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Abstract. Turbulence velocity spectra are of high importance for the estimation of loads on wind turbines and
other built structures, as well as for fitting measured turbulence values to turbulence models. Spectra generated
from reconstructed wind vectors of Doppler beam swinging (DBS) wind lidars differ from spectra based on
one-point measurements. Profiling wind lidars have several characteristics that cause these deviations, namely
cross-contamination between the three velocity components, averaging along the lines of sight and the limited
sampling frequency. This study focuses on analyzing the cross-contamination effect. We sample wind data in
a computer-generated turbulence box to predict lidar-derived turbulence spectra for three wind directions and
four measurement heights. The data are then processed with the conventional method and with the method of
squeezing that reduces the longitudinal separation distances between the measurement locations of the different
lidar beams by introducing a time lag into the data processing. The results are analyzed and compared to turbu-
lence velocity spectra from field measurements with a Windcube V2 wind lidar and ultrasonic anemometers as
reference. We successfully predict lidar-derived spectra for all test cases and found that their shape is dependent
on the angle between the wind direction and the lidar beams. With conventional processing, cross-contamination
affects all spectra of the horizontal wind velocity components. The method of squeezing improves the spectra to
an acceptable level only for the case of the longitudinal wind velocity component and when the wind blows par-
allel to one of the lines of sight. The analysis of the simulated spectra described here improves our understanding
of the limitations of turbulence measurements with DBS profiling wind lidar.

1 Introduction

Wind energy research and industry depend on reliable mea-
surements of wind velocities for wind site assessment and
load prediction. Remote sensing devices such as vertical pro-
filing lidars can measure wind velocities at adjustable height
levels from the ground. The ease of installation and mobility
of ground-based lidars make them superior to conventional
in situ anemometry on tall meteorological masts.

Vertical profiling wind lidars emit a laser beam in different
directions and can estimate the radial component of the wind
velocity along sections of the beam. Measurements of the ra-
dial velocity in at least three different directions are then used

to reconstruct three-dimensional wind vectors. Depending on
the type of lidar being applied, either velocity–azimuth dis-
play (VAD) scanning or Doppler beam swinging (DBS) is
used as the scanning strategy. When VAD scanning is ap-
plied, the laser beam performs continuous azimuth scans at
a fixed elevation angle (Browning and Wexler, 1968). With
DBS the beam is directed into certain directions, where it
accumulates measurement data for a defined time before it
swings into the next direction. Turbulence statistics can be
derived from VAD scanning (e.g., Eberhard et al., 1989; Kr-
ishnamurthy et al., 2011; Smalikho, 2003) or DBS (e.g.,
Frehlich et al., 1998; Kumer et al., 2016; Bodini et al., 2019).
An advantage of DBS is that the signal-to-noise ratio of each
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radial velocity estimate increases with accumulation time in
each direction. The possibility to measure in a vertical direc-
tion is another advantage of DBS wind lidars. The Windcube
produced by Leosphere (Saclay, France) is a widely used ver-
tical profiling pulsed Doppler wind lidar that uses DBS to
reconstruct three-dimensional wind vectors from five inde-
pendent line-of-sight (LOS) velocity measurements.

Profiling lidars have proven to be accurate tools for mea-
suring mean wind speed and direction in noncomplex ter-
rain (Emeis et al., 2007; Smith et al., 2006; Gottschall et al.,
2012; Kim et al., 2016). However, the measurement of tur-
bulence with ground-based profiling wind lidars is inaccu-
rate, due to their extended measurement volumes, the limited
sampling frequency for each line-of-sight measurement and
the large spatial separation between the measurement vol-
umes (Sathe and Mann, 2013; Newman et al., 2016). The
second-order statistics of turbulence measured by profiling
wind lidars show that the measurement error depends on sev-
eral factors: the measurement principle of the lidar used, the
conditions of the atmospheric boundary layer, the measure-
ment height, and, in the case of the Windcube, also on the
angle between the mean wind direction and the orientation
of the lidar beams (Sathe et al., 2011).

Measured auto- and co-spectra of the three turbulent wind
velocity components show the spectral distribution of the
wind velocity variance. IEC standard 61400-1 (IEC, 2019)
recommends using such one-point spectra for finding the
model parameters anisotropy γ , length scale L and dissipa-
tion factor αε2/3 of the uniform shear model of turbulence
(Mann, 1994). This can be done by fitting the parameters
to the measured spectra. The found parameters can then be
used in the process of determining aerodynamic loads on
wind turbines and other built structures. But estimations of
turbulence spectra from wind lidar data deviate significantly
from reference measurements taken at meteorological masts
due to their measurement principle. Canadillas et al. (2010)
present measured turbulence velocity spectra from a Wind-
cube that show characteristic differences in comparison to
reference measurements from sonic anemometers. The lidar
spectra show, e.g., spectral energies that are too high in a
wide range of frequencies due to cross-contamination and
gaps at frequencies that correspond to the limited sampling
frequency of the lidar beams. Such spectra are modeled in
Sathe and Mann (2012) for an older Windcube version. The
same model can, with minor modifications, be used to pre-
dict spectra from the current version of the Windcube, which
samples faster and includes a vertical beam. The major draw-
back of the model is that it cannot predict spectra for cases
in which the wind inflow is not parallel to two of the lidar
beams.

In the study we present here, we overcome this limitation
by sampling velocity values in a computer-generated turbu-
lence box and processing them in a similar fashion to how
DBS scanning pulsed lidar samples wind velocities in the
atmosphere. The results of this artificial sampling are com-

pared to measured DBS pulsed lidar spectra acquired from
field measurements. This method makes it possible to pre-
dict lidar-derived turbulence velocity spectra for all relative
wind directions.

In addition to conventional DBS processing of radial wind
velocities, we reconstruct the three-dimensional wind vectors
with the method of squeezing introduced in Kelberlau and
Mann (2019a). This method minimizes cross-contamination
for VAD scanning wind lidars (e.g., ZX 300) by introducing
a time lag into the data processing that compensates for the
duration it takes to advect an air volume from one lidar beam
to the other.

In this study, we assess whether the method of squeezing
is also advantageous for DBS scanning wind lidar such as the
Windcube and to what extent it improves estimation of tur-
bulence velocity spectra. The aim of the work presented here
is prediction of turbulence velocity spectra from DBS scan-
ning wind lidars and making turbulence measurements more
accurate by applying a modified data processing algorithm.

Following this, Sect. 2 presents the theory of how a pulsed
Doppler beam swinging wind lidar determines radial wind
velocities and reconstructs three-dimensional wind vectors.
The method of squeezing is also briefly presented. In Sect. 3,
we describe the methods applied in this study. These consist
of (i) field measurements with a Windcube V2 and collocated
reference measurements with sonic anemometers on a large
meteorological mast and (ii) sampling of computer-generated
turbulence data. We present and discuss the results of both
field measurements and simulations in Sect. 4 and describe
our key findings in the conclusions in Sect. 5. A nomencla-
ture can be found in Appendix A.

