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Abstract. The extrapolation of wind speeds measured at a meteorological mast to wind turbine rotor heights is
a key component in a bankable wind farm energy assessment and a significant source of uncertainty. Industry-
standard methods for extrapolation include the power-law and logarithmic profiles. The emergence of machine-
learning applications in wind energy has led to several studies demonstrating substantial improvements in vertical
extrapolation accuracy in machine-learning methods over these conventional power-law and logarithmic profile
methods. In all cases, these studies assess relative model performance at a measurement site where, critically,
the machine-learning algorithm requires knowledge of the rotor-height wind speeds in order to train the model.
This prior knowledge provides fundamental advantages to the site-specific machine-learning model over the
power-law and log profiles, which, by contrast, are not highly tuned to rotor-height measurements but rather can
generalize to any site. Furthermore, there is no practical benefit in applying a machine-learning model at a site
where winds at the heights relevant for wind energy production are known; rather, its performance at nearby
locations (i.e., across a wind farm site) without rotor-height measurements is of most practical interest. To more
fairly and practically compare machine-learning-based extrapolation to standard approaches, we implemented
a round-robin extrapolation model comparison, in which a random-forest machine-learning model is trained
and evaluated at different sites and then compared against the power-law and logarithmic profiles. We consider
20 months of lidar and sonic anemometer data collected at four sites between 50 and 100 km apart in the central
United States. We find that the random forest outperforms the standard extrapolation approaches, especially
when incorporating surface measurements as inputs to include the influence of atmospheric stability. When
compared at a single site (the traditional comparison approach), the machine-learning improvement in mean
absolute error was 28 % and 23 % over the power-law and logarithmic profiles, respectively. Using the round-
robin approach proposed here, this improvement drops to 20 % and 14 %, respectively. These latter values better
represent practical model performance, and we conclude that round-robin validation should be the standard for
machine-learning-based wind speed extrapolation methods.
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1 Introduction

Both the preconstruction and operational phases of wind
farm projects require an accurate assessment of the wind re-
source at the heights of the rotor-swept area to forecast gen-
erated power (Brower, 2012). With the constant increase in
the size of commercial wind turbines, the direct measurement
of wind speed at heights relevant for wind energy production
is becoming more and more challenging because installing
tall meteorological masts requires significant costs. Acquir-
ing and deploying remote-sensing instruments, such as wind
Doppler lidars, also involve substantial economic and tech-
nical investments. Therefore, it is common practice to ob-
tain the characterization of the wind resource at the desired
heights by vertically extrapolating the wind measurements
available at lower levels (Landberg, 2015).

One of the most widely used methods to extrapolate wind
speed from the measurement height to turbine rotor heights
is by using a power law (Peterson and Hennessey, 1978).
Despite not having a physical basis in the theory of mete-
orology, this simple relationship can provide agreement with
measured wind profiles, especially on monthly or annual
timescales, thus justifying its popularity in the wind energy
industry. A second commonly used relationship to represent
wind profiles is based on a logarithmic law, more firmly
based on the Monin–Obukhov similarity theory (MOST;
Monin and Obukhov, 1954). While both these techniques al-
low for a simple and to a given extent adequate representa-
tion of wind profiles, the limits in their accuracy, especially
under conditions of stable stratification, have been shown in
various studies (Lubitz, 2009; Optis et al., 2016). Both sta-
ble stratification and wind flow in complex terrain violate
the homogeneity assumption of the MOST theory, thus of-
ten deviating from a logarithmic profile and from the empir-
ical power-law profile (Ray et al., 2006). Moreover, neither
law is capable of representing specific phenomena that typ-
ically occur in the nocturnal stable boundary layer in some
regions, such as low-level jets (Sisterson et al., 1983), whose
strong winds are of great benefit for wind energy production
(Cosack et al., 2007). Offshore wind profiles have also been
shown to significantly deviate from power-law and logarith-
mic profiles (Högström et al., 2006).

