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Abstract. Continuous ongoing efforts to better predict the mechanical behaviour of complex beamlike struc-
tures, such as wind turbine blades, are motivated by the need to improve their performance and reduce the
costs. However, new design approaches and the increasing flexibility of such structures make their aeroelastic
modelling ever more challenging. For the structural part of this modelling, the best compromise between compu-
tational efficiency and accuracy can be obtained via schematizations based on suitable beamlike elements. This
paper addresses the modelling of the mechanical behaviour of beamlike structures which are curved, twisted
and tapered in their unstressed state and undergo large displacements, in- and out-of-plane cross-sectional warp-
ing, and small strains. A suitable model for the problem at hand is proposed. Analytical and numerical results
obtained by its application are presented and compared with results from 3D FEM analyses.

1 Introduction

New methods are continuously being sought to improve
the performance and efficiency of horizontal-axis wind tur-
bines (HAWTs). Specifically, such improvements aim to in-
crease their energy capture capacity, develop more reliable
structures and lower overall energy costs (Wiser et al., 2016).
Such goals can be achieved through the use of advanced ma-
terials, the optimization of the aerodynamic and structural
behaviour of the blades, and the exploitation of load con-
trol techniques (see, for example, Ashwill et al., 2010; Bot-
tasso, 2012; Stäblein, 2017). However, new design strategies
and the increasing flexibility of those structures make mod-
elling their aeroelastic behaviour ever more challenging. For
the structural part of this modelling, schematizing the blades
through suitable beamlike elements may represent the best
compromise between computational efficiency and accuracy.
Modern blades are however very complex beamlike struc-
tures. They may be curved, twisted and also tapered in their
unstressed state. Even ignoring the complexities related to
the materials and loading conditions, their shape alone is suf-

ficient to make mathematical description of their mechanical
behaviour a very challenging task. This work addresses the
modelling of the mechanical behaviour of structures of this
kind, with a particular focus on their main geometrical char-
acteristics, such as the twist and taper of the transversal cross
sections, as well as the in- and out-of-plane cross-sectional
warping and the large deflections of their reference centre
line.

Over the years several theories have been developed for
beamlike structures (see, for example, Love, 1944; Antman,
1966; Rubin, 2000) for applications in different fields,
from helicopter rotor blades in aerospace engineering to
bridge components in civil engineering and surgical tools
in medicine. Nevertheless, due to the continuous need for
ever more rigorous and application-oriented models, inter-
est in advanced theories for complex beamlike structures has
led to even further research in recent years. The focus of
this paper is on the effects of important geometrical char-
acteristics of those structures, such as the curvature of their
centre line as well as the twist and the taper of their cross
sections. After an introduction to modelling approaches for
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structures of this kind (Sect. 2), a suitable model is proposed
for the problem at hand (Sect. 3). Finally, analytical results
and numerical examples obtained by applying the proposed
modelling approach to reference beamlike structures are pre-
sented and compared with results from 3D FEM analyses
(Sects. 4 and 5).

2 Overview of modelling approaches

Modelling the mechanical behaviour of modern blades can
be performed via different approaches. See, for example, the
reviews on aeroelastic modelling approaches for wind tur-
bine blades of Hansen et al. (2006) and L. Wang et al. (2016),
which discuss and compare aerodynamic and structural mod-
els used in research and industrial applications. For the struc-
tural modelling, two main choices are based on 3D FEM and
beam models. In general, 3D FEM approaches can be very
accurate and flexible, but they can be computationally de-
manding for analyses of complex systems, especially if they
are coupled with CFD methods for aerodynamic analyses.
The overall computational cost can be reduced using faster
aerodynamic models, such as those based on the blade el-
ement momentum theory (see, for example, Hansen et al.,
2006). However, this may not yet be sufficient in the case
of multi-objective optimization tasks, in which the optimiza-
tion of several aspects (e.g. aerodynamic performance, struc-
tural characteristics and control systems) has to be addressed
at the same time (see also Bottasso et al., 2012). Therefore,
faster structural models may be needed as well, such as suit-
able beam models, which may provide accurate information
on the deflection of the structure’s centre line as well as the
strain and stress fields in the three-dimensional solid. The use
of fast aerodynamic models along with suitable beam mod-
els may then represent the best compromise between com-
putational efficiency and accuracy. In this work, the focus
is only on the structural modelling. In particular, a mathe-
matical model is proposed to simulate the behaviour of non-
prismatic beamlike structures, which may be curved, twisted
and tapered in their unstressed reference state and undergo
large deflections, in- and out-of-plane cross-sectional warp-
ing, and small strains (such a model is referred to here as a
beamlike model or BLM).