2 Lidar theory

2.1 Coordinate system and preliminaries

This study uses a right-handed coordinate system aligned
with the horizontal mean wind vector. The component u
points in the mean wind direction, v is the transversal wind
component, and w points vertically upwards, such that for
the wind vector u it accounts for the following equation:

u=

 u

v

w

 . (1)

We also use Reynolds decomposition with a timescale of
10 min to divide the wind vectors into a mean part U and
a fluctuating part u′, such that

u= U +u′. (2)

U is the mean wind speed, the transversal component V is
by definition zero, and the vertical mean velocity W in non-
complex terrain is typically also close to zero. The mean val-
ues of the components of u′ are by definition zero, but their
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statistical variance provides important information about the
amount of turbulence in the wind. It is defined as follows:

σ 2
u =

〈
u′u′

〉
, (3)

where 〈〉 means ensemble averaging. The variance of the
other two components σ 2

v and σ 2
w can be calculated accord-

ingly.

2.2 Line-of-sight velocity retrieval

The Windcube lidar emits laser beams into five fixed direc-
tions. As shown in Fig. 1, four beams are inclined by the
zenith angle φ from the vertical and separated along the hori-
zon by the azimuth angle θ . The fifth beam points verti-
cally upwards. The beam directions define the internal fixed
right-handed coordinate system of the Windcube. In accor-
dance with the documentation of the Windcube, the x com-
ponent is oriented from LOS1 towards LOS3, the y com-
ponent points from LOS2 towards LOS4, and the vertical
z component points downwards along LOS5. In the default
setup, the LOS1 beam is oriented towards north. If this is not
the case, a directional offset θ0 must be considered in the data
processing. Unit vectors n that point into the direction of the
five beams are defined as

ni =

 cos( i−3
2 π ) sinφ

sin( i−3
2 π ) sinφ
−cosφ

 for i = 1. . .4,

and

n5 =

 0
0
−1

 . (4)

A small portion of the emitted laser radiation is backscat-
tered in the direction of origin. This backscattered radiation
has a wavelength that is slightly different from the emit-
ted radiation. The difference in wavelength is caused by the
Doppler effect and is proportional to the component of the
wind in the respective beam direction, which is as follows:

vri = ni · xi, (5)

where xi is the wind velocity vector at the measurement
points in the coordinate system of the Windcube. The
Doppler shift can be detected and is used to determine the
line-of-sight velocities, i.e., the radial velocities in the cor-
responding beam direction. Unlike continuous-wave lidars,
pulsed lidars can determine signed line-of-sight velocities for
multiple height levels simultaneously. These line-of-sight ve-
locities are the weighted average of the radial wind veloci-
ties along the stretch of the lidar beam that is illuminated by
the range gate. A reasonable weighting function to model the
line-of-sight averaging is the convolution of the laser pulse

Figure 1. Visualization of the beam configuration of the Windcube
V2, relevant lengths and angles, and the two coordinate systems
used by the lidar and in wind data analysis. For better visibility,
only LOS2 is depicted as a beam, with the range gate indicated in
red along the blue laser beam.

shape with the interrogation window. In the case of the Wind-
cube, the emitted laser pulses are 175 ns long and thus illu-
minate air volumes of 175ns× c = 52.46m in length along
the line of sight, where c is the speed on light. The backscat-
tered radiation recorded by the laser detector at one point in
time originates from a line-of-sight segment that cannot be
shorter than half of this length. If the laser beams were per-
fectly collimated and rectangular and interrogation windows
of the same length were chosen, a triangular function would
be the correct weighting function to account for the higher
likeliness of a scatterer to be located closer to the center of
the pulse than its ends. However, the beams of the Wind-
cube are not collimated but focused permanently to a height
level of approximately 100 m in order to optimize the carrier-
to-noise ratio. In addition, its light pulses are not perfectly
cut-in and cut-out at their ends. The triangular function is
thus only an approximation of the real situation. We refer to
Lindelöw (2008) for more details. However, as in Sathe and
Mann (2012), we use a triangular weighting function

ϕ(s)=
lp− |s|

l2p
for |s|< lp,

and

ϕ(s)= 0 for |s| ≥ lp, (6)

where s is the distance from the midpoint of the range gate
and lp = 26m is the approximate half length of the range gate
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to simulate the lidar-derived weighted radial velocity

ṽri =

∞∫
−∞

ϕ(s)ni ·u ((s+ df)ni)ds, (7)

where df is the distance of the center of the range gate from
the lidar.

2.3 DBS measurement principle

The line-of-sight velocities are processed in order to recon-
struct three-dimensional wind vectors. These are based on
the fixed right-handed coordinate system of the Windcube.
The Windcube calculates one new wind vector component
whenever a new line-of-sight measurement becomes avail-
able. The x component is calculated when a radial velocity of
either LOS1 or LOS3 is retrieved. The newly updated line-of-
sight velocity is then combined with the immediate precursor
of the opposing direction according to

x =
ṽr1 − ṽr3

2sinφ
. (8)

The y component is calculated from LOS2 and LOS4 ac-
cording to

y =
ṽr2 − ṽr4

2sinφ
. (9)

Here, the latest LOS2 beam is combined with the previous
LOS4 beam and vice versa. In Fig. 2 it can be seen that,
e.g., the measurement of the 17th beam that the lidar emits
(LOS2) is combined with the 14th beam (LOS4) and the 19th
beam (LOS4) is combined with the 17th beam (LOS2) to cal-
culate two values of y.

The vertical z component can be estimated directly from
the vertical beam result whenever a new LOS5 measurement
becomes available so that

z= ṽr5 . (10)

In addition to the three wind components, the Windcube es-
timates the horizontal wind velocity

Vhor =

√
x2+ y2, (11)

the horizontal wind direction clockwise from north

2= θ0− arctan(y,−x), (12)

and their 10 min average values V hor and 2 marked with an
overline.

In order to rotate the three wind vector components into
the coordinate system aligned with the mean wind direction,
we calculate

uDBS =

 uDBS
vDBS
wDBS

=
 x cosα+ y sinα
x sinα− y cosα

−z

 , (13)

Table 1. Line-of-sight beam geometry and timing: t is the accu-
mulated time after the first beam measurement, and 1t is the time
difference between the current and the previous beam measurement.

LOS no. φ θ t 1t

1 28◦ 0◦ 0.00 s –
2 28◦ 90◦ 0.72 s 0.72 s
3 28◦ 180◦ 1.44 s 0.72 s
4 28◦ 270◦ 2.16 s 0.72 s
5 0◦ – 3.13 s 0.97 s
1 28◦ 0◦ 3.85 s 0.72 s
...

...
...

...
...

where α =2− θ0 is the relative inflow angle. The resulting
wind vectors are updated at slightly varying times because
swinging the Doppler beam from one line of sight to the next
and accumulating measurements takes approximately 0.72s
for the inclined beams and 0.97s for the vertical beam. We
do not know the reason for the different times required to
change the beam direction. This leads to an average wind
vector refresh rate of approximately 1.3Hz, although each
beam is updated with a frequency of no more than 0.26Hz.
Table 1 provides an overview of the beam geometry and the
timing.

2.4 Measurement errors due to cross-contamination

The w component is measured directly from the vertical
beam. However, the reconstruction of the horizontal wind
components u and v involves the combination of measure-
ment values from two spatially separated air volumes. These
reconstructions are correct only if the wind vector is identi-
cal at all measurement volumes. For the calculation of aver-
age wind speeds, it is sufficient that the average wind vector
is identical at all measurement volumes. But for every sin-
gle wind vector to be correct, the wind field would need to
be static. In a turbulent wind field, the single reconstructed
wind vectors are erroneous due to cross-contamination of the
different wind velocity components.