Significant research has been conducted to overcome the
limitations of the conventional methods used to vertically ex-
trapolate the wind resource (Emeis, 2012; Optis et al., 2014;
Badger et al., 2016; Optis and Monahan, 2017). More re-
cently, machine-learning techniques have been applied to ex-
plore their potential in predicting wind speed aloft. Türkan
et al. (2016) compared the performance of seven machine-
learning algorithms in extrapolating the wind resource from
10 to 30 m above ground level (a.g.l.) at a wind farm in
Turkey. Mohandes and Rehman (2018) applied deep neural
networks to predict wind speed up to 120 m a.g.l. using lidar
measurements at a flat terrain site in Saudi Arabia. Finally,
Vassallo et al. (2019) tested the performance of deep neural

networks in extrapolating wind speed as a function of differ-
ent input features, both in complex terrain and offshore, using
lidar data. In all cases, the machine-learning models are com-
pared against traditional extrapolation techniques like the
power or logarithmic law, and considerable improvements
in extrapolation accuracy using machine-learning techniques
have generally been found.

However, these recent studies assess machine-learning
model performance at the site at which the model is trained,
an approach that we believe is fundamentally biased. Dur-
ing the model training phase, machine-learning models ben-
efit from having knowledge of the rotor-height wind speeds
and are therefore highly tuned to the site at which they are
trained. By contrast, conventional extrapolation approaches
do not have nor require knowledge of rotor-height wind
speeds and therefore can generalize to any location where
measurements are available at a single level near the surface
(for the logarithmic law) or at two levels in the lower part
of the boundary layer (for the power law). Furthermore, the
evaluation of machine-learning model performance at the site
at which it is trained is not practical: if winds at the heights
relevant for wind energy production are already known and
measured, there is no need for an extrapolation.

To more fairly and practically validate machine-learning-
based vertical extrapolation of wind speeds against conven-
tional methods, a “round-robin” approach should be used.
Such an approach involves training the model at a given
site and then assessing its performance at other sites where
rotor-height wind speeds are unknown to the model. This ap-
proach would provide a more meaningful and fair compar-
ison against conventional extrapolation methods and would
more accurately quantify the advantage of machine-learning-
based approaches. To our knowledge, however, no such
round-robin validation has been performed in the literature;
therefore, the improved performance of machine-learning al-
gorithms over conventional extrapolation methods might cur-
rently be overestimated.

In this study, we implement a round-robin validation ap-
proach to assess the performance of machine-learning-based
vertical extrapolation of wind speeds against conventional
methods. Specifically, we contrast a random-forest machine-
learning algorithm against the power law and logarithmic
law. We consider four measurement sites in the central
United States located within 50–100 km of each other for the
round-robin validation. In Sect. 2, we describe the lidar and
surface measurements used in our analysis. Details on the
extrapolation techniques are presented in Sect. 3. In Sect. 4,
we apply a round-robin approach to test how the predictive
performance of the random forest varies with distance, when
the learning algorithm is used to predict wind speed at a lo-
cation different from the training site, and contrast relative
performance when implementing a round-robin comparison
versus a single-site comparison. We also compare the pre-
dictive performance of machine learning with the power-law
and logarithmic profiles. Finally, we analyze how the error in
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Figure 1. Map of the four sites at the Southern Great Plains atmo-
spheric observatory considered in this study. Contour lines at 50 m
intervals are shown in the map. Digital elevation model data cour-
tesy of the U.S. Geological Survey.

wind speed vertical extrapolation by the learning algorithm
varies with different input features and with height of pre-
dicted wind speed. We conclude and suggest future work in
Sect. 5.

2 Data: the Southern Great Plains (SGP)
atmospheric observatory

We use observations collected at the Southern Great Plains
(SGP) atmospheric observatory, a field measurement site in
north-central Oklahoma, managed by the Atmospheric Ra-
diation Measurement (ARM) Climate Research Facility. To
assess the variability in space of the performance of machine-
learning-based wind speed vertical extrapolation, we focus
on four different locations at the site (Fig. 1), over a region
about 100 km wide. The site is primarily flat, and its land
use is characterized by cattle pasture and wheat fields. Winds
mostly flow from the south, with more variability observed
in the winter. For our analysis, we use 30 min average data
from 13 November 2017 to 23 July 2019 (for a total of over
29 000 timestamps).

2.1 Lidar

At each of the four locations considered in our study, a
Halo Streamline lidar (main technical specifications in Ta-
ble 1) was deployed. A preliminary intercomparison study

Table 1. Main technical specifications of the ARM Halo lidars.