Over the years many approaches have been developed
for beamlike structures, from classical beam models (Love,
1944) for extension, twisting and bending to the formula-
tion of Reissner (1981), which also accounts for transverse
shear deformation, to geometrically exact and asymptotic ap-
proaches, involving the research efforts of many investiga-
tors (such as Antman, 1966; Giavotto et al., 1983; Simo,
1985; Ibrahimbegovic, 1995; Ruta et al., 2006; Pai, 2011;
Yu et al., 2012; Hodges, 2018). The available theories may
be broadly grouped into engineering theories and mathemat-
ical ones. The former are usually based on ad hoc corrections
to simpler theories (e.g. Rosen and Friemann, 1978) or ex-

ploit geometrically exact approaches (such as Q. Wang et al.,
2016); the latter are generally based on the directed contin-
uum (see, for example, Rubin, 2000) or exploit asymptotic
methods (e.g. Yu et al., 2012). Reviews on beam theories,
which summarize modelling approaches and complicating
effects, are also available in the literature. For example, many
theories have been developed for helicopter rotor blades with
an initial twist (Hodges, 1990). In this regard, a wide-ranging
review on pre-twisted rods is by Rosen (1991), which cov-
ers several aspects of the problem, from the response to
static loads to dynamics and stability issues. Kunz (1994)
also provided an overview on modelling methods for ro-
tating beams, discussing how engineering theories for rotor
blades have evolved over the years, from the recognition of
the importance of bending flexibility to the development of
linear equations for bending and torsion to the introduction
of non-linear terms to such equations. More recently, Rafiee
et al. (2017) reviewed the vibrations control issues in rotat-
ing beams, summarizing beam theories and complicating ef-
fects, such as non-uniform cross sections, initial curvature,
twist and sweep. In general, it seems that, unlike for the case
of pre-twisted rods, the results published for curved rotating
beams with initial taper and sweep are quite scarce, although
all these geometrical characteristics may play an important
role. This is particularly true for modern wind turbine blades,
which are ever more flexible and longer than in the past, pre-
bent and swept, and, in addition, characterized by significant
chord and twist variations.

To date many research efforts have been devoted to de-
veloping powerful theories for beamlike structures. How-
ever, complex non-prismatic cases still require further inves-
tigation. In general, the geometry of the reference and cur-
rent states of the structure must be appropriately described,
as the curvature, twist and taper are important geometri-
cal design features and should be explicitly included in the
model. Moreover, the analysis should not be restricted to
small displacements. The model should provide the stress
and strain fields in the three-dimensional solid, be rigor-
ous and application-oriented, and provide classical results
when applied to prismatic cases. Following these guidelines,
a mathematical model to simulate the mechanical behaviour
of the mentioned non-prismatic beamlike structures is pro-
posed hereafter.

3 Mechanical model for complex beamlike
structures

Here we are concerned with developing a mathematical
model to describe the mechanical behaviour of beamlike
structures which are curved, twisted and tapered in their ref-
erence state and undergo large displacements. One of the
main issues with such a task is how to describe the motion of
the structure. See, among others, the works of Simo (1985),
Ruta et al. (2006) and Pai (2014) for some examples of differ-
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ent approaches. Here, we consider a non-prismatic beamlike
structure as a collection of deformable plane figures (i.e. the
reference cross sections) along a suitable three-dimensional
curve (i.e. the reference centre line). We assume that each
point of each cross section in the reference state moves to
its position in the current state through a global rigid mo-
tion on which a local general (warping) motion is superim-
posed. In this manner, the cross-sectional deformation can
be examined independently of the global motion of the cen-
tre line. It is thus possible to consider the global motion to be
large, while the local motion and the strain may be small. An
analytical description of how the motion of the considered
structure is modelled in this work is presented and further
discussed in the following section.

3.1 Kinematics and strain measures

We begin by introducing two local triads of orthogonal unit
vectors. The first is the local triad, bi , in the reference state,
with b1 aligned to the tangent vector of the reference cen-
tre line. This frame is a function of the reference arch length
s; that is bi = bi(s). The second local triad, ai , is a suitable
image of the local triad bi in the current state. This frame is
a function of the reference arch length s and time t ; that is
ai = ai(s, t). In general, a1 is not required to be aligned to
the tangent vector of the current centre line. Figure 1 shows
a schematic representation of the reference (left) and current
(right) states of a beamlike structure. The generic cross sec-
tion in the reference state is contained in the plane of vec-
tors b2 and b3. In the current state, if the cross section re-
mains plane (i.e. unwarped), it can belong to the plane of
vectors a2 and a3. However, the generic cross section may
not remain plane, so we consider that its current (warped)
state is attained by superimposing an additional motion to
the positions of the points of the unwarped cross section, as
in Fig. 1 (right).

We continue by introducing the kinematic variables we use
to describe the motion of the considered structure. To this
end, the orientation of frames ai and bi relative to a fixed
rectangular frame, ci , are defined as follows:

ai = Aci,bi = Bci, (1)

where A and B are two proper orthogonal tensor fields
(i.e. their determinant is 1; see, for example, Gurtin, 1981).
We also introduce a tensor field, T , which defines the relative
orientation between frames ai and bi as follows:

ai = T bi = AB
T bi . (2)

We define two skew tensor fields,KA andKB , and their axial
vectors, kA and kB , which are related to the curvatures of the
structure’s centre line in the current and reference states, as
follows (see, for example, Simo, 1985; Gurtin, 1981):

KA = A
′AT ,a′i =KAai = kA ∧ ai,

KB = B
′BT ,b′i =KBbi = kB ∧ bi, (3)

where the prime denotes derivative with respect to the arch
length, s, while the operator ∧ is the usual cross product.