The cause of this error lies in combining radial velocities
from spatially separated air volumes. The separations can be
categorized into longitudinal separations (along the direction
of the mean wind) and lateral separations (orthogonal to the
mean wind direction). Assuming Taylor’s frozen turbulence
hypothesis (Taylor, 1938), wind velocities sampled at two
longitudinally separated points are perfectly correlated but
have a temporal offset between the two measurement signals
that corresponds to the time needed for the mean wind speed
to cover the distance between the two points. Whenever the
wavelength of the measured turbulence equals 2/n times the
separation distance, with n= 1,3,5. . ., a resonance effect oc-
curs. The wind speed component being measured cannot be
detected in these cases and is replaced by contributions of
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Figure 2. Visualization of the measurement geometry of the Windcube V2 with the five beam directions: LOS1–LOS5 (color coded). Top
view of 30 consecutive line-of-sight measurements in a coordinate system that is moving with the mean wind. The angle between the mean
wind and the LOS1–LOS3 axis is α = 67.5◦. Measurement locations (dots) are numbered by their order in time (first number) and position
in wind direction (second number). Longitudinal and lateral separation distances for combinations of LOS2 and LOS4 beams are shown.

other wind speed components. In contrast, for n= 0,2,4. . .
no resonance effect occurs (see Fig. 2 in Kelberlau and Mann,
2019a).

The distance D between two opposing measurement
points is

D = 2h tanφ, (14)

where h is the measurement height, and D is the diameter of
the dotted circle in Fig. 2. The longitudinal separation dis-
tances for the beam combination LOS1 and LOS3 can be
calculated according to

rlong,13 = |D cosα| . (15)

rlong,24 for the beam combination LOS2 and LOS4 can be es-
timated by swapping the cosine in Eq. (15) by a sine. rlong,24
is also shown in Fig. 2.

Equation (13) shows that the components u and v in the re-
constructed wind vectors are composed of contributions from
two different beam combinations. These are LOS1 and LOS3
(see Eq. 8) as well as LOS2 and LOS4 (see Eq. 9). In order to
calculate longitudinal separations that are representative for
the reconstructed wind velocity components, we must intro-
duce a weighting and calculate

rrep,u =
|cosα| × rlong,13+ |sinα| × rlong,24

|cosα| + |sinα|

=
D

|cosα| + |sinα|
, (16)

for the u component and

rrep,v =
|sinα| × rlong,13+ |−cosα| × rlong,24

|cosα| + |sinα|

=
|sin(2α)|D
|cosα| + |sinα|

, (17)

for the v component. The resulting representative longitudi-
nal separation distance values for the Windcube for four mea-
surement heights 40, 60, 80, and 100 m and for three relative
wind inflow angles α = 0, 22.5, and 45◦ are given in Table 2.
From these distances, the wave numbers at which we ex-
pect resonance can easily be determined with kres = nπ/rrep,
where n is an odd integer. Lateral separation distances rlat,ij
could be estimated in a similar way. But compared to longi-
tudinal separations, the situation is different for wind veloc-
ity fluctuations measured at two laterally separated points.
The spatial structure of turbulence leads to the wind veloc-
ity fluctuations becoming less correlated as the distance be-
tween the two measurement points increases. The coherence
of the fluctuations is also weaker for small eddies than for
large turbulent structures. That means that a turbulent struc-
ture can only be detected at two laterally separated points if
the length scale of the turbulent structure is large compared
to the separation distance. Lateral separation leads to con-
tamination that occurs gradually without resonance points at
specific wave numbers.

If the mean wind is aligned with two opposing lines of
sight, e.g., blows in the LOS1–LOS3 direction, then the
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Table 2. Representative longitudinal separation distances influenc-
ing the u and v component of uDBS for all investigated test cases.
All values given in m.

α = 0◦ α = 22.5◦ α = 45◦

h rrep,u rrep,v rrep,u rrep,v rrep,u rrep,v

40 42.5 0.0 32.6 23.0 30.1 30.1
60 63.8 0.0 48.8 34.5 45.1 45.1
80 85.1 0.0 65.1 46.0 60.2 60.2
100 106.3 0.0 81.4 57.6 75.2 75.2

u component of the wind vector is reconstructed from two
points that are only separated longitudinally. That means
each turbulent structure is measured twice: once when it
passes the LOS1 location and then some time later at the
LOS3 location. Assuming frozen turbulence, measurements
from points that are separated longitudinally are fully corre-
lated, and resonance occurs at specific wave numbers. The
v component, in contrast, is in this case reconstructed from
the laterally separated points of LOS2 and LOS4, and a re-
duced correlation is found depending on the size of the tur-
bulent structure and the separation distance. No specific res-
onance wave numbers are found. For a comprehensive de-
scription of the cross-contamination effects due to isolated
longitudinal and isolated lateral separation, see Kelberlau
and Mann (2019a). Here we look at the more complex case
when the mean wind inflow is not aligned with two opposing
line-of-sight directions. Estimates of one horizontal wind ve-
locity component can then be contaminated by contributions
from both other wind velocity components. For a manual es-
timation of the cross-contamination effect for non-aligned in-
flow we first derive the lidar-estimated wind vector compo-
nent uDBS as a function of the real wind vector at all four
measurement locations. When, Eqs. (8) and (9) are set into
Eq. (13) we get

uDBS =

(
ṽr1 − ṽr3

)
cosα

2sinφ
+

(
ṽr2 − ṽr4

)
sinα

2sinφ
. (18)

We assume no line-of-sight averaging, thus vri = ṽri and use
Eqs. (4) and (5). After rearranging we get

uDBS =
cosα

2
(−x1+ z1 cotφ− x3− z3 cotφ)

+
sinα

2
(−y2+ z2 cotφ− y4− z4 cotφ) . (19)

After transferring the wind velocity components x,y,z into
the u,v,w coordinate system we get

uDBS =
cosα

2

(
− u1 cosα− v1 sinα−w1 cotφ

− u3 cosα− v3 sinα+w3 cotφ
)

+
sinα

2

(
− u2 sinα+ v2 cosα−w2 cotφ

− u4 sinα+ v4 cosα+w4 cotφ
)
. (20)

With Eq. (3) we can describe the total lidar variance as a
function of the wind vector fluctuations at the four measure-
ment points as

σ 2
u,DBS =

〈
u′DBS

2
〉
=

1
4

〈((
u′1 cosα+ v′1 sinα+w′1 cotφ

+ u′3 cosα+ v′3 sinα−w′3 cotφ
)

cosα
+
(
u′2 sinα− v′2 cosα+w′2 cotφ

+ u′4 sinα− v′4 cosα−w′4 cotφ
)

sinα
)2〉
. (21)

A similar formula can be found for the transversal compo-
nent

σ 2
v,DBS =

〈
v′DBS

2
〉
=

1
4

〈((
u′1 cosα+ v′1 sinα+w′1 cotφ

+ u′3 cosα+ v′3 sinα−w′3 cotφ
)

sinα
−
(
u′2 sinα− v′2 cosα+w′2 cotφ

+ u′4 sinα− v′4 cosα−w′4 cotφ
)

cosα
)2〉
. (22)

