaw off-
sets and change in power with wake steering match the sim-
ulation results very well for the dynamic-optimal yaw off-
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Table 1. Percentage of wake losses recovered from wake steering with dynamic wind directions for a two-turbine array with different
turbine spacings and turbulence intensity values, assuming uniformly distributed wind directions. Results are provided for static-optimal and
dynamic-optimal yaw offsets based on theoretical predictions as well as simulations.

Spacing (TI= 10 %) TI (spacing= 5D)

Yaw offset schedule/simulation case 3D 5D 7D 5 % 10 % 15 %

Static-optimal/theory 4.17 1.08 −1.67 3.67 1.08 0.54
Static-optimal/simulation 4.04 1.42 −0.54 2.94 1.42 0.99
Dynamic-optimal/theory 4.47 3.18 2.04 5.18 3.18 1.56
Dynamic-optimal/simulation 4.33 3.24 2.16 4.53 3.24 1.63

Table 2. Total baseline wake losses compared to free-stream operation for a two-turbine array with different turbine spacings and turbulence
intensity values, assuming uniformly distributed wind directions.

Spacing (TI= 10 %) TI (spacing= 5D)

3D 5D 7D 5 % 10 % 15 %

Wake losses 4.62 % 2.36 % 1.52 % 2.74 % 2.36 % 2.04 %

set scenario in Fig. 11b and d, for which the wind direction
and yaw position uncertainty model is tuned. For the static-
optimal scenario, the theory predicts higher peak mean yaw
offsets and a more narrow achieved yaw offset region than
exhibited by the simulations. The predicted change in power
also differs from the simulations more than in the dynamic-
optimal case. As explained in Sect. 3.3, these discrepancies
are related to yaw controller dynamics that are unaccounted
for in the theoretical predictions.

The overall gains for different wake steering scenarios are
provided in Table 1, which lists the percentage of the total
wake losses recovered with dynamic wind directions assum-
ing uniformly distributed wind directions. The baseline wake
losses for the different scenarios investigated, from which the
wake loss recovery is calculated, are provided in Table 2,
again assuming uniformly distributed wind directions. Note
that when averaging over all wind directions, the gain in ab-
solute energy production from wake steering is small for this
two-turbine scenario (≤ 0.2 %), primarily because of the low
baseline wake losses. Therefore, we express the gains as a
percentage of wake losses recovered, which we expect to
be a more meaningful value for comparison across different
wind farm scenarios. When simulating dynamic wind direc-
tions, 1.42 % of the wake losses are recovered by the static-
optimal offset schedule. The theoretical prediction of 1.08 %
slightly underestimates the energy gain because of unmod-
eled yaw controller dynamics, indicating room for improve-
ment in the theoretical model. By accounting for wind direc-
tion and yaw position uncertainty, wake steering simulations
using dynamic-optimal yaw offsets result in an energy gain
of 3.24 % of total wake losses, nearly matching the predicted
increase of 3.18 % and representing more than a 2-fold im-
provement over the static-optimal wake steering case.

Simulation results in Fig. 11 are binned using different
averaging periods to illustrate how longer averaging peri-
ods can hide or smooth out some of the trends predicted by
the theory. Averaging periods of 1 or 10 min are more rel-
evant when analyzing field data because of uncertainty in
high-frequency wind direction measurements and to account
for the time it takes for the wake to propagate between the
pair of turbines. Although the mean achieved yaw offsets are
not sensitive to these averaging periods, the mean change in
power shows a strong dependence on the averaging period
used for binning. As the binning period increases, the mean
power trends are smoothed out. For example, using 10 min
averages, the simulation results for the dynamic-optimal sce-
nario almost completely hide the power loss outside the main
wake steering region and show a lower peak gain instead.