In a similar manner, we introduce the skew tensor field �
and its axial vector field, ω, related to the variation in vectors,
ai , over time, t , as follows:

�= ȦAT , ȧi =�ai = ω∧ ai . (4)

The dot (over the variables) denotes derivative over time, t .
At this point, it is easy to obtain the following identities:

T ′T T =KA− TKBT
T , Ṫ T T =�,

φ
[
T ′T T

]
= kA− T kB ,φ

[
Ṫ T T

]
= ω, (5)

where the operator φ[ ] provides the axial vector of the skew
tensor between brackets.

Function R0B , which maps the points of the centre line in
the reference state, does not depend on time, while R0A can
change over time t . Its variation is the time rate of change in
the position of the points of the current centre line:

Ṙ0A = v0. (6)

We are now in a position to introduce two important kine-
matic identities:

v′0−ω∧R
′

0A = T γ̇,

ω′ = T k̇, (7)

where γ and k are

γ = T TR′0A−R
′

0B ,

k = T T kA− kB . (8)

It is worth noting that γ and k vanish for rigid motions and
are invariant under superposed rigid motion; hence, they are
well-defined measures of strain for beamlike structures (see,
for example, Ruta et al., 2006; Rubin, 2000).

Now, we start modelling the motion of the cross section’s
points. In particular, we introduce two mapping functions,
RA and RB , to identify the positions of the points of the 3D
beamlike structure in its current and reference states. Regard-
ing the reference state, we define the (reference) mapping
function as

RB (zi)= R0B (z1)+ xα (zi)bα (z1) , (9)

where R0B is the position of the points of the reference cen-
tre line relative to frame ci , bα is the vectors of the refer-
ence local frame in the plane of the reference cross section,
xα identifies the positions of the points in the reference cross
section relative to the reference centre line and, finally, zi is
independent mathematical variables which are independent
of time. In particular, z1 is equal to the arch length s, and
zα belongs to a bi-dimensional mathematical domain which
is used to map the position of the cross section’s points, xα .
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Figure 1. Schematic of the reference and current states, centre lines, cross sections, and local frames.

Throughout this paper, Greek indices take on values 2 and 3,
Latin indices assume values 1, 2 and 3, and repeated indices
are summed over their range.

It is worth noting that xk may or may not be equal
to zk . The former (equality) leads to common modelling ap-
proaches available in the literature (see, for example, Simo,
1985; Pai, 2011; Yu et al., 2012). Herein, we choose a set
of relations between the position variables xk and the math-
ematical variables zk to provide a description of the shape
of the considered beamlike structure, which can be curved,
twisted and also tapered in its reference state. In particular,
the spanwise variation in the cross section’s shape is analyti-
cally modelled by means of a mapping of the following type:

xi =3ijzj , (10)

where the coefficients 3ij are functions of z1. In the fol-
lowing, we will consider the case of the curved and twisted
beamlike structures with bi-tapered cross sections, in which
case the map (Eq. 10) reduces to

x1 = z1,x2 = z2λ2 (z1) ,x3 = z3λ3 (z1) , (11)

where coefficients λα are functions of z1. It is worth noting
that a suitable choice of such functions enables the repro-
duction of interesting shapes. Figure 2, for example, shows a
3D beamlike structure whose centre line is curved, while the
cross sections are twisted and tapered from the root to the tip.
The reference cross sections in Fig. 2 are ellipses with dif-
ferent sizes and orientations, but any other reference cross-
section shape can be considered, such as the aerodynamic
profiles which are commonly used for wind turbine blades
and steam turbine blades, and helicopter rotor blades as well
(see also Griffith and Ashwill (2011 ), Bak et al. (2013),
Tanuma (2016), and Leishmain (2016) for examples of such
profiles).

The positions of the points in the current state are defined
in a similar manner by means of the (current) mapping func-
tion:

RA (zi , t)= R0A (z1, t)+ xα (zi )aα (z1, t)+wk (zi , t)ak (z1, t),

(12)

where R0A is a function mapping the position of the centre-
line points in the current state, while wk is the components
of the 3D warping displacements in local frame ak . The main
formal difference between the reference map and the current
one is due to the warping, w, introduced to describe the ge-
ometry of the deformed state without a priori approximation.