Power spectral densities FDBS at particular wave numbers
are composed of the same linear combinations of wind com-
ponents as the total variances in Eqs. (21) and (22). These
equations are thus helpful when analyzing the extent of cross
contamination at particular wave numbers. As an example,
we now take the case when the mean wind direction and
one of the lines of sight create an angle of 45◦. We assume
2= 90◦ and θ0 = 45◦ because this situation is found in the
measurements described later in this study. However, the re-
sults are identical for all setups in which the relative wind
inflow α = 45◦. In this case, LOS4 and LOS3 are separated
purely longitudinally from LOS1 and LOS2, and LOS2 and
LOS3 are separated purely laterally from LOS1 and LOS4,
as shown in Fig. 3. This opens up the possibility of deter-
mining the cross-contamination effect for four extreme con-
ditions. These four extreme conditions are characterized by
either full or no longitudinal resonance, as well as either per-
fect or no lateral correlation. In the first case (a) when no
resonance occurs and the lateral correlation is perfect, we as-
sume identical wind vectors at all four points. We use u′

1,a =

u′
2,a = u′

3,a = u′
4,a = u′

I. In the second case (b) when no
resonance occurs but the lateral correlation is zero, we use
u′

1,b = u′
4,b = u′

I and u′
2,b = u′

4,b = u′
II, where u′

I and
u′

II are independent vectors. In the third case (c) resonance
between the longitudinally separated points occurs and the
fluctuations at laterally separated points are perfectly cor-
related. We use u′

1,c = u′
2,c =−u′

3,c =−u′
4,c = u′

I. The
fourth case (d) is characterized by longitudinal resonance
and zero lateral correlation. We use u′

1,d =−u′
4,d = u′

I and
u′

2,d =−u′
3,d = u′

II, where u′
I and u′

II are independent
vectors. Figure 3 gives an overview of the conditions we as-
sume for these four cases (a) to (d). With these assumptions,
Eq. (21) provides the lidar estimates of the power spectral
density values Fu,DBS as linear combinations of the spec-
tral values of the three wind components Fu, Fv and Fw, as
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Figure 3. Overview of the assumptions made to determine the
cross-contamination values listed in Table 3. In cases with no res-
onance, the wind vectors u′

I,II are identical at the longitudinally
separated measurement points. In resonance cases they have an op-
posite sign. In cases with laterally correlated velocities, the wind
vectors at laterally separated measurement points are identical. In
cases with no correlation at points that are laterally separated, the
wind vectors u′

I and u′
II are independent.

shown in the lower half of Table 3. The resulting linear com-
binations of power spectral densities that compose the lidar-
measured u and v components of turbulence for the case with
α = 0◦ are shown in the upper half of the same table.

Table 3 can be read as follows. First, choose the aligned
(α = 0◦) or non-aligned case (α = 45◦). Then select the wind
component of interest: Fu,DBS or Fv,DBS. Next, decide if the
situation with or without resonance is more relevant for the
wave number of interest. Finally, select a block of values that
either represents the case with perfect lateral correlation or
that assumes laterally uncorrelated fluctuations. The sum of
the variances of the wind components multiplied by the val-
ues given in this block is the theoretical lidar-derived vari-
ance of the selected component. It is usually unclear to which
degree the fluctuations are correlated, but the table can still
be used for rough estimations. If you look for example at the
resonance case for u, you will find that the lidar does not de-
tect longitudinal wind fluctuations at all, while the lidar esti-
mated u variance Fu,DBS is composed of a weakened v signal
of between 0.00 and 0.50 times the real v fluctuations and an
amplified w signal of between 3.54 and 7.07 times the real
w fluctuations, depending on the degree of lateral correlation.
The values given in the table can explain many of the effects
we later see in the lidar-derived spectra for non-aligned in-
flow.

Table 1 shows that the radial velocity for each line of sight
is determined not continuously but once every 3.85s. This
means turbulent fluctuations that occur with a corresponding
frequency cannot be detected by any of the Windcube’s lidar

Table 3. Expected contribution of the power spectral densities Fu,
Fv and Fw of the wind velocity components on the lidar-derived
values of Fu,DBS and Fv,DBS for aligned and non-aligned inflow
with α = 0◦ and 45◦.

α = 0◦

Fu,DBS Fv,DBS

– lat. corr. lat. uncorr.

No resonance 1.00Fu 0.00Fu 0.00Fu
0.00Fv 1.00Fv 0.50Fv
0.00Fw 0.00Fw 1.77Fw

Resonance 0.00Fu
0.00Fv – –
3.54Fw

α = 45◦

Fu,DBS Fv,DBS

lat. corr. lat. uncorr. lat. corr. lat. uncorr.

No resonance 1.00Fu 0.50Fu 0.00Fu 0.00Fu
0.00Fv 0.00Fv 1.00Fv 0.50Fv
0.00Fw 0.00Fw 0.00Fw 3.54Fw

Resonance 0.00Fu 0.00Fu 0.00Fu 0.50Fu
0.00Fv 0.50Fv 0.00Fv 0.00Fv
7.07Fw 3.54Fw 0.00Fw 0.00Fw

beams. The respective wave numbers are

kscan =
2π

U · 3.85s
. (23)

At these wave numbers (kscan) we expect sudden drops in all
lidar-derived spectra.

Because the data are not acquired continuously we expect
a second effect that influences the shape of the lidar-derived
turbulence velocity spectra. In the previous subsection we es-
timated the longitudinal separations (Table 2). These sepa-
rations represent statistical averages and not actual separa-
tions. The actual separations could only be identical to these
values if the lidar acquired line-of-sight velocity values con-
tinuously, which is not the case. Take the example of wind
blowing along the x axis from LOS1 to LOS3. When an air
volume is measured at LOS1, it continues moving towards
LOS3. When the lidar subsequently takes a sample at LOS3,
the actual separation distance between these two air volumes
is less than the physical distance between the lines of sight.
Conversely, when an air volume is measured at LOS3 first, it
will have advected further away by the time the next sample
is taken at LOS1. In this case, the actual separation distance
will be larger than the physical distance between LOS1 and
LOS3. As in Table 1, the time difference of 1t13 = 1.44s
between a measurement of LOS1 and LOS3 deviates from
the time difference 1t31 = 2.41s between measurements at
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LOS3 and LOS1. The actual separation distances are then

rreal,13 = rlong,13+1t13U,

and

rreal,31 = rlong,13−1t31U. (24)

The turbulence velocity spectra that we later derive from the
lidar measurements can be seen as the average of two types of
spectra: the ones we get from reconstructing the wind vector
components of only LOS1 with the previous LOS3 measure-
ments and the ones we get from reconstructing the wind vec-
tor components of only LOS3 with the previous LOS1 mea-
surement. These averaged spectra deviate significantly from
the spectra expected from continuous sampling if the product
of mean wind speed and the time between the measurements
is large compared to the average separation distances. The
resonance peaks are then less pronounced and extend over a
wider range of wave numbers.