Wavelength 1.5 µm
Laser pulse width 150 ns
Pulse rate 15 kHz
Pulses averaged 20 000
Points per range gate 10
Range-gate resolution 30 m
Minimum range gate 15 m
Number of range gates 200

of the lidar measurements performed by Atmospheric Radi-
ation Measurement (ARM) research confirmed that all the
lidars produce consistent measurements, with correlation co-
efficients greater than 0.9 and precision less than 0.1 m s−1

(Newsom, 2012). The lidars performed a variety of scan
strategies. For this analysis, we retrieved horizontal wind
speed from the full 360◦ conical scans, which were per-
formed every∼ 10–15 min and took about 1 min to complete.
We use the velocity-azimuth-display approach in Frehlich
et al. (2006) to retrieve the horizontal wind speed from the
line-of-sight velocity recorded in the scans. To do so, we
assume that the horizontal wind field is homogeneous over
the scan volume and that the average vertical velocity is zero
(Browning and Wexler, 1968). We discard from the analysis
measurements with a signal-to-noise ratio lower than−21 dB
or higher than+5 dB (to filter out fog events), along with pe-
riods of precipitation, as recorded by a disdrometer at the
C1 site. Finally, processed data were averaged over 30 min
periods. For this study, data from five range gates are used,
corresponding to heights of 65, 91, 117, 143, and 169 m a.g.l.
Data recorded at the two lowest heights (13 and 39 m a.g.l.)
could not be used because of their poor quality, as they lie in
the lidar blind zone.

2.2 Surface measurements

Surface data were collected by sonic anemometers on flux
measurement systems and temperature probes, which were
deployed at each of the four considered sites. The sonic
anemometer measured the three wind components at a 10 Hz
resolution; processed data are available as 30 min averages.
We use wind speed at 4 m a.g.l. and turbulent kinetic energy
(TKE) calculated from the variance of the three components
of the wind flow as

TKE=
1
2

(
σ 2
u + σ

2
v + σ

2
w

)
. (1)

Also, at each site we calculate the Obukhov length, L, to
quantify atmospheric stability:

L=−
Tv · u

3
∗

k · g ·w′T ′v
, (2)

where k = 0.4 is the von Kármán constant, g = 9.81 m s−2

is the gravity acceleration, Tv is the virtual temperature (K),
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u∗ = (u′w′
2
+ v′w′

2
)1/4 is the friction velocity (m s−1), and

w′T ′v is the kinematic virtual temperature flux (K m s−1). A
linear correction (Pekour, 2004) has been applied to the flux
processing to account for sonic anemometer deficiencies in
measuring temperature at sites E37, E39, and E41. For the
same reason, at these sites, we use Tv from temperature and
humidity probes at 2 m a.g.l. Reynolds decomposition for
turbulent fluxes has been applied using a 30 min averaging
period, as commonly chosen for boundary-layer processes
(De Franceschi and Zardi, 2003; Babić et al., 2012). We con-
sider stable conditions for L > 0 m and unstable conditions
for L < 0 m. Data have been quality-controlled, and precip-
itation periods were excluded from the analysis to discard
inaccurate measurements (Zhang et al., 2016).

3 Wind speed extrapolation techniques

In our analysis, we compare the conventional techniques of
power-law and logarithmic profiles for wind speed extrapo-
lation with a machine-learning random forest. The standard
output or “response” variable in our analysis is the 30 min
average wind speed at 143 m a.g.l. We acknowledge that the
resolution of the data used will have an impact on the mag-
nitude of the error values shown in the analysis (as obser-
vations at a higher time resolution would likely cause larger
extrapolation errors). However, we do not expect the relative
comparison between the different extrapolation techniques
and the analysis of the predictor importance to be strongly
affected by the resolution of the input features used.

3.1 Power law

The first traditional technique we consider assumes a power
law to model the wind vertical profile and extrapolate wind
speed, U , from a height, z1 to z2:

U (z2)= U (z1)
(
z2

z1

)α
, (3)

where α is the shear exponent. At each site we calculate a
time series of α values by inverting Eq. (3), using data at 4
and 65 m a.g.l. We then use the power-law profile to extrapo-
late wind speed measured at 65 up to 143 m a.g.l.