By using maps (Eqs. 9 and 12), we can determine the 3D
tensor, H , expressing the gradient of the current position,
RA, with respect to the reference position, RB , as follows
(see, for example, Rubin, 2000):

H =
∂RA

∂RB
=Gk ⊗gk. (13)

In Eq. (13), Gk and gk are covariant and contravariant base
vectors, in the current state and reference states, and can be
calculated by using standard mathematical methods (see, for
example, Rubin, 2000). In this case they can be written in the
form

g1
= g
−1/2
0 b1,

g2
=3−1

22

(
b2−K

∗

B2αzαg
−1/2
0 b1

)
,

g3
=3−1

33

(
b3−K

∗

B3αzαg
−1/2
0 b1

)
,

G1 = a1+ γiai +K
∗

Aiαzαai +KAijwjai +wi,1ai,

G2 =322a2+wi,2ai,

G3 =333a3+wi,3ai, (14)

where

g
1/2
0 = 1+K∗B1αzα,

K∗(B or A)iα =3
′

iα +3βαK(B or A)iβ . (15)
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Figure 2. Example curved, twisted and tapered beamlike structure and local frame (a) and taper and twist functions (b–d).

When H is known, the 3D Green–Lagrange strain tensor,
E, can be calculated (see, for example, Rubin, 2000; Gurtin,
1981). Hereafter we write tensor E in a form based on sim-
plifying assumptions applicable to the considered beamlike
structure. In particular, we introduce the characteristic di-
mension of the cross sections, herein denoted as h, and the
longitudinal dimension of the centre line, herein denoted
as L, and we assume h to be much smaller than L. Moreover,
we consider a thin structure and assume the curvatures of its
reference centre line to be much smaller than 1/h (see also
Rubin, 2000). In addition, we assume the warping displace-
ments, wk , are small. More precisely, by introducing a non-
dimensional parameter ε much smaller than 1, they come to
be considered on the order of hε, while the order of magni-
tude of their derivative with respect to z1 is εh/L. In gen-
eral, all deformation measures, i.e. the 1D strain measures γ
and k and the components of the 3D strain tensor, E, are as-
sumed to be small. In particular, their order of magnitude is
at most ε. For the considered structure, in the case of small
strains and small local rotations, we write the strain tensor,
E, in the following form:

E '
T TH +H T T

2
− I. (16)

Let us now calculate the components of E by using Eq. (16)
and neglecting terms smaller than ε. Algebraic manipula-
tions, which are based on Eqs. (13)–(16), yield the following
expressions for bi-tapered cross sections:

E11 = γ1+ k2333z3− k3322z2,

E22 =3
−1
22 w2,2,

E33 =3
−1
33 w3,3,

2E21 = γ2+3
−1
22 w1,2− k1333z3,

2E31 = γ3+3
−1
33 w1,3+ k1322z2,

2E23 =3
−1
33 w2,3+3

−1
22 w2,2. (17)

In Eq. (17),322 and333 are the edgewise and flapwise taper
coefficients (see, for example, Fig. 2), while the components
of the strain tensor, E, are taken with respect to the reference
local frame bi ; i.e.

Eij = E · bi ⊗ bj , (18)

where “·” is the usual scalar (or dot) product and ⊗ is the
tensor (or dyadic) product (see, for example, Rubin, 2000).

3.2 Stress fields and constitutive models

Given the strain tensor,E, the stress fields in the structure can
be calculated when a constitutive model is chosen. Limiting
our attention to elastic bodies, in a purely mechanical theory,
in the case of small strain, we use the following linear rela-
tion between the second Piola–Kirchhoff stress tensor, S, and
the Green–Lagrange strain tensor (see, for example, Gurtin,
1981):

S = 2µE+ λtrEI, (19)

where µ and λ are known material parameters related to
Young’s modulus and Poisson’s ratio. In the case of small
strains and small local rotations, we also write

P ' T S, C ' T ST T , (20)
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where P is the first Piola–Kirchhoff stress tensor and C is
the Cauchy stress tensor (Gurtin, 1981). It is worth noting
that in the considered case the tensor field T is sufficient to
determine two of the above-mentioned stress tensors (e.g. P
and C) when the other one (e.g. S) is known.

We are now in a position to define the cross-sectional stress
resultants, namely the force F and momentM . Using the first
Piola–Kirchhoff stress tensor (Gurtin, 1981), in the case of
small warpings, small strains and small local rotations, we
write

F = T

∫
6

Pi1bi, M = T

∫
6

xαPi1bα ∧ bi, (21)

where 6 is the domain corresponding to the cross section on
which the integration is performed and

Pij = P · ai ⊗ bj . (22)

By combining Eqs. (16)–(21), the force and moment stress
resultants can be related to the geometrical parameters of the
structure and the 1D strain measures (Eq. 8). However, such
relations are actually known only if we know the warping
fields wk . One approach to obtaining suitable warping fields
is illustrated in Sect. 3.4.

3.3 Expended power and balance equations

To complete the formulation, we conclude with considera-
tions on the principle of expended power and the balance
equations for the considered structure. For hyper-elastic bod-
ies (Gurtin, 1981), we write the principle of expended power
in the form∫
A

p · v+

∫
V

b · v =
d
dt

∫
V

8. (23)

In Eq. (23), p is surface loads per unit reference surface (A);
b is body loads per unit reference volume (V ); 8 is the 3D
energy density function of the body, which is half the scalar
product of the tensor fields S and E (i.e. 28= S ·E); and,
finally, v is the time rate of change in the current position of
the body’s points, which is given by

v = v0+ω∧ xαaα + ẇ, (24)

where the last term in Eq. (24) is the time rate of change in
the warping displacement.