2.5 Squeezed wind vector reconstruction

One method to avoid cross-contamination caused by longitu-
dinal separation is presented in Kelberlau and Mann (2019a).
It is called the method of squeezing and aims to remove
the longitudinal separation distances rreal,ij by introducing
a temporal delay τ =

rreal,ij
U

into the data processing. The
length of this temporal delay corresponds to the time it takes
the mean wind to transport the frozen turbulence field along
the separation distance. The approach assumes the frozen
turbulence hypothesis. This assumption makes it possible to
measure one turbulent structure at different points in space
when the separation between the points is aligned with the
mean wind direction and when the time between the mea-
surements equals the time it takes the mean wind to transport
the turbulent structure from one point to the other. The line-
of-sight measurements taken by the Windcube are unfortu-
nately not continuous. Therefore, the chosen temporal delay
can only be a multiple n of the refresh rate of a particular line-
of-sight measurement, i.e., τ = n · 3.85s. As a consequence,
the actual longitudinal separation distances for a squeezed
pair of radial velocity measurements cannot become zero.
But geometrical considerations show that they are reduced
to

rreal,SQZ,ij =1tijU,

where the subscript SQZ indicates the squeezed wind vec-
tor reconstruction. An example is given in Fig. 2, where
the lengths of rreal,ij can be compared with the lengths of
rreal,SQZ,ij . This shows that it is impossible to completely
avoid the resonance effect due to longitudinal separation.
However, it is possible to shift the resonance wave number
away from the high-energy region into a lower-energy region
where the measurement signal is already strongly attenuated

by the line-of-sight averaging. The lateral separations, on the
contrary, remain unchanged by the application of squeezed
processing.

3 Methods

3.1 Field measurements

The measurement data used for this study originate from a
measurement campaign in which a Windcube V2 was collo-
cated to the 116.5m high meteorological mast at the Danish
National Test Center for Large Wind Turbines at Høvsøre,
Denmark. The test location lies approximately 1.7km east
of the North Sea, which is bordered by a stretch of dunes.
Otherwise the terrain has no significant elevations. For ref-
erence measurements, the meteorological mast is equipped
with Metek USA-1 ultrasonic anemometers at 10, 20, 40, 60,
80, and 100 m heights. For a more detailed description of the
test site we refer to Peña et al. (2016).

The measurements span a period from 11 September 2015
until 26 May 2016, with no measurements taken between
9 November 2015 and 17 February 2016. The lidar is posi-
tioned around 13m to the west of the meteorological mast
and oriented with its LOS1 in the northeast direction so
that θ0 = 45◦. An overview about the orientation of the lidar
beams is given in Fig. 4.

3.2 Sampling in a turbulence box

Sampling in a turbulence box is a method to simulate wind
lidar measurements in very large computer-generated wind
fields. The creation of such wind fields, according to Mann
(1998), requires less computational power than, for example,
large eddy simulation (LES). LES was successfully used be-
fore to analyze coherent structures in wind fields (e.g., Staw-
iarski et al., 2015) and wind profiles (e.g., Gasch et al., 2020)
but predicting lidar-derived turbulence velocity spectra re-
quires much more turbulence data. An advantage of using
LES is that Taylor’s frozen turbulence hypothesis does not
need to be applied, but a drawback is that fine-scale turbu-
lence would be suppressed.

To be able to predict lidar-derived spectra in a turbulence
box, we first determined the three model parameters, i.e., the
turbulence length scaleL, the degree of anisotropy 0, and the
dissipation factor αε2/3 for all test cases by fitting the sonic-
derived spectra to the Mann (1994) uniform shear model of
turbulence. We then used these parameters to create large tur-
bulence files that contain possible values of the three velocity
components u, v, and w. In order to limit the required mem-
ory, we divided the desired box size into 32 separate files
with different random seeds for each test case. Each of the
files consists of 32768× 128× 32 points. The selected spa-
tial resolution is 2 m per point so that all files for one test
case represent an air volume of 2 097 152 m length, 256 m
width and 64 m height. These boxes contain turbulence statis-
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Figure 4. Aerial pictures of the location of the Windcube 13m to the west of the meteorological mast at Høvsøre with the location of the
measurement points along the lines of sight (left) and the landscape around the measurement location in the inflow directions (right). The top
of the map is oriented to the north. Adapted from © Google Maps.

tics that are similar to what the underlying spectral tensor
describes. We created a MATLAB script that samples data
within the turbulence boxes similar to how a Windcube sam-
ples wind velocities in the real atmosphere. The script first
imports the turbulence files and cuts them into 10 min inter-
vals, whose spatial length depends on the desired mean wind
speed U . The script then considers a realistic timing by im-
porting the timestamp data of an arbitrary Windcube .rtd file,
which is a standard output data file type that contains the
line-of-sight velocities of every single beam including their
timing and carrier-to-noise ratio. Next, it defines the location
of the center of the range gate for all beams at all desired
height levels within a 10 min interval. Different inflow di-
rections are imitated by altering the orientation of the beams
with θ0. These locations are then moved into the horizontal
central plain of the turbulence box. The program defines a
total of 27 points along all lines of sight, centered around the
midpoints of the range gates. These points have a distance of
1 m from each other. The turbulence velocities are then in-
terpolated to these 27 points and projected onto the line-of-
sight direction. A triangular weighting function is eventually
multiplied to calculate the line-of-sight averaged radial ve-
locities. From this point on, the data processing is identical
to the processing of the lidar measurement data as described
in Sect. 2.3.

3.3 Data selection

We filter the field data to include only the 10 min intervals
in which the mean wind velocity at 80 m above the ground
was within an interval of U = 8± 0.5 m s−1. The reference
height of 80 m was selected arbitrarily. Using only one ref-

erence height in the filtering process assures that the same
10 min intervals are used for all four investigated height lev-
els: h1 = 40m, h2 = 60m, h3 = 80m and h4 = 100m. The
mean wind velocity U = 8 m s−1 was selected because it is
the most frequent in the dataset. A narrow velocity bin is
selected, thus the time delay used in the processing of ac-
tual measurements is identical with the time delay chosen
for sampling in a turbulence box. Three narrow wind sec-
tors around 21 = 135◦, 22 = 112.5◦ and 23 = 90◦ are cho-
sen for the analysis. The width of the sectors is ±5◦. In the
first case, the wind is aligned with two of the lines of sight,
namely LOS2 and LOS4 (α = 90◦), in the second case the
offset is 22.5◦ (α = 67.5◦), and in the third case the offset
is 45◦ (α = 45◦). As shown in Fig. 4, the three inflow direc-
tions are dominated by flat farm land and the water of Nis-
sum Fjord. The small town of Bøvlingbjerg lies in the east-
southeast direction and is approximately 3 km away. Within
2 km, only one farm might have some minor influence on the
measurements in the first wind sector. The selected measure-
ment sectors are neither affected by the wind turbines to the
north nor by the sea-to-land transition to the west of Høvsøre.
The data are additionally filtered to only contain intervals of
neutrally stratified atmospheric conditions in order to achieve
a good fit with the Mann model of turbulence. The filter cri-
terion is a Monin–Obukhov length |LMO|> 500m based on
measurements 20 m above the ground. Furthermore, to as-
sure high quality of the analyzed measurement data, we filter
out intervals with less than 100 % data availability. There-
fore, each line-of-sight measurement in the filtered dataset
has a carrier-to-noise ratio better than the Windcube’s stan-
dard threshold of −23 dB. After filtering, 49, 31 and 27 in-
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tervals of 10 min remain for the analysis of the first, second
and third wind sector, respectively.