4.2 Impact of turbine spacing

For a two-turbine array, the turbine spacing impacts both the
amount of energy that can be gained using wake steering and
the additional benefit from using a dynamic-optimal yaw off-
set strategy. Keeping all other wind farm parameters the same
as in Sect. 4.1, Fig. 12 compares the mean yaw offsets and
change in power produced by the turbine pair as a function
of low-frequency wind direction for both static-optimal and
dynamic-optimal offset schedules for turbine spacings of 3,
5, and 7D, based on theory and simulation. Figure 12 shows
that more energy can be gained using wake steering for
shorter separation distances, where wake losses are higher
(see Table 2). As the separation distance increases, baseline
wake losses become lower, leaving less room for wake steer-
ing to improve energy production. However, as the separation
distance increases, the wake steering losses suffered because
of wind direction variability increase. As shown by the sim-
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Figure 12. Mean achieved yaw offsets using offset schedules optimized for (a) static and (b) dynamic wind directions as well as change
in mean power produced by the turbine pair from wake steering using offset schedules optimized for (c) static and (d) dynamic wind
directions as a function of low-frequency wind direction for turbine spacings of 3D (blue), 5D (green), and 7D (red). Achieved theoretical
and simulation-based offsets and power gains are shown for dynamic wind directions, along with the yaw offset schedules. A turbulence
intensity of 10 % is used in the FLORIS model.

ulation results in Table 1, for a spacing of 3D, wake steering
control in dynamic wind conditions using the static-optimal
offset schedule results in a wake loss recovery of 4.04 %,
whereas with the 7D spacing, energy is reduced compared to
the baseline case, yielding a wake loss recovery of −0.54 %.
Longer separation distances allow more time for a redirected
wake to deflect by the time it reaches the downstream tur-
bine. Consequently, unintended deviations from the optimal
yaw offset result in larger changes to the wake position at
the downstream turbine. For example, note the relatively high
losses below 270◦ for the 7D spacing with static-optimal yaw
offsets in Fig. 12c caused by mean positive yaw offset angles,
which significantly redirect the wake toward the downstream
turbine.

Because the reduction in energy gain from wake steering
caused by wind direction variability increases for larger tur-
bine separations, the relative importance of using dynamic-

optimal offset schedules increases as well. As shown in
Fig. 12b and d, to achieve robustness for wind direction and
yaw uncertainty, the peak dynamic-optimal offsets become
smaller as the separation distance and, therefore, sensitivity
to yaw offset deviations become greater. As a result, although
the peak power gains are lower than with static-optimal yaw
offsets, the losses below 270◦ and above the primary wake
steering sector are greatly reduced. Referring to Table 1, for
a separation of 3D, replacing the static-optimal offsets with
the dynamic-optimal offset schedule only raises the energy
gained by wake steering from 4.04 % of the total wake losses
to 4.33 %. But for a spacing of 7D, switching to dynamic-
optimal offsets changes the energy loss resulting from static-
optimal offsets to an energy gain of 2.16 % of total wake
losses.
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Figure 13. Mean achieved yaw offsets using offset schedules optimized for (a) static and (b) dynamic wind directions as well as change in
mean power produced by the turbine pair from wake steering using offset schedules optimized for (c) static and (d) dynamic wind directions
as a function of low-frequency wind direction for turbulence intensity values of 5 % (blue), 10 % (green), and 15 % (red). Achieved theoretical
and simulation-based offsets and power gains are shown for dynamic wind directions, along with the yaw offset schedules. A turbine spacing
of 5D is used in the FLORIS model.

4.3 Impact of turbulence intensity

Just as wake steering can be implemented for a variety of
turbine spacings, the effectiveness of wake steering depends
on the atmospheric conditions. Although atmospheric stabil-
ity has been shown to have a large impact on wake steer-
ing (Vollmer et al., 2016; Fleming et al., 2019), ambient
turbulence intensity (TI), which is closely linked to stabil-
ity, acts as the primary atmospheric variable in the Gaussian
wake model used in this research (Niayifar and Porté-Agel,
2016), affecting the degree of wake expansion and recov-
ery. Turbulence causes the low-velocity air in the wake to
mix with the surrounding higher-velocity flow, helping the
wake recover. Additionally, turbulence causes wake mean-
dering. Therefore, low TI leads to a narrow time-averaged
wake profile with a high peak wake loss, whereas high turbu-
lence causes a broader wake profile with lower peak losses.