For small warpings, small strains and small local rota-
tions, if the power expended by surface and body loads on
the warping velocities is neglected, the external power, 5e,
reduces to the following form:

5e =1 (F · v0+M ·ω)+
∫
s

Fs · v0+Ms ·ω, (25)

where the vector field v0 is the time rate of change in the
position of the current centre-line points, the vector field ω

is the time rate of change in the orientation of vectors ai ,
and the terms Fs and Ms are suitable resultants of inertial
actions and prescribed loads per unit length in the reference
state, while the symbol 1 simply indicates that the function
between brackets is evaluated at both the ends of the beam
and the difference between those values is taken.

The cross-sectional warpings may be important in calcu-
lating the 3D energy function and cannot be neglected in the
internal power, 5i . However, the internal power may be re-
duced to a useful form for beamlike structures by introduc-
ing a suitable 1D strain energy function, U . For example, if
U can be expressed in terms of the strain measures, γ and k,
we can write

5i =
d
dt

∫
s

U (γ,k,s)=
∫
s

f · γ̇ +m · k̇, (26)

where the vector fields f and m are defined in terms of the
force and moment stress resultants, F and M , as follows:

f = T T F, m= T TM. (27)

By using the principle of expended power, we also obtain
balance equations for the vector fields F and M in the form

F ′+Fs = 0,

M ′+R′0A ∧F +Ms = 0. (28)

At this point, we have kinematic equations, Eqs. (6) and (7);
strain measures, Eqs. (8) and (16); force and moment bal-
ance equations, Eq. (28); and the principle of expended
power, 5e =5i , in a suitable form for beamlike structures,
Eqs. (25) and (26). To complete the formulation of the model
we need relations providing the 1D stress resultants in terms
of the 1D strain measures. To this end, we need to know the
warping fields. An approach to obtaining suitable warping
functions is discussed in the next section.

3.4 Warping displacements

In general, a 3D non-linear elasticity problem can be for-
mulated as a variational problem. However, if we try to
solve the variational problem directly, the difficulties en-
countered in solving the elasticity problem remain. For
beamlike structures whose transversal dimensions are much
smaller than the longitudinal one, assumptions based on the
shape of the structure and the smallness of the warping and
strain fields can lead to useful simplifications. In particu-
lar, solving the 3D non-linear elasticity problem can be re-
duced to solutions of two main problems. See, for example,
Berdichevsky (1981), who seems to be the first in the litera-
ture to plainly state this for elastic rods. One of the two prob-
lems governs the local distortion of the cross sections and is
referred to here as the cross-section problem. The other gov-
erns the global deformation of the centre line and is referred
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to here as the centre-line problem. Hereafter, we consider
the following variational statement to determine the warp-
ing fields which are responsible for deformation of the cross
sections:

δ

∫
V

8= 0. (29)

In Eq. (29) the symbol δ stands for the variation operator
and the density function8 depends on the warping displace-
ments. The warping fields satisfying Eq. (29) can be ob-
tained by the corresponding Euler–Lagrange equations (see,
for example, Courant and Hilbert, 1953), by using numer-
ical methods, in general, or analytical approaches providing
closed-form expressions, in some particular cases. Once such
a problem is solved, the components of the stress resultants
(Eq. 21) can be linearly related to the components of the 1D
strain measures by using Eqs. (16)–(21). Then, if it is pre-
ferred or deemed useful, the resulting relations can also be
arranged in a standard matrix form.

Note that to determine the current state of the structure,
we also need the displacements of its centre-line points.
They can be determined by solving the centre-line prob-
lem, which is a non-linear problem governed by the set of
kinematic, constitutive and balance equations introduced in
Sect. 3 (in particular, we are referring to the constitutive
model in Sect. 3.2, which relates stress resultants and strain
measures, and the balance equations for the stress resultants
in Sect. 3.3).

In the next sections we show some analytical solutions
(Sect. 4) and numerical results (Sect. 5) that can be obtained
by applying the proposed modelling approach to some refer-
ence beamlike structures.

4 First analytical results for bi-tapered cross
sections

In this section we consider the case of a beamlike struc-
ture with bi-tapered elliptical cross sections. For this case
we can obtain analytical solutions in terms of warping fields,
while for generic shapes (e.g. the aerodynamic profiles used
in wind and steam turbine blades as well as helicopter ro-
tor blades) the problem corresponding to Eq. (29) can be
solved using numerical methods. However, this is not surpris-
ing, since analytical solutions are available only for a limited
number of cases even in the classical linear theory of pris-
matic beams (see, for example, Love, 1944).