3.2 Logarithmic law

The second traditional technique we consider assumes a log-
arithmic profile (Stull, 2012) for the wind speed, U , as a
function of height, z:

U (z)=
u∗

κ

[
ln
(
z

z0

)
−9m

( z
L
,
z0

L

)]
, (4)

where u∗ is friction velocity, κ = 0.41 is the von Kármán
constant, z0 is the roughness length,L is the Obukhov length,

and 9m is a function to include a correction based on atmo-
spheric stability. The roughness length, z0, is usually some-
what arbitrarily chosen based on tabulated values, depend-
ing on the land cover at the site of interest. To avoid issues
connected to the choice of z0 and the large sensitivity of the
logarithmic wind profile to it (Optis et al., 2016), we use the
following expression that relates wind speed at two levels,
z1 (the height where the wind speed is known) and z2 (the
height where extrapolated winds are needed):

U (z2)−U (z1)=
u∗

κ

[
ln
(
z2

z1

)
−9m

(z2

L
,
z1

L

)]
. (5)

The stability correction, 9m, is calculated from an inte-
gral over the vertical dimension between the two considered
heights, z1 and z2:

9m

(z2

L
,
z1

L

)
=

z2/L∫
z1/L

1−φm(ξ )
ξ

dξ, (6)

where the stability function, φm, can be chosen from the dif-
ferent formulations recommended in the literature. For stable
conditions, we follow the expression proposed by Beljaars
and Holtslag (1991), one of the most commonly used in the
wind energy community:

φm,stable(ξ )= 1+ a ξ + b ξ (1+ c− d ξ )exp[−d ξ ], (7)

where a = 1, b = 2/3, c = 5, and d = 0.35. For unstable con-
ditions, we use the widely accepted formulation by Dyer and
Hicks (1970):

φm,unstable(ξ )= (1− 16ξ )−1/4. (8)

3.3 Random forest

The main focus of this study is to contrast the valida-
tion of machine-learning-based wind speed extrapolation us-
ing a single-site approach versus a round-robin approach.
Therefore, we defer an exhaustive comparison of different
machine-learning algorithms to a later study and only con-
sider a relatively simple random forest in this analysis. A
random forest is an ensemble of regression trees, which are
trained on different random subsets of the training set. The
final prediction is then calculated as the average from the
single trees. For the analysis, we used the RandomForestRe-
gressor module in Python’s scikit-learn (Pedregosa et al.,
2011). Additional details on random forests can be found in
machine-learning textbooks (e.g., Hastie et al., 2005).

The input features used for the wind speed extrapolation
are listed in Table 2. As wind speeds often show a diurnal
cycle in response to atmospheric stability (Barthelmie et al.,
1996; Zhang and Zheng, 2004), we have included multiple
variables to capture the diurnal variability in the atmospheric
boundary layer: Obukhov length, TKE, and time of day. To
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Table 2. Input features considered in the analysis for the random-
forest algorithm. WS denotes wind speed.

Input feature Acronym Measurement
height (m a.g.l.)

30 min average wind speed
from lidar at 65 m a.g.l.

WS 65 m 65

Sine of time of the day
time –

Cosine of time of the day

30 min average wind speed
from sonic anemometer at
4 m a.g.l.

WS 4 m 4

Turbulent kinetic energy TKE 4

Obukhov length L 4

preserve the cyclical nature of time of day (i.e., hour 23 and
hour 0 being close to each other), we calculate the sine and
cosine1 of the normalized time of day and include these two
input features to represent time in the learning algorithm. We
note that when similar techniques are applied to more com-
plex sites, the Obukhov length might not be well-suited to
capturing atmospheric stability in complex terrain (Fernando
et al., 2015), and therefore an accurate choice of the input
variables as a function of the specific topography is recom-
mended.

3.3.1 Hyperparameter selection

To create a more accurate algorithm, hyperparameters need
to be set before the learning process starts. For the random
forest, we consider the hyperparameters listed in Table 3,
which also shows the values sampled. We use a fivefold cross
validation to evaluate different combinations of the hyperpa-
rameters, with 30 sets randomly sampled at each site. We use
80 % of the data in the cross validation, while the remaining
20 % (selected without shuffling the original data set to avoid
unfair predicting performance improvement because of auto-
correlation in the data) are held out for independent testing.
The performance of the model is evaluated based on the root-
mean-squared error between measured and predicted wind
speed at 143 m a.g.l. The set of hyperparameters that leads
to the lowest root-mean-squared error is selected and used
to assess the final performance of the learning algorithm, de-
scribed in Sect. 4. A table with the selected sets of hyperpa-
rameters at each site is shown in the Appendix.