3.4 Data processing

The lidar data from field measurements and sampling in a
turbulence box are processed according to Eqs. (8) to (13).
For every line-of-sight measurement, this processing creates
a new component of the uDBS and the uSQZ vectors. In Fig. 2,
two numbers are assigned to most of the measurement loca-
tions. The first number increases with the time of measure-
ment. The second number though is increasing with the lo-
cation along the mean wind direction. Where only one num-
ber is shown, both numbers would be identical. In the pro-
cess of reconstructing the squeezed wind vectors, it is es-
sential to assign new timestamps that follow the order of
the second numbers according to where the measurements
where taken. In practice, we project all measurement loca-
tions onto a vector that is pointing into the mean wind di-
rection and evaluate all line-of-sight velocities in the order
they fall along this vector. For reconstructing the horizontal
wind speed components with the method of squeezing, we
combine every radial velocity with the closest radial veloc-
ity originating from a beam with the opposite azimuth angle
taken behind the current measurement location. The times-
tamp of this reconstructed component then depends on the
average position of both measurement locations on the mean
wind vector. In order to create equidistant timestamps for the
wind vectors uDBS and uSQZ, we generate a linearly spaced
time axis with 1t = 0.96 s and assign the wind components
with the nearest neighbor method. This time step equals one
quarter of the Windcube’s cycle time and was chosen because
the Windcube generates four wind vectors during one mea-
surement cycle. Thus, we reach that all measurement data are
used with no change in velocity variance, which would occur
if interpolation would be applied. The data from the ultra-
sonic anemometers is uniformly spaced with a sample rate of
20 Hz and is resampled to a rate of 4 Hz with an anti-aliasing
filter applied to reduce the amount of data.

We calculate double-sided power spectral densities as
functions of the wave number k1

Fij (k1)=

〈
ûi û
∗

j

〉
Nks

, (25)

where .̂ is the discrete Fourier transformation, ∗ the complex
conjugate, 〈〉 the ensemble average of all 10 min intervals, N
the number of measurements in one interval, and ks =

2πfs
U

is the sampling wave number, where fs is the sampling fre-
quency. For the cross-spectra (i 6= j ) we use the real part of
Fij . We then divide the k1 axis into 35 logarithmically spaced
bins and average the spectral values in each bin. By doing so
we even out the spectra in the low wave number region, avoid
the high density of data points in the high wave number re-
gion, and align the sonic and lidar values for ease of com-

parison. The spectral values are eventually pre-multiplied
with their wave numbers and plotted on a linear vertical axis,
while the wave numbers are on a logarithmic horizontal axis.
Displayed like this, any portion of the area under the spectra
for a range of wave numbers is proportional to the variance
of the signal in this wave number range (Stull, 1988).

4 Results

Complete results are presented in Figs. A1 to A3 in the Ap-
pendix. Here we will present the results of two measurement
height levels h2 = 60m and h4 = 100m and two inflow wind
directions 2= 135◦ and 2= 90◦. These four cases alone
show all relevant effects.

4.1 Simulation results

For the presentation of the results of our study, we will first
discuss the simulated spectra without considering the exper-
imental results. The lidar simulator opens up the possibility
of analyzing the influence of the single wind velocity com-
ponents on the spectra by switching them on or off in the
turbulence box. This method helps in understanding what
the final lidar spectra consist of. Figures 5 and 6 show these
simulated spectra for the inflow wind directions 2= 135◦

and 2= 90◦, respectively. The solid black lines are the tar-
get spectra that originate from sampling single points along
the u direction of the turbulence box with a frequency of
4 Hz. These target spectra are not completely smooth due
to the finite length of the generated turbulence files, but
they resemble the model spectra well enough for the pur-
pose of this study. The red and yellow lines show the shape
of the lidar spectra with conventional DBS processing and
squeezed SQZ processing, respectively. Solid lines are the
resulting spectra when all three wind velocity components
are switched on. Dashed lines show the spectra when only
the u component is activated. Dashed–dotted lines represent
spectra generated from the v component alone and dotted
lines are for the w component alone. The method of show-
ing the influence of the single components on the resulting
lidar spectra cannot be used for cross-spectra. That is why
we do not discuss the uw spectra here but only show the re-
sults together with the measurements in Sect. 4.2.

4.1.1 Aligned inflow

To begin with, we take a look at the results from2= 135◦ in-
flow, i.e., the wind field is moving parallel to the azimuth an-
gle of LOS2 and LOS4 (see Fig. 4). We see in Fig. 5 that only
the u andw components of the wind field are involved in cre-
ating the lidar spectra of the u component. With the method
of DBS applied, the resulting lidar spectrum is correct only
for very low wave numbers where k1 < 4×10−3 m−1. At in-
creasing wave numbers the lidar underestimates the u fluctu-
ations in the wind field more and more, until it hardly detects

Wind Energ. Sci., 5, 519–541, 2020 www.wind-energ-sci.net/5/519/2020/



F. Kelberlau and J. Mann: Cross-contamination effect on turbulence spectra from DBS wind lidar 529

Figure 5. Turbulence velocity auto-spectra derived from sampling in a turbulence box for the case of aligned inflow with 2= 135◦ and
θ0 = 45◦. The measurement heights are h2 = 60m (a, c, e) and h4 = 100m (b, d, f). Black, red and yellow lines are target, DBS-processed
and SQZ-processed lidar spectra. Dashed, dashed–dotted and dotted lines show the influence of the u, v and w component on the resulting
spectra. The vertical solid line marks the wave number that corresponds to the lidar sampling frequency kscan and the vertical dashed lines
show the first and second resonance wave numbers kres.
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them at the first resonance wave number, which is marked
with a dashed grey vertical line. In parallel, thew fluctuations
increasingly contaminate the lidar measurements. Between
the first and the second resonance wave number, the cross-
contamination effect is lower again but it does not disappear
completely. The reason is that two different longitudinal sep-
aration distances are involved in the wind vector reconstruc-
tion process, as described at the end of Sect. 2.4 (rreal 6= rrep).
We also see that the energy content at the second resonance
wave number is much lower than at the first resonance wave
number, although the w fluctuations in the target spectrum
in this wave number region are similarly strong. The rea-
son is that the line-of-sight averaging is stronger for higher
wave numbers and limits how much of the turbulence in the
signal is being detected. The main difference between the
two elevation levels 60 and 100 m is that the resonance peaks
are higher and shifted to the left for measurements at 100 m.
The reason is mostly that the longer longitudinal separation
distance at higher elevations corresponds to lower resonance
wave numbers according to Table 2 and less line-of-sight av-
eraging comes into effect at these lower wave numbers. The
slightly different parameters of the underlying spectral ten-
sors also influence the results of course.

The wave number that corresponds to the sampling fre-
quency of each lidar beam is marked with a solid grey verti-
cal line. We cannot detect any turbulence at this wave num-
ber and the signal is strongly weakened close to it. This ef-
fect accounts for all test cases, wind velocity components and
elevations. For even higher wave numbers the measurement
signal recovers, until the lidar spectra stop at the wave num-
ber that corresponds to half of the wind vector reconstruction
frequency.

Comparing the results from conventional DBS processing
with the results for squeezed processed SQZ sampling shows
the striking advantage of the new method for aligned wind
cases. The method of squeezing leads to u spectra that are
very similar to the target spectra. The region of the spec-
tra that contains most of its kinetic energy is hardly con-
taminated. That is advantageous, for example, when the tur-
bulence length scale is determined. The resonance point is
shifted into the region where line-of-sight averaging and the
attenuation due to the limited sampling frequency are strong.
In the transition zone, the increasing averaging effect com-
pensates for the increasing contamination. That means the
very good agreement between target and lidar spectra is
partly misleading and should not be interpreted as a perfect
spectrum of pure u fluctuations.