As discussed in Sect. 3, we are assuming that the warp-
ings, strains and local rotations are small. Moreover, here-
after we choose that the current local frames be tangent to
the current centre line and include possible shear deforma-
tions within the warping fields. In addition, with the aim of
showing a first analytical solution for bi-tapered cross sec-
tions, here we neglect the effects of the initial cross-sectional
twist. Then, we write the Euler–Lagrange equations corre-

sponding to Eq. (29), whose unknown functions are the warp-
ing fields, wk (this can be done using standard mathemati-
cal techniques; see, for example, Courant and Hilbert, 1953).
Finally, we proceed to find a solution to the resulting (par-
tial differential equations) problem. In particular, if we ne-
glect the terms smaller than ε and maintain those related to
extension, γ1, and changes in curvature, ki , the aforemen-
tioned Euler–Lagrange equations are satisfied by the follow-
ing warping fields:

w1 = k1
ρ2d2

3 − d
2
2

ρ2d2
3 + d

2
2
ρ32z2z3,

w2 =−νγ13z2− νk2ρ3
2z2z3+ νk33

2
(
ρ2z2

3− z
2
2

)
/2,

w3 =−νγ1ρ3z3+ νk3ρ3
2z2z3− νk23

2
(
ρ2z2

3− z
2
2

)
/2,

(30)

where d2 and d3 are the major semi-axes of a reference el-
liptical cross section (e.g. the one at 18m from the root sec-
tion in Fig. 2), while 3=322 and ρ =333/322 are known
functions of z1. Using this result, we can calculate the corre-
sponding strain and stress fields, Eqs. (16)–(20), stress resul-
tants, Eq. (21), and strain energy function U . For example, if
we consider a local frame in the reference cross section with
its origin at the cross section’s centre of mass and its axes
aligned with the cross section’s principal axes of inertia (as
in Fig. 2), we can write the 1D strain energy function, U , in
the form

U =
1
2
EAρ32γ 2

1 +
1
2
GJ1ρ

234k2
1 +

1
2
EJ2ρ

334k2
2

+
1
2
EJ3ρ3

4k2
3 . (31)

In Eq. (31), E is the Young modulus andG is the shear mod-
ulus, while A, J1, J2 and J3 are the following geometrical
parameters:

A= πd2d3, J1 = Ad
2
2d

2
3/
(
ρd2

3 + ρ
−1d2

2

)
,

J2 = Ad
2
3/4, J3 = Ad

2
2/4. (32)

An interesting result is that the initial taper appears explic-
itly in all the previous relations (in terms of ρ and 3). This,
in turn, allows analytical evaluation of its effects on the 3D
strain fields, which can be calculated by using Eqs. (17)
and (30) and are, in any case, required to determine the 3D
stress fields (Eq. 19).

5 Numerical simulations

In this section we present the results of simulations con-
ducted using the modelling approach discussed in Sect. 3,
which we have implemented into a numerical code in MAT-
LAB language. The results are also compared with those ob-
tainable via 3D FEM simulations with the commercial soft-
ware ANSYS.
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Figure 3. Global deformation with 3D BLM for increasing F (a) and with 3D FEM for F = 25000 kN (b).

In particular, we show a first set of test cases in which a
beamlike structure with rectangular cross sections undergoes
large displacements while fixed at one end and loaded at the
other by a force of progressively increasing magnitude. The
second set of test cases addresses a more complex geome-
try, that is, a beamlike structure with elliptical cross sections,
which is curved, twisted and tapered in its reference config-
uration and under the same loading condition as in the first
set of test cases. Finally, the third set of test cases regards
four different beamlike structures under the same loading
conditions. In particular, we consider a first prismatic struc-
ture with elliptical cross sections. The second structure is a
modification of the first, on which the same cross section is
maintained at 18 m from the root, while taper is added ac-
cording to the taper coefficients in Fig. 2. Starting with this
latter structure, we then consider a third structure which in-
cludes twisting of the cross sections, assuming the twist law
in Fig. 2. The fourth and final case is a curved, twisted and ta-
pered structure obtained from the third (tapered and twisted)
by adding a centre-line curvature. Once the simulations have
been completed, we compare the results obtained to highlight
the effects of their different geometries on their mechanical
behaviour.

In all cases, the displacements of the reference centre-line
points are calculated by solving the centre-line non-linear
problem through the previously mentioned numerical proce-
dure we have implemented in MATLAB, which is based on
the kinematic, constitutive and balance equations introduced
in Sect. 3. In particular, the constitutive model introduced in
Sect. 3.2 is used to relate stress resultants and strain mea-
sures. We define the local frames orientation using Euler an-
gles and simulate orientation changes in terms of the deriva-
tives of those angles over the arch length, s (see, for exam-
ple, Pai, 2014). We use the balance equations for the stress
resultants introduced in Sect. 3.3. Finally, the resulting set
of ordinary differential equations is (numerically) integrated

with respect to the reference arch length, s. The results of this
procedure are illustrated in the following sections.

5.1 First set of test cases

In this set of test cases we consider a rectangular cross-
sectioned beamlike structure which undergoes large dis-
placements while clamped at one end (i.e. the root) and
loaded at the other (i.e. the tip) by a force, F , whose mag-
nitude is progressively increased (see Fig. 3). The centre-line
length is d1 = 90 m, while the cross-section dimensions are
d2 = 8 m (edgewise) and d3 = 2 m (flapwise). The material
properties are summarized by reference values of Young’s
modulus, 70 GPa, and Poisson’s ratio, 0.25. Finally, the flap-
wise tip force, F , varies from 100 to 75 000 kN.