1Both are needed because each value of sine only (or cosine
only) is linked to two different times.

Table 3. Algorithm hyperparameters considered for the random for-
est and their considered values in the cross validation.

Hyperparameter Possible
values

Number of estimators 10–800
Maximum depth 4–40
Maximum number of features 1–6
Minimum number of samples to split 2–11
Minimum number of samples for a leaf 1–15

4 Results

A robust validation of the proposed machine-learning ap-
proach for wind speed vertical extrapolation requires testing
the method at sites different from the one used for training.
We therefore apply a round-robin approach to train a ran-
dom forest at each of the four sites, using the input features
listed in Table 2, and then we test it to extrapolate 30 min
wind speed data at 143 m a.g.l. at the remaining three sites.
Figure 2 shows a heat map of the testing MAE found from
this round-robin validation. As expected, the random forest
provides the most accurate results when it is tested at the site
where it is also trained. For all the considered cases, we find
a larger MAE when considering the more practical applica-
tion of a learning algorithm used to extrapolate winds at a
site where it has no knowledge of the winds at the desired
height. For all of the considered sites, the MAE increases
about 10 %–15 % when the algorithm has no prior knowl-
edge of measured hub-height wind speeds. Different results
can be expected when considering sites with a more complex
topography, or when performing the round-robin approach
over different spatial separations. Moreover, we can expect
the performance comparison to be influenced not only by the
pure separation between training and testing sites, but also by
the different forcings that each specific site experiences. No-
tably, Bodini and Optis (2020) compared the extrapolation
performance of the proposed random-forest approach before
and after a wind farm was built in the vicinity of site C1 and
found an increase in MAE of up to 10 % if waked data are
not included in the training set. Therefore, to fully exploit
the performance of the proposed machine-learning approach
in extrapolating the wind resource at sites different from the
training one, it is essential to build a training set of observa-
tions which can encompass the specific atmospheric condi-
tions representative of the desired testing site.

The round-robin validation of the machine-learning ap-
proach can be completed by comparing the proposed ap-
proach with the predictions from conventional techniques for
wind speed vertical extrapolation. In fact, the considered tra-
ditional extrapolation laws have a “universal” nature because
they can be applied at any site without requiring knowl-
edge of the wind speed at the extrapolation height. There-
fore, a fair comparison with the proposed machine-learning
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Figure 2. Testing mean absolute error (MAE) in predicting 30 min average wind speed at 143 m a.g.l. for the different sites, as a function of
the site used to train the random forest.

Figure 3. Testing MAE in predicting 30 min average wind speed at 143 m a.g.l. for the different sites, and the different techniques considered
in the study.

approach needs to include a learning algorithm tested at a
site where it has no previous knowledge of the wind speed
at the desired height. Following the round-robin validation
described earlier in this section, we summarize the testing
MAE values for all of the approaches we considered in this
study, at the four sites, in Fig. 3. For the random forest, we in-
clude the MAE obtained when both training and testing sites
coincide as well as the average results from the round-robin
validation. We find that the random-forest approach outper-
forms the conventional techniques, even when the testing and
training sites are different (at the distances sampled in our
analysis), although with a reduced decrease in MAE. The

percentage reduction in MAE achieved by the random for-
est over conventional techniques is summarized in Table 4.
When evaluated at a single site, we find that the random-
forest approach achieves a 23 % reduction in MAE compared
to the logarithmic law and a 28 % reduction compared to the
power law. When the round-robin validation is taken into ac-
count, the reduction in MAE decreases to 14 % and 20 %,
respectively.

For the comparison with the power-law predictions, a few
additional caveats on the calculation of the wind shear expo-
nent, α, are needed. While we acknowledge that determin-
ing α using wind speed data at 4 and 65 m a.g.l. is not ideal
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Table 4. Percentage reduction in wind speed extrapolation MAE from the random-forest approach over the logarithmic law and power law.