As listed in Table 2, the total wake losses decrease as the
TI increases.

For a fixed turbine spacing of 5D, Fig. 13 shows the offset
schedules, mean achieved yaw offsets, and changes in power
of the turbine pair resulting from wake steering as a function
of low-frequency wind direction using both static-optimal
and dynamic-optimal offsets for TI values of 5 %, 10 %,
and 15 %. The low-turbulence case with TI= 5 % allows the
greatest amount of energy to be gained using wake steering;
with a narrow wake profile with deep losses, wake deflec-
tion causes a larger increase in velocity at the downstream
turbine than for a more spread-out wake profile with lower
velocity deficits typical of high turbulence. At the same time,
the higher sensitivity of the power production to changes in
yaw offset also means that unintended yaw offsets can more
easily steer the wake center back toward the downstream tur-
bine, reducing power, as shown in Fig. 13c, between 260 and
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270◦. Because the greater susceptibility to wind direction and
yaw position uncertainty outside of the primary wake steer-
ing control sector for lower TI values is somewhat balanced
by the higher peak power gains inside the control sector, the
relative impact of wind direction variability on the effective-
ness of wake steering remains roughly constant as TI varies.

Similar to the results in Fig. 12, while the peak energy
gains with dynamic-optimal offsets shown in Fig. 13d are
lower than they are with static-optimal offset schedules, be-
cause of more robust, lower-magnitude offsets shown in
Fig. 13b, the energy lost outside of the primary wake steering
sector is greatly reduced. But just as the impact of wind di-
rection variability on the overall effectiveness of wake steer-
ing does not strongly depend on TI, the relative improve-
ment in the energy gain made possible by replacing static-
optimal offset schedules with dynamic-optimal yaw offsets
does not exhibit a clear trend with TI. The largest relative im-
provement in energy production after switching to dynamic-
optimal yaw offsets occurs for the middle TI value of 10 %,
where the percentage of wake losses recovered by wake
steering increases from 1.42 % to 3.24 % (a relative improve-
ment of 128 %). However, large improvements in energy
gains from wake steering are observed for both the lower
and higher TI values as well (see Table 1). For TI= 5 %,
the energy gain increases from 2.94 % of total wake losses
to 4.53 % when dynamic-optimal offsets are used (a relative
change of 54 %). Similarly, after switching to the dynamic-
optimal yaw offset schedule, the wake loss recovery for
TI= 15 % increases from 0.99 % to 1.63 % (a relative change
of 65 %).

5 Discussion and conclusions

This paper expanded on previous work investigating the op-
timization of wake steering control with yaw and wind di-
rection uncertainty resulting from dynamic wind directions,
particularly the research of Quick et al. (2017) and Rott et al.
(2018). The present research examined the hypothesis that
for steady-state wake models representing turbulent wind
conditions, the most relevant wind direction input should
contain only the low-frequency wind direction component
without the turbulence already captured by the wake model.
First, the low-frequency wind direction was defined by com-
paring the power spectra of wind directions measured in the
field and wind directions simulated using CFD for a fixed
large-scale mean wind direction. Next, we generated stochas-
tic time series representing the low-frequency and turbulent
wind direction components. Although previous work exam-
ined the impact of yaw uncertainty and wind direction un-
certainty separately, here wake steering strategies were op-
timized for combined yaw and wind direction uncertainty,
estimated by comparing the yaw position resulting from re-
alistic yaw and yaw offset control simulations with the low-
frequency wind direction. However, it was found that wind

direction uncertainty caused by wind direction variability,
examined by Rott et al. (2018), is the dominant source of
uncertainty.

For a two-turbine array, the theoretically predicted perfor-
mance of wake steering control strategies optimized consid-
ering yaw and wind direction uncertainty was compared to
results from realistic yaw offset control simulations, show-
ing generally good agreement. However, some discrepancies
caused by unmodeled yaw controller dynamics exist. As dis-
cussed in Sect. 3.3, the discrepancies are related to the use
of indirect yaw control; if the wind direction varies enough
while the turbine is yawing, the yaw controller can stop yaw-
ing before the intended offset is reached. The agreement be-
tween theory and simulation could be improved by switching
to direct yaw control, where exact yaw adjustments are pre-
scribed by the controller.