The situation is very different for the v spectra. The con-
ventional DBS processing hardly deviates from the squeezed
processing. The small differences visible between the red and
the yellow curves are due to the modified time scalar that is
used in squeezed processing, according to the description in
the first paragraph of Sect. 3.4. The lidar measured v spectra
contain the correct amount of spectral energy from the v fluc-
tuations only in the very low wave number region. As the

coherence of the v fluctuations declines at higher wave num-
bers, they become less detectable by the lidar. In addition, the
lidar-derived v spectra are dominated by uncorrelatedw fluc-
tuations due to the lateral separation of the involved measure-
ment volumes. The squeezed processing does not improve
the situation because it cannot decrease lateral separations.

The simulated spectra of the vertical wind velocity fluctu-
ations w are not contaminated by other wind speed compo-
nents. The line-of-sight averaging becomes relevant for wave
numbers of approximately k1 > 3×10−2 m−1. The strongest
deviation from the target spectrum is found at the wave num-
ber kscan that corresponds to the sampling frequency of the
Windcube.

4.1.2 Non-aligned inflow

The situation is more complex for cases in which the incom-
ing wind is not aligned with two of the lidar beams. As an
example, we take a closer look at Fig. 6, which shows the
simulation results for wind from 90◦. The inflow in this case
is centered between two neighboring beams, which can be
seen as the strongest case of non-aligned inflow. The behav-
ior of all other inflow angles lies between this case and the
previously discussed case of aligned wind from 135◦.

Even at the lowest wave numbers the estimation of the
u component is not correct. This is the most problematic
characteristic of non-aligned inflow. From Table 3, we know
that even without resonance, we cannot measure the u com-
ponent of turbulence correctly if the lateral correlation is be-
low unity. The spectra show that we indeed measure lower
values of kinetic energy at low wave numbers by underesti-
mating the u fluctuations in the turbulence box. The contri-
bution of u fluctuations at increasing wave numbers becomes
further reduced by the influence of the longitudinal reso-
nance. Towards the resonance wave number contamination
occurs. In addition to the contamination by the w component
like in the aligned wind case, we are also faced with some
contamination from v fluctuations. Due to the shorter longi-
tudinal separations listed in Table 2 compared to the aligned
wind case, the second resonance point is weakly pronounced,
especially at 60 m elevation. The application of squeezed
processing shifts the cross-contamination successfully into a
region of lower energy content, but it cannot help derive bet-
ter estimates of the turbulent energy in the low wave number
region.

We now look at the predicted spectra of the transversal
wind component v. In the very low wave number region, the
actual v fluctuations are nearly correctly interpreted due to
the assumption of high lateral coherence of the v component
for very low values of k1. Unfortunately, the spectra are con-
taminated by a significant parasitic contribution of w fluctu-
ations for which the coherence in the spectral tensor model
is lower. With increasing decorrelation of the three wind ve-
locity components at increasing wave numbers, the contami-
nation becomes rapidly stronger. At the first resonance point,
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Figure 6. Turbulence velocity auto-spectra derived from sampling in a turbulence box for the case of non-aligned inflow with 2= 90◦ and
θ0 = 45◦. The measurement heights are h2 = 60m (a, c, e) and h4 = 100m (b, d, f). Black, red and yellow lines are target, DBS-processed
and SQZ-processed lidar spectra. Dashed, dashed–dotted and dotted lines show the influence of the u, v and w component on the resulting
spectra. The vertical solid line marks the wave number kscan that corresponds to the lidar sampling frequency and the vertical dashed lines
show the first and second resonance wave number kres.
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the cross-contamination of v by w is reduced but is to some
degree replaced by cross-contamination from u fluctuations.

The decreasing influence of w and the additional cross-
contamination by u on the DBS lidar-derived v spectra can
be removed by applying the method of squeezing. Nonethe-
less, the cross-contamination effect due to lateral separation
is so strong that the spectra are not significantly better than
the conventionally acquired ones. The DBS lidar-derived ve-
locity spectra for non-aligned wind are thus of limited use as
they do not represent the actual wind conditions.

4.2 Comparison with measurements

Figures 7 and 8 show the spectra for the same test cases
as discussed in the subsection above. Now we compare the
simulation results with measurement values. Markers in the
plots are the spectra resulting from the field measurements,
while solid lines, as before, correspond to the results from
sampling in a turbulence box. First, we take a look at how
well the theoretical target spectra displayed as solid black
lines represent the spectra derived from the measurements of
the sonic anemometers, which are depicted as black mark-
ers. The fitting of measurement data to the Mann spectral
tensor model was successful. Overall, the model represents
the measurements to a satisfactory degree. The measurement
spectra show more scatter in the low wave number region,
which is random variation caused by the limited amount of
analyzed measurement data for the corresponding test cases.
The agreement in the high wave number region where high
statistical significance smooths out the derived spectra is in
most cases very accurate. Discrepancies between sonic mea-
surements and the spectral tensor in a certain wave number
range have an effect on how well the theoretical spectra pre-
dict the lidar measurements. For example, the v target spec-
tra at both heights and wind directions show lower values
for medium wave numbers than the measured spectra. The
uw target spectra, by contrast, show higher energy values in
the low wave number region than what we actually measured.
This has previously been reported by Mann (1994, Fig. 7a)
and in Held and Mann (2019, their Fig. C1). The uniform
shear plus blocking (US+B) model by Mann (1994) and the
model by de Maré and Mann (2016) match observations of
the uw spectrum better than the uniform shear (US) model
of Mann (1994) that was used here, but they are much harder
to implement and perform calculations with.

The method of sampling in a turbulence box is success-
ful at predicting the shape of velocity spectra from a DBS
scanning wind lidar. All characteristic features, i.e., cross-
contamination, line-of-sight averaging, and limited sampling
frequencies are found in the spectra of both measurements
and simulations. But some deviations must be pointed out.
In the test cases with non-aligned inflow from 90◦ and most
other cases (Figs. A1–A3), the measured DBS-processed
u spectra show increased values at wave numbers below
the first interference wave number. That means that cross-

contamination is likely stronger than predicted by the model
at wave numbers below the first resonance point. We see
three possible explanations for this behavior. First, Table 3
shows that the cross-contamination of the u component by
w fluctuations for non-aligned wind inflow in the resonance
case is much stronger when the coherence is high. Eliassen
and Obhrai (2016) show for an offshore location and a ver-
tical separation of 40 m that the Mann model of turbulence
underestimates the amount of coherence of the w compo-
nent in a wide range of wave numbers (see also Mann, 1994,
Fig. 8). Assuming that the same occurs with transversal sep-
arations, we found a potential explanation for why the simu-
lations of the non-aligned cases underestimate the u variance
at wave numbers below the resonance point. At higher wave
numbers, the prediction is correct again because the correla-
tion is close to zero, both in the spectral tensor and in reality.
A second possible explanation lies in the limited validity of
the frozen turbulence assumption. Real turbulence is not per-
fectly correlated over long separation distances, so uncorre-
lated w fluctuations might contaminate the u measurements.
And third, we must also expect that turbulence is not always
advected with the 10 min mean wind speed U but is some-
times slower or faster. This influences at which wave num-
bers the cross-contamination occurs.