Testing site
Average

C1 E37 E39 E41

Error reduction relative to logarithmic law
Learning algorithm trained at the same site −22 % −21 % −23 % −25 % −23 %
Learning algorithm trained at a different site −11 % −12 % −15 % −17 % −14 %

Error reduction relative to power law
Learning algorithm trained at the same site −24 % −36 % −27 % −25 % −28 %
Learning algorithm trained at a different site −13 % −30 % −19 % −16 % −20 %

and does not realistically reproduce the standard industry ap-
proach (where the lower height is typically around 40 m),
wind speed measurements at other heights below 65 m a.g.l.
were not available for the considered lidar data set. To as-
sess whether this choice is responsible for the difference in
performance between power law and random forest, we cal-
culated a second set of α values by using wind speed data at
65 and 91 m a.g.l., and then we extrapolated wind speed from
91 up to 143 m a.g.l. We then compared the power-law pre-
diction with the results from a random forest used to predict
wind speed at 143 m a.g.l. and trained by adding wind speed
at 91 m a.g.l. to the input feature set described in Table 2. We
find that the random forest still outperforms the power law,
although with a reduced difference in MAE between the two
methods (results shown in the Supplement), even under the
round-robin approach.

In addition, it is important to check whether the results
of the performance comparison are affected by the time res-
olution at which the shear exponent α is calculated. Wind
energy consultants apply a variety of methods to calculate
shear (Brower, 2012): one could calculate shear values at
each timestamp (as done in our analysis), or use a single av-
erage shear exponent, or consider various shear values based
on bins of wind direction and/or time of day. To compare
the time-series-based shear calculation with its most differ-
ent approach, we test the performance of the power law in ex-
trapolating the average wind resource from 65 to 143 m a.g.l.
using only a single mean value for the shear exponent, calcu-
lated as the average of the α values at each considered times-
tamp. We find that the average extrapolated wind speed from
the random-forest approach still has a smaller error compared
to the average extrapolated wind speed using the mean shear
value, at all the considered sites (across-site MAE for ran-
dom forest is 0.01 m s−1, and for power law it is 0.13 m s−1).
Given the overall small MAE values found for both methods,
we can also conclude that machine-learning-based extrapola-
tion approaches are most beneficial for time-series-based ex-
trapolations, as deficiencies in conventional approaches tend
to average out more when considering the long-term average
results.

To further validate our performance comparison, it is im-
portant to assess whether our results hold when wind speed is
extrapolated to different heights. To assess this dependence,
at each site we tested and trained four random forests using
all the input features in Table 2 to predict the 30 min average
wind speed at each of the four heights where measurements
from the lidars were available: 91, 117, 143, and 169 m a.g.l.
We then extrapolated wind speeds at the same four levels, us-
ing both the power-law and the logarithmic profiles. Figure 4
shows how the testing R2 and MAE vary with the height of
the target wind speed, as the across-site average, for the three
considered extrapolation techniques. The predicting perfor-
mance of all three methods degrades with height; however,
the random forest outperforms the conventional techniques at
each of the considered levels. Notably, we find that the per-
formance of the random forest degrades more slowly with
height than the conventional extrapolation methods, high-
lighting the limitations of these conventional methods over
large vertical extrapolation ranges. As an application of the
performance of the random forest in predicting wind speed
at higher heights, we present the case study of a low-level jet
(LLJ) in a related paper (Bodini and Optis, 2020).

Finally, it is important to determine whether the machine-
learning-based approach outperforms the conventional tech-
niques in all atmospheric stability conditions and, if so, in
which conditions the proposed approach is more beneficial.
To complete this analysis, we bin the MAE for the three tech-
niques, based on the inverse of the Obukhov length (Fig. 5).
Data were divided into 12 equally populated groups, based
on L, and the MAE was calculated for each group and
each technique. The random forest shows the lowest error
across all considered stability bins. Moreover, we see that the
machine-learning-based approach provides the largest reduc-
tion in MAE over the conventional techniques under strongly
stable conditions.