The simulations are run for different values of the tip force.
The model we have implemented in MATLAB for solving
the non-linear problem renders results on the structure’s de-
formed configuration (e.g. Fig. 3a) within a few seconds. In
all cases, the simulation time is less than 2.4 s, which is sig-
nificantly less than that required for the corresponding non-
linear 3D FEM simulations carried out on the same com-
puter, while the accuracy of the results is almost the same.
A summary of the results obtained, in terms of global dis-
placements and simulation times, is shown in Figs. 3 and 4.

In particular, Fig. 3b shows the undeformed shape (for
F = 0), as well as the deformed shapes for F equal to 10 000,
25 000 and 50 000 kN. Figure 3b shows the 3D FEM de-
formed shape for F = 25000 kN (the coloured scale is for
the flapwise displacements). Figure 4a provides a compari-
son between the tip displacements obtained with the linear
3D FEM, the non-linear 3D FEM and our model (indicated
as 3D BLM). It also shows the differences (between the non-
linear 3D FEM and the 3D BLM) in terms of tip displace-
ments and simulation times for the considered cases.
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Figure 4. Comparison of tip displacements (a), tip displacement differences (b) and simulation times (c).

Figure 5. Global deformation with 3D BLM for increasing F (a) and with 3D FEM for F = 250 kN (b).

5.2 Second set of test cases

Let us now consider a more complex beamlike structure,
specifically, one with a 90 m curved centre line with constant
curvatures, which schematizes a pre-bent and swept beam
whose tip is moved 4 m edgewise and 3 m flapwise, as in
Fig. 2. The local frames in the reference state are character-
ized by a pre-twist of 20◦m−1. The reference cross section
at 18 m from the root is an ellipse whose major semi-axes are
d2 = 2 m (edgewise) and d3 = 0.5 m (flapwise). The sizes of
the other cross sections change according to the taper coef-
ficients in Fig. 2. The material properties are represented by
reference values of Young’s modulus, 70 GPa, and Poisson’s
ratio, 0.25. Finally, the structure is clamped at its root and
loaded by a flapwise tip force, F , which varies from 100 to
1000 kN.

The simulations are run for different values of tip force,
F . The model we have implemented in MATLAB for solv-
ing the non-linear problem yields results regarding the struc-
ture’s deformed configurations, such as those in Fig. 5, which
confirm the computational efficiency and accuracy observed
in the previous tests. In particular, simulation times are sig-
nificantly shorter than those required by corresponding non-
linear 3D FEM simulations (see, for example, the simulation
times ratio in Fig. 6c), while the accuracy of the results is
again nearly the same (Fig. 6).

Apart from the foregoing results, the model is also able
to provide other meaningful information. In particular, we
can obtain the displacement fields of the reference centre-
line points (Fig. 7), as well as the change in curvature of the
beamlike structure (Fig. 8a–c) and the corresponding mo-
ment stress resultant (Fig. 8d–f). The moment components
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Figure 6. Comparison of tip displacements (a), tip displacement differences (b) and simulation times ratio (c).

Figure 7. Displacement of the reference centre-line points with 3D BLM for increasing F .

are in the current local frame, ai , whose orientation has been
determined as part of the solution to the non-linear problem.
For example, the orientation of the current local frame, ai ,
can be expressed in terms of a set of Euler angles, as in Fig. 9.
In this case we have considered the set of Euler angles cor-
responding to a first rotation, θ , about the initial z axis; a
second rotation, γ , about the intermediate y axis; and a third
rotation, ψ , about the final x axis.

5.3 Third set of test cases

The last test cases regard four different beamlike structures,
starting with a prismatic elliptical one, to which there is the
step-by-step addition of the taper; the twist of the cross sec-
tions; and, finally, the curvature of the centre line, as dis-
cussed in Sect. 5. Note that the curved–twisted–tapered case
considered here coincides with that discussed in more detail
in Sect. 5.2 (see Figs. 5–9, F = 250 kN). We begin by simu-
lating the behaviour of these four structures under a flapwise
tip force of 250 kN. Then, we analyse the results obtained to
show the effect of the geometrical differences on their me-
chanical behaviour. The results obtained are summarized in

the following. In particular, Fig. 10 shows the reference and
deformed states of the prismatic structure (Fig. 10a) and the
deformed states of the non-prismatic ones (Fig. 10b), while
Fig. 11 shows the displacements of their centre-line points.
The main effect of the considered tip force is a displacement
in the z direction in all cases, with a displacement in the y di-
rection for the tapered–twisted and tapered–twisted–curved
cases only, as would be expected.