An analysis of wake steering in dynamic wind conditions
for different turbine spacings revealed that as the turbine sep-
aration increases, yaw and wind direction uncertainty has a
more detrimental impact on the achievable gains in energy
production. However, as the turbine spacing increases, the
relative improvement in energy production when accounting
for yaw and wind direction uncertainty in the yaw offset op-
timization process increases as well, as shown in Table 1.
The impact of the degree of wake expansion and recovery on
wake steering with wind direction variability was examined
by varying the turbulence intensity for a fixed turbine spac-
ing. Unlike the dependence on turbine spacing, the relative
improvements to wake steering that are achieved by consider-
ing wind direction and yaw position uncertainty in yaw offset
optimization do not exhibit a strong relationship with turbu-
lence intensity. The greatest improvement after switching to
dynamic-optimal yaw offsets occurs for TI= 10 %, the mid-
dle turbulence level that was investigated. Further research
efforts are needed to determine how the amount of wind di-
rection variability depends on turbulence intensity as well
as mean wind speed and atmospheric stability, beyond the
8 m s−1, neutral stability case examined here.

Although not considered in this research, in addition to
making wake steering more robust to wind direction and yaw
position uncertainty, efforts can be made to reduce the uncer-
tainty. For example, short-term forecasts of wind direction
provided by remote-sensing instruments can be used by the
wake steering controller to target more relevant future wind
directions rather than reacting to past measurements of the
wind conditions. Another strategy for reducing uncertainty in
the wind direction used by the controller is collective consen-
sus control, discussed by Annoni et al. (2019), where wind
direction measurements from individual turbines in a wind
farm are aggregated to form a more reliable wind direction
estimate at each turbine. Collective consensus control can
also be used to provide wind direction forecasts to down-
stream turbines.

Additionally, more realistic wake models are being devel-
oped based on new insights into the physics of wake steering
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that may impact how susceptible wake steering is to wind di-
rection variability. For example, the curled wake model pre-
sented by Martínez-Tossas et al. (2019) and the Gauss–curl
hybrid wake model developed by King et al. (2020), inspired
by observations from CFD simulations discussed by Fleming
et al. (2018), consider how trailing vortices resulting from
yaw misalignment interact with the wake to not only deflect
it but also change its shape. Fleming et al. (2018) discuss
how the trailing vortices created by multiple turbines can
merge, creating large-scale structures in the flow that could
potentially be used to entrain higher energy flow from above
the wind farm. It is likely that such “flow-control” strate-
gies are more robust to wind direction variability because
they increase energy production over a large region of the
wind farm rather than solely relying on deflecting individ-
ual wakes away from downstream turbines. However, future
work is needed to investigate these more advanced wind farm
control techniques and how they perform in dynamic wind
conditions.

Finally, we investigated a two-turbine array in this study
because it serves as a simple example for field validation.
In follow-up research, the yaw offsets and change in energy
predicted by the models and simulations presented here will
be compared to values obtained from wake steering field ex-
periments, such as the campaign described by Fleming et al.
(2019), to determine how accurately the proposed methods
model wake steering in practice. As revealed in Sect. 4.1,
longer averaging times used in the data analysis can hide
some of the trends in the change of energy against wind di-
rection predicted by the theory. Therefore, averaging times
on the order of 1 min should be considered for field valida-
tion.

Data availability. Data from NREL’s M5 meteorological tower,
used to determine the spectrum of wind direction variations,
are available at https://nwtc.nrel.gov/135mData (last access:
1 April 2020) (NWTC Information Portal, 2015). The LES data
were generated using SOWFA, available at https://github.com/
NREL/SOWFA (last access: 1 April 2020) (NREL, 2019a). The
specific SOWFA settings used to generate the data are avail-
able upon request. All FLORIS simulations were performed using
FLORIS Version 1.1.4, available at https://github.com/NREL/floris/
tree/v1.1.4 (last access: 1 April 2020) (NREL, 2019b).
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