To better understand the strong performance of the ran-
dom forest in stable conditions, we examine its performance
as a function of the set of input features used in the algo-
rithm. Figure 6 shows the testing R2 coefficient and MAE
in predicting wind speed at 143 m a.g.l. for different sets of
input features at each site and averaged across the four sites.
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Figure 4. Testing R2 and MAE as a function of the height of the extrapolated predicted wind speed, for the three considered techniques.

Figure 5. Testing MAE in predicting wind speed at 143 m a.g.l. as
a function of atmospheric stability, measured in terms of the inverse
of the Obukhov length, for the random forest, power law, and loga-
rithmic law, at the C1 site. The distribution of L−1 is shown in light
blue.

To investigate the potential benefit of including the effects
of atmospheric turbulence and stability, we first consider as
a base case a random forest that only uses wind speed at
65 m a.g.l. to predict wind speed at 143 m a.g.l. Then, we pro-
gressively add surface winds, time of day (the simplest proxy
to include information connected to atmospheric stability),
Obukhov length, and finally TKE. The random forest trained
using only wind speed at 65 and 4 m a.g.l. provides a mean
absolute error of 0.86 m s−1. Critically, this value is approxi-
mately the same magnitude of the power-law and logarithmic
profile performance. When the time of day, Obukhov length,
and TKE are added as input features to the random forest,
we find a 20 % improvement in the predictive performance,
with a further reduction in MAE of 20 % (0.70 m s−1 on aver-
age). Therefore, the machine-learning-based approach shows
improved predictive performance, thanks to its ability to ac-

count for atmospheric stability without the need of explicit
physical parameterizations, as in the case of the logarithmic
profile.

Additional information on the sensitivity of the extrapo-
lated wind speed to the different input features can be pro-
vided by considering the partial dependence plots and the
predictor performance from the random forest used to pre-
dict wind speed at 143 m a.g.l. at site C1 (similar results
found at the other sites are not shown). Figure 7 shows the
partial dependence plots, which show the marginal effect of
each input feature on the predicted extrapolated wind speed
(Friedman, 2001). We note that the values on the y axes have
not been normalized, so that large ranges indicate strong de-
pendence of extrapolated wind speed on the feature, whereas
small ranges show weaker dependence. Distributions of the
input features are also shown, which help distinguish densely
populated regions, with strong statistical relationships, and
sparsely populated regions, with weaker statistical relation-
ships. For time of day, the one-dimensional plot shown is
derived as a subsample of the two-dimensional partial depen-
dence plot, which was obtained by evaluating the sensitivity
of extrapolated wind speed to both the sine and cosine of the
normalized time. The key relationships shown in Fig. 7 can
be summarized as follows.

– Wind speed at 65 m a.g.l. shows a strong positive rela-
tionship with extrapolated wind speed at 143 m a.g.l.,
with the largest sensitivity among all of the input fea-
tures, as shown in the plot by the large range of values
in wind speed at 143 m a.g.l.

– Extrapolated wind speed has a clear dependence on time
of day, with a distinct diurnal cycle and a peak at ap-
proximately 10:00 UTC (04:00 local standard time) and
a minimum at 23:00 UTC (17:00 local standard time).
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Figure 6. Testing R2 and MAE in predicting the 30 min average wind speed at 143 m a.g.l. for the different sites and input feature combina-
tions.

Figure 7. Extrapolated wind speed dependence on individual features for the C1 site. The distribution of each feature is shown in light blue.

– Surface wind speed has a moderate impact on extrapo-
lated wind speed. A minimum in predicted wind speed
at 143 m a.g.l. is found for relatively low wind speed at
4 m a.g.l. (∼ 4 m s−1), followed by a systematic increase
in extrapolated winds with surface winds. We interpret
the negative trend observed for low surface winds as an
effect of the fact that very stable conditions are often

associated with decoupling, with very low surface wind
speeds and increased winds aloft, due to suppressed tur-
bulent mixing.

– Extrapolated winds consistently show a strong relation-
ship with atmospheric stability when quantified by the
Obukhov length (whose inverse is shown in the plot to
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Table 5. Predictor importance for the random forest used to extrap-
olate winds at 143 m a.g.l. at site C1. WS denotes wind speed.

Predictor Relative
importance

WS 65 m 68 %
WS 4 m 18 %
Time 3 %
L 8 %
TKE 3 %

avoid discontinuities). Stable conditions show stronger
winds compared to unstable conditions, with a sharp in-
crease under neutral conditions.