The prediction of the u spectra resulting from squeezed
processing is overall precise but has a slight tendency to-
wards underestimating the spectral values in the medium
wave number range. Based on the available data, it is not
possible to determine the definite cause of the higher spec-
tral values in the DBS- and SQZ-processed u measurements.
However, we assume that the main reason is inaccurate rep-
resentation of the co-coherences in the wind by the chosen
spectral tensor. Sathe et al. (2011) also predict slightly lower
total u variances and significantly lower v variances with
their model than they get from measurements. However, our
predictions of v variances are more accurate, and we there-
fore cannot draw conclusions from the comparison with their
work.

The shape of the lidar-derived spectra of the transversal
component v for both processing methods is fairly accurately
predicted by the simulation. The few significant differences
can in most cases be explained by the aforementioned dis-
crepancies between the spectral tensor and the actual wind
conditions. For example, at 135◦ at 60 m elevation, the lidar
measured v fluctuations in the wave number range around
k = 2× 10−2 m−1 are considerably stronger than predicted
because the actual wind fluctuations in the v and w direc-
tions are also higher than assumed by the selected spectral
tensor.

The spectra of the vertical wind fluctuations w are in some
cases very accurately predicted by the simulations, for ex-
ample in the case with inflow from 135◦ at 60 m elevation. In
other cases, we predict considerably higher values than what
is measured, e.g., at 135◦ at 100 m elevation and vice versa,
for example, at 112.5◦ at 80 m where we measure stronger
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Figure 7. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of aligned inflow with 2= 135◦ and θ0 = 45◦. The measurement heights are h2 = 60m (a, c, e) and h4 = 100m (b, d, f). Black, red and
yellow lines are target, DBS-processed and SQZ-processed lidar spectra from sampling in a turbulence box. Markers are spectra from field
measurements. The vertical solid line marks the wave number that corresponds to the lidar sampling frequency and the vertical dashed lines
show the first and second resonance wave number.
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Figure 8. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of non-aligned inflow with2= 90◦ and θ0 = 45◦. The measurement heights are h2 = 60m (a, c, e) and h4 = 100m (b, d, f). Black, red and
yellow lines are target, DBS-processed and SQZ-processed lidar spectra from sampling in a turbulence box. Markers are spectra from field
measurements. The vertical solid line marks the wave number kscan that corresponds to the lidar sampling frequency and the vertical dashed
lines show the first and second resonance wave number kres.
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low-frequency turbulence with the lidar than with the sonic
anemometer (Fig. A2). The reason for this behavior is un-
known.

The uw cross-spectra are predicted well for both data pro-
cessing methods for aligned inflow. For inflow conditions
in which the wind direction is not aligned with two of the
beams, the prediction of the DBS-processed data is off. We
assume that the reason for this behavior is the same as what
caused the differences between the DBS-processed u mea-
surements and simulations.

5 Conclusions

We have shown that with the help of sampling in a turbu-
lence box, it is possible to predict turbulence velocity spectra
from DBS wind lidar for all wind directions. We have ana-
lyzed these spectra theoretically and in comparison with field
measurements.

The shape of the spectra from a Windcube V2 DBS
lidar is influenced by the effects of line-of-sight averag-
ing, its limited sampling frequency, and strongly by cross-
contamination. We have shown that the influence of cross-
contamination on the spectra of the horizontal components
of turbulence is dependent on the alignment of the lidar
beams to the incoming wind direction. Only the measure-
ment of vertical wind fluctuations is independent of wind di-
rection due to the availability of a beam pointing vertically
upwards. The auto-spectrum of each horizontal wind speed
component is distorted by the influence of the other two wind
components. The uw cross-spectrum also suffers from cross-
contamination.

The method of squeezing applied in the wind vector recon-
struction process minimizes the cross-contamination effect
on the measured u component of turbulence when the wind
blows parallel to one of the beam’s azimuth angles. Only in
this case are the lidar-derived spectra reasonably close to the
spectra of the u component of the wind, thus turbulence pa-
rameters like turbulence length scale and the dissipation fac-
tor might be estimated from it.

In all other cases, the estimations of the horizontal com-
ponent spectra of turbulence are very erroneous due to the
parasitic influence of the components of turbulence on one
another, and one should not trust them. In no case should tur-
bulence velocity spectra from DBS wind lidar be fitted to a
turbulence model.

Multi-lidar arrangements use three separate lidar devices,
whose beams intersect at one point in space and minimize
separation distances (Mann et al., 2009). A different possi-
bility to avoid cross-contamination would be to deflect the
inclined beams of one single DBS wind lidar first into a hor-
izontal direction away from the device and second towards a
point above the device where they intersect. Such a setup re-
quires precise alignment of the deflected beams but would
not require horizontal homogeneity of the wind field and
could measure turbulence more accurately.
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Appendix A: Nomenclature

c Speed of light (m s−1)
D Diameter of measurement cone (m)
df Distance from lidar to center of range gate (m)
F Power spectral density (m2 s−1)
fs Sampling frequency (s−1)
h Measurement height (m)
i,j Beam numbers 1 to 5; Wind vector components 1 to 3
k Wave number (m−1)
ks Sampling wave number (m−1)
kres Resonance wave number (m−1)
kscan Wave number of LOS sampling frequency 0.26 Hz (m−1)
lp Half length of range gate (m)
N Number of measurements per 10 min interval
n Integer index
ni Unit vector along beam i

rlat,ij Nominal separation distance in lateral direction w.r.t. 2 for beam combination ij (m)
rlong,ij Nominal separation distance in longitudinal direction w.r.t. 2 for beam combination ij (m)
rrep,u Representative separation distance in longitudinal direction w.r.t. 2 for the reconstruction of u (m)
rrep,v Representative separation distance in longitudinal direction w.r.t. 2 for the reconstruction of v (m)
rreal,ij Real separation distance in longitudinal direction w.r.t. 2 for beam combination ij considering t (m)
rreal,SQZ,ij Actual separation distance in longitudinal direction w.r.t. 2 for beam combination ij considering t ,

squeezed processing (m)
s Distance from center of range gate (m)
t Beam timing (s)
u,U,u′ Total, mean and fluctuating part of wind velocity vector (m s−1)
u,v,w Longitudinal, transversal and vertical wind velocity component w.r.t. 2 (m s−1)
Vhor,V hor Horizontal wind velocity, 10 min mean (m s−1)
vri Radial wind velocity in beam i direction (m s−1)
ṽri Line-of-sight velocity of beam i (m s−1)
x Wind velocity vector in Windcube coordinates (m s−1)
x,y,z Wind velocity component in LOS1–LOS3, LOS2–LOS4 and LOS5 directions (m s−1)
α Relative inflow angle 2− θ0 (◦)
θ0 Heading of LOS1 (offset from north) (◦)
θ Beam azimuth angle (◦)
2,2 Wind direction, 10 min mean (◦)
σ 2 Velocity variance (m2 s2)
φ Zenith angle (half cone opening angle) (◦)
ϕ Triangular weighting function

Wind Energ. Sci., 5, 519–541, 2020 www.wind-energ-sci.net/5/519/2020/



F. Kelberlau and J. Mann: Cross-contamination effect on turbulence spectra from DBS wind lidar 537

Figure A1. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of aligned inflow with 21 = 135◦ and θ0 = 45◦.
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Figure A2. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of non-aligned inflow with 22 = 112.5◦ and θ0 = 45◦.
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Figure A3. Turbulence velocity auto-spectra and uw cross-spectra derived from sampling in a turbulence box and measurements for the case
of non-aligned inflow with 23 = 90◦ and θ0 = 45◦.
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