Similar results have also been obtained for larger values
of tip force, F , which lead to larger tip displacements. In
particular, hereafter we show the results for F varying from
250 to 750 kN. As for the previous test cases, the results ob-
tained have been compared with those from 3D FEM sim-
ulations, confirming the computational efficiency and accu-
racy revealed in the previous sections. A summary is shown
in Fig. 12, which provides a comparison in terms of tip dis-
placements, for the four geometries considered here for F =
250, F = 500 and F = 750 kN. Such loads correspond, re-
spectively, to tip displacements of about 6.4 %, 12.5 % and
18.1 % of the spanwise reference length. The difference be-
tween the 3D BLM and the non-linear 3D FEM in terms of
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Figure 8. Changes in curvature (a–c) and moment stress resultants (d–f) with 3D BLM for increasing F .

Figure 9. Local frame orientations in terms of Euler angles before (green lines) and after deformation.

tip displacements is below 0.9 % in all the considered cases
(Fig. 12).

We conclude now by examining the results for the 3D
strain measure E11, also referred to as longitudinal strain,
which is another important parameter for the analysis and
design of rotor blades (see, for example, Griffith and Ash-
will, 2011). In particular, we focus on the effects of taper by
considering a beamlike structure with bi-tapered cross sec-
tions (test case 2 in Fig. 12). Then, we compare the out-
comes of the 3D BLM with those of linear and non-linear
3D FEM simulations. A summary of the results is reported
in Fig. 13, which shows the maximum longitudinal strain at
different reference cross sections (at 30 %, 50 % and 70 %

of the spanwise reference length) and for three different tip
forces (F = 250, F = 500 and F = 750 kN).

As verified by many simulations and shown in the exam-
ples, the proposed approach performs well in terms of com-
putational efficiency and accuracy. It can be used to study
the mechanical behaviour of beamlike structures, which are
curved, twisted and tapered in their unstressed reference state
and undergo large global displacements. It can moreover pro-
vide information on the deformed configurations of the struc-
tures, such as their displacement fields, as well as the corre-
sponding strain and stress measures. It is worth noting that
it is suitable for beamlike structures with generic reference
cross-sections shapes. However, as already pointed out, for
bi-tapered elliptical cross sections, analytical solutions can
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Figure 10. Prismatic case before and after deformation (a) and non-prismatic cases after deformation (b).

Figure 11. Centre-line points displacement of prismatic case (blue) and non-prismatic cases (other colours) for F = 250 kN.

Figure 12. Tip displacements with 3D BLM (blue) and 3D FEM (red) for different geometries and increasing F (see arrows).

be obtained in terms of warping fields, while for generic
reference cross-section shapes problem, Eq. (29) has to be
solved using numerical methods.

6 Conclusions

Many complex engineering structures, such as the rotor
blades of wind turbines and helicopters, are non-prismatic

beamlike structures, with one dimension much larger than
the other two and a shape that is curved, twisted and also ta-
pered in the unstressed reference state. The increasing size
and flexibility of such structures make the prediction of their
aeroelastic behaviour ever more challenging. This paper ad-
dressed the structural part of this modelling and proposed a
modelling approach, referred to as 3D BLM, which is com-
putationally efficient, accurate and explicitly considers the

Wind Energ. Sci., 5, 685–698, 2020 https://doi.org/10.5194/wes-5-685-2020



G. Migliaccio et al.: Beamlike models for the analyses of curved, twisted and tapered HAWT blades 697

Figure 13. Max longitudinal strain E11 in cross sections at 30 %, 50 % and 70 % span for increasing F (bi-tapered case).

main geometrical characteristics of the mentioned structures,
the large deflections of their reference centre line, and the
in- and out-of-plane warping of their transversal cross sec-
tions. In the mentioned approach, the warping displacements
have been thought of as an additional small motion superim-
posed on the global motion of the local frames. The strain
tensor has been calculated analytically in terms of geometri-
cal parameters of the structure, 1D strain measures and 3D
warping fields. A method based on a variational statement
has been used to obtain suitable warping fields. The proposed
approach enables one to obtain analytical results in particu-
lar cases and can be implemented into an efficient numeri-
cal code in the general case. The analytical results obtained,
along with numerical examples (obtained by implementing
3D BLM into a computer code) and comparisons with corre-
sponding results from 3D FEM simulations, have been pre-
sented to show the effectiveness of the modelling approach
and the information it can provide. In all cases, the simu-
lation times with 3D BLM have been significantly shorter
than those required by 3D FEM simulations, while the ac-
curacy of the results has been always almost the same. In
this paper the analyses have been limited to the terms of or-
der ε, as discussed when introducing the strain measures of
the model. This turned out to be sufficient to accurately pre-
dict the global deflection of the considered structures even
when the displacements of the centre-line points are large
and non-linear with respect to the applied loads. The inclu-
sion of higher-order terms in the model may provide better
results, especially in terms of stress and strain field predic-
tions, while not practically affecting the computational per-
formance of the implemented model. This is an important
point to be further investigated and will be the objective of
a successive work. An interesting future activity would also
be to performing comparison analyses with other structural
modelling methods (not only 3D FEM), with the aim of as-
sessing the performance of different structural models for
non-prismatic beamlike structures in terms of the informa-
tion each approach can provide (e.g. centre-line displace-

ments, 1D strain measures, 3D strain fields), computational
efficiency and results accuracy.
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