– TKE has a smaller impact on extrapolated winds, with
a peak for TKE of ∼ 0.5 m2 s−2 and a subsequent de-
crease in extrapolated wind speed as TKE increases,
again consistent with what we found in terms of atmo-
spheric stability.

The results of the analysis of the predictor performance are
listed in Table 5. As already suggested by the partial de-
pendence analysis, wind speed at 65 m a.g.l. is the predictor
with the largest importance in extrapolating wind speed at
143 m a.g.l. However, all the considered surface observations
account for over 30 % of the overall performance of the ran-
dom forest. In particular, the addition of the Obukhov length
to include direct atmospheric stability information in the al-
gorithm has a not-negligible 8 % importance. Overall, the re-
sults show the importance of including surface data, espe-
cially information connected to atmospheric stability, when
vertically extrapolating wind speed, together with the more
conventional use of wind speed aloft.

5 Conclusions

Vertically extrapolating wind speeds is often required to ob-
tain a quantitative assessment of the wind resource available
at the heights of the rotor-swept area of commercial wind
turbines. Conventional techniques traditionally used for this
purpose, namely a power-law profile and a logarithmic pro-
file, suffer limitations that increase project uncertainty, ul-
timately leading to increased financial risks for wind energy
production. To overcome these drawbacks, machine-learning
techniques have been proposed as a novel and alternative ap-
proach for wind speed extrapolation. A fair and practically
useful evaluation of the performance of machine-learning-
based approaches needs to extrapolate wind speed at a site
where the algorithm has no prior knowledge of the wind
speed at the desired height (i.e., at a testing site different
than the training one). However, the literature on the topic
does not include such validation.

In our analysis, we have performed the first round-robin
validation of a random-forest approach to extrapolate wind
speed, using 20 months of lidar and sonic anemometer ob-
servations from four locations, spanning a 100 km wide re-
gion in the central United States. For the performance of
the learning algorithm, we find that including surface atmo-
spheric measurements, and atmospheric stability in particu-
lar, reduces the mean absolute error in extrapolated winds by
over 30 %, compared to including a learning algorithm that
only uses wind speed aloft as input. The benefit of includ-
ing more physical parameters in a data-driven model clearly
demonstrates its importance. Moreover, using a constant set
of input features, we find that the accuracy of the random
forest decreases as the height of the extrapolated winds in-
creases.

Our proposed approach achieves, on average, a 25 % ac-
curacy improvement over the use of conventional power-
law and logarithmic profiles for wind speed extrapolation
when the algorithm is trained and tested at the same site.
This improvement is reduced to 17 % when considering the
round-robin validation. Therefore, we have confirmed that
the random-forest approach outperforms conventional tech-
niques for wind speed vertical extrapolation, even under a
more robust round-robin validation, which we recommend to
avoid overestimating the potential performance of machine-
learning techniques, which could lead to underestimation of
the uncertainty in wind speed estimates. In real world ap-
plications, a machine-learning algorithm could be trained on
observations collected by a single lidar and then used to ex-
trapolate wind speed at nearby locations, where only much
cheaper, short meteorological masts would need to be in-
stalled.

Future work can expand our round-robin approach by con-
sidering different machine-learning algorithms. In addition,
the influence of different topographic conditions on the per-
formance of machine-learning-based approaches for wind
speed vertical extrapolation can be considered. Finally, a
similar analysis using offshore data could be replicated to
help further foster the offshore wind energy industry, specifi-
cally the extrapolation of buoy-based, near-surface measure-
ments of wind speed.
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Appendix A: Optimized hyperparameter values

Table A1 shows the optimized values of the random-forest
hyperparameters for each site, as a result of the cross valida-
tion.

Table A1. Algorithm hyperparameters considered for the random forest and their selected values for each site as a result of cross validation.

Hyperparameter
Possible Chosen value

values Site C1 Site E37 Site E39 Site E41

Number of estimators 10–800 695 729 614 683
Maximum depth 4–40 13 30 15 19
Maximum number of features 1–6 3 3 3 3
Minimum number of samples to split 2–11 3 2 10 8
Minimum number of samples for a leaf 1–15 6 4 1 9
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